
Acta Informatica (2010) 47:111–132
DOI 10.1007/s00236-009-0112-9

ORIGINAL ARTICLE

On the observational theory of the CPS-calculus

Massimo Merro

Received: 28 February 2009 / Accepted: 12 November 2009 / Published online: 12 December 2009
© Springer-Verlag 2009

Abstract We apply powerful proof-techniques of concurrency theory to study the
observational theory of Thielecke’s CPS-calculus, a distillation of the target language of
Continuation-Passing Style transforms. We define a labelled transition system from which
we derive a (weak) labelled bisimilarity that completely characterises Morris’ context-equiv-
alence. We prove a context lemma showing that Morris’ context-equivalence coincides with
a simpler context-equivalence closed under a smaller class of contexts. Then we profit of
the determinism of the CPS-calculus to give a simpler labelled characterisation of Morris’
equivalence, in the style of Abramsky’s applicative bisimilarity. We enhance our bisimula-
tion proof-methods with up to bisimilarity and up to context proof techniques. We use our
bisimulation proof techniques to investigate a few algebraic properties on diverging terms
that cannot be proved using the original axiomatic semantics of the CPS-calculus.

1 Introduction

Continuations represent a fundamental concept in the semantics of programming languages.
In functional languages, a continuation is a parameter of a function that represents the “rest of
the computation” [33,34]. Functions taking continuations as arguments are called functions
in Continuation-Passing Style (briefly CPS functions), and have a special syntactic form:
they terminate their computation by passing the result to the continuation.

A fairly vast literature on functional programming studies transformations of functions
into CPS functions. These transformations are called CPS transforms. CPS transforms, as
syntactic technique for introducing continuations, were first introduced by Fisher [5] and

A preliminary extended abstract of this article appeared in the Proceedings of the 22nd International
Conference on the Mathematical Foundations of Program Semantics, Electronic Notes in Theoretical
Computer Science 158:307–330, Elsevier, 2006.

M. Merro (B)
Dipartimento di Informatica, Università degli Studi di Verona,
Strada Le Grazie 15, 37134 Verona, Italy
e-mail: massimo.merro@univr.it

123

112 M. Merro

studied in detail by Plotkin in his seminal paper on call-by-name and call-by-value λ-calcu-
lus [25].

The target language of CPS transforms is usually a simple subset of the λ-calculus that
admits a very “imperative” reading in terms of jumping [31]. Thielecke [37] proposed a target
language, called CPS-calculus, similar to the intermediate language of Appel’s compiler [2],
designed to bring out the jumping, imperative nature of the continuation-passing. Thielecke
showed that the more traditional CPS transforms factorise through his calculus.

The CPS-calculus is a small deterministic name-passing calculus. The calculus comes
equipped with an axiomatic semantics defined as the congruence induced by four simple
axioms. Merro and Sangiorgi [15] proved the soundness of those axioms with respect to
Milner and Sangiorgi’s barbed congruence [19], a standard contextually-defined program
equality. Thielecke provided also a categorical account of the structure inherent in first-class
continuations building a term model, from the syntax of the CPS-calculus, as an instance of
the categorical framework. A more recent account of the state of the art of the axiomatic and
categorical semantics in a simply-typed call-by-value setting can be found in [6].

The CPS-calculus consists of only two syntactic constructs and one operational rule; this
is enough to embody a special programming paradigm. The problem with such calculi of
minimal expressiveness is the difficulty in developing an handy behavioural theory. In the
current paper, we apply powerful proof-techniques of concurrency theory to develop an obser-
vational theory of the recursive CPS-calculus (the results can be adapted to other variants of
the calculus). More precisely, we are interested in establishing when two CPS-terms have the
same observable behaviour, that is, they are indistinguishable in any context. Behavioural
equivalences are fundamental for justifying program transformations performed either by
programmers, during system development, or by the optimising phases of compilers. While
several notions of behavioural equivalences can be found in the literature, most of them share
two key properties:

– two terms are equivalent only if they offer identical interactions to any environment, that
is, they expose the same observables;

– the equivalence is preserved by some key constructs of the calculus, as a consequence,
proving the equivalence of two large terms can be reduced to proving the equivalence of
their components.

A standard notion of behavioural equality is Morris’ context-equivalence [20]. The definition
of Morris’ equivalence is simple and intuitive; in practise, however, it is difficult to use as
the quantification on all contexts is a heavy proof obligation. Simpler proof techniques are
based on labelled bisimilarities [17,21], which are co-inductive relations that characterise
the behaviour of processes using a labelled transition system (LTS).

1.1 Contribution

– In Sect. 3 we define a higher-order LTS for the CPS-calculus which captures external
jumps (i.e. jumps to continuations placed within the environment). The LTS is higher-
order as labels may contain CPS-terms. An intuitive reduction semantics for the CPS-
calculus was already given in [15], in terms of internal jumps. If on one hand reduction
semantics are easier to grasp, on the other hand LTS-based semantics are better suited for
defining reasoning techniques. We check the correctness of our LTS-based semantics by
proving its consistency with respect to the reduction semantics of [15].

– In Sect. 4.1, we use our LTS to define a (weak) labelled bisimilarity. Our bisimilarity
is a congruence, and completely characterises Morris’ context-equivalence. This result

123

On the observational theory of the CPS-calculus 113

allows us to use the simpler definition of bisimilarity to verify whether or not two terms
are Morris equivalent. Notice that, in general, congruence proofs for higher-order bisi-
mulations are hard, in particular when the syntax of the calculus is very rigid. Our proof
is relatively simple as it relies on up to bisimilarity proof-techniques [29,30]. As an easy
corollary, we derive a context lemma showing that Morris’ context-equivalence coincides
with a simpler contextually-based equivalence closed under a smaller class of contexts.

– In Sect. 4.2, we provide a simpler labelled characterisation of Morris’ equivalence in
the style of Abramsky’s applicative bisimilarity [1]. The characterisation proof is quite
simple as we profit of the determinism of the calculus to show that applicative bisimilarity
and bisimilarity coincide. When defining a behavioural equality for a confluent/determin-
istic calculus as the CPS-calculus, applicative bisimilarity is the natural choice. On the
other hand, the definition of a “standard” bisimilarity allows us to derive easier proofs
for the characterisation theorem and the context lemma. Had we worked directly with the
applicative bisimilarity, the proofs would have been much harder.

– In Sect. 4.3, we enhance our proof methods by providing up to context proof tech-
niques [28,30] for both bisimilarities. Up to context proof techniques are very effective
to reduce the size of the candidate bisimulation. In particular, these proof techniques are
very useful when working with higher-order bisimulations to factor out the universally
quantified terms provided by the environment.

– In Sect. 5 we investigate on divergent CPS-terms. We use our bisimulation-based proof
techniques to prove a number of algebraic laws that cannot be derived using Thielecke’s
axiomatic semantics.

2 The CPS-calculus

In this section we introduce the syntax and the existing semantics of the CPS-calculus.

2.1 Syntax and reduction semantics

The CPS-calculus is very simple and low-level: only variables can be passed as arguments,
and applications are like jumps, with variables as argument. The terms of the CPS-calculus
are given by the following grammar:

M, N ::= a〈b〉 ∣
∣ M{a〈b〉 ⇐ N }

where lowercase letters a, b, c, . . . range over variables (names) and uppercase letter
L , M, N , . . . range over terms. The intended meaning is that a〈b〉 is a jump to the con-
tinuation a with actual parameter b, while M{a〈b〉 ⇐ N } binds the continuation with body
N and formal parameter b to a in M .

We study the monadic and recursive variant of the calculus, in that jumps have a single
argument, and in a term M{a〈b〉 ⇐ N } the sub-term N may refer to itself under a. More
precisely, in a term M{a〈b〉 ⇐ N } the scope of variable a comprehends both M and N ,
while that of b extends to N only.

Remark 1 The theory developed in this article can be easily extended to the polyadic variant
of the CPS-calculus, where a jump may contain several parameters.

The set of free variables fv(M) of a CPS term M is defined as follows.

– fv(a〈b〉) def= {a, b}
– fv(M{a〈b〉 ⇐ N }) def= (fv(M)\{a}) ∪ (fv(N)\{a, b}).

123

114 M. Merro

We write fv(M, N) as an abbreviation for fv(M) ∪ fv(N). In a jump a〈b〉 we say that a is
in subject and b in object position. We write M[a/b] for the capture avoiding substitution
of variable of a for each free occurrence of variable b in M . So, alpha-conversion can be
formally defined by the following two equations:

M{a〈b〉 ⇐ N } = M{a〈c〉 ⇐ N [c/b]} for c �∈ fv(N)

M{a〈b〉 ⇐ N } = M[c/a]{c〈b〉 ⇐ N [c/a]} for c �∈ fv(M) ∪ fv(N).

We will identify terms up to alpha-conversion. It is easy to see that every CPS-term is in the
form

a〈b〉{a1〈b1〉⇐ M1} . . . {an〈bn〉⇐ Mn}
for some n ≥ 0. We adopt the reduction semantics proposed in [15]; a slight variant of the
operational semantics given by Thielecke. Thus, the behaviour of CPS-terms is modelled by
means of just one (global) reduction rule:

ai 〈b〉{a1〈b1〉⇐ M1} . . . {ai 〈bi 〉⇐ Mi } . . . {an〈bn〉⇐ Mn}
−→

Mi [b/bi]{a1〈b1〉⇐ M1} . . . {ai 〈bi 〉⇐ Mi } . . . {an〈bn〉⇐ Mn}
with 1 ≤ i ≤ n and a j �∈ fv(Mi)∪{ai }, for 1 ≤ j < i . We denote with −→∗ the reflexive and
transitive closure of −→.

2.2 Behavioural semantics

In operational semantics two terms are deemed equivalent if they have the same observable
behaviour in all contexts. In the CPS-calculus the notion of observability is represented by
the “external” jump that a term can perform to interact with the context. We define an observ-
ability predicate ↓a , for each variable a, which detects the possibility of a term to interact
with the environment via a. For instance, in a jump of the form a〈b〉, we can observe (the
occurrence of a jump to) a, whereas the argument b does not play any direct role. More
generally, a free variable in the leftmost position can be observed.

Definition 1 (Observability/convergence) Let M be a term of the CPS-calculus and a be a
name, we say that M converges to a, written M ↓a , if there are names b, a1, b1, . . . , an, bn ,
for some integer n ≥ 0 with a �= ai , for all 1 ≤ i ≤ n, such that M = a〈b〉{a1〈b1〉 ⇐
M1} . . . {an〈bn〉 ⇐ Mn}. We say that M (weakly) converges to a, written M ⇓a , if there
exists a CPS-term N such that M −→∗ N ↓a .

The definition of divergence is as expected. Formally,

Definition 2 (Divergence) A CPS-term M diverges, written M ⇑, if whenever there is a
term M ′ such that M −→∗ M ′ then there is also a term M ′′ such that M ′ −→ M ′′.

Obviously, since the calculus is deterministic, a term either diverges or (weakly) converges
to some name a.

In order to define contextually-based equivalences we need to specify what a context is. A
(monadic) context C[·] is a CPS-term with a hole, denoted by [·]. CPS-contexts are generated
by the following grammar:

C[·] ::= [·] ∣
∣ C[·]{a〈x〉 ⇐ M} ∣

∣ M{a〈x〉 ⇐ C[·]}.

123

On the observational theory of the CPS-calculus 115

A static context is a context that can be generated only applying the first two productions of
the grammar above.

Everything is in place to define Morris’ context-equivalences for the CPS-calculus.

Definition 3 (Observational equalities) Let M and N be two CPS-terms. We say that M
and N are observationally equivalent, written M � N , if for all static contexts C[·] and
variables a, it holds that C[M] ⇓a iff C[N] ⇓a . M and N are observationally congruent,
written M ∼= N , if for all contexts C[·] and variables a, it holds that C[M] ⇓a iff C[N] ⇓a .

The intuition is that two terms are observationally indistinguishable if no amount of pro-
gramming can tell them apart; obviously, ∼= ⊆�.

Barbed equalities are branching-time contextually-based equivalences introduced by
Milner and Sangiorgi in the realm of concurrent processes [19]. Their definitions can be
easily adapted to the CPS-calculus.

Definition 4 (Barbed equalities) A symmetric relation S on CPS-terms is a barbed bisimu-
lation if M S N implies:

1. If M −→ M ′ then there exists N ′ such that N −→∗ N ′ and M ′ S N ′.
2. If M ↓a , for some a, then N ⇓a .

Two terms M and N are barbed bisimilar, written M ≈· N , if M S N for some barbed bi-
simulation S. Two terms M and N are barbed equivalent if for each static context C[·], it
holds that C[M] ≈· C[N]; they are barbed congruent if for each context C[·], it holds that
C[M] ≈· C[N].

As the CPS-calculus is deterministic (and hence confluent), it is well-known that obser-
vational congruence (respectively, observational equivalence) coincides with barbed congru-
ence (respectively, barbed equivalence) [17].

2.3 Axiomatic semantics

The original semantics of the CPS-calculus is an axiomatic semantics [37] defined as the
congruence induced by the following four axioms:1

(DISTR) L{a〈b〉⇐ M}{c〈d〉 ⇐ N }≡ L{c〈d〉⇐ N }{a〈b〉 ⇐ M{c〈d〉⇐ N }} where a �= c
and a, b �∈ fv(N)

(GC) a〈b〉{c〈d〉 ⇐ N } ≡ a〈b〉 where c �∈ fv(a〈b〉)
(JMP) a〈b〉{a〈c〉⇐ N } ≡ N [b/c]{a〈c〉⇐ N }
(ETA) M{a〈b〉⇐c〈b〉} ≡ M[c/a] where a �= c.

The (JMP) axiom is in some sense what drives the computation. In fact, our reduction rule
can be seen as a “contextual” variant of the (JMP) axiom. The axiom (GC) allows us to gar-
bage collect unreachable continuations. The axiom (DISTR) serves to bring the components
of a (jumping) redex into contiguous positions. In this respect, it is similar to the notion of
structural congruence used when giving the operational semantics in process calculi [18].
We write CPS � M ≡ N when the axiomatic semantics can be used to derive the equality
between M and N .

The axiomatic semantics is sound with respect to barbed congruence, and hence also with
respect to observational congruence. Formally,

1 Most of these axioms comes from [2].

123

116 M. Merro

Theorem 1 (Merro and Sangiorgi [15]) Let M and N be two CPS-terms. Then,

CPS � M ≡ N implies M ∼= N .

Notice that the axiomatic semantics is meant to be the least equality on CPS-terms that one
would wish to impose, while observational equivalence is arguably the greatest such notion
one could consider.

3 A labelled transition system

In Table 1 we provide a labelled transition system (LTS) for the CPS-calculus. Transitions

are of the form M
α−−→ M ′ where α can be either τ , to model internal jumps, or a〈x〉N ,

for some variable a and CPS-term N , to model external jumps. In particular, the observable
action a〈x〉N models the capability to perform an external jump a〈b〉, for some parameter
b. Notice that our actions do not mention the argument of the jump (in this case b), although
such argument has its influence on the derivative M ′. Intuitively, in a transition

M
a〈x〉N−−−−−→ M ′

the action a〈x〉N codifies the discriminating context [·]{a〈x〉 ⇐ N } with which M can inter-
act. This context becomes part of the derivative of the transition. The main inference rules
are (Jmp) and (Tau), modelling external and internal jumps, respectively. Rules (Cxt Jmp) and
(Cxt Tau) are their contextual counterparts.

Our LTS is necessarily higher-order to properly model the interaction with the environ-

ment while preserving the transition closure of the calculus. In the sequel, we write
τ−−→∗

to

denote the reflexive and transitive closure of
τ−−→.

Proposition 1 (Transition closure) Let M be a CPS-term. If M
α−−→ M ′ then M ′ is a

CPS-term.

Proof By a simple transition induction. ��
As said in the introduction the CPS-calculus is deterministic. Formally,

Proposition 2 (Determinism) Let M be a CPS-term. Then, only one of the following two
cases applies.

1. M may perform at most one transition of the form M
τ−→ M ′, for some M ′.

2. Fixed an arbitrary term L, the term M may perform at most one transition of the form

M
a〈x〉L−−−−−→ M ′, for some variable a and term M ′.

Table 1 Labelled transition system for the CPS-calculus

(Jmp)
x �∈ fv(a〈b〉)

a〈b〉 a〈x〉M−−−−−−→ M[b/x]{a〈x〉 ⇐ M} (Tau) M
a〈x〉N−−−−−→ M ′

M{a〈x〉 ⇐ N } τ−−→ M ′

(Cxt Tau)
M

τ−−→ M ′
M{a〈x〉 ⇐ N } τ−−→ M ′{a〈x〉 ⇐ N }

(Cxt Jmp)
M

a〈x〉N−−−−−→ M ′{a〈x〉 ⇐ N } a �= b b �∈ fv(N)

M{b〈y〉 ⇐ O} a〈x〉N−−−−−→ M ′{b〈y〉 ⇐ O}{a〈x〉 ⇐ N }

123

On the observational theory of the CPS-calculus 117

Proof It follows from the definition of the LTS and because every CPS-term is in the form
a〈b〉{a1〈b1〉 ⇐ M1} . . . {an〈bn〉 ⇐ Mn}. ��
In the next result we prove the correctness of our LTS-based semantics showing that it coin-
cides with the reduction semantics given in Sect. 2.1.

Theorem 2 (Harmony Theorem) Let M and N be two CPS-terms. Then,

1. M ↓a iff M
a〈x〉L−−−−−→ M ′{a〈x〉 ⇐ L} for any CPS-term L.

2. M −→ N iff M
τ−→ N.

Proof See the Appendix. ��
The following result says that the operational semantics is preserved under (name) sub-

stitution.

Proposition 3 1. If M
τ−→ M ′ then Mσ

τ−→ M ′σ , for any capture avoiding substitu-
tion σ .

2. If M ⇓a and a �= x then M[b/x] ⇓a.

Proof By Theorem 2(2) we can rewrite the first statement as: If M −→ M ′ then Mσ −→ M ′σ ,
for any capture avoiding substitution σ . By definition of −→, we have

M = ai 〈b〉{a1〈b1〉⇐ M1} . . . {ai 〈bi 〉⇐ Mi } . . . {an〈bn〉⇐ Mn}
and

M ′ = Mi [b/bi]{a1〈b1〉⇐ M1} . . . {ai 〈bi 〉⇐ Mi } . . . {an〈bn〉⇐ Mn}.
Notice that, for 1 ≤ i ≤ n, both ai and bi are bound in M . Since σ is a capture avoiding
substitution we can assume that, for 1 ≤ i ≤ n, both ai and bi do not appear in σ . As a
consequence,

Mσ = ai 〈bσ 〉{a1〈b1〉⇐ M1σ } . . . {ai 〈bi 〉⇐ Miσ } . . . {an〈bn〉⇐ Mnσ }
and

M ′σ = (Mi [b/bi]σ){a1〈b1〉⇐ M1σ } . . . {ai 〈bi 〉⇐ Miσ } . . . {an〈bn〉⇐ Mnσ }
= (Miσ [bσ/bi]){a1〈b1〉⇐ M1σ } . . . {ai 〈bi 〉⇐ Miσ } . . . {an〈bn〉⇐ Mnσ }

with Mσ −→ M ′σ .
The second statement follows from the first one and Theorem 2(2). In fact, if M ⇓a then,

by Theorem 2(2), there is M ′ such that M
τ−−→∗

M ′ ↓a . As name substitution does not affect

silent actions it follows that M[b/x] τ−−→∗
M ′[b/x] ↓a . ��

4 Bisimulation proof methods

In this section, we propose two labelled characterisations of Morris’ context-equivalence. We
then prove a context lemma showing that static contexts have the same discriminating power
as full contexts. As a consequence, observational congruence and observational equivalence
coincide. Finally, we enhance our proof methods with up to context proof techniques.

123

118 M. Merro

4.1 A labelled characterisation of Morris’ context-equivalence

Starting from the labelled transition system we can define our notion of bisimulation for

CPS-terms. We write �⇒ to denote the reflexive and transitive closure of
τ−−→. We write

α��⇒
for �⇒ α−−→, and

α̂��⇒ for
α��⇒ if α �= τ , and for �⇒ if α = τ .

Definition 5 (Bisimulation) A symmetric relation S on CPS-terms is a bisimulation if when-

ever M S N and M
α−−→ M ′ there exists a CPS-term N ′ such that N

α̂��⇒ N ′ and M ′ S N ′.
Two CPS-terms M and N are bisimilar, written M ≈ N if there is some bisimulation S such
that M S N .

Our bisimulation is defined in a delay style [27,38], as weak actions always end with an
observable label. It is easy to see that ≈ is an equivalence relation.

In order to show that our bisimilarity characterises the observational congruence we first
prove the completeness of the bisimilarity with respect to the observational equivalence (and
not the observational congruence). Notice that, in general, a result of this kind would not hold
in concurrency theory. However, in our case, Lemma 1, on the insensitiveness of behavioural
equalities to τ -actions, allows us to easily prove the completeness result.

Lemma 1 (Insensitiveness to τ -actions) Let M be a CPS-term. If M
τ−→ M ′ then M ∼= M ′.

Proof By Theorem 2(2) the relations −→ and
τ−−→ coincide. As a consequence, there are an

integer n and variables b, ai , bi , Mi , for 1 ≤ i ≤ n, such that

M = ai 〈b〉{a1〈b1〉⇐ M1} . . . {ai 〈bi 〉⇐ Mi } . . . {an〈bn〉⇐ Mn}
M ′ = Mi [b/bi]{a1〈b1〉⇐ M1} . . . {ai 〈bi 〉⇐ Mi } . . . {an〈bn〉⇐ Mn}.

We prove that CPS � M ≡ M ′ by using the axioms of the previous section. In particular, M ′
can be derived from M by applying i−1 times the axiom (DISTR) to shift the continuation
{ai 〈xi 〉 ⇐ Mi } at the extreme left, once axiom (JMP) to reduce along variable ai , and i−1
times the axiom (DISTR) to put back the {ai 〈bi 〉 ⇐ Mi } at its original place. By Theorem 1
we obtain M ∼= M ′. ��
Lemma 2 (Completeness of ≈ w.r.t. �) Let M and N be two CPS-terms. Then M � N
implies M ≈ N.

Proof We prove that the relation � is a bisimulation. Let M � N .

– Suppose that M
τ−−→ M ′. By Lemma 1 we have M ∼= M ′ and hence also M � M ′. Now,

let us choose as matching transition N �⇒ N . By transitivity of � it follows that M ′ � N .

– Suppose that M
a〈x〉L−−−−−→ M ′{a〈x〉 ⇐ L}. By Theorem 2(1) we have M ↓a . As M � N

we also have N ⇓a . By several applications of Theorem 2(2) and one application of The-

orem 2(1) we have N
a〈x〉L�����⇒ N ′{a〈x〉 ⇐ L}. As M � N and � is preserved by all static

contexts, we also have M{a〈x〉 ⇐ L} � N {a〈x〉 ⇐ L}. As M
a〈x〉L−−−−−→ M ′{a〈x〉 ⇐ L}

and N
a〈x〉L�����⇒ N ′{a〈x〉 ⇐ L}, by several applications of rules (Tau) and (Cxt Tau) we

have M{a〈x〉 ⇐ L} τ−−→ M ′{a〈x〉 ⇐ L} and N {a〈x〉 ⇐ L} �⇒ N ′{a〈x〉 ⇐ L}. By
applying Lemma 1 on the two derivations we obtain M ′{a〈x〉 ⇐ L} � N ′{a〈x〉 ⇐ L}.

��

123

On the observational theory of the CPS-calculus 119

Now, let us focus on the sounness proof. The main difficulty here is proving that ≈ is
preserved by all contexts. A direct proof of that is far from trivial, due to the rigid syntax of
the calculus. To this end we define an up to weak bisimilarity proof technique. Up-to proof
techniques allow us to prove a bisimulation result using a concise relation that in general
is not itself a bisimulation, but contained in a bisimulation [30]. Notice that, in general, the
up to weak bisimilarity proof technique is not sound [17,29]. Thus, here we use a stronger
definition, along the lines of Exercise 2.4.64 of [30].

In the rest of the paper, we adopt the following notation on binary relations. If R and S
are binary relations over CPS-terms then we write RS for the binary relation resulting by
the composition of R and S. Thus, M RS N if there is M ′ such that M R M ′ and M ′ S N .

Definition 6 (Bisimulation up to ≈) A symmetric relation S over CPS-terms is a bisimulation
up to ≈ if M S N implies,

1. whenever M
τ−−→ M ′ then, for some N ′, N �⇒ N ′ and M ′ S≈ N ′

2. whenever M
α−−→ M ′, α �= τ , then, for some N ′, N

α��⇒ N ′ and M ′ ≈S≈ N ′.

Lemma 3 If S is a bisimulation up to ≈ then S ⊆≈.

Proof See the Appendix. ��

Now, everything is in place to prove that ≈ is a congruence. Our proof relies on the up to-
bisimilarity proof technique, the axiom (DISTR) for permuting continuations, and the axiom
(ETA) for encoding substitutions. We then use Theorem 1 and Lemma 2 to validate these two
axioms with respect to bisimilarity.

Lemma 4 (≈ is preserved by all contexts) Let M and N be two CPS-terms such that M ≈ N.
Then,

1. M{a〈b〉 ⇐ O} ≈ N {a〈b〉 ⇐ O} for all terms O and variables a and b.
2. O{a〈b〉 ⇐ M} ≈ O{a〈b〉 ⇐ N } for all terms O and variables a and b.

Proof Let us prove that M{a〈b〉 ⇐ O} ≈ N {a〈b〉 ⇐ O}. Let S be the relation defined as:

S def= {(M{a〈x〉 ⇐ O}, N {a〈x〉 ⇐ O}) for all a and O s.t. M ≈ N } ∪ ≈
We prove that S is a bisimulation up to ≈. We do a case analysis on the transition M{a〈x〉 ⇐
O} α−−→ M ′.

– Let M{a〈x〉 ⇐ O} τ−−→ M ′=M ′′{a〈x〉 ⇐ O}, by an application of rule (Cxt Tau), because

M
τ−−→ M ′′. Since M ≈ N there is N ′′ such that N �⇒ N ′′ with M ′′ ≈ N ′′. By several

applications of rule (Cxt Tau), we get N {a〈x〉 ⇐ O} �⇒ N ′′{a〈x〉 ⇐ O}. By definition
of S it follows that

(

M ′′{a〈x〉 ⇐ O}, N ′′{a〈x〉 ⇐ O}) ∈ S.

– Let M{a〈x〉 ⇐ O} τ−−→ M ′, by an application of rule (Tau), because M
a〈x〉O−−−−−→ M ′.

Since M ≈ N there is N ′ such that N
a〈x〉O�����⇒ N ′ and M ′ ≈ N ′. By several applications

of rule (Cxt Tau) and one application of rule (Tau) we have N {a〈x〉 ⇐ O} �⇒ N ′. By
definition of S it follows that (M ′, N ′) ∈ S.

123

120 M. Merro

– Let M{a〈x〉 ⇐ O} b〈y〉O ′
−−−−−→ M ′, by an application of rule (Cxt Jmp), because M

b〈y〉O ′
−−−−−→

M ′′{b〈y〉 ⇐ O ′}, with M ′ = M ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O ′}. As M ≈ N there is N ′′ such

that N
b〈y〉O ′�����⇒ N ′′{b〈y〉 ⇐ O ′} with M ′′{b〈y〉 ⇐ O ′} ≈ N ′′{b〈y〉 ⇐ O ′}.

By applying rules (Cxt Tau) and (Cxt Jmp) we get

N {a〈x〉 ⇐ O} b〈y〉O ′�����⇒ N ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O ′}.
So, we have to prove that

M ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O ′} ≈S≈ N ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O ′}.

As M
b〈y〉O ′

−−−−−→ M ′′{b〈y〉 ⇐ O ′}, by applying rule (Tau) we obtain

M{b〈y〉 ⇐ O ′} τ−−→ M ′′{b〈y〉 ⇐ O ′}.
By an application of rule (Cxt Tau) we get

M{b〈y〉 ⇐ O ′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O ′}} τ−−→ M ′′{b〈y〉 ⇐ O ′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O ′}}.
By Lemma 1, the inclusion of ∼=⊆�, and Lemma 2 it follows that

M{b〈y〉 ⇐ O ′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O ′}} ≈ M ′′{b〈y〉 ⇐ O ′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O ′}} (1)

With a similar reasoning, from N
b〈y〉O ′�����⇒ N ′′{b〈y〉 ⇐ O ′}, by several applications of

rules (Cxt Tau) and one application of rule (Tau) we get

N {b〈y〉 ⇐ O ′} �⇒ N ′′{b〈y〉 ⇐ O ′}.
By several applications of rule (Cxt Tau) we obtain

N {b〈y〉 ⇐ O ′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O ′}} �⇒ N ′′{b〈y〉 ⇐ O ′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O ′}}.
By Lemmas 1, the inclusion ∼=⊆�, Lemma 2, and the transitivity of ≈ it follows that

N {b〈y〉 ⇐ O ′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O ′}} ≈ N ′′{b〈y〉 ⇐ O ′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O ′}} (2)

Now, by axiom (DISTR), Theorem 1, the inclusion ∼=⊆�, and Lemma 2 we get

M ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O ′} ≈ M ′′{b〈y〉 ⇐ O ′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O ′}} (3)

N ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O ′} ≈ N ′′{b〈y〉 ⇐ O ′}{a〈x〉 ⇐ O{b〈y〉 ⇐ O ′}} (4)

Finally, since M ′′{b〈y〉 ⇐ O ′} ≈ N ′′{b〈y〉 ⇐ O ′}, by definition of S it follows that

M ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O ′} ≈ S ≈ N ′′{a〈x〉 ⇐ O}{b〈y〉 ⇐ O ′}.
This concludes the proof of first part of the statement.

Let us prove now that M ≈ N implies O{a〈x〉 ⇐ M} ≈ O{a〈x〉 ⇐ N }. We show that
the relation

S def= {(O{a〈x〉 ⇐ M}, O{a〈x〉 ⇐ N }) : for all a, M, N , O such that M ≈ N } ∪ ≈
is a bisimulation up to ≈. We do a case analysis on the transition O{a〈x〉 ⇐ M} α−−→ M ′.

– Let O{a〈x〉 ⇐ M} τ−−→ O ′{a〈x〉 ⇐ M}, because O
τ−−→ O ′ by an application of rule

(Cxt Tau). This case is easy.

123

On the observational theory of the CPS-calculus 121

– Let O{a〈x〉 ⇐ M} τ−−→ M ′, by an application of rule (Tau), because

O
a〈x〉M−−−−−→ C[M[b/x]]{a〈x〉 ⇐ M} = M ′,

for some variable b and some context C[·] = [·]{a1〈x1〉 ⇐ M1} . . . {an〈xn〉 ⇐ Mn}. As
a consequence, there is N ′ such that

O
a〈x〉N−−−−−→ C[N [b/x]]{a〈x〉 ⇐ N } = N ′

and hence, by an application of rule (Tau), we have O{a〈x〉 ⇐ N } τ−−→ N ′. As M ≈ N ,
by applying the first part of the current lemma we derive

M{x〈y〉 ⇐ b〈y〉} ≈ N {x〈y〉 ⇐ b〈y〉}.
By applying in sequence the axiom (ETA), Theorem 1, the inclusion ∼=⊆�, and Lemma 2
we obtain:

– M[b/x] ≈ M{x〈y〉 ⇐ b〈y〉}
– N [b/x] ≈ N {x〈y〉 ⇐ b〈y〉}.
By the transitivity of ≈ we derive M[b/x] ≈ N [b/x]. As C[·] is a static context, by several
applications of the first part of the current lemma we obtain

C[M[b/x]] ≈ C[N [b/x]].
Again, by an application of the first part of the current lemma we derive

C[M[b/x]]{a〈x〉 ⇐ N } ≈ C[N [b/x]]{a〈x〉 ⇐ N }.
We recall that M ′ = C[M[b/x]]{a〈x〉 ⇐ M} and N ′ = C[N [b/x]]{a〈x〉 ⇐ N }. This
allows us to conclude that M ′ S≈ N ′.

– Let O{a〈x〉 ⇐ M} b〈y〉L−−−−−→ M ′, by an application of rule (Cxt Jmp), because O
b〈y〉L−−−−−→

O ′{b〈y〉 ⇐ L},with M ′ = O ′{a〈x〉 ⇐ M}{b〈y〉 ⇐ L}. By an application of rule

(Cxt Jmp), we have O{a〈x〉 ⇐ N } b〈y〉L−−−−−→ N ′, with N ′ = O ′{a〈x〉 ⇐ N }{b〈y〉 ⇐ L}.
By applying in sequence the axiom (DISTR), Theorem 1, the inclusion ∼=⊆�, and Lemma 2
we obtain:

– O ′{a〈x〉 ⇐ M}{b〈y〉 ⇐ L} ≈ O ′{b〈y〉 ⇐ L}{a〈x〉 ⇐ M{b〈y〉 ⇐ L}}
– O ′{a〈x〉 ⇐ N }{b〈y〉 ⇐ L} ≈ O ′{b〈y〉 ⇐ L}{a〈x〉 ⇐ N {b〈y〉 ⇐ L}}.
As M ≈ N , by the first part of the current lemma we also have M{b〈y〉 ⇐ L} ≈
N {b〈y〉 ⇐ L}. As a consequence,

O ′{a〈x〉 ⇐ M}{b〈y〉 ⇐ L} ≈S≈ O ′{a〈x〉 ⇐ N }{b〈y〉 ⇐ L}.
��

We can now prove the characterisation result.

Theorem 3 (Characterisation of ∼=) Let M and N be two CPS-terms. Then M ≈ N iff
M ∼= N.

Proof As to the implication from left to right, by Lemma 4 we have C[M] ≈ C[N], for
all contexts C[·]. By Definition 5 and Theorem 2 we derive C[M] ⇓a iff C[N] ⇓a . The
implication from right to left follows from Lemma 2 and the fact that ∼=⊆�. ��

123

122 M. Merro

An easy consequence of the previous result and Lemma 2 is the following.

Theorem 4 (Context lemma) The relations � and ∼= coincide.

This result shows that static contexts retain all distinguishing power of Morris’ context-
equivalence. Said in other words, contexts of the form M{a〈x〉 ⇐ C[·]} do not add extra
distinguishing power to Morris’ equivalence.

4.2 Applicative bisimilarity

As our equivalences are insensitive to τ -actions (see Lemma 1) we can simplify the defini-
tion of bisimulation by removing the clause on τ -actions. In this manner, we basically get
a definition of Abramsky’s applicative bisimilarity [1] for the CPS-calculus. In applicative
bisimulations only observable (weak) actions are taken into account.

Definition 7 (Applicative bisimilarity) A symmetric relation S on CPS-terms is an applica-
tive bisimulation if whenever M S N and M

α��⇒ M ′, α �= τ , then there exists a CPS-term
N such that N

α��⇒ N ′ and M ′ S N ′. Two CPS-terms M and N are applicative bisimilar,
written M ≈A N , if there is some applicative bisimulation S such that M S N .

In general, applicative bisimulations are smaller in size than bisimulations as they allow
us to collapse terms that differ only for τ -actions. It is easy to show that the applicative
bisimilarity is an equivalence relation.

In the following theorem we prove that bisimilarity and applicative bisimilarity coincide.

Theorem 5 The relations ≈ and ≈A coincide.

Proof Let us prove that ≈⊆≈A. We show that the relation ≈ is an applicative bisimula-
tion. Let M ≈ N and M

α��⇒ M ′, α �= τ . Then, by definition there is M ′′ such that

M �⇒ M ′′ α−−→ M ′. By Lemmas 1 and 2 we have M ′′ ≈ M ≈ N . As M ′′ ≈ N there is N ′
such that N

α��⇒ N ′ and M ′ ≈ N ′.
Let us prove now that ≈A⊆≈. We show that the relation ≈A is a bisimulation. Let

M ≈A N .

1. If M
τ−−→ M ′, then by Lemmas 1 and 2, and the inclusion ≈⊆≈A we derive M ≈A M ′.

As matching transition we choose N �⇒ N . By M ≈A N and the transitivity of ≈A we
obtain M ′ ≈A N .

2. If M
α−−→ M ′, as M ≈A N , there is N ′ such that N

α��⇒ N ′ and M ′ ≈A N ′. ��
This result, together with Theorem 3, allows us to show that applicative bisimilarity is a

labelled characterisation of Morris’ equivalence. More precisely, all behavioural equivalences
defined up to now coincide, as stated below.

Corollary 1 The relations ∼=,�,≈, and ≈A coincide.

Proof By an application of Theorems 3, 4, and 5. ��
4.3 Up to context proof techniques

In this section we introduce up to context proof techniques [28,30] for both bisimilarity and
applicative bisimilarity. When comparing terms in higher-order calculi, (equipped with a
higher-order LTS) up to context proof techniques are very useful to reduce the size of the
candidate bisimulation. Intuitively, these techniques allow us to strip off a common context
from the terms under consideration.

123

On the observational theory of the CPS-calculus 123

Remark 2 Up to context techniques are particularly useful when working with applicative
bisimulations. However, it is technically easier to prove the correctness of these techniques
with respect to the notion of bisimulation. The correctness of the up to context technique for
applicative bisimulation is an easy consequence of that for bisimulation.

Definition 8 (Bisimulation up to context and up to ≈) A symmetric relation S over CPS-
terms is a bisimulation up to context and up to ≈ if whenever M S N and M

α��⇒ M ′′, there

is a term N ′′ such that N
α̂��⇒ N ′′ and there is a static context C[·], and terms M ′ and N ′

such that M ′′ ≈ C[M ′], C[N ′] ≈ N ′′ and M ′ S N ′.

In order to prove the soundness of the above proof technique we need a technical lemma.

Lemma 5 Let R be a bisimulation up to context and up to ≈. If M R N and for some

static context C[·] and term M ′′ it holds that C[M] α−−→ M ′′, then there exists a term N ′′

such that C[N] α̂��⇒ N ′′ and there are a static context C ′[·] and terms M ′ and N ′ such that
M ′′ ≈ C ′[M ′], C ′[N ′] ≈ N ′′ and M ′ R N ′.

Proof See the Appendix. ��
The previous lemma can be easily generalised to the weak case as stated below.

Lemma 6 Let R be a bisimulation up to context and up to ≈. If M R N and for some
static context C[·] and term M ′′ it holds that C[M] α��⇒ M ′′, then there exists a term N ′′

such that C[N] α̂��⇒ N ′′ and there are a static context C ′[·] and terms M ′ and N ′ such that
M ′′ ≈ C ′[M ′], C ′[N ′] ≈ N ′′ and M ′ R N ′.

Proof The result follows by induction on the length of the transition C[M] α��⇒ M ′′, using
Lemma 5. ��
Theorem 6 If R is a bisimulation up to context and up to ≈, then R ⊆≈.

Proof We recall that we only use static contexts. The proof consists in showing that the
relation

S def= {(M, N) : ∃C[·], M ′, N ′, such that M ≈ C[M ′], C[N ′] ≈ N , and M ′ R N ′}
is a bisimulation.

Suppose (M, N) ∈ S and M
α��⇒ M1. Since (M, N) ∈ S there exist C[·], M ′, N ′ such

that M ≈ C[M ′], C[N ′] ≈ N , and M ′ R N ′. As M ≈ C[M ′], the definition of bisimilarity

ensures that there exists M ′
1 such that C[M ′] α̂��⇒ M ′

1 and M1 ≈ M ′
1.

As M ′ R N ′, Lemma 6 tells us that there exist N ′
1, C ′[·], M2, N2 such that C[N ′] α̂��⇒ N ′

1,
M ′

1 ≈ C ′[M2] and N ′
1 ≈ C ′[N2], with M2 R N2. As N ≈ C[N ′], the definition of bisimi-

larity ensures that there exists N1 such that N
α̂��⇒ N1 and N1 ≈ N ′

1. The transitivity of ≈
and the definition of S ensures that (M1, N1) ∈ S. ��

In deterministic higher-order calculi, as the CPS-calculus, it is more convenient to work
with applicative bisimulations up to context and up to ≈A.

Definition 9 (Applicative bisimulation up to context and up to ≈A) A symmetric relation
S over CPS-terms is an applicative bisimulation up to context and up to ≈A if whenever
M S N and M

α��⇒ M ′′, for α �= τ , there is a term N ′′ such that N
α��⇒ N ′′ and there

is a static context C[·], and terms M ′ and N ′ such that M ′′ ≈A C[M ′], C[N ′] ≈A N ′′ and
M ′ S N ′.

123

124 M. Merro

The soundness of this proof technique follows from Theorems 5 and 6.

Theorem 7 If R is an applicative bisimulation up to context and up to ≈A, then R ⊆≈A.

Proof Let us prove that R is also a bisimulation up to context and up to ≈. Let (M, N) ∈ R.

1. If M �⇒ M ′, for some M ′, then we can choose N �⇒ N . Let C[·] def= [·]. By Lemmas 1
and 2 we have M ′ ≈ M = C[M], C[N] ≈ N , and M R N .

2. If M
α��⇒ M ′, with α �= τ , the result follows from Definition 9 and Theorem 5.

By Theorem 6 it follows that M ≈ N . By Theorem 5 we derive M ≈A N . ��

5 On divergent terms

The axiomatic semantics of Thielecke, reported in Sect. 2.3, allows us to prove a wide num-
ber of equalities. However, none of those axioms deal with divergent terms. This means the
axiomatic semantics does not provide any instrument to prove equality between divergent
terms. On the other hand, the coinductive nature of bisimulation proof methods is particularly
suited for dealing with divergent terms. So, as a workbench for both our bisimulation theory
and up to context proof technique, we prove a few algebraic properties on divergent terms.

We start describing how the divergence of CPS-terms is preserved by the operators of the
calculus.

Proposition 4 Let M be a divergent CPS-term.

1. For any substitution σ , the term Mσ diverges.
2. For any static context C[·], the term C[M] diverges.
3. For any term L such that L ⇓a, the term L{a〈x〉 ⇐ M} diverges.

Proof 1. It follows from Proposition 3(1).
2. If C[·] is a static context and M ⇑, then the context C[·] does not play any role during

the computation of C[M].
3. As L ⇓a , by Proposition 2 L{a〈x〉 ⇐ M} �⇒ C[Mσ], for some static context C[·] and

some substitution σ . From the first and the second items of this proposition it follows
that L{a〈x〉 ⇐ M} diverges. ��

Now, let us consider a few algebraic laws dealing with divergent terms. The first one
equates two simple terms.

a〈b〉{a〈x〉 ⇐ a〈b〉} ∼= a〈c〉{a〈x〉 ⇐ a〈c〉}. (5)

According to Definition 2 the two terms diverge. However, Thielecke’s axiomatic semantics
cannot be used to prove this equality. In fact, we can only apply axiom (JMP) which leaves
the two terms unchanged. The law above could be slightly complicated to equate two terms
diverging in different ways.

a1〈b〉{a1〈x1〉 ⇐ a2〈a1〉}{a2〈x2〉 ⇐ x2〈b〉} ∼= a〈c〉{a〈x〉 ⇐ a〈c〉} (6)

where the left hand term contains some kind of mutual recursion. More generally, in
CPS-calculus it holds a reformulation of the �-equation [3] of the λ-calculus:

M ∼= N if both M and N diverge. (7)

Notice that, in general, it may be useful to have some instruments to determine whether a
term diverges. For instance, the terms appearing in Laws 5 and 6 diverge because they enter
a loop.

123

On the observational theory of the CPS-calculus 125

Proposition 5 Let M and N be CPS-terms such that M
τ�⇒ N

τ�⇒ N. Then M ⇑.

Proof It follows from the determinism of the calculus. ��
Theorem 8 (�-equation) Let M and N be CPS-terms. If both M and N diverge then for
any context C[·] it holds that C[M] ∼= C[N].
Proof By Proposition 2, if M and N diverge then M and N are trivially applicative bisimilar.
From Corollary 1 it follows M ∼= N . From the definition of ∼= it follows C[M] ∼= C[N], for
any context C[·]. ��

Now, let us focus on another algebraic law where divergence plays a crucial role.

b〈a〉{a〈x〉 ⇐ a〈c〉} ∼= b〈a〉{a〈x〉 ⇐ a〈d〉} (8)

Here, the two terms can perform an external jump to the continuation “b” passing, as an
argument, the address a of two different but diverging, and hence equivalent, continuations.

Before proving an appropriate generalisation of the law above we need a couple of tech-
nical results.

Lemma 7 1. If M{a〈x〉 ⇐ M} ⇑ then either M ⇑ or M ⇓a.
2. If M{a〈x〉 ⇐ M} ⇑ and L ⇓a then L{a〈x〉 ⇐ M} ⇑.

Proof See the Appendix. ��
Now, everything is in place to prove a generalisation of Law 8.

Theorem 9 If M{a〈x〉 ⇐ M} ⇑ and M ′{a〈x〉 ⇐ M ′} ⇑ then for any CPS-term L it holds
that L{a〈x〉 ⇐ M} ∼= L{a〈x〉 ⇐ M ′}.
Proof We prove that the binary relation R defined as:

{(L{a〈x〉 ⇐ M}, L{a〈x〉 ⇐ M ′}) | ∀ a, L , M, M ′. M{a〈x〉 ⇐ M}
⇑ ∧ M ′{a〈x〉 ⇐ M ′} ⇑}

is an applicative bisimulation up to context. Let L{a〈x〉 ⇐ M} α��⇒ L̂ , with α �= τ . We can
suppose α = b〈y〉L ′, for some b and L ′, with b �= a. By Lemma 7(2) it follows that L �⇓a . As
a consequence there cannot be any interaction between L and the continuation {a〈x〉 ⇐ M}.
This means that the action α must be generated by L . More precisely, there is L ′′ such that

L
b〈y〉L ′�����⇒ L ′′{b〈y〉 ⇐ L ′}.

By rule (Cxt Jmp) it follows that

L{a〈x〉 ⇐ M} b〈y〉L ′�����⇒ L ′′{a〈x〉 ⇐ M}{b〈y〉 ⇐ L ′}.
With a similar reasoning we derive

L{a〈x〉 ⇐ M ′} b〈y〉L ′�����⇒ L ′′{a〈x〉 ⇐ M ′}{b〈y〉 ⇐ L ′}.
If we factor out the context [·]{b〈y〉 ⇐ L ′} we get (L ′′{a〈x〉 ⇐ M}, L ′′{a〈x〉 ⇐ M ′}) ∈ R.

��
The reader may notice that the application of the up to context proof technique allows us

to exhibit a more succinct proof of the previous theorem.

123

126 M. Merro

6 Conclusion and Related work

We have presented two labelled characterisations of Morris’ observational equivalence
for Thielecke’s CPS-calculus. The former resembles Sangiorgi’s context bisimulation for
Higher-Order π-calculus [27], whereas the latter is in the style of Abramsky’s applicative
bisimilarity [1], an operational theory for higher-order languages, inspired by bisimulation
theories for concurrency [17,21]. Our LTS has some similarities with that developed by Gor-
don [7] for PCF plus streams, in particular our higher-order rule (Jmp) has its counterpart in
Gordon’s rule (Trans Fun) for functions.

Since Abramsky’s work, the idea of applicative bisimilarity has been applied to a variety
of higher-order sequential languages; see [7,23] for surveys. Our characterisation proof for
the applicative bisimilarity is quite different from that of [1] (due to Stoughton), as we use
≈ as an auxiliary relation. In fact, the presence of single arrow transitions on the left hand
in the definition of ≈ is of great help in the congruence proof. Stoughton’s proof uses a
variant of Milner’s [16] and Berry’s [4] Context Lemma. Our congruence proof relies on up
to bisimilarity proof techniques.

An immediate consequence of our characterisation result is a context lemma showing
that the observational congruence coincides with the observational equivalence. In gen-
eral, context lemmas are hard to prove. The literature on context lemmas for functional
languages is quite large. Milner [16] showed that contextual equivalence on a combina-
tory-logic of PCF is unchanged if we restrict attention to ‘applicative contexts’ [·]a1 . . . an .
Berry [4] extended Milner’s proof to the lambda-calculus form of PCF. Gordon [7] proved
a context lemma for PCF plus streams showing that only evaluation contexts need to be
considered. Pitts [24] proved a context lemma for a higher-order language with assign-
able variables that only store first-order values. The proof uses logical relations that are
defined in terms of the operational semantics. Sullivan [35] defined a metalanguage based
on PCF extended with I/O and dynamic store primitives. A context lemma for this language
is proved by showing that an applicative simulation relation is a precongruence. Finally,
Talcott [36] investigated a lambda-calculus augmented with primitive operations to manip-
ulate the computation state (store, continuation), and the environment (sending messages,
creating processes). She proved a context lemma, called ‘ciu theorem’, that allows us to con-
sider only contexts which correspond to computation states in which the hole is associated
to the expression to be evaluated next. The ciu theorem relies on the notion of ‘uniform
computation’ which allows computation steps to be carried out on states with missing infor-
mation.

In the current paper, we have enhanced our bisimulation proof-methods with up to
bisimilarity and up to context proof techniques [28,30]. We have used these techniques
to prove a few algebraic laws on divergent terms that cannot be derived by Thielecke’s axi-
omatic semantics. In higher-order languages, up to context proof techniques are notoriously
hard. Sangiorgi’s bisimulation up to context is a powerful bisimulation proof method for
process calculi [28,30]. Unfortunately, his correctness proof does not carry over to applica-
tive bisimilarities for higher-order languages. Pitts [22] extended Howe’s congruence proof
to establish an up to context rule for applicative bisimulation. Gordon [7] and Sands [26]
defined applicative bisimulations up to bisimilarity and/or up to context. They demonstrated
the power of this approach to produce concise proofs of equivalences which are difficult to
derive by other operational methods. However, the validity of general applicative bisimula-
tions up to context remains an open problem [9]. Other examples of up to context bisimulation
proof techniques in higher-order languages are [8] and [10]. More precisely, Koutavas and
Wand [8] introduced a new notion of bisimulation for showing contextual equivalence in an

123

On the observational theory of the CPS-calculus 127

untyped λ-calculus augmented with higher-order procedures and a general store. Lassen
[10] provided an operational bisimulation account for Böhm tree equivalence including
an elementary congruence proof, from which a bisimulation up to context technique is
derived. This work is extended and generalised in [12], where underlying principles from
Böhm tree [3] and Lévy-Longo tree equivalences [13,14] are adapted to the call-by-
value λ-calculus. A notion of enf bisimulation is defined using eager normal form (enf)
equivalence classes and eager reductions, to reduce function arguments to values before
application. It is then shown that enf bisimulation congruences are analogues to Lévy-
Longo tree equivalence and that they both coincide on terms in the target of the CPS trans-
forms. An up to η-reduction proof technique for enf bisimulation is also introduced since
enf bisimulation does not relate terms induced by the η equation x = λy.xy. More
recently, Støvring and Lassen [32] have defined an eager normal form bisimilarity for the
untyped call-by-value lambda calculus extended with continuations and mutable references.
The bisimilarity is proved to be sound and complete with respect to contextual equiva-
lence.

Finally, Lassen and Levy [11] have developed a normal form bisimulation theory for a
different CPS-calculus, Jump-With-Argument, called JWA. The paper makes three important
contributions: (i) it extends normal form bisimulation to types; (ii) it provides a novel con-
gruence proof, based on insight from game semantics; (iii) it presents a seamless treatment
of η-expansion.

Acknowledgments The author would like to thank the anonymous referees for their valuable suggestions
and comments. This work has been partially funded by the Italian Ministry of Research (MIUR) within the
project “SOFT”.

Appendix A: Proofs

Proof of Theorem 2 1. Let us consider the implication from left to right. If M ↓a then, by
definition, there are names b, a1, b1, . . . , an, bn , for some integer n ≥ 0, with a �= ai

for every 1 ≤ i ≤ n, such that M = a〈b〉{a1〈b1〉⇐ M1} . . . {an〈bn〉⇐ Mn}. By an appli-
cation of rule (Jmp) and n applications of rule (Cxt Jmp) we get the required derivation.
Let us prove the implication from right to left. We do induction on the length of the
derivation of an a〈x〉L action.

– Suppose that a〈b〉 a〈x〉L−−−−−→ L[b/x]{a〈x〉 ⇐ L} then a〈b〉 ↓a .

– Suppose that M{b〈y〉 ⇐ O} a〈x〉L−−−−−→ M ′{b〈y〉 ⇐ O}{a〈x〉 ⇐ L} because

M
a〈x〉L−−−−−→ M ′{a〈x〉 ⇐ L}, with a �= b and b �∈ fv(L), by an application

of rule (Cxt Jmp). By inductive hypothesis M ↓a , and since a �= b we also have
M{b〈y〉 ⇐ O} ↓a .

2. Let us prove the implication from left to right. The only reduction rule is

ai 〈b〉{a1〈b1〉 ⇐ M1} . . . {ai 〈bi 〉 ⇐ Mi } . . . {an〈bn〉 ⇐ Mn}
−→

Mi [b/bi]{a1〈b1〉 ⇐ M1} . . . {ai 〈bi 〉 ⇐ Mi } . . . {an〈bn〉 ⇐ Mn}.

Now, by applying in sequence, once the rule (Jmp), i − 1 times the rule (Cxt Jmp), one
time the rule (Tau), and n − i times the rule (Cxt Tau), we get

123

128 M. Merro

ai 〈b〉{a1〈b1〉 ⇐ M1} . . . {ai 〈bi 〉 ⇐ Mi } . . . {an〈bn〉 ⇐ Mn}
τ−−→

Mi [b/bi]{a1〈b1〉 ⇐ M1} . . . {ai 〈bi 〉 ⇐ Mi } . . . {an〈bn〉 ⇐ Mn}.

For the implication from right to left we do rule induction on the derivation M
τ−−→ N .

– Suppose that M{a〈x〉 ⇐ N } τ−−→ M ′ by an application of rule (Tau) with premise

M
a〈x〉N−−−−−→ M ′. By applying the first part of the current theorem we have M ↓a . By

Definition 1 it follows that

M = a〈b〉{a1〈b1〉⇐ M1} . . . {an〈bn〉⇐ Mn}
with

M ′ = N [b/x]{a1〈b1〉⇐ M1} . . . {an〈bn〉⇐ Mn}{a〈x〉 ⇐ N }.
As a consequence,

a〈b〉{a1〈b1〉⇐ M1} . . . {an〈bn〉⇐ Mn}{a〈x〉 ⇐ N }
−→

N [b/x]{a1〈b1〉⇐ M1} . . . {an〈bn〉⇐ Mn}{a〈x〉 ⇐ N }
and hence M{a〈x〉 ⇐ N } −→ M ′.

– Suppose that M{a〈x〉 ⇐ N } τ−−→ M ′{a〈x〉 ⇐ N } by an application of rule (Cxt Tau)

with premise M
τ−−→ M ′. By inductive hypothesis M −→ M ′ which is a reduction of

the form:

ai 〈b〉{a1〈b1〉 ⇐ M1} . . . {ai 〈bi 〉 ⇐ Mi } . . . {an〈bn〉 ⇐ Mn}
−→

Mi [b/bi]{a1〈b1〉 ⇐ M1} . . . {ai 〈bi 〉 ⇐ Mi } . . . {an〈bn〉 ⇐ Mn}.
This implies

ai 〈b〉{a1〈b1〉 ⇐ M1} . . . {ai 〈bi 〉 ⇐ Mi } . . . {an〈bn〉 ⇐ Mn}{a〈x〉 ⇐ N }
−→

Mi [b/bi]{a1〈b1〉 ⇐ M1} . . . {ai 〈bi 〉 ⇐ Mi } . . . {an〈bn〉 ⇐ Mn}{a〈x〉 ⇐ N }
and therefore M{a〈x〉 ⇐ N } −→ M ′{a〈x〉 ⇐ N }. ��

Proof of Lemma 3 It suffices to prove that the symmetric relation ≈S≈ is a bisimulation.
Let L and O be two CPS-terms such that L ≈S≈ O . This means that there are M and N
such that L ≈ M S N ≈ O . There are two cases.

1. Suppose L
τ−−→ L ′. As L ≈ M , there is M ′ such that M �⇒ M ′ and L ′ ≈ M ′. As M S N ,

if M �⇒ M ′ then there is N ′ such that N �⇒ N ′ and M ′ S≈ N ′. Now, if N �⇒ N ′ then
there is O ′ such that O �⇒ O ′ and N ′ ≈ O ′. By transitivity of ≈ we have L ′ ≈S≈ O ′.

2. Suppose L
α−−→ L ′. As L ≈ M , there are M ′ and M ′′ such that M �⇒ M ′ α−−→ M ′′ and

L ′ ≈ M ′′. As M S N , if M �⇒ M ′ then there is N ′ such that N �⇒ N ′ and M ′ S N ′. As
a consequence, if M ′ α−−→ M ′′ then there are N ′′ and N ′′′ such that N ′ �⇒ N ′′ α−−→ N ′′′

and M ′′ ≈S≈ N ′′′. Finally, as N ≈ O , if N �⇒ α−−→ N ′′′ then there are O ′ and O ′′ such

that O �⇒ O ′ α−−→ O ′′ and N ′′′ ≈ O ′′. By transitivity of ≈ we have L ′′ ≈S≈ O ′′. ��

123

On the observational theory of the CPS-calculus 129

Proof of Lemma 5 Let R be a bisimulation up to context and up to ≈. Suppose that

(M, N) ∈R and that C[M] α−−→ M ′′ for some static context

C[·] def= [·]{a1〈x1〉 ⇐ M1} . . . {an〈xn〉 ⇐ Mn}.
We decompose the transition C[M] α−−→ M ′′, distinguishing two cases.

1. The transition is performed by M , that is, M
α−−→ M ′. There are two sub-cases depending

on α.

a. Let M
τ−−→ M ′. By several applications of rule (Cxt Tau) we derive M ′′ = C[M ′]. As

(M, N) ∈R, there is N ′ such that N �⇒ N ′ and there is a static context C ′[·], and
terms M ′′′ and N ′′′ such that M ′ ≈ C ′[M ′′′] and C ′[N ′′′] ≈ N ′, with (M ′′′, N ′′′) ∈R.

Let D[·] def= C[C ′[·]]. D[·] is a static context. As M ′ ≈ C ′[M ′′′] and ≈ is preserved
by all contexts, M ′′ = C[M ′] ≈ C[C ′[M ′′′]] = D[M ′′′]. As N �⇒ N ′, by several
applications of rule (Cxt Tau) we have C[N] �⇒ C[N ′] with C[N ′] ≈ C[C ′[N ′′′]] =
D[N ′′′]. To conclude, we recall that (M ′′′, N ′′′) ∈R.

b. Let M
a〈x〉L−−−−−→ M ′ = M̂{a〈x〉 ⇐ L}, for some a, L and M̂ . By several applications

of rule (Cxt Jmp) we derive M ′′ = C[M̂]{a〈x〉 ⇐ L}.
As (M, N) ∈R, there is N ′ such that N

a〈x〉L�����⇒ N ′ = N̂ {a〈x〉 ⇐ L}, for some N̂ ,
and there is a static context C ′[·], and terms M ′′′ and N ′′′ such that M ′ ≈ C ′[M ′′′]
and C ′[N ′′′] ≈ N ′, with (M ′′′, N ′′′) ∈R. As N

a〈x〉L�����⇒ N ′, by several applications

of rules (Cxt Tau) and (Cxt Jmp), we have C[N] a〈x〉L�����⇒ N ′′ = C[N̂]{a〈x〉 ⇐ L}. Let

Ĉ[·] def= [·]{a1〈x1〉 ⇐ M1{a〈x〉 ⇐ L}} . . . {an〈xn〉 ⇐ Mn{a〈x〉 ⇐ L}}.
By applying n times the axiom (DISTR) (to shift the continuation {a〈x〉 ⇐ L} at the
extreme left), Theorem 1, the inclusion ∼=⊆�, Lemma 2 and Lemma 4 we obtain:

C[M̂]{a〈x〉 ⇐ L} ≈ Ĉ[M̂{a〈x〉 ⇐ L}].
As M̂{a〈x〉 ⇐ L} = M ′ ≈ C ′[M ′′′] and ≈ is preserved by all contexts, it follows
that

Ĉ[M̂{a〈x〉 ⇐ L}] ≈ Ĉ[C ′[M ′′′]].
With a similar reasoning we derive:

C[N̂]{a〈x〉 ⇐ L} ≈ Ĉ[N̂ {a〈x〉 ⇐ L}] ≈ Ĉ[C ′[N ′′′]].

Let D[·] def= Ĉ[C ′[·]]. D[·] is a static context. By the transitivity of ≈ we obtain
M ′′ ≈ D[M ′′′], D[N ′′′] ≈ N ′′ and (M ′′′, N ′′′) ∈R.

2. The transition is due to an interaction between M and the context C[·]. More precisely,

M
ai 〈xi 〉Mi−−−−−−→ M ′ = M̂{ai 〈xi 〉 ⇐ Mi }, for some 1 ≤ i ≤ n and term M̂ . By i − 1

applications of rule (Cxt Jmp) we have

M{a1〈x1〉 ⇐ M1} . . . {ai−1〈xi−1〉 ⇐ Mi−1}
ai 〈xi 〉Mi−−−−−−→

M̂{a1〈x1〉 ⇐ M1} . . . {ai−1〈xi−1〉 ⇐ Mi−1}{ai 〈xi 〉 ⇐ Mi }.

123

130 M. Merro

By an application of rule (Tau) we have

M{a1〈x1〉 ⇐ M1} . . . {ai 〈xi 〉 ⇐ Mi } τ−−→ M̂{a1〈x1〉 ⇐ M1} . . . {ai 〈xi 〉 ⇐ Mi }.
By n − i applications of rule (Cxt Tau) we have M ′′ = C[M̂]. As (M, N) ∈R there is

N ′ such that N
ai 〈xi 〉Mi������⇒ N ′ = N̂ {ai 〈xi 〉 ⇐ Mi }, for some N̂ , and there is a static

context C ′[·], and terms M ′′′ and N ′′′ such that M ′ ≈ C ′[M ′′′] and N ′ ≈ C ′[N ′′′] with

(M ′′′, N ′′′) ∈R. As N
ai 〈xi 〉Mi������⇒ N ′, by i − 1 applications of rule (Cxt Jmp), and n − i

applications of rule (Cxt Tau) we have C[N] �⇒ N ′′ = C[N̂].
Let

Ĉ[·] def= [·]{a1〈x1〉 ⇐ M1{ai 〈xi 〉 ⇐ Mi }}
. . . {ai−1〈xi−1〉 ⇐ Mi−1{ai 〈xi 〉 ⇐ Mi }}{ai+1〈xi+1〉 ⇐ Mi+1}
. . . {an〈xn〉 ⇐ Mn}.

By applying i − 1 times the axiom (DISTR) (to shift {ai 〈xi 〉 ⇐ Mi } at the extreme left),
Theorem 1, the inclusion ∼=⊆�, Lemma 2 and Lemma 4 we obtain:

C[M̂] ≈ Ĉ[M̂{ai 〈xi 〉 ⇐ Mi }].
As M̂{ai 〈xi 〉 ⇐ Mi } = M ′ ≈ C ′[M ′′′] and ≈ is preserved by all contexts, it follows
that

Ĉ[M̂{ai 〈xi 〉 ⇐ Mi }] ≈ Ĉ[C ′[M ′′′]].
With a similar reasoning we derive

C[N̂] ≈ Ĉ[N̂ {ai 〈xi 〉 ⇐ Mi }] ≈ Ĉ[C ′[N ′′′]].

Let D[·] def= Ĉ[C ′[·]]. D[·] is a static context. By the transitivity of ≈ we obtain
M ′′ ≈ D[M ′′′], N ′′ ≈ D[N ′′′] and (M ′′′, N ′′′) ∈R. ��

Proof of Lemma 7 1. There are two possibilities: either M ⇑ or M ⇓b, for some variable b.
However, if M ⇓b then it must be b = a, otherwise we would have M{a〈x〉 ⇐ M} ⇓b.

2. If L ⇓a then

L{a〈x〉 ⇐ M} �⇒ C[M[b/x]]{a〈x〉 ⇐ M}
for some variable b and some static context C[·] that does not capture free occurrences
of variable a. As M{a〈x〉 ⇐ M} ⇑, by the previous item of this lemma there are two
possibilities: either M ⇑ or M ⇓a . If M ⇑ by Proposition 3(1) also M[b/x] ⇑. By
Proposition 4(2) we obtain C[M[b/x]]{a〈x〉 ⇐ M} ⇑. If M ⇓a by Proposition 3(2) also
M[b/x] ⇓a . As C[·] does not capture the free occurrences a, it follows that

C[M[b/x]]{a〈x〉 ⇐ M} �⇒ C ′[M[b′
/x]]{a〈x〉 ⇐ M}

for some variable b′ and some static context C ′[·] obtained by adding the continuations of
C[·] to those of M[b/x]. As a consequence also C ′[·] does not capture the free occurrences
of a. As M ⇓a , by Proposition 3(2) we have M[b′

/x] ⇓a and the reduction sequence above
can be reproduced “ad infinitum” showing that the term under investigation diverges.

��

123

On the observational theory of the CPS-calculus 131

References

1. Abramsky, S., Ong, L.: Full abstraction in the lazy lambda calculus. Inf. Comput. 105, 159–267 (1993)
2. Appel, A.: Compiling with Continuations. Cambridge University Press, Cambridge (1992)
3. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics, Studies in Logic, vol. 103, Revised edn.

North Holland, Amsterdam (1984)
4. Berry, G.: Some syntactic and categorical constructions of lambda calculus models. Technical Report

RR-80, INRIA-Sophia Antipolis (1981)
5. Fischer, M.J.: Lambda-calculus schemata. In: Proceedings of ACM Conference on Proving Assertions

about Programs, pp. 104–109. SIGPLAN Notice 7(1) (1972)
6. Führmann, C., Thielecke, H.: On the call-by-Value CPS transform and its semantics. Inf. Comput. 188(2),

241–283 (2004)
7. Gordon, A.D.: Bisimilarity as a theory of functional programming. Theor. Comput. Sci. 228, 5–47 (1999)
8. Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order imperative programs.

In: Proceedings of 33rd POPL, pp. 141–152. ACM Press (2006)
9. Lassen, S.B.: Relational reasoning about contexts. In: Higher Order Operational Techniques in Semantics,

pp. 91–135. Cambridge University Press (1998)
10. Lassen, S.B.: Bisimulation in untyped lambda calculus: Böhm trees and bisimulation up to context. In:

Proceedings of 15th MFPS, vol. 20 of Electronic Notes in Theoretical Computer Science (1999)
11. Lassen, S.B., Levy, P.B.: Typed normal form bisimulation. In: Proceedings of 21st CSL, Lecture Notes

in Computer Science, vol. 4646, pp. 283–297 (2007)
12. Lassen, S.B.: Eager normal form bisimulation. In: Proceedings of 20th LICS, pp. 345–354. IEEE Com-

puter Society (2005)
13. Lévy, J.J.: An algebraic interpretation of the λβκ-calculus; and an application of a labelled λ-calculus.

Theor. Comput. Sci. 2(1), 97–114 (1976)
14. Longo, G.: Set theoretical models of lambda calculus: theory, expansions and isomorphisms. Ann. Pure

Appl. Logic 24, 153–188 (1983)
15. Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi. J. Math. Struct. Comput. Sci. 14,

715–767 (2004)
16. Milner, R.: Fully abstract models of typed lambda calculus. Theor. Comput. Sci. 4, 1–22 (1977)
17. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)
18. Milner, R.: The polyadic π -calculus: a tutorial. Technical Report ECS–LFCS–91–180, LFCS, Department

of Computer Science, Edinburgh University, October 1991. Also in Bauer, F.L., Brauer, W., Schwichten-
berg, H. (eds.) Logic and Algebra of Specification. Springer (1993)

19. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Proceedings of 19th ICALP, LNCS, vol. 623,
pp. 685–695. Springer (1992)

20. Morris, J.: Lambda-calculus Models of Programming Languages. PhD thesis, Massachusetts Institute of
Technology (1968)

21. Park, D.M.: Concurrency on automata and infinite sequences. In: Deussen, P. (ed.) Conference on Theo-
retical Computer Science, LNCS, vol. 104. Springer (1981)

22. Pitts, A.M.: An Extension of Howe’s Construction to Yield Simulation-up-to-context Results. Unpub-
lished Manuscript (1995)

23. Pitts, A.M.: Operationally-based theories of program equivalence. In: Dybjer, P., Pitts, A.M. (eds.) Seman-
tics and Logics of Computation, pp. 241–298. Publications of the Newton Institute, Cambridge University
Press, USA (1997)

24. Pitts, A.M.: Reasoning about local variables with operationally-based logical relations. In: O’Hearn, P.W.,
Tennent, R.D. (eds.) Algol-Like Languages, vol. 2, chap. 17, pp. 173–193. Birkhauser (1997). Reprinted
from Proceedings 11th Annual IEEE Symposium on Logic in Computer Science, pp. 152–163, Brunswick
(July 1996)

25. Plotkin, G.D.: Call by name, call by value and the λ-calculus. Theor. Comput. Sci. 1, 125–159 (1975)
26. Sands, D.: From SOS rules to proof principles: an operational metatheory for functional languages.

In: Proceedings of 24th POPL, pp. 428–441. ACM Press (1997)
27. Sangiorgi, D.: Bisimulation for higher-order process calculi. Inf. Comput. 131(2), 141–178 (1996)
28. Sangiorgi, D.: On the bisimulation proof method. J. Math. Struct. Comput. Sci. 8, 447–479 (1998)
29. Sangiorgi, D., Milner, R.: The problem of “Weak Bisimulation up to”. In: Proceedings of CONCUR ’92,

LNCS, vol. 630, pp. 32–46. Springer (1992)
30. Sangiorgi, D., Walker, D.: The π -calculus: A Theory of Mobile Processes. Cambridge University Press,

Cambridge (2001)
31. Steele, G.: RABBIT: A compiler for SCHEME. Technical Report AITR-474, MIT Artificial Intelligence

Laboratory (1978)

123

132 M. Merro

32. Støvring, K., Lassen, S. B.: A complete, co-inductive syntactic theory of sequential control and state.
In: Proceedings of 34th POPL, pp. 161–172. ACM Press (2007)

33. Strachey, C., Wadsworth, P.: Continuations: A mathematical semantics for handling full jumps. Technical
Report PRG-11, Oxford University Computing Laboratory, Programming Research Group (1974)

34. Strachey, C., Wadsworth, P.: Continuations: a mathematical semantics for handling full jumps. High.
Order Symb. Comput. 13(1/2), 135–152 (2000)

35. Sullivan, G.T.: An Extensional MetaLanguage with I/O and a Dynamic Store. PhD thesis, Northeastern
University (1996)

36. Talcott, C.: Reasoning about functions with effects. In: Higher Order Operational Techniques in Seman-
tics, pp. 347–390. Cambridge University Press (1998)

37. Thielecke, H.: Categorical Structure of Continuation Passing Style. PhD thesis, University of Edinburgh
(1997). Also available as technical report ECS-LFCS-97-376

38. Weijland, W.P.: Synchrony and Asynchrony in Process Algebra. PhD thesis, University of Amsterdam
(1989)

123

	On the observational theory of the CPS-calculus
	Abstract
	1 Introduction
	1.1 Contribution

	2 The CPS-calculus
	2.1 Syntax and reduction semantics
	2.2 Behavioural semantics
	2.3 Axiomatic semantics

	3 A labelled transition system
	4 Bisimulation proof methods
	4.1 A labelled characterisation of Morris' context-equivalence
	4.2 Applicative bisimilarity
	4.3 Up to context proof techniques

	5 On divergent terms
	6 Conclusion and Related work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

