
Acta Informatica (2008) 45:403–439
DOI 10.1007/s00236-008-0075-2

ORIGINAL ARTICLE

Inference rules for proving the equivalence of recursive
procedures

Benny Godlin · Ofer Strichman

Received: 12 May 2006 / Revised: 21 September 2006 / Published online: 2 July 2008
© Springer-Verlag 2008

Abstract Inspired by Hoare’s rule for recursive procedures, we present three proof rules
for the equivalence between recursive programs. The first rule can be used for proving partial
equivalence of programs; the second can be used for proving their mutual termination; the
third rule can be used for proving the equivalence of reactive programs. There are various
applications to such rules, such as proving equivalence of programs after refactoring and
proving backward compatibility.

Contents

1 Introduction . 404
1.1 Notions of equivalence . 405
1.2 The three rules that we prove . 406

2 Preliminaries . 407
2.1 The programming language . 407
2.2 Operational semantics . 409
2.3 Computations and subcomputations of LPL programs . 410
2.4 An assumption about the programs we compare . 411

3 A proof rule for partial procedure equivalence . 412
3.1 Definitions . 412
3.2 Rule (proc- p- eq) . 413
3.3 Rule (proc- p- eq) is sound . 415

4 A proof rule for mutual termination of procedures . 418
4.1 Definitions . 418
4.2 Rule (m- term) . 419
4.3 Rule (m- term) is sound . 419
4.4 Using rule (m- term): a long example . 420

B. Godlin
Department of Computer Science, Technion, Haifa, Israel
e-mail: bgodlin@cs.technion.ac.il

O. Strichman (B)
Information Systems, IE, Technion, Haifa, Israel
e-mail: ofers@ie.technion.ac.il

123

404 B. Godlin, O. Strichman

5 A proof rule for equivalence of reactive programs . 423
5.1 Definitions . 423
5.2 Rule (react- eq) . 424
5.3 Rule (react- eq) is sound . 425
5.4 Using rule (react- eq): a long example . 432

6 What the rules cannot prove . 435
7 Summary . 436
Appendix A: Formal definitions for Sect. 5 . 436
Appendix B: Refactoring rules that our rules can handle . 438

1 Introduction

We propose three proof rules for proving equivalence between possibly recursive programs,
which are inspired by Hoare’s rule for recursive procedures [7]. The first rule can be used for
proving partial equivalence (i.e., equivalence if both programs terminate); the second rule can
be used for proving mutual termination (i.e., one program terminates if and only if the other
terminates); the third rule proves equivalence of reactive programs. Reactive programs main-
tain an ongoing interaction with their environment by receiving inputs and emitting outputs,
and possibly run indefinitely (for example, an operating system is a reactive program). With
the third rule we can possibly prove that two such programs generate equivalent sequences
of outputs, provided that they receive equal sequences of inputs. The premise of the third rule
implies the premises of the first two rules, and hence it can be viewed as their generalization.
We describe these and other notions of equivalence more formally later in this section.

The ability to prove equivalence of programs can be useful in various scenarios, such as
comparing the code before and after manual refactoring, to prove backward compatibility, as
done by Intel for the case of microcode [1] (yet under the restriction of not supporting loops
and recursions) and for performing what we call regression verification, which is a process
of proving the equivalence of two closely-related programs, where the equivalence criterion
is user-defined.

First, consider refactoring. To quote Martin Fowler [4,5], the founder of this field, “Refac-
toring is a disciplined technique for restructuring an existing body of code, altering its internal
structure without changing its external behavior. Its heart is a series of small behavior preserv-
ing transformations. Each transformation (called a “refactoring”) does little, but a sequence
of transformations can produce a significant restructuring. Since each refactoring is small,
it’s less likely to go wrong. The system is also kept fully working after each small refactoring,
reducing the chances that a system can get seriously broken during the restructuring”. The
following example demonstrates the need for proving equivalence of recursive functions after
an application of a single refactoring rule. A list of some of the refactoring rules that can be
handled by the proposed rules is given in Appendix B.

Example 1 The two equivalent programs in Fig. 1 demonstrate the Consolidate Duplicate
Conditional Fragments refactoring rule. These recursive functions calculate the value of a
given number sum after y years, given that there is some annual interest, which depends on
whether there is a “special deal”. The fact that the two functions return the same values given
the same inputs, and that they mutually terminate, can be proved with the rules introduced
in this article. ��

Next, consider regression verification. Regression verification is a natural extension of
the better-known term regression testing. Reasoning about the correctness of a program
while using a previous version as a reference, has several distinct advantages over functional

123

Inference rules for proving the equivalence of recursive procedures 405

Fig. 1 A refactoring example

verification of the new code (although both are undecidable in general). First, code that can-
not be easily specified and verified can still be checked throughout the development process
by examining its evolving effect on user-specified variables or expressions. Second, compar-
ing two similar systems should be computationally easier than property-based verification,
relying on the fact that large portions of the code has not changed between the two versions1.

Regression verification is relevant, for example, for checking equivalence after imple-
menting optimizations geared for performance, or checking side-effects of new code. For
example, when a new flag is added, which changes the result of the computation, it is desir-
able to prove that as long as this flag is turned off, the previous functionality is maintained.

Formally verifying the equivalence of programs is an old challenge in the theorem-proving
community (see some recent examples in [10–12]). The current work can assist such proofs
since it offers rules that handle recursive procedures while decomposing the verification task:
specifically, the size of each verification condition is proportional to the size of two individual
procedures. Further, using the rules requires a decision procedure for a restricted version of
the underlying programming language, in which procedures contain no loops or procedure
calls. Under these modest requirements several existing software verification tools for pop-
ular programming languages such as C are complete. A good example of such a tool for
ANSI-C is CBMC [8], which translates code with a bounded number of loops and recursive
calls (in our case, none) to a propositional formula.2

1.1 Notions of equivalence

We define six notions of equivalence between two programs P1 and P2. The third notion
refers to reactive programs, whereas the others to transformational programs.

1. Partial equivalence: Given the same inputs, any two terminating executions of P1 and
P2 return the same value.

2. Mutual termination: Given the same inputs, P1 terminates if and only if P2 terminates.

1 Without going into the technical details, let us mention that there are various abstraction and decomposition
opportunities that are only relevant when proving equivalence. The same observation is well known in the
hardware domain, where equivalence checking of circuits is considered computationally easier in practice
than model-checking.
2 CBMC, developed by D. Kroening, allows the user to define a bound ki on the number of iterations that
each loop i in a given ANSI-C program is taken. This enables CBMC to symbolically characterize the full
set of possible executions restricted by these bounds, by a decidable formula f . The existence of a solution
to f ∧ ¬a, where a is a user defined assertion, implies the existence of a path in the program that violates a.
Otherwise, we say that CBMC established the K -correctness of the checked assertions, where K denotes the
sequence of loop bounds. By default f and a are reduced to propositional formulas.

123

406 B. Godlin, O. Strichman

3. Reactive equivalence: Given the same inputs, P1 and P2 emit the same output sequence.
4. k-equivalence: Given the same inputs, every two executions of P1 and P2 where

– each loop iterates up to k times, and
– each recursive call is not deeper than k,

generate the same output.
5. Total equivalence: The two programs are partially equivalent and both terminate.
6. Full equivalence: The two programs are partially equivalent and mutually terminate.

Comments on this list:

– Only the fourth notion of equivalence in this list is decidable, assuming the program
variables range over finite domains.

– The third notion is targeted at reactive programs, although it is relevant to terminating
programs as well (in fact it generalizes the first two notions of equivalence). It assumes
that inputs are read and outputs are written during the execution of the program.

– The fifth notion of equivalence resembles that of Bouge and Cachera’s [2].
– The definitions of “strong equivalence” and “functional equivalence” in [9] and [13],

respectively, are almost equivalent to our definition of full equivalence, with the differ-
ence that they also require that the two programs have the same set of variables.

1.2 The three rules that we prove

The three rules that we prove in this work correspond to the first three notions of equivalence.
The rules are not simple to describe without the proper notation. We will give a sketch of
these rules here nevertheless. In all rules we begin with a one-to-one mapping between the
procedures on both sides such that mapped procedures have the same prototype.3 If no such
mapping is possible, it may be possible to reach such a mapping through inlining, and if this
is impossible then our rules are not applicable, at least not for proving the equivalence of full
programs.

1. The first rule, called (proc- p- eq), can help proving partial equivalence. The rule is
based on the following observation. Let F and G be two procedures mapped to one
another. Assume that all the mapped procedure calls in F and G return the same values
for equivalent arguments. Now suppose that this assumption allows us to prove that F
and G are partially equivalent. If these assumptions are correct for every pair of mapped
procedures, then we can conclude that all mapped procedures are partially equivalent.

2. The second rule, called (m- term), can help proving mutual termination. The rule is
based on the following observation. If all paired procedures satisfy:

– Computational equivalence (e.g. prove by Rule 1), and
– the conditions under which they call each pair of mapped procedures are equal, and
– the read arguments of the called procedures are the same when they are called

then all paired procedures mutually terminate.
3. The third rule, called (react- eq), can help proving that every two mapped procedures

are reactive-equivalent. Let F and G be such a mapped pair of procedures. Reactive
equivalence means that in every two subcomputations through F and G that are input

3 We refer to procedures rather than functions from hereon. The prototype of a procedure is the sequence of
types of the procedure’s read and write arguments. In the context of LPL, the programming language that we
define below, there is only one type and hence prototypes can be characterized by the number of arguments.

123

Inference rules for proving the equivalence of recursive procedures 407

equivalent (this means that they read the same sequence of inputs and are called with the
same arguments), the sequence of outputs is the same as well.
If all paired procedures satisfy:

– given the same arguments and the same input sequences, they return the same values
(this is similar to the first rule, the difference being that here we also consider the
inputs consumed by the procedure during its execution), and

– they consume the same number of inputs, and
– the interleaved sequence of procedure calls and values of output statements inside

the mapped procedures is the same (and the procedure calls are made with the same
arguments),

then all mapped procedures are reactive equivalent.

Checking all three rules can be automated.
The description of the rules and their proof of soundness refer to a simple programming

language called Linear Procedure Language (LPL), which we define in Sect. 2.1, together
with its operational semantics. In Sects. 3–5 we state the three inference rules respectively
and prove their soundness. Each rule is accompanied with an example.

2 Preliminaries

Notation of sequences. An n-long sequence is denoted by 〈l0, . . . , ln−1〉or by 〈li 〉i∈{0,...,n−1}.
If the sequence is infinite we write 〈li 〉i∈{0,...}. Given two sequences a = 〈ai 〉i∈{0,...,n−1} and
b = 〈bi 〉i∈{0,...,m−1},

a · b
is their concatenation of length n + m.

We overload the equality sign (=) to denote sequence equivalence. Given two finite
sequences a and b

(a = b)⇔ (|a| = |b| ∧ ∀i ∈ {0, . . . , |a| − 1}. ai = bi),

where |a| and |b| denote the number of elements in a and b, respectively.
If both a and b are infinite then

(a = b)⇔ (∀i ≥ 0. ai = bi),

and if exactly one of {a, b} is infinite then a
= b.

Parentheses and brackets We use a convention by which arguments of a function are
enclosed in parenthesis, as in f (e), when the function maps values within a single domain. If
it maps values between different domains we use brackets, as in f [e]. References to vector
elements, for example, belong to the second group, as they map between indices and values in
the domain of the vector. Angled brackets (〈·〉) are used for both sequences as shown above,
and for tuples.

2.1 The programming language

To define the programming language we assume a set of procedure names Proc= {p0, . . . ,

pm}, where p0 has a special role as the root procedure (the equivalent of “main” in C). Let

123

408 B. Godlin, O. Strichman

D be a domain that contains the constants true and false, and no subtypes. Let OD be a
set of operations (functions and predicates) over D. We define a set of variables over this
domain: V = ⋃

p∈Proc Vp , where Vp is the set of variables of a procedure p. The sets Vp ,
p ∈ Proc are pairwise disjoint. For expression e over D and V we denote by vars[e] the set
of variables that appear in e.

The LPL language is modeled after PLW [6], but is different in various aspects. For
example, it does not contain loops and allows only procedure calls by value-return.

Definition 1 (Linear Procedure Language (LPL)) The linear procedure language (LPL)
is defined by the following grammar (lexical elements of LPL are in bold, and S denotes
Statement constructs):

Program :: 〈procedure p(val arg-rp; ret arg-wp):Sp〉p∈Proc

S :: x := e | S;S | if B then S else S fi | if B then S fi |
call p(e; x) | return

where p ∈ Proc, e is an expression over OD, and B is a predicate over OD. arg-rp, arg-wp

are vectors of Vp variables called, respectively, read formal arguments and write formal
arguments, and are used in the body Sp of the procedure named p. In a procedure call
“call p(e; x)”, the expressions e are called the actual input arguments and x are called the
actual output variables. The following constraints are assumed:

1. The only variables that can appear in the procedure body Sp are from Vp .
2. For each procedure call “call p(e, x)” the lengths of e and x are equal to the lengths of

arg-rp and arg-wp , respectively.
3. return must appear at the end of any procedure body Sp (p ∈ Proc). ��

For simplicity LPL is defined so it does not permit global variables and iterative expres-
sions like while loops. Both of these syntactic restrictions do not constrain the expressive
power of the language: global variables can be passed as part of the list of arguments of each
procedure, and loops can be rewritten as recursive expressions.

Definition 2 (An LPL augmented by location labels) An LPL program augmented with
location labels is derived from an LPL program P by adding unique labels before[S] and
after[S] for each statement S, right before and right after S, respectively. As an exception,
for two composed statements S1 and S2 (i.e., S1; S2), we do not dedicate a label for after[S1];
rather, we define after[S1] = before[S2]. ��
Example 2 Consider the LPL program P at the left of Fig. 2, defined over the domain
Z ∪ {true, false} for which, among others, the operations +,−,= are well-defined. The
same program augmented with location labels appears on the right of the same figure. ��

Fig. 2 An LPL program (left) and its augmented version (right)

123

Inference rules for proving the equivalence of recursive procedures 409

The partial order ≺ of the locations is any order which satisfies :

1. For any statement S, before[S] ≺ after[S].
2. For an if statement S : if B then S1 else S2 fi,

before[S] ≺ before[S1], before[S] ≺ before[S2], after[S1] ≺ after[S] and after[S2] ≺
after[S].

We denote the set of location labels in the body of procedure p ∈ Proc by PC p. Together
the set of all location labels is PC

.=⋃
p∈Proc PC p.

2.2 Operational semantics

A computation of a program P in LPL is a sequence of configurations. Each configuration
C = 〈d, O, pc, σ 〉 contains the following elements:

1. The natural number d is the depth of the stack at this configuration.
2. The function O : {0, . . . , d} → Proc is the order of procedures in the stack at this

configuration.
3. pc = 〈pc0, pc1 . . . , pcd〉 is a vector of program location labels4 such that pc0 ∈ PC0

and for each call level i ∈ {1, . . . , d} pci ∈ PCO[i] (i.e., pci “points” into the procedure
body that is at the i th place in the stack).

4. The function σ : {0, . . . , d}×V → D∪{nil} is a valuation of the variables V of program
P at this configuration. The value of variables which are not active at the i-th call level
is invalid i.e., for i ∈ {0, . . . , d}, if O[i] = p and v ∈ V \Vp then σ [〈i, v〉] = nil where
nil
∈ D denotes an invalid value.

A valuation is implicitly defined over a configuration. For an expression e over D and V ,
we define the value of e in σ in the natural way, i.e., each variable evaluates according to the
procedure and the stack depth defined by the configuration. More formally, for a configuration
C = 〈d, O, pc, σ 〉 and a variable x :

σ [x] .=
{

σ [〈d, x〉] if x ∈ Vp and p = O[d]
nil otherwise

This definition extends naturally to a vector of expressions.
When referring to a specific configuration C , we denote its elements d, O, pc, σ with

C.d, C.O, C.pc, C.σ [x], respectively.
For a valuation σ , expression e over D and V , levels i, j ∈ {0, . . . , d}, and a variable x ,

we denote by σ [〈i, e〉|〈 j, x〉] a valuation identical to σ other than the valuation of x at level
j , which is replaced with the valuation of e at level i . When the respective levels are clear
from the context, we may omit them from the notation.

Finally, we denote by σ |i a valuation σ restricted to level i , i.e., σ |i [v] .= σ [〈i, v〉] (v ∈ V).
For a configuration C = 〈d, O, pc, σ 〉 we denote by current-label[C] the program loca-

tion label at the procedure that is topmost on the stack, i.e., current-label[C] .= pcd .

Definition 3 (Initial and Terminal configurations in LPL) A configuration C = 〈d, O,

pc, σ 〉 with current-label[C] = before[Sp0] is called the initial configuration and must sat-
isfy d = 0 and O[0] = p0. A configuration with current-label[C] = after[Sp0] is called the
terminal configuration. ��
Definition 4 (Transition relation in LPL) Let “→” be the least relation among configura-
tions which satisfies: if C → C ′, C = 〈d, O, pc, σ 〉, C ′ = 〈d ′, O ′, pc′, σ ′〉 then:

4 pc can be thought of as a stack of program counters, hence the notation.

123

410 B. Godlin, O. Strichman

1. If current-label[C] = before[S] for some assign construct S = “x := e” then d ′ = d,

O ′ = O, pc′ = 〈pci 〉i∈{0,...,d−1} · 〈after[S]〉, σ ′ = σ [e|x].
2. If current-label[C] = before[S] for some construct

S = “if B then S1 else S2 fi”

then

d ′ = d, O ′ = O, pc′ = 〈pci 〉i∈{0,...,d−1} · 〈labB〉, σ ′ = σ

where

labB =
{

before[S1] if σ [B] = true

before[S2] if σ [B] = false

3. If current-label[C] = after[S1] or current-label[C] = after[S2] for some construct

S = “if B then S1 else S2 fi"

then

d ′ = d, O ′ = O, pc′ = 〈pci 〉i∈{0,...,d−1} · 〈after[S]〉, σ ′ = σ

4. If current-label[C] = before[S] for some call construct S = “call p(e; x)” then d ′ =
d + 1, O ′ = O · 〈p〉, pc′ = 〈pci 〉i∈{0,...,d−1} · 〈after[S]〉 · 〈before[Sp]〉, σ ′ =
σ [〈d, e1〉|〈d + 1, (arg-rp)1〉] . . . [〈d, el〉|〈d + 1, (arg-rp)l〉] where arg-rp is the vector
of formal read variables of procedure p and l is its length.

5. If current-label[C] = before[S] for some return construct S = “return” and d > 0 then
d ′ = d − 1, O ′ = 〈Oi 〉i∈{1,...,d−1}, pc′ = 〈pci 〉i∈{0,...,d−1}, σ ′ = σ [〈d, (arg-wp)1〉|
〈d − 1, x1〉] . . . [〈d, (arg-wp)l〉|〈d − 1, xl〉] where arg-wp is the vector of formal write
variables of procedure p, l is its length, and x are the actual output variables of the call
statement immediately before pcd−1.

6. If current-label[C] = before[S] for some return construct S = “return” and d = 0 then
d ′ = 0, O ′ = 〈p0〉, pc′ = 〈after[Sp0]〉 and σ ′ = σ . ��

Note that the case of current-label[C] = before[S] for a construct S = S1; S2 is always
covered by one of the cases in the above definition.

Another thing to note is that all write arguments are copied to the actual variables follow-
ing a return statement. This solves possible problems that may occur if the same variable
appears twice in the list of write arguments.

2.3 Computations and subcomputations of LPL programs

A computation of a program P in LPL is a sequence of configurations C = 〈C0, C1, . . .〉
such that C0 is an initial configuration and for each i ≤ |C | − 1 we have Ci → Ci+1. If the
computation is finite then the last configuration must be terminal.

The proofs throughout this article will be based on the notion of subcomputations. We
distinguish between several types of subcomputations, as follows (an example will be given
after the definitions):

Definition 5 (Subcomputation at a level) A continuous subsequence of a computation is a
subcomputation at level d if all its configurations have the same stack depth d . ��
Clearly every subcomputation at a level is finite.

123

Inference rules for proving the equivalence of recursive procedures 411

Fig. 3 A computation through various stack levels. Each rise corresponds to a procedure call, and each fall
to a return statement

Definition 6 (Maximal subcomputation at a level) A maximal subcomputation at level d
is a subcomputation at level d , such that the successor of its last configuration has stack-depth
different than d , or d = 0 and its last configuration is equal to a f ter [S0]. ��
Definition 7 (Subcomputation from a level) A continuous subsequence of a computation
is a subcomputation from level d if its first configuration C0 has stack depth d , current-label
[C0] = before[Sp] for some procedure p and all its configurations have a stack depth of at
least d . ��
Definition 8 (Maximal subcomputation from a level) A maximal subcomputation from
level d is a subcomputation from level d which is either

– infinite, or
– finite, and,

– if d > 0 the successor of its last configuration has stack-depth smaller than d , and
– if d = 0, then its last configuration is equal to a f ter [S0]. ��

A finite maximal subcomputation is also called closed.

Example 3 In Fig. 3, each whole segment corresponds to a maximal subcomputation at
its respective stack level, e.g., segment 2 is a maximal subcomputation at level d + 1, the
subsequence 8–11 is a finite (but not maximal) subcomputation from level d + 1, and the
subsequence 2–4 is a maximal subcomputation from level d + 1.

Let π be a computation and π ′ a continuous subcomputation of π . We will use the fol-
lowing notation to refer to different configurations in π ′:
– first[π ′] denotes the first configuration in π ′.
– last[π ′] denotes the last configuration in π ′, in case π ′ is finite.
– pred[π ′] is the configuration in π for which pred[π ′] → first[π ′].
– succ[π ′] is the configuration in π such that last[π ′] → succ[π ′].
2.4 An assumption about the programs we compare

Two procedures

procedure F(val arg-rF ; ret arg-wF),

procedure G(val arg-rG; ret arg-wG)

are said to have an equivalent prototype if |arg-rF | = |arg-rG | and |arg-wF | = |arg-wG |.

123

412 B. Godlin, O. Strichman

We will assume that the two LPL programs P1 and P2 that we compare have the following
property: |Proc[P1]| = |Proc[P2]|, and there is a 1-1 and onto mapping map : Proc[P1] →
Proc[P2] such that if 〈F, G〉 ∈ map then F and G have an equivalent prototype.

Programs that we wish to prove equivalent and do not fulfill this requirement, can some-
times be brought to this state by applying inlining of procedures that can not be mapped.

3 A proof rule for partial procedure equivalence

Given the operational semantics of LPL, we now proceed to define a proof rule for the partial
equivalence of two LPL procedures. The rule refers to finite computations only. We delay
the discussion on more general cases to Sects. 4 and 5.

Our running example for this section will be the two programs in Fig. 4, which compute
recursively yet in different ways the GCD (Greatest Common Divisor) of two positive inte-
gers. We would like to prove that when they are called with the same inputs, they return the
same result.

3.1 Definitions

We now define various terms and notations regarding subcomputations through procedure
bodies. All of these terms refer to subcomputations that begin right before the first statement
in the procedure and end just before the return statement (of the same procedure at the same
level), and use the formal arguments of the procedure. We will overload these terms, how-
ever, when referring to subcomputations that begin right before the call statement to the same
procedure and end right after it, and consequently use the actual arguments of the procedure.
This overloading will repeat itself in future sections as well.

Definition 9 (Argument-equivalence of subcomputations with respect to procedures)
Given two procedures F ∈ Proc[P1] and G ∈ Proc[P2] such that 〈F, G〉 ∈ map, for any
two computations π1 in P1 and π2 in P2, π ′1 and π ′2 are argument-equivalent with respect to
F and G if the following holds:

1. π ′1 and π ′2 are maximal subcomputations of π1 and π2 from some levels d1 and d2,
respectively,

2. current-label[first[π ′1]] = before[F] and current-label[first[π ′2]] = before[G], and
3. first[π ′1].σ [arg-rF] = first[π ′2].σ [arg-rG], ��
Definition 10 (Partial computational equivalence of procedures) If for every argument-
equivalent finite subcomputations π ′1 and π ′2 (these are closed by definition) with respect to
two procedures F and G,

last[π ′1].σ [arg-wF] = last[π ′2].σ [arg-wG]
then F and G are partially computationally equivalent. ��

Fig. 4 Two procedures to calculate GCD of two positive integers. For better readability we only show the
labels that we later refer to

123

Inference rules for proving the equivalence of recursive procedures 413

Denote by comp-equiv(F, G) the fact that F and G are partially computationally equiv-
alent. The computational equivalence is only partial because it does not consider infinite
computations. From hereon when we talk about computational equivalence we mean partial
computational equivalence.

Our proof rule uses uninterpreted procedures, which are useful for reasoning about an
abstract system. The only information that the decision procedure has about them is that they
are consistent, i.e., that given the same inputs, they produce the same outputs. We still need a
semantics for such procedures, in order to be able to define subcomputations that go through
them. In terms of the semantics, then, an uninterpreted procedure U is the same as an empty
procedure in LPL (a procedure with a single statement—return), other than the fact that it
preserves the congruence condition: For every two subcomputations π1 and π2 through U ,

first[π1].σ [arg-rU] = first[π2].σ [arg-rU]
→
last[π1].σ [arg-wU] = last[π2].σ [arg-wU].

(1)

There are well known decision procedures for reasoning about formulas that involve
uninterpreted functions—see, for example, Shostak’s algorithm [14], and accordingly most
theorem provers support them. Such algorithms can be easily adapted to handle procedures
rather than functions.

3.2 Rule (proc- p- eq)

Defining the proof rule requires one more definition.
Let UP be a mapping of the procedures in Proc[P1]∪Proc[P2] to respective uninterpreted

procedures, such that:

〈F, G〉 ∈ map ⇐⇒ UP(F) = UP(G), (2)

and such that each procedure is mapped to an uninterpreted procedure with an equivalent
prototype.

Definition 11 (Isolated procedure) The isolated version of a procedure F , denoted FU P ,
is derived from F by replacing all of its procedure calls by calls to the corresponding unin-
terpreted procedures, i.e., FU P .= F[f ← UP(f)| f ∈ Proc[P]]. ��
For example, Fig. 6 presents an isolated version of the programs in Fig. 4.

Rule (proc- p- eq), appearing in Fig. 5, is based on the following observation. Let F and
G be two procedures such that 〈F, G〉 ∈ map. If assuming that all the mapped procedure
calls in F and G return the same values for equivalent arguments enables us to prove that F
and G are equivalent, then we can conclude that F and G are equivalent.

The rule assumes a proof system LUP. LUP is any sound proof system for a restricted
version of the programming language in which there are no calls to interpreted procedures,

Fig. 5 Rule (proc- p- eq): An inference rule for proving the partial equivalence of procedures

123

414 B. Godlin, O. Strichman

Fig. 6 After isolation of the procedures, i.e., replacing their procedure calls with calls to the uninterpreted
procedure H

and hence, in particular, no recursion5, and it can reason about uninterpreted procedures. LUP

is not required to be complete, because (proc- p- eq) is incomplete in any case. Nevertheless,
completeness is desirable since it makes the rule more useful.

Example 4 Following are two instantiations of rule (proc- p- eq).

– The two programs contain one recursive procedure each, called f and g such that map =
{〈 f, g〉}.

�LUP
comp-equiv(f [f ← UP(f)], g[g← UP(g)])

comp-equiv(f, g)

Recall that f [f ← UP(f)] means that the call to f inside f is replaced with a call to
UP(f) (isolation).

– The two compared programs contain two mutually recursive procedures each, f1, f2 and
g1, g2, respectively, such that map = {〈 f1, g1〉, 〈 f2, g2〉}, and f1 calls f2, f2 calls f1, g1

calls g2 and g2 calls g1.

�LUP
comp-equiv(f1[f2 ← UP(f2)], g1[g2 ← UP(g2)]),

�LUP
comp-equiv(f2[f1 ← UP(f1)], g2[g1 ← UP(g1)])

comp-equiv(f1, g1), comp-equiv(f2, g2)

��
Example 5 Consider once again the two programs in Fig. 4. There is only one procedure in
each program, which we naturally map to one another. Let H be the uninterpreted procedure
to which we map gcd1 and gcd2, i.e., H = UP(gcd1) = UP(gcd2). Figure 6 presents the
isolated programs.

To prove the computational equivalence of the two procedures, we need to first translate
them to formulas expressing their respective transition relations. A convenient way to do so
is to use Static Single Assignment (SSA) [3]. Briefly, this means that in each assignment
of the form x = exp; the left-hand side variable x is replaced with a new variable, say
x1. Any reference to x after this line and before x is potentially assigned again, is replaced
with the new variable x1 (recall that this is done in a context of a program without loops). In
addition, assignments are guarded according to the control flow. After this transformation, the
statements are conjoined: the resulting equation represents the states of the original program.
If a subcomputation through a procedure is valid then it can be associated with an assignment
that satisfies the SSA form of this procedure.

5 In LPL there are no loops, but in case (proc- p- eq) is applied to other languages, LUP is required to handle
a restricted version of the language with no procedure calls, recursion or loops. Indeed, under this restric-
tion there are sound and complete decision procedures for deciding the validity of assertions over popular
programming languages such as C, as was mentioned in the introduction.

123

Inference rules for proving the equivalence of recursive procedures 415

The SSA form of gcd1 is

Tgcd1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 = a ∧
b0 = b ∧
b0 = 0→ g0 = a0 ∧
(b0
= 0→ a1 = (a0 mod b0)) ∧ (b0 = 0→ a1 = a0) ∧
(b0
= 0→ H(b0, a1; g1)) ∧ (b0 = 0→ g1 = g0) ∧
g = g1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4)

The SSA form of gcd2 is

Tgcd2 =

⎛

⎜
⎜
⎜
⎜
⎝

x0 = x ∧
y0 = y ∧
z0 = x0 ∧
(y0 > 0→ H(y0, (z0 mod y0); z1)) ∧ (y0 ≤ 0→ z1 = z0) ∧
z = z1

⎞

⎟
⎟
⎟
⎟
⎠

. (5)

The premise of rule (proc- p- eq) requires proving computational equivalence (see Defini-
tion 10), which in this case amounts to proving the validity of the following formula over
positive integers:

(a = x ∧ b = y ∧ Tgcd1 ∧ Tgcd2) → g = z. (6)

Many theorem provers can prove such formulas fully automatically, and hence establish the
partial computational equivalence of gcd1 and gcd2. ��

It is important to note that while the premise refers to procedures that are isolated from
other procedures, the consequent refers to the original procedures. Hence, while LUP is
required to reason about executions of bounded length (the length of one procedure body)
the consequent refers to unbounded executions.

To conclude this section, let us mention that rule (proc- p- eq) is inspired by Hoare’s rule
for recursive procedures:

{p}call proc{q} �H {p}S{q}
{p}call proc{q} (REC)

(where S is the body of procedure proc). Indeed, both in this rule and in rule (proc- p- eq),
the premise requires to prove that the body of the procedure without its recursive calls sat-
isfies the pre-post condition relation that we wish to establish, assuming the recursive calls
already do so.

3.3 Rule (proc- p- eq) is sound

Let π be a computation of some program P1. Each subcomputation π ′ from level d consists
of a set of maximal subcomputations at level d , which are denoted by in(π ′, d), and a set
of maximal subcomputations from level d + 1, which are denoted by from(π ′, d + 1). The
members of these two sets of computations alternate in π ′. For example, in the left drawing
in Fig. 7, segments 2, 4, 8 are separate subcomputations at level d + 1, and segments 3, and
5–7 are subcomputations from level d + 2.

Definition 12 (Stack-level tree) A stack-level tree of a maximal subcomputation π from
some level, is a tree in which each node at height d (d > 0) represents the set of subcom-
putations at level d from the time the computation entered level d until it returned to its

123

416 B. Godlin, O. Strichman

d p1

p2

p2

p4

1

5 7

9

2

3

4 8

1,9

5,7

6

3

2,4,8

d+3

d+2

d+1

p4

p26

p0

p1

p2

Fig. 7 A computation and its stack levels (left). The numbering on the horizontal segments are for reference
only. The stack-level tree corresponding to the computation on the left (right)

calling procedure at level d − 1. Node n′ is a child of a node n if and only if it contains one
subcomputation that is a continuation (in π) of a subcomputation in n. ��

Note that the root of a stack-level tree is the node that contains first[π] in one of its sub-
computations. The leafs are closed subcomputations from some level which return without
executing a procedure call. Also note that the subcomputations in a node at level d are all
part of the same closed subcomputation π ′ from level d (this is exactly the set in(π ′, d)).

The stack-level tree depth is the maximal length of a path from its root to some leaf. This
is also the maximal difference between the depth of the level of any of its leafs and the level
of its root. If the stack-level tree is not finite then its depth is undefined.

Denote by d[n] the level of node n and by p[n] the procedure associated with this node.

Example 6 Figure 7 demonstrates a subcomputation π from level d (left) and its corre-
sponding stack-level tree (upside down, in order to emphasize its correspondence to the
computation). The set in(π, d) = {1, 9} is represented by the root. Each rise in the stack
level is associated with a procedure call (in this case, calls to p1, p2, p4, p2), and each fall
with a return statement. To the left of each node n in the tree, appears the procedure p[n]
(here we assumed that the computation entered level d due to a call to a procedure p0). The
depth of this stack-level tree is 4. ��
Theorem 1 (Soundness) If the proof system LUP is sound then the rule (proc- p- eq) is
sound.

Proof By induction on the depth d of the stack-level tree. Since we consider only finite
computations, the stack-level trees are finite and their depths are well defined. Let P1 and P2

be two programs in LPL, π1 and π2 closed subcomputations from some levels in P1 and P2,
respectively, t1 and t2 the stack-level trees of these computations, n1 and n2 the root nodes of
t1 and t2, respectively. Also, let F = p[n1] and G = p[n2] where 〈F, G〉 ∈ map. Assume
also that π1 and π2 are argument-equivalent with respect to F and G.

Base If both n1 and n2 are leafs in t1 and t2 then the conclusion is proven by the premise of
the rule without using the uninterpreted procedures. As π1 and π2 contain no calls to proce-
dures, then they are also valid computations through FU P and GU P , respectively. Therefore,
by the soundness of the proof system LUP, π1 and π2 must satisfy comp-equiv(FU P , GU P)

which entails the equality of arg-w values at their ends. Therefore, π1 and π2 satisfy the
condition in comp-equiv(F, G).

Step Assume the consequent (3.3) is true for all stack-level trees of depth at most i . We
prove the consequent for computations with stack-level trees t1 and t2 such that at least one
of them is of depth i + 1.

123

Inference rules for proving the equivalence of recursive procedures 417

Fig. 8 A diagram for the proof of Theorem 1. Dotted lines indicate an equivalence (either that we assume
as a premise or that we need to prove) in the argument that labels the line. We do not write all labels to
avoid congestion—see more details in the proof. π1 is a subcomputation through F . π ′1 is the corresponding

subcomputation through FU P , the isolated version of F . The same applies to π2 and π ′2 with respect to G.
The induction step shows that if the read arguments are the same in A.1 and A.2, then the write arguments
have equal values in B.1 and B.2

1. Consider the computation π1. We construct a computation π ′1 in FU P , which is the same
as π1 in the level of n1, with the following change. Each subcomputation of π1 in a
deeper level caused by a call cF , is replaced by a subcomputation through an uninter-
preted procedure UP(callee[cF]), which returns the same value as returned by cF (where
callee[cF] is the procedure called in the call statement cF). In a similar way we construct
a computation π ′2 in GU P corresponding to π2.
The notations we use in this proof correspond to Fig. 8. Specifically,

A1 = first[π1], A′1 = first[π ′1], A′2 = first[π ′2], A2 = first[π2],
B1 = last[π1], B ′1 = last[π ′1], B ′2 = last[π ′2], B2 = last[π2].

2. As π1 and π2 are argument-equivalent we have

A1.σ [arg-r F] = A2.σ [arg-r G].
By definition,

A′1.σ [arg-r F] = A1.σ [arg-r F]
and

A′2.σ [arg-r G] = A2.σ [arg-r G].
By transitivity of equality A′1.σ [arg-r F] = A′2.σ [arg-r G].

3. We now prove that the subcomputations π ′1 and π ′2 are valid computations through FU P

and GU P . As π ′1 and π ′2 differ from π1 and π2 only by subcomputations through unin-
terpreted procedures (that replace calls to other procedures), we need to check that they

123

418 B. Godlin, O. Strichman

satisfy the congruence condition, as stated in (1). Other parts of π ′1 and π ′2 are valid
because π1 and π2 are valid subcomputations. Consider any pair of calls c1 and c2 in π1

and π2 from the current levels d[n1] and d[n2] to procedures p1 and p2, respectively,
such that 〈p1, p2〉 ∈ map. Let c′1 and c′2 be the calls to UP(p1) and UP(p2) which replace
c1 and c2 in π ′1 and π ′2. Note that UP(p1) = UP(p2) since 〈p1, p2〉 ∈ map.
By the induction hypothesis, procedures p1, p2 satisfy comp-equiv(p1, p2) for all sub-
computations of depth ≤ i , and in particular for subcomputations of π1, π2 that begin
in c1 and c2. By construction, the input and output values of c1 are equal to those of
c′1. Similarly, the input and output values of c2 are equal to those of c′2. Consequently,
the pair of calls c′1 and c′2 to the uninterpreted procedure UP(p1) satisfy the congruence
condition. Hence, π ′1 and π ′2 are legal subcomputations through FU P and GU P .

4. By the rule premise, any two computations through FU P and GU P satisfy comp-equiv
(FU P , GU P). Particularly, as π ′1 and π ′2 are argument-equivalent by step 2, this entails
that B ′1.σ [arg-wF]= B ′2.σ [arg-wG]. By construction, B1.σ [arg-wF]= B ′1.σ [arg-wF]
and B2.σ [arg-wG] = B ′2.σ [arg-wG]. Therefore, by transitivity,

B1.σ [arg-wF] = B2.σ [arg-wG],

which proves that π1 and π2 satisfy comp-equiv(F, G). ��

4 A proof rule for mutual termination of procedures

Rule (proc- p- eq) only proves partial equivalence, because it only refers to finite computa-
tions. It is desirable, in the context of equivalence checking, to prove that the two procedures
mutually terminate. If, in addition, termination of one of the programs is proven, then “total
equivalence” is established.

4.1 Definitions

Definition 13 (Mutual termination of procedures) If for every pair of argument-
equivalent subcomputations π ′1 and π ′2 with respect to two procedures F and G, it holds
that π ′1 is finite if and only if π ′2 is finite, then F and G are mutually terminating. ��

Denote by mutual-terminate(F, G) the fact that F and G are mutually terminating.

Definition 14 (Reach equivalence of procedures) Procedures F and G are reach-equivalent
if for every pair of argument-equivalent subcomputation π and τ through F and G, respec-
tively, for every call statement cF = “call p1” in F (in G), there exists a call cG = “call p2”
in G (in F) such that 〈p1, p2〉 ∈ map, and π and τ reach cF and cG , respectively with the
same read arguments, or do not reach them at all.

Denote by reach-equiv(F, G) the fact that F and G are reach-equivalent. Note that checking
for reach-equivalence amounts to proving the equivalence of the “guards” leading to each
of the mapped procedure calls (i.e., the conjunction of conditions that need to be satisfied
in order to reach these program locations), and the equivalence of the arguments before the
calls. This will be demonstrated in two examples later on.

123

Inference rules for proving the equivalence of recursive procedures 419

Fig. 9 Rule (m- term): An inference rule for proving the mutual termination of procedures. Note that
Premise 7.2 can be proven by the (proc- p- eq) rule

4.2 Rule (m- term)

The mutual termination rule (m- term) is stated in Fig. 9. It is interesting to note that unlike
proofs of procedure termination, here we do not rely on well-founded sets (see, for exam-
ple, [6], Sect. 3.4).

Example 7 Continuing Example 5, we now prove the mutual termination of the two pro-
grams in Fig. 4. Since we already proved comp-equiv(gcd1, gcd2) in Example 5, it is left
to check Premise (3.3), i.e.,

�LUP
reach-equiv(gcd1

U P , gcd2
U P).

Since in this case we only have a single procedure call in each side, the only thing we need
to check in order to establish reach-equivalence, is that the guards controlling their calls are
equivalent, and that they are called with the same input arguments. The verification condition
is thus:

(Tgcd1 ∧ Tgcd2 ∧ (a = x) ∧ (b = y))→
(((y0 > 0)↔ (b0
= 0)) ∧ //Equal guards
((y0 > 0)→ ((b0 = y0) ∧ (a1 = z0 mod y0)))) //Equal inputs

(8)

where Tgcd1 and Tgcd2 are as defined in Eq. (4) and (5). ��
4.3 Rule (m- term) is sound

We now prove the following:

Theorem 2 (Soundness) If the proof system LUP is sound then the rule (m- term) is sound.

Proof In case the computations of P1 and P2 are both finite or both infinite the consequent
of the rule holds by definition. It is left to consider the case in which one of the computations
is finite and the other is infinite. We show that if the premise of (m- term) holds such a case
is impossible.

Let P1 and P2 be two programs in LPL, π1 and π2 maximal subcomputations from some
levels in P1 and P2, respectively, t1 and t2 the stack-level trees of these computations, n1 and
n2 the root nodes of t1 and t2 respectively and F = p[n1] and G = p[n2]. Assume π1 and
π2 are argument-equivalent. Without loss of generality assume also that π1 is finite and π2

is not.
Consider the computation π1. We continue as in the proof of Theorem 1. We construct a

computation π ′1 in FU P , which is the same as π1 in the level of n1, with the following change.
Each closed subcomputation at a deeper level caused by a call cF , is replaced with a subcom-
putation through an uninterpreted procedure UP(callee[cF]), which receives and returns the
same values as received and returned by cF . In a similar way we construct a computation π ′2

123

420 B. Godlin, O. Strichman

in GU P corresponding to π2. By Premise (7.2), any pair of calls to some procedures p1 and
p2 (related by map) satisfy comp-equiv(p1, p2). Thus, any pair of calls to an uninterpreted
procedure UP(p1) (which is equal to UP(p2)) in π ′1 and π ′2 satisfy the congruence condition
(see (1)). As in the proof of the (proc- p- eq) rule, this is sufficient to conclude that π ′1 and
π ′2 are valid subcomputations through FU P and GU P (but not necessarily closed).

By Premise (7.3) of the rule and the soundness of the underlying proof system LUP, π ′1
and π ′2 satisfy the condition in reach-equiv(FU P , GU P) . It is left to show that this implies
that π2 must be finite. We will prove this fact by induction on the depth d of t1.

Base d = 0. In this case n1 is a leaf and π1 does not execute any call statements. Assume
that π2 executes some call statement cG in G. Since by Premise (7.3) reach-equiv(FU P ,

GU P) holds, then there must be some call cF in F such that 〈callee[cF], callee[cG]〉 ∈ map
and some configuration C1 ∈ π ′1 such that current-label[C1] = before[cF] (i.e., π ′1 reaches
the cF call). But this is impossible as n1 is a leaf. Thus π2 cannot be infinite.

Step

1. Assume (by the induction hypothesis) that if π1 is a finite computation with stack-level
tree t1 of depth d < i then any π2 such that

first[π1].σ [arg-rF] = first[π2].σ [arg-rG],
cannot be infinite. We now prove this for π1 with t1 of depth d = i .

2. Let π̂2 be some subcomputation of π2 from level d[n2] + 1, C2 be the configuration in
π2 which comes immediately before π̂2 (C2 = pred[π̂2]). Let cG be the call statement in
G which is executed at C2 (in other words current-label[C2] = before[cG]).

3. Since by Premise (7.3) reach-equiv(FU P , GU P), there must be some call cF in F
such that 〈callee[cF], callee[cG]〉 ∈ map and some configuration C1 ∈ π ′1 from which
the call cF is executed (i.e., current-label[C1] = before[cF]), and C1 passes the same
input argument values to cF as C2 to cG . In other words, if cF = call p1(e1; x1) and
cG = call p2(e2; x2), then C1.σ [e1] = C2.σ [e2]. But then, there is a subcomputation
π̂1 of π1 from level d[n1] + 1 which starts immediately after C1 (C1 = pred[π̂1]]).

4. π̂1 is finite because π1 is finite. The stack-level tree t̂1 of π̂1 is a subtree of t1 and its depth
is less than i . Therefore, by the induction hypothesis (the assumption in item 1) π̂2 must
be finite as well.

5. In this way, all subcomputations of π2 from level d[n2] + 1 are finite. By definition, all
subcomputations of π2 at level d[n2] are finite. Therefore π2 is finite. ��

4.4 Using rule (m- term): a long example

In this example we set the domain D to be the set of binary trees with natural values in the
leafs and the + and * operators at internal nodes.6

Let t1, t2 ∈ D. We define the following operators:

– isleaf(t1) returns true if t1 is a leaf and false otherwise.
– isplus(t1) returns true if t1 has “+” in its root node and false otherwise.
– leftson(t1) returns false if t1 is a leaf, and the tree which is its left son otherwise.

6 To be consistent with the definition of LPL (Definition 1), the domain must also include true and false.
Hence we also set the constants true and false to be the leafs with 1 and 0 values, respectively.

123

Inference rules for proving the equivalence of recursive procedures 421

Fig. 10 Two procedures to calculate the value of an expression tree. Only labels around the call constructs
are shown

– doplus(l1, l2) returns a leaf with a value equal to the sum of the values in l1 and l2, if l1
and l2 are leafs, and false otherwise.

The operators ismult(t1), rightson(t1) and domult(t1, t2) are defined similarly to isplus,
leftson and doplus, respectively.

The two procedures in Fig. 10 calculate the value of an expression tree.
We introduce three uninterpreted procedures E, P and M and set the mapping UP to

satisfy

UP(Eval1) = UP(Eval2) = E,

UP(Plus1) = UP(Plus2) = P,

UP(Mult1) = UP(Mult2) = M.

The SSA form of the formulas which represent the possible computations of isolated
procedure bodies are:

TEval1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 = a ∧
(isleaf (a0)→ r1 = a0) ∧
(¬ isleaf (a0) ∧ isplus(a0)→ P(a0, r1)) ∧
(¬ isleaf (a0) ∧ ¬ isplus(a0) ∧ ismult (a0)→ M(a0, r1)) ∧
r = r1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

TEval2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x0 = x ∧
(isleaf (x0)→ y1 = x0) ∧
(¬ isleaf (x0) ∧ ismult (x0)→ M(x0, y1)) ∧
(¬ isleaf (x0) ∧ ¬ ismult (x0) ∧ isplus(x0)→ P(x0, y1)) ∧
y = y1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

123

422 B. Godlin, O. Strichman

TPlus1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a0 = a ∧
E(leftson(a0), v1) ∧
E(rightson(a0), u1) ∧
r1 = doplus(v1, u1) ∧
r = r1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

TPlus2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x0 = x ∧
E(rightson(x0), w1) ∧
E(leftson(x0), z1) ∧
y1 = doplus(w1, z1) ∧
y = y1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

TMult1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 = a ∧
E(leftson(a0), v1) ∧
E(rightson(a0), u1) ∧
r1 = domult (v1, u1) ∧
r = r1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

TMult2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x0 = x ∧
E(rightson(x0), w1) ∧
E(leftson(x0), z1) ∧
y1 = domult (w1, z1) ∧
y = y1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Proving partial computational equivalence for each of the procedure pairs amounts to proving
the following formulas to be valid:

(a = x ∧ TEval1 ∧ TEval2)→ r = y

(a = x ∧ TPlus1 ∧ TPlus2)→ r = y

(a = x ∧ TMult1 ∧ TMult2)→ r = y.

To prove these formulas it is enough for LU F to know the following facts about the
operators of the domain:

∀l1, l2(doplus(l1, l2) = doplus(l2, l1) ∧ domult (l1, l2) = domult (l2, l1))

∀t1(isleaf (t1)→ ¬ isplus(t1) ∧ ¬ ismult (t1))

∀t1(isplus(t1)→ ¬ ismult (t1) ∧ ¬ isleaf (t1))

∀t1(ismult (t1)→ ¬ isleaf (t1) ∧ ¬ isplus(t1))

This concludes the proof of partial computational equivalence using rule (proc- p- eq).
To prove mutual termination using the (m- term) rule we need in addition to verify reach-
equivalence of each pair of procedures.

To check reach-equivalence we should check that the guards and the read arguments at
labels of related calls are equivalent. This can be expressed by the following formulas:

ϕ1 = (g1 = (¬ isleaf (a0) ∧ isplus(a0)) ∧
g2 = (¬ isleaf (x0) ∧ ¬ ismult (x0) ∧ isplus(x0)) ∧
g3 = (¬ isleaf (a0) ∧ ¬ isplus(a0) ∧ ismult (a0)) ∧
g4 = (¬ isleaf (x0) ∧ ismult (x0)) ∧
g1 ↔ g2 ∧
g3 ↔ g4 ∧
g1 → a0 = x0 ∧
g3 → a0 = x0)

The guards at all labels in Plus1, Plus2, Mult1 and Mult2 are all true, therefore the reach-
equivalence formulas for these procedures collapse to:

ϕ2 = ϕ3 = ((leftson(a0) = rightson(x0) ∨ leftson(a0) = leftson(x0)) ∧
(rightson(a0) = rightson(x0) ∨ rightson(a0) = leftson(x0)) ∧
(leftson(a0) = rightson(x0) ∨ rightson(a0) = rightson(x0)) ∧
(leftson(a0) = leftson(x0) ∨ rightson(a0) = leftson(x0)))

123

Inference rules for proving the equivalence of recursive procedures 423

In this formula each call in each side is mapped to one of the calls on the other side: the first
two lines map calls of side one to calls on side two, and the last two lines map calls of side
two to side one. Finally, the formulas that need to be validated are:

(a = x ∧ TEval1 ∧ TEval2)→ ϕ1

(a = x ∧ TPlus1 ∧ TPlus2)→ ϕ2

(a = x ∧ TMult1 ∧ TMult2)→ ϕ3.

5 A proof rule for equivalence of reactive programs

Rules (proc- p- eq) and (m- term) that we studied in the previous two sections, are concerned
with equivalence of finite programs, and with proving the mutual termination of programs,
respectively. In this section we introduce a rule that generalizes (proc- p- eq) in the sense
that it is not restricted to finite computations. This generalization is necessary for reactive
programs. We say that two reactive procedures F and G are reactively equivalent if given
the same input sequences, their output sequences are the same.

5.1 Definitions

The introduction of the rule and later on the proof requires an extension of LPL to allow
input and output constructs:

Definition 15 (LPL with I/O constructs (LPL+IO)) LPL+IO is the LPL programming
language with two additional statement constructs:

input(x) | output(e)

where x ∈ V is a variable and e is an expression over OD. If a sequence of input constructs
appear in a procedure they must appear before any other statement in that procedure. This
fact is important for the proof of correctness.7 ��

The input and output constructs are assumed to read and write values in the domain D. A
reactive system reads a sequence of inputs using its input constructs and writes a sequence of
outputs by its output constructs. These sequences may be finite or infinite. A computation of
an LPL+IO program is a sequence of configurations of the form: C = 〈d, O, pc, σ, R, W 〉
where R and W are sequences of values in D and all other components in C are as in Sect. 2.2.
Intuitively, R denotes the suffix of the sequence of inputs that remains to be read after con-
figuration C , and W is the sequence of outputs that were written until configuration C .

Definition 16 (Transition relation in LPL+IO) Let “→” be the least relation among con-
figurations which satisfies: if C→C ′, C=〈d, O, pc, σ, R, W 〉, C ′ =〈d ′, O ′, pc′, σ ′, R

′
, W
′〉

then:

1. If current-label[C] = before[S] for some input construct S = “input(x)”, and R0 is
the value being read, then d ′ = d, O ′ = O , pc′ = 〈pci 〉i∈{0,...,d−1} · 〈after[S]〉, σ ′ =
σ [R0|x], R

′ = 〈Ri 〉i∈{1,...}, W
′ = W .

7 A procedure that reads inputs during its execution rather than at its beginning can be simulated by replacing
the input command with a procedure call. The called procedure only reads the inputs and returns them to the
caller, and hence respects the requirement that the inputs are read at its beginning.

123

424 B. Godlin, O. Strichman

2. If current-label[C] = before[S] for some output construct S = “output(e)” then d ′ =
d, O ′ = O, pc′ = 〈pci 〉i∈{0,...,d−1} · 〈after[S]〉, σ ′ = σ, R

′ = R, W
′ = W · 〈σ [e]〉

and for all other statement constructs the transition relation is defined as in Definition 4. ��

By definition of the transition relation of LPL+IO, the W sequence of a configuration con-
tains the W sequence of each of its predecessors as a prefix. We say that the input sequence of
a computation is the R sequence of its first configuration. If the computation is finite then its
output sequence is the W sequence of its last configuration. If the computation is infinite then
its output sequence is the supremum of the W sequences of all its configurations, when we
take the natural containment order between sequences (i.e., the sequence that contains each
W sequence as its prefix). For a computation π , we denote by InSeq[π] its input sequence
and by OutSeq[π] its output sequence. For a finite computation π , we denote by ∆R[π] the
inputs consumed along π , and by ∆W [π] the outputs written during π .

Definition 17 (input-equivalence of subcomputations with respect to procedures)
Two subcomputations π ′1 and π ′2 that are argument-equivalent with respect to two proce-

dures F and G are called input equivalent if

first[π ′1].R = first[π ′2].R.

��

In other words, two subcomputations are input equivalent with respect to procedures F and
G if they start at the beginnings of F and G respectively with equivalent read arguments and
equivalent input sequences.

We will use the following notations in this section, for procedures F and G. The formal
definitions of these terms appear in Appendix A.

1. reactive-equiv(F, G)—Every two input-equivalent subcomputations with respect to
F and G generate equivalent output sequences until returning from F and G, or forever
if they do not return.

2. return-values-equiv(F, G)—The last configurations of every two input-equivalent
finite subcomputations with respect to F and G that end in the return from F and G,
valuate equally the write-arguments of F and G, respectively. (note that return-val-
ues-equiv(F, G) is the same as comp-equiv(F, G) other than the fact that it requires
the subcomputations to be input equivalent and not only argument equivalent).

3. input-suf fix-equiv(F, G)—Every two input-equivalent finite subcomputations with res-
pect to F and G that end at the return from F and G, have (at return) the same remaining
sequence of inputs.

4. call-output-seq-equiv(F, G)—Every two input-equivalent subcomputations with res-
pect to F and G, generate the same sequence of procedure calls and output statements,
where corresponding procedure calls are called with equal inputs (read-arguments and
input sequences), and output statements output equal values.

5.2 Rule (react- eq)

Figure 11 presents rule (react- eq), which can be used for proving equivalence of reactive
procedures.

123

Inference rules for proving the equivalence of recursive procedures 425

Fig. 11 Rule (react- eq): An inference rule for proving the reactive equivalence of procedures

5.3 Rule (react- eq) is sound

Theorem 3 (Soundness) If the proof system LUP is sound then rule (react- eq) is sound.

Proof In the following discussion we use the following notation:

P1, P2 programs in LPL+IO
π, τ subcomputations in P1 and P2, respectively,
t1, t2 stack-level trees of π and τ , respectively,
n1, n2 the root nodes of t1 and t2, respectively,
F = p[n1], G = p[n2] the procedures associated with n1 and n2,
d1 = d[n1], d2 = d[n2] the levels of nodes n1 and n2, respectively.

We assume that π and τ are input equivalent and that 〈F, G〉 ∈ map.
Our main lemma below focuses on finite stack-level trees. The extension to infinite com-

putations will be discussed in Lemma 5.

Lemma 1

If

(1) π and τ are maximal subcomputations,
(2) π and τ are input equivalent,
(3) first[π].W = first[τ].W ,
(4) π is finite and its stack-level tree depth is d, and
(5) the premises of (react- eq) hold,

then

(1) τ is finite and its stack-level tree depth is at most d,
(2) last[π].σ [arg-wF] = last[τ].σ [arg-wG],
(3) last[π].R = last[τ].R, and
(4) last[π].W = last[τ].W .

While the lemma refers to π in the premise and τ in the consequent, this is done without loss
of generality. If premise 1 or 2 is false, the rule holds trivially. Premise 3 holds trivially for the
main procedures, and premise 4 holds trivially for the finite computations case (which this
lemma covers) for some d . Note that consequent 4 implies the consequent of rule (react-
eq). Hence proving this lemma proves also Theorem 3 for the case of finite stack-level trees.
Together with Lemma 5 that refers to infinite computations, this will prove Theorem 3.

Proof (Lemma 1) By induction on the stack-level tree depth d .

123

426 B. Godlin, O. Strichman

Base n1 is a leaf. Since Premise (9.4) holds, τ does not contain any calls from GU P . Thus,
n2 is a leaf as well, and the depth of t2 must be 1 (consequent 1). π and τ contain no calls
to procedures, which implies that they are also valid computations through FU P and GU P ,
respectively. Consequents 2, 3 and 4 of the lemma are implied directly from the three premises
of (react- eq), respectively, and the soundness of the proof system LUP.

Step We now assume that Lemma 1 holds for all callees of F and G (the procedures of the
children in the stack-level trees) and prove it for F and G.

The computation π is an interleaving between “at-level” and “from-level” subcomputa-
tions. We denote the former subcomputations by π̄i for i ≥ 1, and the latter by π̂ j for j ≥ 1.
For example, the subcomputation corresponding to level d + 1 in the left drawing of Fig. 7
has three “at-level” segments that we number π̄1, π̄2, π̄3 (corresponding to segments 2, 4, 8
in the drawing) and two “from-level” subcomputations that we number π̂1, π̂2 (segments 3
and 5–7 in the drawing).

Derive a computation π ′ in FU P from π as follows. First, set first[π ′] = first[π]. Further,
the at-level subcomputations remain the same (other than the R and W values—see below)
and are denoted respectively π̄ ′i . In contrast the “from-level” subcomputations are replaced
as follows. Replace in π each subcomputation π̂ j ∈ from(π, d1) caused by a call cF , with a
subcomputation π̂ ′j through an uninterpreted procedure UP(callee[cF]), which returns the

same value as returned by cF . A small adjustment to R and W in π ′ is required since the
uninterpreted procedures do not consume inputs or generate outputs. Hence, R remains con-
stant in π ′ after passing the input statements in level d1 and W contains only the output
values emitted by the at-level subcomputations. In a similar way construct a computation τ ′
in GU P corresponding to τ .

In the course of the proof we will show that π ′ and τ ′ are valid subcomputations through
FU P , GU P , as they satisfy the congruence condition.

Proof plan Proving the step requires several stages. First, we will prove two additional
lemmas: Lemma 2 will prove certain properties of “at-level” subcomputations, whereas
Lemma 3 will establish several properties of “from-level” subcomputations, assuming the
induction hypothesis of Lemma 1. Second, using these lemmas we will establish in Lemma 4
the relation between the beginning and end of subcomputations π and τ . This will prove the
step of Lemma 1.

The notations in the following lemma correspond to the left drawing in Fig. 12. Specifi-
cally,

A1 = first[π̄i], A′1 = first[π̄ ′i], A′2 = first[τ̄ ′i], A2 = first[τ̄i],
B1 = last[π̄i], B ′1 = last[π̄ ′i], B ′2 = last[τ̄ ′i], B2 = last[τ̄i].

The figure shows the at-level segments π̄i , π̄
′
i , τ̄i , τ̄

′
i , the equivalences between various

values in their initial configurations which we assume as premises in the lemma, and the
equivalences that we prove to hold in the last configurations of these subcomputations.

The at-level segment π̄i may end with some statement call p1(e1; x1) or at a return from
procedure F . Similarly, τ̄i may end with some statement call p2(e2; x2) or at a return from
procedure G.

Lemma 2 (Properties of an at-level subcomputation) For each i , with respect to π̄i , τ̄i , π̄
′
i

and τ̄ ′i ,

123

Inference rules for proving the equivalence of recursive procedures 427

Fig. 12 (left) “at-level” subcomputations—a diagram for Lemma 2. (right) “from-level” subcomputations—
a diagram for Lemma 3

if

1) A1.σ |d1 = A′1.σ |d1

2) A2.σ |d2 = A′2.σ |d2

3) A1.R = A2.R
4) A1.W = A2.W
5) If i = 1 then (A1.R = A′1.R and A2.R = A′2.R)

6) If i = 1 then A1.σ |d1 = A2.σ |d2 .

then

1) B1.σ |d1 = B ′1.σ |d1

2) B2.σ |d2 = B ′2.σ |d2

3) If π̄i ends with call p1(e1; x1) then τ̄i ends with
call p2(e2; x2) and 〈p1, p2〉 ∈ map

4) If π̄ ′i ends with a call statement, then B ′1.σ [e1] = B ′2.σ [e2]
5) If π̄i ends with a call statement, then B1.σ [e1] = B2.σ [e2]
6) B1.R = B2.R
7) B1.W = B2.W

(In Fig. 12 consequents 4, 5 are represented by the requirement of having equal arg-r
values (equal formal parameters)).

Proof (Lemma 2)

1. (Consequent 1) For i > 1: A1.σ |d1 = A′1.σ |d1 (Premise 1), hence, by definition of π̄ ′i
(which implies that π̄i and π̄ ′i are equivalent, because they are defined by the same LPL
code and begin with the same variable values), we have B1.σ |d1 = B ′1.σ |d1 .
Recall that by definition of LPL+IO, input statements may appear only at the beginning
of the procedure. Therefore, for i = 1 it is a little more complicated because of possible
input statements. In addition to Premise 1 we now also need A1.R = A′1.R (Premise 5)
and again, by definition of π̄ ′i we have B1.σ |d1 = B ′1.σ |d1 .

2. (Consequent 2) Dual to the proof of consequent 1, using Premise 2 instead of Premise 1.

123

428 B. Godlin, O. Strichman

3. Since π̄i , π̄
′
i are defined by the same LPL code and begin with the same variable values

and, for the case of i = 1, the same input sequence, they consume the same por-
tions of the input sequence and produce the same output subsequence. Thus, we have
∆W [π̄i] = ∆W [π̄ ′i],∆R[π̄i] = ∆R[π̄ ′i], and in a similar way with respect to τ̄i , τ̄

′
i , we

have ∆W [τ̄i] = ∆W [τ̄ ′i],∆R[τ̄i] = ∆R[τ̄ ′i].
4. If i = 1, π̄i , π̄

′
i , τ̄
′
i and τ̄i are the first segments in π, π ′, τ ′ and τ , and thus may contain

input statements. Then by Premise 5 of the lemma we have A1.R = A′1.R, A2.R =
A′2.R, and by A1.R = A2.R (Premise 3) and transitivity of equality we have A′1.R =
A′2.R.

5. (Consequents 3 and 4) The subcomputations from the beginning of π ′ to the end of π̄ ′i and
from the beginning of τ ′ to the end of τ̄ ′i are prefixes of valid subcomputations through
FU P and GU P . These subcomputations are input equivalent due to A′1.R = A′2.R (see
item 4 above) and A1.σ |d1 = A2.σ |d2 (Premise 6). If π̄i ends with call p1(e1; x1) then
π̄ ′i ends with call UP(p1)(e1; x1). Then, by call-output-seq-equiv(FU P , GU P) (pre-
mise 9.4 of (react- eq)), τ̄ ′i must end with call UP(p2)(e2; x2) where 〈p1, p2〉 ∈ map,
and therefore τ̄i ends with call p2(e2; x2). This proves consequent 3. The same pre-
mise also implies that B ′1.σ [e1] = B ′2.σ [e2], which proves consequent 4, and that
∆W [π̄ ′i] = ∆W [τ̄ ′i].

6. (Consequent 5) Implied by consequents 1, 2 and 4 that we have already proved, and
transitivity of equality.

7. Consider π̄ ′i and τ̄ ′i . For i = 1, π̄ ′1 and τ̄ ′1 are prefixes of valid input-equivalent subcom-
putations through FU P and GU P , and as in any such subcomputation the inputs are con-
sumed only at the beginning. Therefore, input-suf fix-equiv(FU P , GU P) (Premise 9.3),
which implies equality of ∆R of these subcomputations, also implies ∆R[π̄ ′1] = ∆R[τ̄ ′1].
For i > 1, no input values are read in π̄ ′i and τ̄ ′i and hence ∆R[π̄ ′i] = ∆R[τ̄ ′i] = ∅. Thus,
for any i we have ∆R[π̄ ′i] = ∆R[τ̄ ′i].

8. (Consequent 6) By ∆R[π̄i] = ∆R[π̄ ′i], ∆R[τ̄i] = ∆R[τ̄ ′i] (see item 3), ∆R[π̄ ′i] =
∆R[τ̄ ′i] (see item 7) and transitivity of equality we have ∆R[π̄i] = ∆R[τ̄i]. This together
with A1.R = A2.R (Premise 3) entails consequent 6.

9. (Consequent 7) By ∆W [π̄i] = ∆W [π̄ ′i], ∆W [τ̄i] = ∆W [τ̄ ′i] (see item 3), ∆W [π̄ ′i] =
∆W [τ̄ ′i] (see end of item 5) and transitivity of equality we have ∆W [π̄i] = ∆W [τ̄i].
This together with A1.W = A2.W (Premise 4) entails consequent 7.

(End of proof of Lemma 2). ��

The notations in the following lemma corresponds to the right drawing in Fig. 12. The
beginning configurations B1, B ′1, B ′2, B2 are the same as the end configurations of the draw-
ing in the left of the same figure. In addition we now have the configurations at the end of
the ‘from-level’ subcomputations, denoted by C1, C ′1, C2, C ′2, or, more formally:

C1 = last[π̂ j], C ′1 = last[π̂ ′j], C ′2 = last[τ̂ ′j], C2 = last[τ̂ j].
Note that π̂ j is finite by definition of π , and therefore last[π̂ j] is well-defined. We will show in
the proof of the next lemma that τ̂ j is finite as well, and therefore last[τ̂ j] is also well-defined.

Lemma 3 (Properties of a ‘from-level’ subcomputation) With respect to π̂ j , τ̂ j , π̂
′
j and

τ̂ ′j for some j , let current-label[B1] = before[cF], current-label[B2] = before[cG], cF =
call p1(e1; x1), and cG = call p2(e2; x2). Then

123

Inference rules for proving the equivalence of recursive procedures 429

if

1) B1.σ |d1 = B ′1.σ |d1

2) B2.σ |d2 = B ′2.σ |d2

3) B1.σ [e1] = B2.σ [e2]
4) B ′1.σ [e1] = B ′2.σ [e2]
5) B1.R = B2.R
6) B1.W = B2.W
7) π̂ j has a stack-level tree of depth at most d − 1
8)〈p1, p2〉 ∈ map,

then

1) C1.R = C2.R
2) C1.W = C2.W
3) C1.σ |d1 = C ′1.σ |d1

4) C2.σ |d2 = C ′2.σ |d2

5) τ̂ j has a stack-level tree of depth at most d − 1.

Proof (Lemma 3)

1. (Consequents 1, 2, 5) As π̂ j has a stack-level tree of depth at most d − 1 (Premise 7),
by B1.σ [e1] = B2.σ [e2] (Premise 3), B1.R = B2.R (Premise 5), and the induction
hypothesis of Lemma 1, τ̂ j has stack-level tree of depth at most d − 1 and: C1.σ [x1] =
C2.σ [x2], C1.R = C2.R and ∆W [π̂ j] = ∆W [τ̂ j]. Therefore, by B1.W = B2.W
(Premise 6) we have C1.W = C2.W .

2. (Consequents 3, 4) As π̂ ′j and τ̂ ′j are computations through calls to the same uninter-
preted procedure (by premise 8) we can choose them in such a way that they satisfy
C ′1.σ [x1] = C1.σ [x1] = C2.σ [x2] = C ′2.σ [x2], and hence satisfy (1). As valuations
of other variables by σ |d1 and σ |d2 are unchanged by subcomputations in higher levels
(above d1 and d2, respectively), we have C1.σ |d1 = C ′1.σ |d1 and C2.σ |d2 = C ′2.σ |d1 .

(End of proof of Lemma 3). ��
Using Lemmas 2 and 3 we can establish equivalences of values in the end of input-

equivalent subcomputations, based on the fact that every subcomputation, as mentioned ear-
lier, is an interleaving between “at-level” and “from-level” subcomputations.

Lemma 4 (Properties of subcomputations) Let A1 = first[π̄i], A2 = first[τ̄i], A′1 =
first[π̄ ′i] and A′2 = first[τ̄ ′i] be the first configurations of π̄i , τ̄i , π̄

′
i and τ̄ ′i respectively for

some i. Then these configurations satisfy the following conditions:

1) A1.σ |d1 = A′1.σ |d1

2) A2.σ |d2 = A′2.σ |d2

3) A1.R = A2.R
4) A1.W = A2.W

Proof By induction on i .

Base For i = 1, π̄i and τ̄i start at the beginning of F and G. Hence π̄ ′i and τ̄ ′i are at the
beginning of FU P and GU P . By the definition of π̄ ′1 and τ̄ ′1, the lemma is valid in this case
because π and τ are input equivalent (between themselves and with π ′ and τ ′). Consequent
4 stems from Premise 3 of Lemma 1.

123

430 B. Godlin, O. Strichman

Step Consider in π some consecutive at-level and from-level subcomputations π̄i and π̂ j

and their respective counterparts: (π̄ ′i , π̂ ′j) in π ′, (τ̄ ′i , τ̂ ′j) in τ ′, and finally (τ̄i , τ̂ j) in τ .
By the induction hypothesis and the finiteness of π̂i (guaranteed by the hypothesis of

Lemma 1), premises 1–4 of Lemma 2 hold. Premises 5 and 6 hold as well because they are
implied by the definitions of π ′, τ ′, π and τ . Thus, the premises and therefore the conse-
quents of Lemma 3 hold, which implies that the induction hypothesis of the current lemma
holds for i + 1.

(End of proof of Lemma 4). ��
Consequent 1 of Lemma 1 holds because for any j , if the depths of the stack-level trees of
τ̂ j are bounded by d − 1 (consequent 5 of Lemma 3) then the depths of the stack-level tree
of τ is bounded by d .

The other consequents of Lemma 1 are proved by using Lemma 4. Let (π̄l ,τ̄l) be the last
pair of subcomputations (e.g., in the left drawing of Fig. 7, segment 8 is the last in level d+1).
Their counterparts in the isolated bodies FU P and GU P , π̄ ′l and τ̄ ′l , are the last parts of the
computations π ′ and τ ′. We use the same notation as before for denoting the configurations
in the end of these subcomputations:

B1 = last[π], B ′1 = last[π ′], B ′2 = last[τ ′], B2 = last[τ].
Therefore return-values-equiv(FU P , GU P) entails

B ′1.σ [arg-wF] = B ′2.σ [arg-wG].
By Lemma 4 the configurations A1 = first[π̄l], A′1 = first[π̄ ′l], A′2 = first[τ̄ ′l], and A2 =
first[τ̄l] satisfy the Premises of Lemma 2. By consequents 1 and 2 of this lemma we have
B1.σ |d1 = B ′1.σ |d1 and B2.σ |d2 = B ′2.σ |d2 , and by transitivity B1.σ [arg-wF] = B2.

σ [arg-wG] (this proves consequent 2 of Lemma 1). Further, consequents 5 and 6 of Lemma 2
yield B1.R = B2.R and B1.W = B2.W (this proves consequents 3, 4 of Lemma 1).

(End of proof of Lemma 1). ��
It is left to consider the case when π and τ are infinite (recall that by Lemma 1 π is

infinite if and only if τ is infinite). Hence, there is exactly one infinite branch in each of the
stack-level trees t1 and t2 (the stack-level trees of π and τ respectively). Figure 13 presents
a possible part of π and its corresponding stack-level tree. Consider these infinite branches
as infinite sequences of nodes, which begin at their respective roots and continue to nodes of
higher levels.

We first need the following definition:

Definition 18 (Call configuration) A configuration C is a call configuration if current-label
[C] = before[call p(e; x)] for some procedure p. ��
Lemma 5 Let π and τ be input-equivalent infinite computations through F and G, respec-
tively, with corresponding stack-level trees t1 and t2. Consider the series of call configurations
which are the last in their respective levels on the infinite branches of t1 and t2 (i.e., the ones
that bring the execution from one node of the infinite branch to the next one). Let B1 and
B2 be a pair of such configurations such that B1.d = B2.d and let current-label[B1] =
be f ore[call p1(e1; x1)] and current-label[B2] = be f ore[call p2(e2; x2)]. Then

1) 〈p1, p2〉 ∈ map
2) B1.σ [e1] = B2.σ [e2]
3) B1.R = B2.R
4) B1.W = B2.W .

123

Inference rules for proving the equivalence of recursive procedures 431

Fig. 13 (left) A part of an infinite computation π and (right) its corresponding stack-level tree t1. The branch
on the right is infinite. The notation correspond to Lemma 5

As in the case of Lemma 1, if the premises do not hold (i.e., the computations are not
input-equivalent), Theorem 1 holds trivially. Also as in the case of Lemma 1, consequent 4
implies OutSeq[π] = OutSeq[τ] and hence the consequent of Theorem 1 for the case of
infinite computations.

Proof (Lemma 5) By induction on the index of the nodes in the infinite branches. Let B1 and
B2 be a pair of call configurations on the infinite branches of t1 and t2 respectively, which
are at the same execution level, i.e., B1.d = B2.d .

Base Consider n1, n2, the root nodes of t1 and t2. For each of the branches originating from
n1, n2 that are not on the infinite branches (these are nodes containing segments (2, 4) and
(6) in t1, as appears in the figure), Lemma 1 holds.

This allows us to use Lemma 4 (for example, between points θ1 and θ2 in the left drawing),
and Lemma 2 (for example, between points θ2 and B1 in the left drawing) with respect to
subcomputations starting in the beginning of F and G and ending at B1, B2.

By consequent 3 of Lemma 2 〈p1, p2〉 ∈ map, which proves consequent 1 of the current
lemma. Consequents 5,6 and 7 of Lemma 2 imply the other three consequents of the current
lemma: B1.σ [e1] = B2.σ [e2], B1.R = B2.R and B1.W = B2.W .

Step Let the call configurations B3 and B4 be the successors of B1 and B2 respectively on
the infinite branches. The subcomputations from B1 to B3 and from B2 to B4 are finite and
therefore Lemmas 1–4 apply to them.

We now assume that the induction hypothesis holds for B1 and B2 and prove it for B3 and
B4. By the induction hypothesis B1.σ [e1] = B2.σ [e2], B1.R = B2.R, and B1.W = B2.W .

Let n3 and n4 be the nodes in the stack-level trees reached by the calls made at B1 and
B2. For each of the branches originating from n3, n4 that are not on the infinite branches
Lemma 1 holds.

Similarly to the base case, Lemmas 2 and 4 apply to the subcomputations starting in B1

and B2 and ending at B3, B4 respectively. By consequent 3 of Lemma 2 the procedures called
at B3 and B4 are mapped to one another, which proves consequent 1 of the current lemma.
Consequents 5,6 and 7 of Lemma 2 imply the other three consequents of the current lemma:
B3.σ [e1] = B4.σ [e2], B3.R = B4.R and B3.W = B4.W .

(End of proof of Lemma 5) ��

123

432 B. Godlin, O. Strichman

We proved for both finite and infinite computations that the premises of Theorem 3 imply
its consequent. This concludes the proof of soundness for the (react- eq) rule.

(End of proof of Theorem 3). ��

5.4 Using rule (react- eq): a long example

Every reactive program has at least one loop or recursion, and, recall, the former can be
translated into recursion as well.

In this section we present an example of a pair of reactive programs which behave as a
simple calculator over natural numbers. The calculated expressions can contain the “+” and
“*” operations and the use of “(” and “)” to associate operations. The calculator obeys the
operator precedence of “+” and “*”. We set the domain D

.= N ∪ {“+”,“*”,“(”,“)”}, where
“+”,“*”,“(” and “)” are constant symbols, and the constants true and false to be the 1 and
0 values respectively. We define + and * to be operators over D. If t1, t2 ∈ N then the value
of t1 + t2 and t1 ∗ t2 is as given by the natural interpretation of this operations over N. If
t1
∈ N or t2
∈ N then we define t1 + t2 = t1 ∗ t2 = 0. We assume also the existence of the
equality operator = over D.

The two programs in Fig. 14 are executed by a call to their respective “sum” procedures
with 0 as the input argument. We assume that the input sequence to the program is a valid
arithmetical expression. Each time a program reads “)” from the input sequence, it prints the
value of the expression between the parentheses that this input symbol closes. We proceed
with a short explanation of the programs’ operation.

The procedures sumL and sumR receive the value of the sum until now in the formal
arguments vL or vR respectively, add to it the value of the next product that they receive in
variable r L or bR (from calls to prodL or prodR), and if the next symbol is “)” they output the
sum and return it in variable r L or r R respectively. If the next symbol is “+” they recursively
call sumL or sumR to continue the summation.

Similarly, the procedures prodL and prodR receive the value of the product up to now in
formal argument vL and vR, multiply it by the value of the next natural number or expression
in parentheses (received from numL or numR in variable r L or dR), and get the next symbol
in opL or opR. If the next symbol is “*” they recursively call prodL or prodR to continue
calculating the product. If the next symbol is “+” or “)”, they just return the product value
(in r L or r R).

The numL and numR procedure may read a number or a “(” symbol from the input sequence.
In the former case, they just return this number through i L or nR. In the latter case, they call
sumL and sumR to calculate the value of the expression inside the parentheses and return the
result through i L or nR.

The getopL and getopR just read a single symbol from the input sequence (it can be “+”,
“*” or “)”) and return it in opL or opR, respectively.

We use the (react- eq) rule to prove reactive equivalence of sumL and sumR, under
the assumption that they receive a valid arithmetical expression. We introduce four unin-
terpreted procedures Us, Up, Un and Ug and set the mapping UP to satisfy U P(sumL) =
U P(sumR) = Us , U P(prodL) = U P(prodR) = Up , U P(numL) = U P(numR) = Un and
U P(getopL) = U P(getopR) = Ug .

In Fig. 15 we present the SSA form of the formulas that represent the possible computa-
tions of the isolated procedure bodies. Each of the procedures has at most a single input or
output statement. We mark the single input value by in1 or in2, and the single output value
by out1 or out2.

123

Inference rules for proving the equivalence of recursive procedures 433

Fig. 14 Two reactive calculator programs (labels were removed for better readability). The programs output
a value every time they encounter the “)” symbol

– Premise 9.2 (return-values-equiv). Checking this premise involves checking all input-
equivalent subcomputations through the isolated bodies of each pair of the related pro-
cedures. As each of these isolated bodies include at most a single input statement, a
sequence of a single input is enough for each of these checks. We denote this single input
by R0. We check the following formulas to be valid:

(vL = vR ∧ TsumL ∧ TsumR) → r L = r R

(vL = vR ∧ TprodL ∧ TprodR) → r L = r R ∧ opL = opR

(in1 = R0 ∧ in2 = R0 ∧ TnumL ∧ TnumR) → i L = nR

(in1 = R0 ∧ in2 = R0 ∧ TgetopL ∧ TgetopR)→ opL = opR.

(10)

– Premise 9.3 (input-suf fix-equiv). Recall that calls to uninterpreted procedures consume
no values of the input sequence. Thus, to verify the satisfaction of input-suf fix-equiv, we
only need to check that any two related procedures have the same number of input state-
ments. In this way, when the configurations at the beginning of the two isolated procedure

123

434 B. Godlin, O. Strichman

Fig. 15 The SSA corresponding to the programs in Fig. 14

bodies have equal input sequences, also the configurations at the end of these bodies have
equal input sequences as the same prefix was consumed by the computations through the
bodies. This condition is satisfied trivially for all mapped procedures.

– Premise 9.4 (call-output-seq-equiv). In procedures sumL, sumR, prodL, prodR, numL

and numR, the execution may take several paths. We need to compare the guard and input
values of each procedure call and each output statement in each path. Note that the calls
to Un and Ug are always unconditioned and have no read arguments. Therefore, they
trivially satisfy the call-output-seq-equiv conditions. The check involves validating the
following formulas:

(vL = vR ∧ TsumL ∧ TsumR)→
((1 = 1) ∧
(opL

1 = ‘)’ ↔ opR
1 = ‘)’) ∧ (opL

1 = ‘)’ → out1 = out2) ∧
(opL

1 = ‘+’↔ opR
1 = ‘+’) ∧ (opL

1 = ‘+’→ r L
2 = vR

0 + bR
1)).

(11)

It is easier to follow this formula while referring to the definition of TsumL and TsumR . The
second line asserts that the input arguments of Up are the same. The third line asserts that
the guards of the output statements are the same, and if they both hold, then the output
value is the same. The last line asserts that the guards of the call to Us are the same, and

123

Inference rules for proving the equivalence of recursive procedures 435

if they both hold, then the read arguments of Us are the same.

(vL = vR ∧ TprodL ∧ TprodR)→
((opL

1 = ‘*’↔ opR
1 = ‘*’) ∧ (opL

1 = ‘*’→ r L
2 = vR

0 ∗ dR
1))

(12)

(in1 = R0 ∧ in2 = R0 ∧ TnumL ∧ TnumR)→
((i L

0 = ‘(’↔ i R
0 = ‘(’) ∧ (i L

0 = ‘(’→ 0 = 0)).
(13)

Using the uninterpreted procedure relations and commutativity of the “+” and “*” operators,
one can prove the validity of (10)–(13). Note that uninterpreted procedures which have no
read arguments return non-deterministic but constant values in their write arguments.

This concludes the verification of the premises of rule (react- eq), which establishes,
among other things, that reactive-equiv(sumL, sumR) holds. Consequently we know that
the two programs generate the same output sequence when executed on the same arithmetical
expression.

6 What the rules cannot prove

All three rules rely on a 1-1 and onto mapping of the procedures (possibly after inlining of
some of them, as mentioned in the introduction), such that every pair of mapped procedures
are computationally equivalent. Various semantic-preserving code transformations do not
satisfy this requirement. Here are a few examples:

1. Consider the following equivalent procedures, which, for a natural number n, compute∑n
i=1 i .

procedure F(val n; ret r):
if n ≤ 1 then r := n
else

call F(n − 1, r);
r := n + r

fi
return

procedure G(val n; ret r):
if n ≤ 1 then r := n
else

call G(n − 2, r);
r := n + (n − 1)+ r

fi
return

Since the two procedures are called with different arguments, their computational equiv-
alence cannot be proven with rule (proc- p- eq).

2. Consider a similar pair of equivalent procedures, that this time make recursive calls with
equivalent arguments:

procedure F(val n; ret r):
if n ≤ 0 then r := n
else

call F(n − 1, r);
r := n + r

fi
return

procedure G(val n; ret r):
if n ≤ 1 then r := n
else

call G(n − 1, r);
r := n + r

fi
return

The premise of (proc- p- eq) fails due to the case of n == 1.
3. We now consider an example in which the two programs are both computational

equivalent and reach-equivalent, but still our rules fail to prove it.

123

436 B. Godlin, O. Strichman

procedure F(val n; ret r):
if n ≤ 0 then r := 0
else

call F(n − 1, r);
r := n + r

fi;
return

procedure F(val n; ret r):
if n ≤ 0 then r := 0
else

call F(n − 1, r);
if r ≥ 0 then r := n + r ;
fi

fi
return

In this case the “if” condition in the second program always holds. Yet since the
Uninterpreted Functions return arbitrary, although equal, values, they can return a neg-
ative value, which will make this “if” condition not hold and as a result make the two
isolated functions return different values.

7 Summary

We presented three proof rules in the style of Hoare’s rule for recursive procedures: rule
(proc- p- eq) proves partial equivalence between programs, rule (m- term) proves mutual
termination of such programs and, finally, rule (react- eq) proves reactive-equivalence
between reactive programs, and also generalizes the first two.

These rules can be used in any one of the scenarios described in the introduction. We
are using them as part of an automated regression-verification tool for C programs that we
currently develop, and so far used them for proving such equivalence of several non-trivial
programs. Deriving the proper verification conditions automatically is easy in the isolated
procedures, and the verification conditions themselves are typically not hard to solve with the
underlying proof engine that we use, namely CBMC.8 Once this system will be capable of
handling a larger set of real programs (it currently does not support various language features
of C), it will be interesting to see in how many cases real changes, made between versions
of real programs, can be proven to be equal with the rules described in this article.

Appendix A: Formal definitions for Sect. 5

Definition 19 (Input/output subsequences of a subcomputation)
Let π ′ be a subcomputation of a computation π . If π ′ is finite then the input subsequence
of π ′ is the prefix sequence QI N that satisfies first[π ′].R = QI N · last[π ′].R and the output
subsequence of π ′ is the tail sequence QOU T that satisfies first[π ′].W ·QOU T = last[π ′].W .
If π ′ is infinite then the input subsequence of π ′ is simply first[π ′].R and the output sub-
sequence of π ′ is the tail sequence QOU T that satisfies first[π ′].W · QOU T = OutSeq[π].

��
Less formally, an input subsequence of a subcomputation π ′ is the subsequence of inputs
that is “consumed” by π ′, whereas the output subsequence of a subcomputation π ′ is the
subsequence of outputs of π ′.

We mark the input subsequence of π ′ by ∆R[π ′] and its output subsequence by ∆W [π ′].
In all subsequent definitions P1 and P2 are LPL+IO programs.

8 This depends more on the type of operators there are in the procedures than the sheer size of the program.
For example, a short program that includes a multiplication between two integers is hard to reason about
regardless of the length of the procedure.

123

Inference rules for proving the equivalence of recursive procedures 437

Definition 20 (Reactive equivalence of two procedures)
Given two procedures F ∈ Proc[P1] and G ∈ Proc[P2] such that 〈F, G〉 ∈ map, if for
every two subcomputations π ′1 and π ′2 that are input equivalent with respect to F and G it
holds that ∆W [π ′1] = ∆W [π ′2] then F and G are reactively equivalent. ��

Denote by reactive-equiv(F, G) the fact that F and G are reactively equivalent.

Definition 21 (Return-values equivalence of two reactive procedures)
If for every two finite subcomputations π ′1 and π ′2 that are input equivalent with respect to
procedures F and G it holds that

last[π ′1].σ [arg-wF] = last[π ′2].σ [arg-wG]
then F and G are Return-values equivalent. ��

(Recall that input-equivalent subcomputations are also argument-equivalent and hence max-
imal—see Definition 9).

Denote by return-values-equiv(F, G) the fact that F and G are return-value equivalent.

Definition 22 (Inputs-suffix equivalence of two reactive procedures)
If for every two finite subcomputations π ′1 and π ′2 that are input equivalent with respect to
procedures F and G it holds that

∆R[π ′1] = ∆R[π ′2],
then F and G are Inputs-suffix equivalent. ��

Denote by input-suf fix-equiv(F, G) the fact that F and G are inputs-suffix equivalent.

Definition 23 (Output configuration) A configuration C is an output configuration if
current-label[C] = before[output(e)]. ��

Definition 24 (Call and output sequence of a subcomputation) The call and output
sequence of a subcomputation π ′ contains all the call and output configurations in π ′ in
the order in which they appear in π ′. ��

Definition 25 (Call and output sequence equivalence between subcomputations) Finite
subcomputation π ′1 and π ′2 from some levels are call and output sequence equivalent if the
call-and-output-sequences CC1 of π ′1 and CC2 of π ′2, satisfy:

1. |CC1| = |CC2|
2. If for some i ∈ {1, . . . , |CC1|}, current-label[(CC1)i] = before[call p1(e1; x1)]), then

– current-label[(CC2)i] = before[call p2(e2; x2)],
– 〈p1, p2〉 ∈ map, and
– (CC1)i .σ [e1] = (CC2)i .σ [e2].

3. If for some i ∈ {1, . . . , |CC1|}) current-label[(CC1)i] = before[output(e1)]), then

– current-label[(CC2)i] = before[output(e2)], and
– (CC1)i .σ [e1] = (CC2)i .σ [e2]. ��

123

438 B. Godlin, O. Strichman

Extending this definition to procedures, we have:

Definition 26 (Call and output sequence equivalence of two procedures) Given two pro-
cedures F ∈ Proc[P1] and G ∈ Proc[P2] such that 〈F, G〉 ∈ map, if for every two finite
subcomputations π ′1 and π ′2 that are input equivalent with respect to F and G it holds that π ′1
and π ′2 are call and output sequence equivalent, then F and G are call and output sequence
equivalent. ��

Denote by call-output-seq-equiv(F, G) the fact that F and G are call-sequence equiv-
alent.

Appendix B: Refactoring rules that our rules can handle

It is beneficial to categorize refactoring rules that can be handled by our proof rules. In gen-
eral, every change that is local to the procedure, and does not move code between different
iterations of a loop or recursion, can be handled by the proof rules.

Considering the list of popular refactoring rules in [4] (while ignoring those that are
specific to object-oriented code, or Java):

– Our rules can handle the following rules: Consolidate Duplicate Conditional Fragments,
Introduce Explaining Variable, Reduce Scope of Variable, Remove Assignments to Param-
eters, Remove Control Flag, Remove Double Negative, Replace Assignment with Initial-
ization, Replace Iteration with Recursion, Replace Magic Number with Symbolic Con-
stant, Replace Nested Conditional with Guard Clauses, Replace Recursion with Iteration,
Reverse Conditional, Split Temporary Variable, Substitute Algorithm.

– If the rules are used in a decision procedure that is able to inline code, they can also prove
the correctness of the following refactoring rules:
Decompose Conditional, Extract Method, Inline Method, Inline Temp, Replace Param-
eter with Explicit Methods, Replace Parameter with Method, Replace Temp with Query,
Self Encapsulate Field, Separate Data Access Code.

– Finally, the following refactoring rules cannot be handled by our rules:
Replace Static Variable with Parameter (change in the prototype of the function), Separate
Query from Modifier (splits a function to two functions with different behaviors), Split
Loop (since in our setting, loops are modeled as recursive functions, this transformation
turns one recursive function into two).

References

1. Arons, T., Elster, E., Fix, L., Mador-Haim, S., Mishaeli, M., Shalev, J., Singerman, E., Tiemeyer, A.,
Vardi, M.Y., Zuck, L.D.: Formal verification of backward compatibility of microcode. In: Etessami, K.,
Rajamani, S. (eds.) Proceedings of 17th International Conference on Computer Aided Verification
(CAV’05), Lecture Notes in Computer Science, vol. 3576. Springer, Edinburgh (2005)

2. Bouge, L., Cachera, D.: A logical framework to prove Properties of alpha programs (revised version).
Tech. Rep. RR-3177 (1997). citeseer.ist.psu.edu/bouge97logical.html

3. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing static sin-
gle assignment form and the control dependence graph. ACM Trans Program Lang Syst 13(4), 451–
490 (1991)

4. Fowler, M.: http://www.refactoring.com
5. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley, Menlo Park (1999)
6. Francez, N.: Program Verification. Addison-Wesley, Wokingham (1993)

123

citeseer.ist.psu.edu/bouge97logical.html
http://www.refactoring.com

Inference rules for proving the equivalence of recursive procedures 439

7. Hoare, C.: Prcedures and parameters: an axiomatic approach. In: Proceedings of Symposium on Seman-
tics of Algorithmic Languages, vol. 188, pp.102–116. Springer, New York (1971)

8. Kroening, D., Clarke, E., Yorav, K.: Behavioral consistency of C and Verilog programs using bounded
model checking. In: Proceedings of DAC 2003, pp. 368–371. ACM Press, New York (2003)

9. Luckham, D., Park, D., Paterson, M.: On formalized computer programs. J. Comput. Syst. Sci. 4(3),
220–249 (1970)

10. Manolios, P.: Computer-Aided Reasoning: ACL2 Case Studies, Chap. Mu-Calculus Model-Checking,
pp. 93–111. Kluwer Academic Publishers, Dordrecht (2000)

11. Manolios, P., Kaufmann, M.: Adding a total order to acl2. In: The Third International Workshop on the
ACL2 Theorem Prover (2002)

12. Manolios, P., Vroon, D.: Ordinal arithmetic: algorithms and mechanization. J Autom Reason (2006)
(to appear)

13. Pratt, T.W.: Kernel equivalence of programs and proving kernel equivalence and correctness by test cases.
International Joint Conference on Artificial Intelligence (1971)

14. Shostak, R.: An algorithm for reasoning about equality. Commun ACM 21(7), 583–585 (1978)

123

	Inference rules for proving the equivalence of recursive procedures
	Abstract
	1 Introduction
	1.1 Notions of equivalence
	1.2 The three rules that we prove

	2 Preliminaries
	2.1 The programming language
	2.2 Operational semantics
	2.3 Computations and subcomputations of LPL programs
	2.4 An assumption about the programs we compare

	3 A proof rule for partial procedure equivalence
	3.1 Definitions
	3.2 Rule (proc-p-eq)
	3.3 Rule (proc-p-eq) is sound

	4 A proof rule for mutual termination of procedures
	4.1 Definitions
	4.2 Rule (m-term)
	4.3 Rule (m-term) is sound
	4.4 Using rule (m-term): a long example

	5 A proof rule for equivalence of reactive programs
	5.1 Definitions
	5.2 Rule (react-eq)
	5.3 Rule (react-eq) is sound
	5.4 Using rule (react-eq): a long example

	6 What the rules cannot prove
	7 Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

