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Abstract Relation algebra is well suited for dealing with many problems on ordered sets.
Introducing lattices via order relations, this suggests to apply it and tools for its mechanization
for lattice-theoretical problems, too. We combine relation algebra and the BDD-based specific
purpose Computer Algebra system RelView to solve some algorithmic problems on orders
and lattices and to visualize their solutions.

1 Introduction

An ordered set (X,�) consists of a non-empty set X and a partial order relation � on X .
It is a lattice if every pair of elements x, y ∈ X has a greatest lower bound x � y and
a least upper bound x � y. Orders and lattices play an important role in many areas of
computer science. These include, e.g., replacement systems, knowledge representation, data
mining, information retrieval, cryptography and cryptanalysis, static program analysis, logic
programming, algorithmics, and models of computation.

Relation algebra [27,33,38] generalizes lattices since it additionally uses complements,
compositions with identities, and transpositions. Its use in computer science is mainly due
to the fact that many datatypes can be modeled via relations, many problems on them can
be naturally specified by relation-algebraic expressions and formulae, and, therefore, many
solutions reduce to relation-algebraic computations. Finite relations can be implemented very
efficiently. At Kiel University, we have developed a Computer Algebra system for the mani-
pulation and visualization of relations and for relational programming, called RelView [1,8].
It is written in C, runs under Sun-Solaris and Intel-based Linux systems, uses binary decision
diagrams (BDDs) for representing relations [6,26,28], and makes full use of the X-windows
GUI. The main purpose of RelView is the evaluation of relation-algebraic expressions, which
are constructed from the relations of its workspace using pre-defined operations and tests,
user-defined relational functions, and user-defined relational programs. Relational functions
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212 R. Berghammer

are defined as is customary in mathematics, where the right-hand sides are relation-algebraic
expressions over the relations of the system’s workspace and the formal parameters. A
relational program in RelView is much like a function procedure in programming languages
like Pascal or Modula 2, except the only datatype used is relations.

As demonstrated, e.g., in [33], relation algebra is well suited for dealing with many
problems concerning order relations in a component-free manner. Taking ordered sets as
a starting point for introducing lattices (instead of algebras having two binary operations �
and �), lattices are nothing else than specific partial order relations. This suggests applying
the formal apparatus of relation algebra and tools for its mechanization to lattice-theoretical
problems, too. First examples for this approach are [7,8], where relation algebra and the
Kiel RelView tool are combined for computing and visualizing cut completions and concept
lattices. The material presented in this paper is a continuation of [7,8,33]. Having a Computer
Algebra system for computations on orders and lattices is potentially very useful, and in the
following we also want to demonstrate that RelView is especially suited to this task. The
remainder of the paper is organized as follows. First, we collect some technical preliminaries
of relation algebra and the relation-algebraic treatment of orders, extremal elements, and
Hasse-diagrams in Sects. 2 and 3. Then, we concentrate in the main part on a series of
applications in lattice theory (Sects. 4–8) and the computation of linear extensions (Sect. 9). In
doing so, we also want to illustrate the advantages of RelView when using it for visualization
purposes. Section 10 contains some concluding remarks.

2 Relational preliminaries

Given two sets X �= ∅ and Y �= ∅, we write R : X ↔Y if R is a (binary) relation with
domain X and range Y , i.e., a subset of the direct product X ×Y . If the two sets X and
Y of R’s type X ↔Y are finite and of size m and n, respectively, we may consider R as
a Boolean m ×n matrix. Since this matrix interpretation is well suited for many purposes
and also used by RelView as a possibility to visualize relations, in the following we often
use matrix terminology and notation. Especially, we speak about entries/components, rows,
and columns of a relation/matrix and write Rx,y instead of 〈x, y〉 ∈ R or x R y. We assume
the reader to be familiar with the basic operations on relations, viz. RT (transposition), R
(complement), R ∪ S (union), R ∩ S (intersection), and RS (composition), the predicate
R ⊆ S (inclusion), and the special relations O (empty relation), L (universal relation), and I
(identity relation).

For each type, the set-theoretic operations , ∪, ∩ and the constants O, L form a complete
Boolean lattice with the order given by inclusion. Further well-known laws of relations are,

e.g., RTT = R, Q(R ∩ S) ⊆ Q R ∩ QS, and (RS)T = ST RT. The theoretical framework
for such laws holding is that of a relation algebra [27,33,38]. As constants and operations of
this algebraic structure, we have those of the set-theoretic relations; its axioms are those of
a complete Boolean lattice for , ∪, ∩, ⊆, O, L, associativity of composition with identity
relations as neutral elements, the equivalence of QT S ⊆ R , Q R ⊆ S and S RT ⊆ Q
(Schröder equivalences), and the equivalence of R �= O and LRL = L (Tarski rule). In later
proofs, we shall mention only the latter two axioms and their “non-obvious” consequences
like the Dedekind rule Q R ∩ S ⊆ (Q ∩ S RT)(R ∩ QT S). Well-known laws like those
presented above or in Sects. 2.1–2.3 of [33] remain unmentioned.

By the definition syq(R, S)= RT S ∩ R
T

S the so-called symmetric quotient syq(R, S) :
Y ↔ Z of two relations R : X ↔Y and S : X ↔ Z is introduced. Many properties of this
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Solving problems on orders and lattices 213

construct can be found in [33], for example. In the present paper, we will only use that for
all y ∈ Y and z ∈ Z the equivalence of syq(R, S)y,z and ∀ x : Rx,y ↔ Sx,z holds.

Given a direct product X ×Y of two sets X and Y , the two projection functions decompose
a pair u = 〈u1, u2〉 into its first component1 u1 and its second component u2. We consider
instead of these functions the corresponding projection relations π : X×Y ↔ X and ρ :
X×Y ↔Y such that for all u ∈ X ×Y , x ∈ X , and y ∈ Y we have πu,x iff u1 = x and
ρu,y iff u2 = y. Projection relations enable us to specify the well-known pairing operation
of functional programming relation-algebraically as follows: For two relations R : Z ↔ X
and S : Z ↔Y with the same domain, we define their pairing or fork [R, S] : Z ↔ X×Y by
[R, S] = RπT ∩ SρT. Component-wisely we then have for all z ∈ Z and u ∈ X ×Y that
[R, S]z,u iff Rz,u1 and Sz,u2 .

There are some relation-algebraic possibilities to model sets. Our first modeling uses
vectors, which are relations v with v = vL. Since for a vector the range is irrelevant, we
consider in the following mostly vectors v : X ↔1 with a specific singleton set 1 = {⊥} as
range and omit in such cases the subscript ⊥, i.e., write vx instead of vx,⊥. Such a vector can
be considered as a Boolean matrix with exactly one column, i.e., as a Boolean column vector,
and represents the subset {x ∈ X | vx } of X . A non-empty vector v is a point if vvT ⊆ I, i.e.,
it is injective. This means that it represents a singleton subset of its domain or an element
from it, if we identify a singleton set {x} with the element x . In the Boolean matrix model,
hence, a point v : X ↔1 is a Boolean column vector in which exactly one entry is 1. For all
relations Q, R, S and points p, we have the equations (Q ∩ R)p = Qp∩ Rp and Rp = R p
and, furthermore, SpT ⊆ R iff S ⊆ Rp; see [33].

As a second way to model sets, we will apply the relation-level equivalents of the set-
theoretic symbol ∈, that is, membership-relations M : X ↔2X . These specific relations are
defined by demanding for all elements x ∈ X and sets Y ∈ 2X that Mx,Y iff x ∈ Y . A simple
Boolean matrix implementation of membership-relations requires an exponential number
of bits. However, in [6,26,28] an implementation of M : X ↔2X using BDDs is presented,
where the number of BDD-vertices is linear in the size of the base set X . This implementation
is part of RelView.

Finally, we will use injective functions for modeling sets. Given an injective function
ı : Y → X , we may consider Y as a subset of X by identifying it with its image under ı . If Y
is actually a subset of X and ı is given as a relation of type Y ↔ X such that ıy,x iff y = x for
all y ∈ Y and x ∈ X , then the vector ıTL : X ↔1 represents Y as a subset of X in the sense
above. Clearly, the transition in the other direction is also possible, i.e., the generation of a
relation inj(v) : Y ↔ X from the vector representation v : X ↔1 of the subset Y of X such
that for all y ∈ Y and x ∈ X we have inj(v)y,x iff y = x . A combination of such relations
with membership-relations allows a column-wise representation of sets of subsets. More
specifically, if the vector v : 2X ↔1 represents a subset S of 2X in the sense above, then for
all x ∈ X and Y ∈ S we get the equivalence of (M inj(v)T)x,Y and x ∈ Y . This means that the
elements of S are represented precisely by the columns of the relation M inj(v)T : X ↔S.

A further consequence is that ST S : S↔S is the relation-algebraic specification of set

inclusion on S, that is, for all Y, Z ∈ S we have the relationship ( ST S )Y,Z iff Y ⊆ Z .
In the standard model of relation algebra, the so-called point axiom of [33] holds. It

says that for every relation R �= O there exist points p and q such that pqT ⊆ R. As a
consequence, for each vector v �= O there exists a point p fulfilling p ⊆ v. The choice
of an atom atom(R) (i.e., a relation of the form pqT with points p and q) contained in a

1 Throughout this paper, we denote the first component of a pair u by u1 and the second component of u by
u2. We also write �u instead of u1 � u2 and �u instead of u1 � u2.
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214 R. Berghammer

relation R �= O and a point p contained in a vector v �= O are fundamental for a relational
approach to algorithms. Our demands on atom(R) are atom(R) ⊆ R and that atom(R)L and
atom(R)TL are points. As relation-algebraic axioms for point(v), we demand point(v) ⊆ v

and that point(v) is a point. Note that atom and point are (deterministic, partial) functions
in the usual mathematical sense. Each call yields the same object so that, for instance, the
equation atom(R) = atom(R) holds for all non-empty relations R. Of course, the above
axiomatizations allow different realizations. For instance, the specific implementation of
atom in RelView uses that the system deals only with finite base sets that are totally ordered
by an internal enumeration. A call atom(R) then yields the relation {〈x, y〉} that consists of
the lexicographically smallest pair 〈x, y〉 of R.

3 Order relations, extremal elements, and Hasse-diagrams

Given a relation R : X ↔ X , it is rather easy to calculate relation-algebraic specifications
of reflexivity, transitivity, and antisymmetry from the usual logical formulations of these
properties. As result we obtain that R is a partial order relation and, hence, the pair (X, R)
is an ordered set, iff the three inclusions I ⊆ R, R R ⊆ R, and R ∩ RT ⊆ I hold. Moreover,
R is a total order relation iff additionally R ∪ RT = L holds, i.e., there are no incomparable
elements. Using these relation-algebraic specifications, to be a (totally) ordered set can be
easily tested using the RelView tool.

When dealing with ordered sets, one typically investigates extremal elements. Based
upon the representation of sets as vectors, in [33] this is done using relation algebra. The
descriptions of [33] lead to the following relation-algebraic specifications; they compute
for a partial order relation R : X ↔ X and a vector v : X ↔1 vectors of type X ↔1, which
represent the set of lower bounds (least element, greatest lower bound, and minimal elements,
respectively) of the set represented by v:

lbds(R, v) = R v

lel(R, v) = v ∩ lbds(R, v)

glb(R, v) = lel(RT, lbds(R, v))

min(R, v) = v ∩ (RT ∩ I )v
(1)

Transposing the relation R immediately yields upds(R, v) = lbds(RT, v) for the set of
upper bounds, gel(R, v) = lel(RT, v) for the greatest element, lub(R, v) = glb(RT, v) for
the least upper bound, and max(R, v) = min(RT, v) for the set of maximal elements. Of
course, extremal elements may not exist. In this case the relational functions yield the empty
vector.

Geometrical representations of orders have been used and investigated by mathematicians
and computer scientists for centuries, e.g., for visualization, the discovery of new results, and
the construction of counter-examples (see, e.g., [18]). Usually, one draws the Hasse-diagram
of a partial order relation R, which is the geometrical representation of the (unique) least
relation S contained in R such that its reflexive and transitive closure S∗ = ⋃

n∈N
Sn equals

R. In [2] it is shown that every discrete (especially every finite) partial order relation possesses
such a relation (also called the Hasse-diagram)

hasse(R) = R ∩ I ∩ (R ∩ I )(R ∩ I ) (2)

that computes the Hasse-diagram of the partial order relation R.
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Solving problems on orders and lattices 215

4 From order relations to lattices

Assume R : X ↔ X to be a partial order relation. The objective of this section is to obtain
relation-algebraic specifications of the two lattice operations � and � as relations Inf (R) and
Sup(R) of type X×X ↔ X . We start with the development of Inf (R). Assume u ∈ X × X
and x ∈ X . Then, we have:

x is the greatest lower bound of u
⇔ Rx,u1 ∧ Rx,u2 ∧ ∀ y : Ry,u1 ∧ Ry,u2 → Ry,x

⇔ Rx,u1 ∧ Rx,u2 ∧ ¬∃ y : Ry,u1 ∧ Ry,u2 ∧ R y,x

⇔ [R, R]x,u ∧ ¬∃ y : [R, R]y,u ∧ R y,x

⇔ [R, R]Tu,x ∧ ¬∃ y : [R, R]Tu,y ∧ R y,x

⇔ [R, R]Tu,x ∧ ( [R, R]T R )u,x

⇔ ([R, R]T ∩ [R, R]T R )u,x

In Boolean matrix terminology, the entry of the relation [R, R]T ∩ [R, R]T R at position
u, x is 1 iff x is the greatest lower bound of the pair u and 0 otherwise. Hence, if we remove
the two subscripts u and x from the last expression of this calculation, we get the first of the
two relational functions we are looking for as follows:

Inf (R) = [R, R]T ∩ [R, R]T R (3)

The relational function Sup(R) = Inf (RT) for specifying the �-operation as relation of type
X×X ↔ X is an immediate consequence of (3).

Having obtained relation-algebraic specifications for the two lattice operations � and �,
we also are able to test relation-algebraically an ordered set (X, R) to be a lattice. We have
that

(X, R) constitutes a lattice ⇔ L = Inf (R)L and L = Sup(R)L, (4)

since the two equations on the right-hand side of (4) exactly describe that the two relations
Inf (R) : X×X ↔ X and Sup(R) : X×X ↔ X are total.

Here it should be remarked that all relation-algebraic specifications we have presented so
far and all specifications, functions, and programs we will present in the remainder of the
paper can be straightforwardly translated into the programming language of RelView. As
an example, the translation of (3) into RelView-code looks as follows:

Inf(R) = [R,R]ˆ & -([R,R]ˆ * -R)

Hence, RelView can be used for dealing with ordered sets and lattices. Animation and
visualization is also possible since RelView allows besides fully automatic executions also
step-wise executions and offers a representation of relations as directed graphs, too. In addi-
tion, sophisticated algorithms for drawing graphs nicely and some possibilities for marking
vertices and edges are available.

5 Problems concerning modularity and distributivity

We now pass from general lattices to specific classes and start with modular lattices. These are
lattices (X, R) such that for all x, y, z ∈ X the property Rx,z implies the modular equation
x � (y � z) = (x � y) � z. (Since R : X ↔ X is the partial order relation of the lattice,
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216 R. Berghammer

Rx,z corresponds to the usual notation x � z.) Various equivalent formulations to this
definition exist. For developing a relational modularity-test, we use in the following (see,
e.g., [12,14]) that a lattice (X, R) is modular iff for all x, y ∈ X the existence of z ∈ X with
x � z = y � z and x � z = y � z and Rx,y imply x = y.

Concentrating on the premise of the implication of the just mentioned universal quantifi-
cation, we can calculate as given below. In doing so, we assume that the pairπ, ρ : X×X ↔ X
denotes the projection relations on the direct product X × X as introduced in Sect. 2. Fur-
thermore, we abbreviate the relations Inf (R) and Sup(R) for the lattice operations � and �
by I and S, respectively, which yields the equivalence of �u = �v and (I I T)u,v and the
equivalence of �u = �v and (SST)u,v . Let x, y ∈ X . Then, we have:

(∃ z : x � z = y � z ∧ x � z = y � z) ∧ Rx,y

⇔ (∃ u ∃ v : u1 = x ∧ v1 = y ∧ u2 = v2 ∧ �u = �v ∧ �u = �v) ∧ Rx,y

⇔ (∃ u : u1 = x ∧ ∃ v : v1 = y ∧ u2 = v2 ∧ �u = �v ∧ �u = �v) ∧ Rx,y

⇔ (∃ u : πu,x ∧ ∃ v : πv,y ∧ (ρρT)u,v ∧ (I I T)u,v ∧ (SST)u,v) ∧ Rx,y

⇔ (∃ u : πT
x,u ∧ ∃ v : (ρρT ∩ I I T ∩ SST)u,v ∧ πv,y) ∧ Rx,y

⇔ (∃ u : πT
x,u ∧ ((ρρT ∩ I I T ∩ SST)π)u,y) ∧ Rx,y

⇔ (πT(ρρT ∩ I I T ∩ SST)π)x,y ∧ Rx,y

⇔ (πT(ρρT ∩ I I T ∩ SST)π ∩ R)x,y

Because of the last expression of this derivation and the above characterization, we get the
following relation-algebraic specification of modularity:

Lattice (X, R) is modular ⇔ πT(ρρT ∩ I I T ∩ SST)π ∩ R ⊆ I (5)

Distributive lattices form a subclass of the modular lattices. They are important in many
applications of computer science and mathematics because they can be easily associated with
set families. Originally defined by the distributive law x � (y � z) = (x � y) � (x � z) (or
x � (y � z) = (x � y)� (x � z)) to hold for all x, y, z ∈ X , we apply the following equivalent
characterization (see again [12,14]): A lattice (X, R) is distributive iff for all x, y ∈ X from
the existence of z ∈ X such that x � z = y � z and x � z = y � z it follows x = y. Compared
with the above characterization of modularity, only the relationship Rx,y is missing within
the premise. Hence, an immediate consequence of (5) is the following relation-algebraic
specification of distributivity:

Lattice (X, R) is distributive ⇔ πT(ρρT ∩ I I T ∩ SST)π ⊆ I (6)

Other popular characterizations of modular and distributive lattices are given by forbidden
substructures. Here two lattices play a decisive role, viz. the “pentagon lattice” N5, whose
Hasse-diagram is shown as the left one of the RelView-pictures of Fig. 1, and the “diamond
lattice” M3, whose Hasse-diagram is shown as the right RelView-picture of Fig. 1. It is
well known (cf. again [12,14]) that a lattice is non-modular iff it contains a sublattice that
is isomorphic to the lattice N5, and a modular lattice is non-distributive iff it contains a
sublattice that is isomorphic to the lattice M3. In the remainder of this section, we show how
relation algebra and RelView can be combined to compute for a non-modular lattice (X, R)
a sublattice that is isomorphic to N5 and to visualize its Hasse-diagram in the drawing of
(X, R). The technique we use can be applied to a modular and non-distributive lattice, too,
to compute and visualize in such a case a sublattice that is isomorphic to M3.

In what follows, we assume R : X ↔ X to be the partial order relation of a non-modular
lattice (X, R) and π, ρ : X×X ↔ X to be the projection relations as introduced in Sect. 2.
Furthermore, we let I abbreviate Inf (R) and S abbreviate Sup(R). In the first step, we consider
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Fig. 1 Hasse diagrams of N5 and M3

the relation

U = R ∪ RT (7)

of type X ↔ X and develop with its help a relation C of the same type such that the
equivalence

Cx,y ⇔ ∃ z : x � z = y � z ∧ x � z = y � z ∧ Ux,z ∧ Uy,z

holds for all elements x, y ∈ X . Due to definition (7), the relationships Ux,z and Uy,z of
this component-wise specification of C say that the two pairs 〈x, z〉, 〈y, z〉 ∈ X × X are
incomparable with respect to the partial order relation R. As a consequence, the intersection
C ∩ R ∩ I contains exactly the pairs 〈x, y〉 ∈ X × X that are elements of a sublattice of
(X, R) being isomorphic to N5, such that x corresponds to vertex 2 and y corresponds to
vertex 4 of the above RelView-picture of N5. To obtain a relation-algebraic specification
from the component-wise specification of C , we have to modify only the above development
of the expression (πT(ρρT ∩ I I T ∩ SST)π)x,y accordingly. The result is as follows:

C = πT(ρρT ∩ I I T ∩ SST ∩ πUρT ∩ ρUπT)π (8)

Since the lattice (X, R) is assumed to be non-modular, the intersection C ∩ R ∩ I is
non-empty. In the second development step, we first select an atom from C ∩ R ∩ I by
means of the operation atom of Sect. 2 and define afterwards with the atom’s help two points
p, q : X ↔1 in the following way:

p = atom(C ∩ R ∩ I )L q = atom(C ∩ R ∩ I )
T
L (9)

If the point p represents the element x ∈ X and the point q represents the element y ∈ X ,
then 〈x, y〉 is a pair from C ∩ R ∩ I . Because of the above described meaning of x and y with
respect to the lattice N5 it suffices to compute a third point, say r : X ↔1, that represents the
element z of a sublattice of (X, R) we are searching for, such that z corresponds to vertex 3
of the RelView-picture of N5. The properties z has to fulfill are Ux,z , Uy,z , x � z = y � z,
and x � z = y � z. This leads to

c = U p ∩ Uq ∩ (A ∩ I I T B)
T
L ∩ (A ∩ SST B)

T
L (10)

as the vector representation c : X ↔1 of all candidates for z, where the auxiliary relations
A, B : X×X ↔ X are defined as follows:

A := πpL ∩ ρ B := πqL ∩ ρ
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218 R. Berghammer

To verify that the vector U p : X ↔1 represents the elements of X that are incomparable to
x and the vector Uq : X ↔1 does the same for y is trivial. Here is the justification that the

vector (A ∩ I I T B)
T
L : X ↔1 represents the elements z ∈ X such that x � z = y � z:

x � z = y � z ⇔ ∃ u : u1 = x ∧ u2 = z ∧ ∃ v : v1 = y ∧ v2 = z ∧ (I I T)u,v

⇔ ∃ u : (πp)u ∧ ρu,z ∧ ∃ v : (πq)v ∧ ρv,z ∧ (I I T)u,v

⇔ ∃ u : (πpL ∩ ρ)u,z ∧ ∃ v : (I I T)u,v ∧ (πqL ∩ ρ)v,z
⇔ ∃ u : (A ∩ I I T B)

T
z,u ∧ Lu

⇔ ((A ∩ I I T B)
T
L)z

Replacing I by the relation S shows that (A ∩ SST B)
T
L : X ↔1 represents the elements

z ∈ X such that x � z = y � z. Finally, r is obtained by selecting it as a point from the vector
c of (10) using the operation point of Sect. 2:

r = point(c) (11)

The third step consists of the application of the two relational functions glb and lub of
Sect. 3, to get a further vector v : X ↔1 as follows:

v = p ∪ q ∪ r ∪ glb(R, p ∪ r) ∪ lub(R, q ∪ r) (12)

A little reflection shows that the two elements of X represented by the two points glb(R, p ∪
r) : X ↔1 and lub(R, q ∪r) : X ↔1 correspond exactly to the vertices 1 and 5, respectively,
of the lattice N5 in the RelView-picture of Fig. 1. Hence, the vector v : X ↔1 of (12)
represents the carrier set of a “pentagon sublattice” of the lattice (X, R)we are searching for.
The partial order relation of this sublattice is immediately obtained (as a subrelation of R to
facilitate a RelView-visualization via the marking of edges) as intersection R∩vvT : X ↔ X .

It is straightforward to translate the relation-algebraic specifications (7) to (12) into a Rel-
View-program that computes for the input relation R the vector v of (12). The RelView-
picture of Fig. 2 demonstrates how then the system can be used for visualization purposes.

6
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11 3 2 4

21

7513 9 8

101917 18

14

15

25

22 24 23 20

12

Fig. 2 The non-modular product lattice N5 × M3
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It shows the graphical representation of the Hasse-diagram of the direct product of the lattices
N5 and M3. The product-lattice N5 × M3 is non-modular. In the graph this fact is visualized by
the Hasse-diagram of a sublattice that is isomorphic to N5, which is emphasized by bold-face
edges and black vertices.

6 Investigating pseudo complements

The theory of Boolean algebras is an algebraic version of classical propositional logic. For
dealing with intuitionistic propositional logic, (relative) pseudo complements and Heyting
algebras (and some variants like Brouwerian lattices [12], pseudo Boolean lattices [21], and
semi-Boolean lattices [29]) have been introduced in the following sense: Given a lattice
(X, R) and x, y ∈ X , the greatest element of the set {z ∈ X | Rz�x,y} is called the relative
pseudo complement of x with respect to y and denoted by x ∗ y (or x → y). If (X, R) is a
distributive lattice with a least element ⊥ and a greatest element � and the relative pseudo
complement x ∗ y exists for all elements x, y ∈ X , then the lattice is called a Heyting algebra.
In Heyting algebras x ∗ ⊥ is defined as the pseudo complement x∗ of x .

In the following, we consider a lattice (X, R) with least element ⊥ ∈ X and greatest
element � ∈ X . Furthermore, using the two relational functions lel and gel of Sect. 3, we
define two points b, t : X ↔1 as given below, where L is an universal vector of type X ↔1:

b = lel(R,L) t = gel(R,L)

Hence, b represents the least element ⊥ and t represents the greatest element � of the lattice.
Finally, we assume π, ρ : X×X ↔ X to be the projection relations on X × X . Our goal is
to develop relation-algebraic specifications RelPcompl(R) : X×X ↔ X for relative pseudo
complements and Pcompl(R) : X ↔ X for pseudo complements, which allow to compute
and visualize these constructions using RelView and which also lead to tests for a lattice to
be a Heyting algebra or some of its variants.

We start with the relative pseudo complement and calculate a relation-algebraic speci-
fication of the partial function that maps a pair to the relative pseudo complement. Given
u ∈ X × X and c ∈ X , the component-wise specification of symmetric quotients of Sect. 2
yields

c relative pseudo complement of u1 wrt. u2 ⇔ syq(S, R)u,c,

where the auxiliary relation S : X ↔ X×X satisfies Sz,u iff Rz�u1,u2 for all u ∈ X × X and
z ∈ X . It remains to develop a relation-algebraic specification of S. To reach this goal, we
calculate for all u ∈ X × X and z ∈ X as follows:

Rz�u1,u2 ⇔ ∃ a : a = z � u1 ∧ Ra,u2

⇔ ∃ v : v1 = z ∧ v2 = u1 ∧ ∃ a : a = �v ∧ Ra,u2

⇔ ∃ v : πv,z ∧ (ρπT)v,u ∧ ∃ a : Inf (R)v,a ∧ (R ρT)a,u

⇔ ∃ v : πv,z ∧ (ρπT)v,u ∧ (Inf (R) R ρT)v,u

⇔ ∃ v : πT
z,v ∧ (ρπT ∩ Inf (R) R ρT)v,u

⇔ (πT(ρπT ∩ Inf (R) R ρT))z,u

A removal of the two subscripts u and z from the last expression of this calculation yields
the equation S = πT(ρπT ∩ Inf (R) R ρT). If we unfold this description of S in syq(S, R)u,c
and remove after that the two subscripts u and c, we get the following relation-algebraic
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Fig. 3 (Relative) pseudo complement relation of N5

specification:

RelPcompl(R) = syq(πT(ρπT ∩ Inf (R) R ρT), R) (13)

Pseudo complements are relative pseudo complements with respect to the least element
⊥. Relation-algebraically this specialization is described by the expression [I,LbT]
RelPcompl(R). To enhance efficiency, in the following we develop a specification of the
pseudo complement relation Pcompl(R) (of type X ↔ X ) that does not use a fork and the
relative pseudo complement relation. We start with the same idea as in the case of relative
pseudo complements and obtain for all c, x ∈ X that

c pseudo complement of x ⇔ syq(S, R)x,c,

where now the auxiliary relation S of type X ↔ X is component-wisely defined by demanding
for all z, x ∈ X that Sz,x iff Rz�x,⊥. Similar to the case above, we can show that the equivalence
of Rz�x,⊥ and (RT(R ∩ b L))z,x holds for all z, x ∈ X , yielding the following relational
function:

Pcompl(R) = syq(RT(R ∩ b L), R) (14)

We have translated (13) and (14) into RelView-code and then applied to the partial order
relation of the lattice N5. The results are shown in the pictures of Fig. 3. On the left, we
present the Boolean matrix of the relative pseudo complement relation of N5. For reasons
of space, it is depicted in its transposed form, i.e., with 5 rows and 25 columns. The picture
on the right shows the pseudo complement relation of N5 as Boolean 5×5 matrix. A black
square of such a RelView-matrix means that the elements are in relationship (i.e., the entry
is 1) and a white square means that they are not (i.e., the entry is 0). So, e.g., from the pictures
we see that 〈4, 2〉 is the only pair without a relative pseudo complement.

At the end of this section, we want to show that (assuming again b and t as point repre-
sentations of the least element and the greatest element of the lattice (X, R), respectively,
and π and ρ as the projection relations on X × X ) the relational function

Compl(R) = πT(ρ ∩ (Inf (R) b ∩ Sup(R) t)L)) . (15)

for the complement relation Compl(R) : X ↔ X can be calculated similar to the above spe-
cifications. Assuming an arbitrarily chosen pair u ∈ X × X , we have the following property:

u1 � u2 = ⊥ ∧ u1 � u2 = �
⇔ (∃ x : Inf (R)u,x ∧ bx ) ∧ (∃ x : Sup(R)u,x ∧ tx )

⇔ (Inf (R) b)u ∧ (Sup(R) t)u

⇔ (Inf (R) b ∩ Sup(R) t)u

Hence, the vector Inf (R) b ∩ Sup(R) t : X×X ↔1 represents the set of pairs 〈u1, u2〉 such
that u2 is the complement of u1, i.e., it represents the complement relation {〈x . x 〉 | x ∈ X}
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as subset of X × X . The specification (15) now immediately is obtained by transforming
the vector into the corresponding relation of type X ↔ X following the construction of [33],
page 164.

7 Computing and comparing completions

Embeddings into complete lattices play an important role in order and lattice theory and have
a lot of applications. In this section, we show how such “completions” can be computed and
visualized by combining relation algebra and the RelView tool.

Let us start with completion of ordered sets via cuts. We assume for the following (X, R)
to be an ordered set. Then a subset Y of X is called a cut of (X, R) if it coincides with the
lower bounds of its upper bounds. It is well known (see, e.g., [12,14]) that the set CR of all
cuts of (X, R) together with set inclusion constitutes a complete lattice (CR,⊆), called the
(Dedekind–McNeille) cut completion of (X, R) since it contains a suborder that is order-
isomorphic to (X, R). This suborder is given by the the set of all principal cuts [x] = {y ∈
X | Ry,x }, where x ∈ X . The isomorphism is established via

σ : X → CR σ(x) = [x], (16)

as this function is an order-embedding of (X, R) into (CR,⊆), i.e., satisfies Rx,y iff σ(x) ⊆
σ(y) for all elements x, y ∈ X .

Using the two relational operations syq and inj of Sect. 2 and the membership-relation
M : X ↔2X , in [7] the following three relational functions for computing the cut completion
of (X, R) are developed from formal predicate logic specifications:

CutList(R)= M inj((syq(M, lbds(R, upds(R,M))) ∩ I)L)T

CutLat(R)= CutList(R)T CutList(R)

Sigma(R)= syq(R,CutList(R))

(17)

The columns of the relation CutList(R) : X ↔CR represent the subset CR of 2X as explained
in Sect. 2, the relation CutLat(R) : CR ↔CR is the relation-algebraic description of the set
inclusion on CR (see again Sect. 2), and the relation Sigma(R) : X ↔CR specifies the order-
embedding (16) relation-algebraically, that is, for all elements x ∈ X and cuts Y ∈ CR we
have Sigma(R)x,Y iff σ(x) = Y .

It is straightforward to translate the relational functions of (17) into the programming
language of RelView. This allows to compute and visualize cut completions by means of
the system. We demonstrate this in the following, using a small example. To start, consider
an ordered set, the graphical representation of which in RelView looks as given in Fig. 4.

Fig. 4 An ordered set with six
elements

4 5 6

321
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Fig. 5 An order as part of the cut completion

The RelView-picture of Fig. 5 shows the cut completion of this ordered set as a directed
graph and emphasizes the completion’s Hasse-diagram as bold-face edges. Furthermore, it
visualizes the embedding of the ordered set of Fig. 4 into the cut completion by drawing the
elements of the suborder that is order-isomorphic to it as black vertices and the Hasse-diagram
of the suborder as dotted bold-face edges.

It is also well known since a long time that the cut completion (CR,⊆) of an ordered set
(X, R) is in a certain sense the least complete lattice containing a suborder that is order-
isomorphic to (X, R). Formally, this is expressed by the following fact (see, e.g., [35] for
a proof): if the ordered set (X, R) is order-isomorphic to a suborder of a complete lattice
(V, Q) via the order-embedding φ : X → V , then also (CR,⊆) is order-isomorphic to a
suborder of (V, Q) via the order-embedding

ψ : CR → V ψ(Y ) =
⊔

{φ(x) | x ∈ Y } (18)

and, furthermore, the equation φ(x) = ψ(σ(x)) holds for all x ∈ X . The latter means that φ
equals the composition of ψ after σ .

As continuation of the work of [7], in the following we show how to calculate a relation-
algebraic specification of the order-embedding (18) as a relation of type CR ↔ V and how
afterwards to apply it in the context of another well-known completion procedure. In doing
so, we abbreviate the column-wise representation CutList(R) of the set CR of all cuts of
(X, R) as C and assume the function φ : X → V to be given as a relation Φ : X ↔ V . The
latter means that we assume the equivalence of φ(x) = z and Φx,z for all x ∈ X and z ∈ V .
Then, for all Y ∈ CR and z ∈ V we are able to compute as follows, where the equivalence
of y ∈ Y and Cy,Y (which we use in the fourth step) follows from the fact that C : X ↔CR
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represents the set CR column-wisely:

ψ(Y ) = z

⇔
⊔

{φ(x) | x ∈ Y } = z

⇔ (∀ y : y ∈ Y → Qφ(y),z) ∧ (∀ x : (∀ y : y ∈ Y → Qφ(y),x ) → Qz,x )

⇔ (¬∃ y : y ∈ Y ∧ ¬Qφ(y),z) ∧ (∀ x : (¬∃ y : y ∈ Y ∧ ¬Qφ(y),x ) → Qz,x )

⇔ (¬∃ y : Cy,Y ∧ ΦQ y,z) ∧ (∀ x : (¬∃ y : Cy,Y ∧ ΦQ y,x ) → Qz,x )

⇔ CT ΦQ Y,z ∧ (∀ x : CT ΦQ Y,x → Qz,x )

⇔ CT ΦQ Y,z ∧ (¬∃ x : CT ΦQ Y,x ∧ Q
T
x,z)

⇔ (CT ΦQ )Y,z ∧ ( CT ΦQ Q
T
)Y,z

⇔ (CT ΦQ ∩ CT ΦQ Q
T
)Y,z

Removing the subscripts Y and z from the last expression of the above calculation and
replacing the abbreviation C by the function call CutList(R), we arrive at the following
relational function for computing the order-embedding ψ : CR → V of (18):

Psi(R, Φ, Q) = CutList(R)T ΦQ ∩ CutList(R)T ΦQ Q
T

(19)

To demonstrate an application of (19), we now consider a further completion procedure
for embedding an ordered set (X, R) into a complete lattice. As carrier set of the complete
lattice we take the set IR of all order ideals (also called downsets; cf. [14]) of (X, R), i.e., all
subsets I of X such that for all x ∈ I and y ∈ X from Ry,x it follows y ∈ I . Like cuts, order
ideals are ordered by set inclusion. The complete lattice (IR,⊆) is called the (order) ideal
completion (or downset completion) of (X, R). Again a suborder that is order-isomorphic to
(X, R) is given by the set of principal cuts—in this context called principal ideals—and the
isomorphism is established via φ : X → IR , where φ(x) = {y ∈ X | Ry,x }.

It is not hard to calculate a vector representation of the subset IR of 2X . Assuming an
arbitrarily chosen set I ∈ 2X and M : X ↔2X as membership-relation, we have the following
equivalence:

∀ x, y : x ∈ I ∧ Ry,x → y ∈ I ⇔ ∀ x : x ∈ I → ¬∃ y : Ry,x ∧ y �∈ I

⇔ ∀ x : Mx,I → M
T

R I,x

⇔ ¬∃ x : MT
I,x ∧ (M

T
R)I,x

⇔ (MT ∩ M
T

R)L I

Because of the last expression of this calculation, the vector (MT ∩ M
T

R)L of type 2X ↔1
represents the set IR of all order ideals of the ordered set (X, R). The following relational
functions for the column-wise representation of the set IR , the inclusion order on IR , and
the order-embedding φ from X to IR are immediate consequences of this fact:

IdealList(R)= M inj( (MT ∩ M
T

R)L )
T

IdealLat(R)= IdealList(R)T IdealList(R)

Phi(R)= syq(R, IdealList(R))

(20)

Translating (20) into RelView-code, we have computed the ideal completion of the or-
dered set of Fig. 4 and have compared it with the cut completion (shown in Fig. 5). The
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Fig. 6 A cut completion as part of the ideal completion

marked directed graph of Fig. 6 visualizes the containedness of the cut completion in the
ideal completion. To obtain this picture, in a first step we have computed the Hasse-diagrams
HI of the ideal completion of the original 6-element ordered set as well as the Hasse-diagrams
HC of its cut completion. Then, we have adapted the type of HC to the type of HI . In Boolean
matrix terminology this means that we have translated the 10×10 matrix HC into a 17×17
matrix H̃C by adding empty rows and columns (i.e., with 0 as entries only) for all elements of
the ideal completion not being contained in the cut completion. This easily is possible using
the relation-algebraic specification (19) of the order embedding ψ , since H̃C = Ψ T HCΨ
with Ψ being the relation corresponding to ψ . In the third step, we have joined HI and
H̃C . Finally, we have drawn this union as a directed graph and marked in the graph the arcs
corresponding to the pairs of H̃C by boldface arcs and the elements represented by the vector
Ψ TL as black vertices.

8 Modeling groups and determining subgroup lattices

Let (G, ·,−1, 1) be a group, SG be the set of all subgroups of G, and NG be the set of all
normal subgroups of G, Then the ordered sets (SG ,⊆) and (NG ,⊆) constitute two lattices,
called the lattice of subgroups, respectively, the lattice of normal subgroups of G. In these
lattices Y �Z corresponds to the intersection Y ∩Z and Y �Z to the least (normal) subgroup of
G containing Y ∪Z . The latter construction usually is denoted by 〈Y ∪Z〉. In the case of normal
subgroups Y and Z it can be simplified to the complex product Y Z = {yz | y ∈ Y, z ∈ Z}
of Y and Z .

Lattices of subgroups and of normal subgroups are powerful tools in group theory. This is
mainly due to the fact that many group-theoretical properties are determined by these lattices
and vice versa. As a well-known example, we mention a theorem of O. Ore (see [31]) saying
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that a group G is locally cyclic (i.e., every finitely generated subgroup is cyclic) iff the lattice
of subgroups of G is distributive. A lot of further results in this vein can be found in the
monograph [34].

In this section, we show how relation algebra and the RelView tool can be used to compute
and visualize lattices of subgroups and of normal subgroups, respectively. In what follows,
we assume a group (G, ·,−1, 1) that is modeled by a multiplication relation R : G×G ↔ G
for the binary group operation · : G × G → G, an inversion relation I : G ↔ G for the unary
group operation −1 : G → G, and a neutral point n : G ↔1 for the neutral element 1 of G,
i.e., demand for all u ∈ G × G and x, y ∈ G the equivalences

Ru,x ⇔ u1u2 = x Ix,y ⇔ x−1 = y nx ⇔ x = 1

to be valid. (As usual in mathematics, we write u1u2 instead of u1 · u2.) Note that the
multiplication relation R can be used on its own to model the group G, because the neutral
point n relation-algebraically can be specified as

n = ρT (π ∩ R)L (21)

and, based on it, the inversion relation becomes

I = πT(ρ ∩ RnL), (22)

where π, ρ : G×G ↔ G are the projection relations on G × G. We prove only the first
property (21) and calculate for all x ∈ G as follows:

ρT (π ∩ R)L x ⇔ ¬∃ u : ρT
x,u ∧ (π ∩ R)L u

⇔ ∀ u : ρu,x → ((π ∩ R)L)u
⇔ ∀ u : u2 = x → ∃ y : πu,y ∧ Ru,y ∧ Ly

⇔ ∀ u : u2 = x → ∃ y : u1 = y ∧ Ru,y

⇔ ∀ u : u2 = x → u1u2 = u1

Hence, ρT (π ∩ R)L x iff x is the neutral element of G, and the decided specification follows.
A proof of (22) is left to the reader.

As a small example, we consider the well-known Kleinian group V4. Its carrier set consists
of four elements e, a, b, c and the group structure is completely determined by demanding
that e is the neutral element and that aa = bb = e (see [25] for example). The three
pictures of Fig. 7 show the multiplication relation and inversion relation of V4 as depicted by
RelView as Boolean matrices and the point for the neutral element e as depicted by RelView
as a Boolean vector. For reasons of space, the multiplication relation is shown in transposed
form.

Now, suppose G to be a finite group and Y ∈ 2G to be arbitrarily chosen. Then the set
Y is closed with respect to both group operations iff it is closed with respect to the binary
group operation only. This well-known characterization of subgroups of finite groups is the

Fig. 7 Relational model of the Kleinian group V4
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starting point of the following calculation, where M : G ↔2G is a membership-relation,
π, ρ : G×G ↔ G are the two projection relations on G × G, and two universal vectors of
different type are used (in the last expression the L of MTL has domains 2X and the L inside
the negation has domains X × X ):

Y is a subgroup
⇔ Y �= ∅ ∧ ∀ u : u1 ∈ Y ∧ u2 ∈ Y → u1u2 ∈ Y
⇔ (∃ x : x ∈ Y ) ∧ ∀ u : u1 ∈ Y ∧ u2 ∈ Y → ∃ z : u1u2 = z ∧ z ∈ Y
⇔ (∃ x : x ∈ Y ) ∧ ∀ u : u1 ∈ Y ∧ u2 ∈ Y → ∃ z : Ru,z ∧ z ∈ Y
⇔ (∃ x : Mx,Y ∧ Lx ) ∧ ∀ u : (πM)u,Y ∧ (ρM)u,Y → ∃ z : Ru,z ∧ Mz,Y

⇔ (MTL)Y ∧ ∀ u : (πM)u,Y ∧ (ρM)u,Y → (RM)u,Y
⇔ (MTL)Y ∧ ¬∃ u : (πM)u,Y ∧ (ρM)u,Y ∧ RM u,Y

⇔ (MTL)Y ∧ ¬∃ u : (πM ∩ ρM ∩ RM )
T
Y,u ∧ Lu

⇔ (MTL ∩ (πM ∩ ρM ∩ RM )
T
L )Y

If we remove the subscript Y from the last expression of this calculation and apply after
that some well-known relation-algebraic laws to transpose2 only a “row vector” instead
of relations of types G ↔2G and G×G ↔2G , respectively, we get the following relation-
algebraic specification (23) of the vector SgVect(R) : 2G ↔1 representing SG as subset of
the powerset 2G :

SgVect(R) = (LTM ∩ LT(πM ∩ ρM ∩ RM ) )
T

(23)

At this place it should be mentioned that in regard to computability by a tool like RelView
the restriction |G| < ∞ is irrelevant. Its only reason is to simplify the above calculation and
to arrive at a more efficient solution.

To obtain a solution for the set NG , we additionally demand Y ∈ SG and calculate as
follows:

Y is a normal subgroup
⇔ ∀ u : u2 ∈ Y → u1u2u−1

1 ∈ Y
⇔ ∀ u : (ρM)u,Y → ∃ v : u1u2 = v1 ∧ u−1

1 = v2 ∧ v1v2 ∈ Y
⇔ ∀ u : (ρM)u,Y → ∃ v : Ru,v1 ∧ (π I )u,v2 ∧ v1v2 ∈ Y
⇔ ∀ u : (ρM)u,Y → ∃ v : Ru,v1 ∧ (π I )u,v2 ∧ ∃ z : v1v2 = z ∧ z ∈ Y
⇔ ∀ u : (ρM)u,Y → ∃ v : Ru,v1 ∧ (π I )u,v2 ∧ ∃ z : Rv,z ∧ Mz,Y

⇔ ∀ u : (ρM)u,Y → ∃ v : [R, π I ]u,v ∧ (RM)v,Y
⇔ ∀ u : (ρM)u,Y → ([R, π I ]RM)u,Y
⇔ ¬∃ u : (ρM)TY,u ∧ [R, π I ]RM

T
Y,u

⇔ ¬∃ u : (ρM ∩ [R, π I ]RM )
T
Y,u ∧ Lu

⇔ (ρM ∩ [R, π I ]RM )
T
L Y .

A removal of the subscript Y from the last expression of this calculation followed by again
some simple transformations to improve efficiency in view of an implementation of relations
via BDDs, and an intersection of the result with the vector representation (23) of the set SG

leads to the following vector representation NsgVect(R, I ) : 2G ↔1 of the set NG :

NsgVect(R, I ) = SgVect(R) ∩ LT(ρM ∩ [R, π I ]RM )
T

(24)

2 Using a BDD-implemention of relations, transposition of a relation with domain or range 1 only means to
exchange domain and range; the BDD remains unchanged. See [28] for details.
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Fig. 8 Enumeration of subgroups and subgroup lattice of A4

From (23) and (24) column-wise enumerations of the two sets SG and NG by two
relations of type G ↔SG and G ↔NG , respectively, and relation-algebraic specifications of
set inclusion on SG and on NG (i.e., the partial order relations of the corresponding lattices)
immediately are obtained as in the case of cut completion and ideal completion.

Let us consider an example. More than 100 years ago Dedekind proved in [15] that lattices
of normal subgroups are modular. But lattices of general subgroups need not be modular.
This is e.g., shown in [21] using the lattice of subgroups of the alternating group A4 of the 12
even permutations on the set {1, 2, 3, 4} given in the well-known cycle-notation the following
table, where group multiplication means composition of functions:

p1 = () p2 = (1 2)(3 4) p3 = (1 3)(2 4) p4 = (1 4)(2 3)
p5 = (1 2 3) p6 = (1 3 2) p7 = (1 2 4) p8 = (1 4 2)
p9 = (1 3 4) p10 = (1 4 3) p11 = (2 3 4) p12 = (2 4 3)

We verified this example with the aid of RelView. In doing so, we started with the multipli-
cation tables of A4 and transformed it into the relational model of A4 using a small program
in a conventional programming language. We loaded the relations of this model (which are
too large to present here) from an ASCII-file into RelView and computed the subgroups of
A4 and the partial order relation of the subgroup lattice using the programs resulting from
the above specifications.

Figure 8 shows the results of these computations. The Boolean matrix on the left-hand
side column-wisely enumerates the 10 subgroups of the alternating group A4, where row
i corresponds to permutation pi of the above table. So e.g., the first column describes the
smallest subgroup {p1} of (SA4 ,⊆). The directed graph on the right-hand side depicts the
inclusion order on SA4 by means of the Hasse diagram. Additionally we have labeled three
columns of the enumeration matrix, where the labels indicate the permutations forming the
respective subgroup, have drawn the corresponding nodes of the graph as black circles, and
have emphasized the subgraph generated by the black nodes and the nodes 1 (corresponding
to {p1}) and 10 (corresponding to A4) by boldface arrows. From the relationships drawn as
boldface arrows, we immediately see that the subgraph lattice of A4 contains a pentagon
sublattice. Hence, it is not modular.
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9 Computing linear extensions

Almost all relation-algebraic specifications we have developed so far are non-recursive
functions in the usual mathematical sense. However, the solutions of many problems require
more sophisticated algorithmic principles than non-recursive functions provide. Therefore, as
already mentioned in the introduction, besides relational functions the language of RelView
allows to formulate relational programs, with all basic constructs of while-programs over
the datatype of relations. This conceptual simplicity is very suitable for formal development
and verification by intertwining relation-algebraic calculations with well-known techniques
from computer science. Graph-theoretic applications can be found, e.g., in [3–5]. In the fol-
lowing, we demonstrate this approach by means of an order-theoretic problem. We combine
relation algebra with a problem specification via a pre- and postcondition pair and the well-
known invariant technique (see [16,20] for example) to develop two relational programs for
computing linear extensions.

As input of the programs, we suppose a partial order relation R : X ↔ X on a finite set X .
Hence, the precondition pre(R) of both programs consists of the following three formulae:

I ⊆ R R R ⊆ R R ∩ RT ⊆ I (25)

The result of both programs is a linear extension of R; a total order relation that contains R.
If we use in both cases S as variable for storing the result, then in terms of relation algebra
the postcondition post(R, S) of both programs we will develop is specified by the following
five formulae:

R ⊆ S I ⊆ S SS ⊆ S S ∩ ST ⊆ I S ∪ ST = L (26)

Our first relational program is based on an idea from [37]. In this paper Szpilrajn proves that
every partial order relation possesses a linear extension. This theorem follows from Zorn’s
lemma and the fact that, given a partial order relation and an incomparable pair 〈a, b〉, there
exists an extension of the order relation that contains the pair. Using set-theoretic notation,
the extension consists of all pairs 〈x, y〉 such that 〈x, y〉 is contained in the original order or
both pairs 〈x, a〉 and 〈b, y〉 are contained in the original order. How to describe the extension
of the original order with relation-algebraic means is expressed by the body of the while-loop
of the following program:

S = R;
while S ∪ ST �= L do

A = atom( S ∪ ST );
S = S ∪ S AS od

(27)

To show correctness of (27) w.r.t. the precondition (25) and the postcondition (26), we
use the first four formulae of (26) as loop invariant inv(R, S). Then the formulae of the loop
invariant together with the exit-condition S∪ ST = L of the loop constitute the postcondition.
Since A ⊆ S ∪ ST ⊆ S and A = IAI ⊆ S ∪ S AS imply that S is strictly enlarged by each
loop iteration, from the loop invariant and the finiteness of X we obtain that the program
terminates.

Hence, it remains to verify that the loop invariant is established by the initialization and
maintained by the body of the loop. The proof obligation inv(R, R) of the initialization
S = R coincides with the precondition. To show maintenance of the loop invariant, we
assume inv(R, S) and S ∪ ST �= L and prove the four formulae of inv(R, S ∪ S AS) one after
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another, where we use A = atom( S ∪ ST ). The inclusion

R ⊆ S ∪ S AS

follows from R ⊆ S. Reflexivity

I ⊆ S ∪ S AS

is a consequence of I ⊆ S. The third formula, transitivity of S ∪ S AS, is shown by the
calculation

(S ∪ S AS)(S ∪ S AS)
= SS ∪ SS AS ∪ S ASS ∪ S ASS AS
⊆ S ∪ S AS ∪ S AS ∪ S ALAS SS ⊆ S
⊆ S ∪ S AS ALA = A,

where the equation ALA = A used in the last step is verified by

ALA ⊆ LA ∩ AL
⊆ (L ∩ ALAT)(A ∩ LAL) Dedekind
⊆ A ALAT = AL(AL)T ⊆ I (AL point)
⊆ LA ∩ AL
⊆ (L ∩ ALAT)(A ∩ LAL) Dedekind
⊆ ALA.

To prove antisymmetry of the relation S ∪ S AS, i.e., the fourth formula of inv(R, S ∪ S AS),
we start with the equation

(S ∪ S AS) ∩ (S ∪ S AS)T

= (S ∪ S AS) ∩ (ST ∪ ST AT ST)

= (S ∩ ST) ∪ (S ∩ ST AT ST) ∪ (S AS ∩ ST) ∪ (S AS ∩ ST AT ST).

Because of the antisymmetry of the relation S, we are done if the second, third, and fourth
expression of the last expression of this equality are empty. Emptiness of S ∩ ST AT ST is
shown by the calculation

ST AT ST ⊆ ST S ST A ⊆ S ∪ ST ⊆ ST

⊆ S ST Schröder, SS ⊆ S
⊆ S Schröder, SS ⊆ S

and emptiness of S AS ∩ ST follows from this result due to the equality S AS ∩ ST =
(S ∩ ST AT ST)

T = O. The last case is slightly more complicated. Here we calculate

S AS ∩ ST AT ST

⊆ (S ∩ ST AT ST ST AT)(AS ∩ ST ST AT ST) Dedekind
⊆ (S AS AS AS)T SS ⊆ S
= O AS A = O.
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where the property AS A = O used in the last step follows from A ⊆ ST in combination
with the already shown equation ALA = A. Here is the proof:

A ⊆ ST

⇔ ALA ⊆ ST ALA = A
⇔ ATL(AL)T = ATLAT ⊆ S
⇔ ATL ⊆ S AL = S AL AL point (see Sect. 2)
⇒ ATL ⊆ S A
⇔ AS A ⊆ O Schröder

This ends the formal verification that the relational program (27) is correct wrt. precondition
(25) and postcondition (26).

Computer scientists frequently refer to linear extensions as topological sortings. An effi-
cient algorithm for this task goes back to Kahn [23]. The basic idea is to start with a minimal
element x1 of the given set X . Next, one chooses a minimal element x2 of the set X \ {x1}.
Continuing until the set becomes empty leads to an enumeration x1, x2, . . . , xn of X , where
n = |X |. Finally, the total order relation one is looking for is the reflexive and transitive
closure of {〈xi , xi+1〉 | 1 ≤ i ≤ n − 1}. A relational version of this procedure that avoids the
intermediate list and directly computes the result S with the help of the relational function
min of (1) and an auxilioary vector v looks as follows:

S = I;
v = O;
while v �= L do

p = point(min(R, v ));
S = S ∪ vpT;
v = v ∪ p od

(28)

To show correctness of (28) w.r.t. the precondition (25) and the postcondition (26), we
generalize the postcondition to a loop invariant inv(R, S, v) by choosing the following for-
mulae:

R ∩ vvT ⊆ S
S ∩ ST ⊆ I

I ⊆ S
S ∪ ST = vvT ∪ I

SS ⊆ S
Rv ⊆ v

(29)

In terms of the above basic idea the vector v represents the set of elements that have already
been inserted into the list. Based on this interpretation, the inclusion R ∩vvT ⊆ S says that S
is an extension of the suborder generated by the elements of the list. We leave the translation
of S ∪ ST = vvT ∪ I and Rv ⊆ v into “usual” terminology to the reader.

As in the case of the relational program (27) it is rather trivial to verify that the initialization
of S and v establishes the loop invariant (29) and that the loop invariant in combination with
the exit condition v = L of the loop implies the postcondition (26). The definedness of
the choice-expression of the body of the loop as well as the termination of the loop follow
from the finiteness of the set. X3 To verify the remaining proof obligation, i.e., that the
loop invariant is maintained by the body of the loop, we assume inv(R, S, v), v �= L, and
p = point(min(R, v )).

3 Since the carrier set X is finite, the relation RT ∩ I is progressively finite in the sense of [33]. The latter
property means thatw ⊆ (RT ∩ I )w impliesw = O for all vectorsw. Now, contraposition, the choicew := v,
and (1) show that v �= O implies min(R, v ) �= O.
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To prove inv(R, S ∪ vpT, v ∪ p), we need two preparatory properties. First, we have the
inclusion

Sv ⊆ (S ∪ ST)v = (vvT ∪ I)v = vvTv ∪ v = v

due to vvTv ⊆ vL = v. The second property is

ST p ⊆ (S ∪ ST)p = (vvT ∪ I)p = vvT p ∪ p ⊆ vvT v ∪ p = p.

This calculation uses p ⊆ min(R, v ) ⊆ v and the Schröder equivalences to obtainvT v ⊆ O
from vL ⊆ v. Inclusion Sv ⊆ v says that the set represented by the vector v is downwards-
closed w.r.t. S, and inclusion ST p ⊆ p (that actually is an equality due to p = Ip ⊆ ST p)
says that the element represented by p is its only upper bound w.r.t. S.

Here is the verification of the first formula of inv(R, S ∪ vpT, v ∪ p), where the equation
used in the last step follows from the Dedekind rule and the inclusion Rv ⊆ v ⊆ p of (29)
by pvT ∩ R ⊆ (p ∩ Rv)(vT ∩ pT R) = O:

R ∩ (v ∪ p)(v ∪ p)T

= R ∩ (vvT ∪ vpT ∪ pvT ∪ ppT)

= (R ∩ vvT) ∪ (R ∩ vpT) ∪ (R ∩ pvT) ∪ (R ∩ ppT)

⊆ (R ∩ vvT) ∪ vpT ∪ (R ∩ pvT) ∪ I p point
⊆ S ∪ vpT ∪ (R ∩ pvT) ∪ I R ∩ vvT ⊆ S
= S ∪ vpT ∪ (R ∩ pvT) I ⊆ S
= S ∪ vpT R ∩ pvT = O

Next, we show that S ∪ vpT is a partial order relation. Reflexivity of this relation follows
from I ⊆ S. To shown its transitivity, we calculate:

(S ∪ vpT)(S ∪ vpT)

= SS ∪ SvpT ∪ vpT S ∪ vpTvpT

⊆ S ∪ vpT ∪ vpT S ∪ vpTvpT SS ⊆ S, Sv ⊆ v

⊆ S ∪ vpT ∪ vpTvpT pT S = (ST p)
T ⊆ pT

⊆ S ∪ vpT vpTvpT ⊆ vLpT = vpT

The still missing proof of antisymmetry of S ∪ vpT starts with the following inclusion:

(S ∪ vpT) ∩ (S ∪ vpT)
T

= (S ∩ ST) ∪ (S ∩ pvT) ∪ (S ∩ pvT)
T ∪ (vpT ∩ pvT)

⊆ I ∪ (S ∩ pvT) ∪ (S ∩ pvT)
T ∪ (vpT ∩ pvT) S ∪ ST ⊆ I

Since pvT ∩ S ⊆ (p ∩ Sv)(vT ∩ pT S) = O due to the Dedekind rule and Sv ⊆ v ⊆ p and
in a very similar way the inclusion vpT ∩ pvT ⊆ I follows from the Dedekind rule and the
point property of p, the desired antisymmetry of S ∪ vpT holds. A verification of the next
formula of inv(R, S ∪ vpT, v ∪ p) is rather straightforward:

(S ∪ vpT) ∪ (S ∪ vpT)
T

= S ∪ ST ∪ vpT ∪ pvT

= vvT ∪ I ∪ vpT ∪ pvT S ∪ ST = vvT ∪ I
= vvT ∪ vpT ∪ pvT ∪ ppT ∪ I p point
= (v ∪ p)(v ∪ p)T ∪ I
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Fig. 9 A RelView program for
computing linear extensions

Certainly mindful readers have noticed that until now we have used only that the point p is
contained in v . And, interestingly, the property Rp ⊆ v∪ p used in the last step of the proof

R(v ∪ p) = Rv ∪ Rp
⊆ v ∪ Rp Rv ⊆ v

⊆ v ∪ p Rp ⊆ v ∪ p

of the last formula of inv(R, S ∪ vpT, v ∪ p) is the only place where it is required that p
represents a minimal element. From this we namely obtain the auxiliary inclusion of the
proof as follows:

p ⊆ min(R, v ) ⇒ p ⊆ (RT ∩ I ) v
⇔ (RT ∩ I ) v ⊆ p
⇔ (R ∩ I )p ⊆ v Schröder
⇔ Rp ∩ I p ⊆ v p point (see Sect. 2)
⇔ Rp ∩ p ⊆ v p point (see Sect. 2)
⇔ Rp ⊆ v ∪ p

To give an impression how relational programs look in the programming language of the
RelView system, the RelView-version of (27) is shown in Fig. 9. In this RelView-code the
predefined operation eq tests the equality of relations of the same type and the predefined
operation L computes for a given relation a universal relation of the same type.

Besides computing a single linear extension of a partial order relation it is also of great
interest to generate all linear extensions. For example, a lot of scheduling problems with
precedence constraints can be solved by first generating all linear extensions of the given
precedence order and then picking a best extension. Knowing all linear extensions is also
very important for the investigation and management of distributed systems, since such a
system is essentially an ordered set (E,→) of events e ∈ E , where → denotes Lamport’s
happened-before relation (see [24]). Obviously, every run of the system corresponds to a
linear extension of the partial order relation →. In the remainder of this section, we sketch
how relation algebra and RelView can be combined to generate all linear extensions.

Our approach for obtaining all linear extensions is based on a result of Bonnet and Pouzet
(published in [13]) that bijectively links the set of linear extensions of a partial order relation
R : X ↔ X with the set of maximal chains of the lattice (IR,⊆) of order ideals. More
precisely, if S : X ↔ X is a linear extension of R, then the set IS of order ideals of (X, S) is
a maximal chain of the lattice (IR,⊆). On the other hand, if C ⊆ IR is a maximal chain of
(IR,⊆), then there exists a unique linear extension S : X ↔ X of R such that C = IS .

In what follows, we assume (X, R) to be a finite ordered set and n to be the cardinality of
the set X . Then the vector MaxchainVect(IdealLat(R)) is of type 2IR ↔1 and represents the
set MR of maximal chains of the ideal completion (IR,⊆) of (X, R), where the relational
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function4

Maxchain Vect(Q) = gel(S, (LTM)
T ∩ LT(M ∩ Q ∪ QT M)

T
) (30)

computes for a partial order relation Q : Y ↔Y the vector representation of the set of
maximum chains of the ordered set (Y, Q). Using the membership-relation M : Y ↔2Y , the
development of the vector representation

(LTM)
T ∩ LT(M ∩ Q ∪ QT M)

T
: 2Y ↔1

of the set of chains of (Y, Q) from a formal predicate logic specification of chains is left to
the reader. That then MaxchainVect(IdealLat(R)) represents the maximal chains of (IR,⊆)
is due to the fact that each maximal chain C in (IR,⊆) can be written as ascending sequence

∅ ⊂ {x1} ⊂ {x1, x2} ⊂ . . . ⊂ {x1, x2, . . . , xn}
of maximum length n + 1 that leads from the least element ∅ to the greatest element X of
the ideal completion (IR,⊆). The linear extension S : X ↔ X of the partial order relation R
corresponding to the chain C is given as the reflexive and transitive closure of the relation

{〈xi , xi+1〉 | 1 ≤ i ≤ n − 1}.
It is an easy exercise to compute this relation (and, hence, also S) from the relation R, the
vector representation c : IR ↔1 of the chain C , and the partial order relation of the ideal
completion by means of a small RelView-program. Hence, all linear extensions of R can
be generated by calling this program for all compositions Mp as c, where p ranges over all
points contained in the vector MaxchainVect(IdealLat(R)) and M is the membership-relation
of type IR ↔2IR .

10 Conclusion

We have used relation algebra and the specific purpose Computer Algebra system RelView
for solving order- and lattice-theoretic problems and for visualizing their solutions. We have
demonstrated this fruitful combination by means of some small examples. Space restrictions
did not allow to represent larger and more impressive examples for RelView’s computational
power and visualization possibilities, like Dilworth chain partitions (based upon a maximum
bipartite matching RelView-program), the more efficient computation of cut completions
and ideal completions as sequences of vectors generated by union or intersection from a given
basis (inspired by [30]), the construction of more specific lattices (e.g., lattices of maximum
antichains and lattices obtained by doublings), the computation of concept lattices and the
clarification of incidence relations in Formal Concept Analysis (see [19]), and the compu-
tation or approximation of free lattices from partial order relations on the set of generators
(guided by the algorithms presented in [17]). To give at least an impression of the potential of
RelView regarding the visualization of such advanced applications, Fig. 10 shows the Dil-
worth chain partition of a 32-element Boolean lattice. The black vertices of this Hasse-
diagram depict a maximum antichain of size

(5
3

) = 10 (cf. Sperner’s theorem [36]) and the
boldface arcs represent the 10 chains of the chain partition.

4 Here S is the so-called size-comparison-relation that relates two sets Y and Z iff |Y | ≤ |Z |. For S : 2X ↔2X

an BDD-implementation has been developed in [28] which exactly uses 2 + |X |(|X | + 1) BDD-vertices. This
implementation is part of RelView.
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1

3 5 92

4 6 10 1913117

17

18 2521

16 24 28 30 31

32

12 14 20 22 15 26 23 27 298

Fig. 10 A Dilworth chain partition

Of course, in spite of the fact that the system implements relations very efficiently with
the help of BDDs, frequently RelView-programs cannot compete with special programs
tailored for problems of the kind we have considered in the main part of the paper or just
have mentioned (cf. e.g., the times of [22] for computing all normal subgroups of some
large groups or the times of [32] for generating all linear extensions of fency orders or grid
orders)—although in the case of NP-hard problems or problems with a result set of potentially
exponential size (like the set of all cuts, all order ideals, all linear extensions, and all extremal
chains/antichains) the complexities are usually the same. Nevertheless, a lot of experiments
have shown that precisely the computation of huge result sets via membership- and size-
comparison-relations is a strength of RelView. To give an impression of the potential of
the system and the positive effects of the BDD-implementation of relations in this respect,
we mention that (on a Sun-Fire 880 workstation running the Solaris 9 operating system at
750 MHz) the system required 0.05 s to filter out from the 4,096 subsets of the alternating
group A4 the 10 subsets that form subgroups and to compute the partial order relation of the
subgroup lattice. As larger application, we mention the counting of linear extensions. We have
counted the 1,942,503,128,726 maximal chains of the ideal completion of the product lattice
N5 × N5 in 330 s, where RelView needed 271 s to determine the Boolean 1,184×1,184
matrix of the ideal completion order and the remaining 59 s to compute a Boolean 21184 ×1
vector with the above number of 1-entries from this matrix. The reader is e.g., referred to
[6–10,26], where further examples of the potential of the RelView tool when dealing with
such enumeration and counting tasks are presented.

Nowadays, systematic experiments are accepted as a way for obtaining new mathema-
tical insights. As a consequence, tools for symbolic manipulation, prototypic computation,
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animation, and visualization become increasingly important as one proceeds in investiga-
tions. We believe that the attraction of RelView in this area lies in its flexibility, its large
application area, its computational power when dealing with enumerations of huge sets of
“interesting objects” (e.g., to verify an example or to construct a counter-example), its mani-
fold animation and visualization possibilities, and the concise form of its programs. Of course,
applications cover all relation-based discrete structures, but also objects which at first glance
do not seem to be closely connected to relations. See e.g., [10], where RelView is used as
a SAT-solver, or [26], where RelView is applied to compute permanents of 0/1-matrices.
New properties and types of and problems on such structures and objects are introduced
(discovered and investigated, respectively) all the time and RelView proved to be an ideal
tool for experimenting with a lot of the new concepts while avoiding unnecessary overhead.
RelView-programs are built very quickly and, combining relation algebra with predicate
logic and other formal tools (e.g., assertion logics or fixed point calculus), their correctness
is guaranteed by the completely formal developments.

At this place, also the advantages of the system when using it in teaching should be
mentioned. We found it very attractive to use RelView for producing good examples. These
frequently have been proven for students to be the key of fully understanding an advanced
concept. We have further recognized that it is sometimes very helpful to demonstrate how a
certain algorithm works. In RelView this is possible by executing computations in a stepwise
fashion.

Our present and future investigations pertain two fields. First, we seek possibilities to
improve some of the developed algorithms. As an example, we presently investigate a proce-
dure to get the normal subgroups of a group without using a membership-relation, viz. as nor-
mal closures of the conjugacy classes. This approach uses that relation algebra easily allows
to specify the conjugacy-relation on a group G with multiplication relation R : G×G ↔ G as
ρT(R RT ∩ πρT)π : G ↔ G, where π, ρ : G×G ↔ G are the projection relations on G × G.
Second, we explore new applications of our approach, like the use of orders in preference
modeling and multicriteria decision. Here frequently the rearranging of a Boolean matrix into
a specific form (like upper triangle block form) seems to be very helpful for fully understan-
ding the meaning of the order relation it visualizes. In [11] first results in this direction can
be found. They concern, e.g., the transformation of matrix-representations of semi-order and
interval-order relations into staircase form and the computation of interval representations of
such relations. Our ultimate goal is to generate a library of RelView-programs for order- and
lattice-theoretical tasks that hides most of the relation-algebraic notations and terminology
and, therefore, facilitates the use of the tool and its manifold possibilities for people not being
specialists in relation algebra.
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