
Acta Informatica (2008) 45:279–320
DOI 10.1007/s00236-008-0071-6

ORIGINAL ARTICLE

Relational structures model of concurrency

Ryszard Janicki

Received: 2 March 2007 / Accepted: 22 January 2008 / Published online: 11 March 2008
© Springer-Verlag 2008

Abstract The paper deals with the foundations of concurrency theory. We show how
structurally complex concurrent behaviours can be modelled by relational structures
(X,<>,�), where X is a set (of event occurrences), and <> (interpreted as commutativity)
and � (interpreted as weak causality) are binary relations on X . The paper is a continuation
of the approach initiated in Gaifman and Pratt (Proceedings of LICS’87, pp 72–85, 1987),
Lamport (J ACM 33:313–326, 1986), Abraham et al. (Semantics for concurrency, workshops
in computing. Springer, Heidelberg, pp 311–323, 1990) and Janicki and Koutny (Lect Notes
Comput Sci 506:59–74, 1991), substantially developed in Janicki and Koutny (Theoretical
Computer Science 112:5–52, 1993) and Janicki and Koutny (Acta Informatica 34:367–388,
1997), and recently generalized in Guo and Janicki (Lect Notes Comput Sci 2422:178–191,
2002) and Janicki (Lect Notes Comput Sci 3407:84–98, 2005). For the first time the full
model for the most general case is given.

1 Introduction

It is often assumed that there are two major different (and often incompatible) attitudes
towards abstracting non-sequential behaviour, one based on interleaving abstraction ([4,32],
etc.), another based on partially ordered causality ([6,10,11,35], etc.). Interleaving models
(for instance various types of process algebras[4]) are highly structured and compositional,
but have difficulty in dealing with topics like fairness, confusion, etc. Partial order models
can handle these problems better but are less compositional and less structured, although
recent results [6,35] make that distance much smaller.

Nevertheless some aspects of concurrent behaviour are difficult or almost impossible to
tackle using both process algebras and partially ordered causality based models. For example,

Partially supported by NSERC of Canada Grant.

R. Janicki (B)
Department of Computing and Software, McMaster University,
Hamilton, ON L8S 4K1, Canada
e-mail: janicki@mcmaster.ca

123

280 R. Janicki

the specification of priorities, error recovery, inhibitor nets, proper treatment of simultaneity,
time testing, etc., are in some circumstances problematic [20,18,21,30,39].

There have been few attempts to go beyond interleaving and partially ordered causality, and
so restricting concurrency to these two models is usually assumed without much discussion.

Lamport [29], Gaifman and Pratt [12] and Janicki and Koutny [16] have independently
proposed, for specifying concurrent behaviour, a pair of relations, the first being just partially
ordered causality, while the second is not (in general) a partial order, and can be interpreted
as weak causality. The ideas of [29] have been further investigated by Abraham et al. [1], but
have never been fully developed. Initially the similarities between Lamport’s model [29], and
Gaifman-Pratt’s model [12] were considered accidental, as both the motivations and initial
assumptions were different. The ideas of [16] were later fully developed in [18,20] and
resulted in a general model of concurrency that includes both Lamport’s [29] and Gaifman-
Pratt’s [12] models as well as the classical “interleaving” and “true concurrency” models, as
distinctive special cases. The papers [18,20] not only provide the theoretical foundations of
the model but prove its soundness as well.

In principle the model assumes that concurrent behaviour is fully described by a triple
(X,<,�), where X is the set of event occurrences, < and � are relations on X , < is
“causality” (i.e. an abstraction of “earlier than”), and � is “weak causality” (an abstraction
of “not later than” relation).

This model has been successfully applied to inhibitor systems [19,3,23,27,28], priority
systems [21,26], asynchronous races [41,42], synthesis [24,33,36] and event automata [34],
and has influenced many other approaches [5,40].

However, it was shown by Janicki and Koutny in [18] that relational structures of the
type (X,<,�) still cannot model the most general case of concurrent behaviour and that
the most general case requires relational structures of the type (X,<>,�), where<>, called
“commutativity”, is an abstraction of the pure “interleaving” relation (“either earlier than or
later than, but never simultaneously”), but no axioms for <> were given.

An axiomatic model for the structures of the type (X,<>,�) was recently proposed by
Guo and Janicki [13] and Janicki [15] in two conference papers with rather sketchy proofs.
This paper provides a full and substantially revised version of the results announced in
[13,15].

The traditional models of concurrency, i.e. those based on the concepts of “interleaving” or
“partially ordered causality” are mathematically much less complex and far more developed
than the models with two relations, and they suffice for the majority of standard applications.
Nonetheless some aspect of concurrent behaviour is difficult or almost impossible to tackle
using either interleaving or partially ordered causality based models.

From a purely mathematical viewpoint the results of this paper can be seen as an extension
of the Szpilrajn Theorem1 [38] to orders that are not necessary total. Additionally, the results
show how a set of equivalent partial orders can be uniquely represented by just two single
relations.

The paper is structured into six parts, from Sects. 2 to 7. In Sect. 2, the main ideas will be
presented informally, using five simple examples. Section 3 presents a revised version of the
model of concurrency proposed in [18], including a few never published results; while Sect. 4
contains all of the necessary definitions and revised results of the theory of order structures
from [20]. The new modified and improved version of the relationship between the order
structures of [20] and the concurrent histories of [18] is discussed in Sect. 5. In Sect. 6, the
longest section and the main portion of the paper, a theory of relational structures of the type

1 Every partial order is the intersection of all its total order extensions.

123

Relational structures model of concurrency 281

(X,<>,�) is presented. The relationship between the results of Sect. 6 and the concurrent
histories of [18] is discussed in detail in Sect. 7. Section 8 contains some final comments.

2 Motivation and intuition

To illustrate the main ideas, let us first consider the following four programs which are very
simple, but nonetheless reflect the essence of the problem. (A fifth program will be presented
later.) All the programs are written using a mixture of cobegin, coend and a (version of
concurrent) guarded commands.

Example 1 (programs P1, P2, P3 and P4)

P1: begin int x;
a: x:=0;
cobegin b: x:=x+1, c: x:=x+2 coend
end P1.

P2: begin int x,y;
a: begin x:=0; y:=0 end;
cobegin
b: x=0 → y:=y+1, c: x:=x+1,
coend
end P2.

P3: begin int x,y;
a: begin x:=0; y:=0 end;
cobegin
b:y=0 → x:=x+1, c: x=0 → y:=y+1
coend
end P3.

P4: begin int x,y;
a: begin x:=0; y:=0 end;
cobegin b: x:=x+1, c: y:=y+1 coend
end P4. ��

Each program is a different composition of three events (actions) called a, b and c (ai , bi ,
ci , i = 1, . . . , 4, to be exact, but a restriction to a, b, c, does not change the validity of the
analysis below, while simplifying the notation). Alternative models of these programs are
shown in Fig. 1.

What concurrent behaviours (concurrent histories) are generated by the above programs?
Let us concentrate on behaviours that involve all three actions a, b, c (sometimes such beha-
viours are called proper). Let obs(Pi) denote the set of all program runs involving the actions
a, b, c that can be observed. Assume that simultaneous executions can be observed. In this
simple case all runs (or observations) can be modelled by step-sequences (or equivalently
stratified orders), with simultaneous execution of a1, . . . , an denoted by {a1, . . . , an}. Let
us denote o1 = abc, o2 = acb, o3 = a{b, c}. Each oi can be seen as a partial order

oi = ({a, b, c}, oi→), where: o1 = a
o1→ b

o1→ c, o2 = a
o2→ c

o2→ b, o3 = a
o3→

123

282 R. Janicki

Xi ∈{ Pi, Ai , Ni}, i = 1, 2, 3, 4

obs(X1)= {abc, acb}

< 1 = {(a, b), (a, c)}

1 = {(a, b), (a, c)}

1 = {(a, b), (b, a), (a, c),

(c, a), (b, c), (c, b)}

obs(X1) 1, 1}

π 6 (and π1)holds,

but π3 does not

obs(X2)= {abc, a{b, c}}
< 2 = < 1

2 = {(a, b), (a, c), (b, c)}

2 = < 2 ∪< − 1
2

= {(a, b), (a, c), (b, a), (c, a)}

obs(X2) 2, 2}

obs(X2) < 2, 2}

π3 holds but π6 does not

obs(X3)= {a{b, c}}
< 3 = < 1

3 = {(a, b), (a, c),

(b, c), (c, b)}

3 = 2

obs(X3) 3 , 3}

obs(X3) < 3, 3}

π3 holds,

but π 6 does not

obs(X4)= {abc,

acb, a{b, c}}
< 4 = < 1

4 = < 4

4 = < 4 ∪< − 1
4

obs(X4) 4, 4}

obs(X4) < 4, 4}

obs(X4) < 4}

π8 holds

a

b c

c b

A1

a

b

c

{b,c }

A2

a

{b,c }

A3

a

b c

c b

{b,c }

A4

a

b c

N1

a

b c

N2

a

b c

N3

a

b c

N4

G1 =({a, b, c},<> 1 , 1) S2 =({a, b, c},< 2 , 2) S3 =({a, b, c},< 3, 3) S4 =({a, b, c},< 4,< 4)

Fig. 1 Models of behaviours, labelled transition systems and petri nets corresponding to programs P1, P2,
P3, P4. Nets N2 and N3 are inhibitor nets (see [19]). G1 is a generalised order structure while Si , i = 2, 3, 4,
are order structures. We assume observations are stratified orders

b ∧ a
o3→ c. We can now write obs(P1) = {o1, o2}, obs(P2) = {o1, o3}, obs(P3) = {o3},

obs(P4) = {o1, o2, o3}. Note that for i = 1, . . . , 4 all runs from obs(Pi) yield exactly the
same outcome. (This justifies calling obs(Pi)’s as concurrent histories.)

An abstract model of such an outcome is called a concurrent behaviour, but what entity
constitutes such a model? Let us start with the set obs(P4). We may say that in this case for
each run, a always precedes both b and c, and there is no causal relationship between b and
c. This causality relation,<, is the partial order defined as< = {(a, b), (a, c)}. In general<

is defined by: x < y iff for each run o we have x
o→ y. Hence for P4, < is an intersection of

123

Relational structures model of concurrency 283

o1, o2 and o3, and {o1, o2, o3} is the set of all stratified extensions of the relation2 <. Thus in
this case the causality relation < models the concurrent behaviour corresponding to the set
of (equivalent) runs obs(P4).

We will say that obs(P4) and < are tantamount and write obs(P4) � {<} or obs(P4) �
({a, b, c},<). Having obs(P4) one may construct< (as an intersection), and hence construct
obs(P4) (as the set of all stratified extensions).

This is a classical case of the “true” concurrency approach, where concurrent behaviour
is modelled by a causality relation.

Before considering the remaining cases, note that the causality relation < is exactly the
same in all four cases, i.e.<i = {(a, b), (a, c)}, for i = 1, . . . , 4, so we may omit the index i .

Let us consider now the set obs(P1). The causality relation<does not model the concurrent
behaviour correctly3 since o3 does not belong to obs(P1). Let <> be a symmetric relation,

called commutativity, defined as x <> y iff for each run o either x
o→ y or y

o→ x . For the set
obs(P1), the relation <>1 looks like <>1= {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}. The
pair of relations {<>1,<} and the set obs(P1) are equivalent in the sense that each is definable
from the other. (The set obs(P1) is the greatest set P O of partial orders built from a, b and

c satisfying x <>1 y ⇒ ∀o ∈ P O. x
o→ y ∨ y

o→ x and x < y ⇒ ∀o ∈ P O. x
o→ y.)

In other words, obs(P1) and {<>1,<} are tantamount, obs(P1) � {<>1,<}, so we may say
that in this case the relations {<>1,<}model the concurrent behaviour described by obs(P1).

Note also that<>4=< ∪ <−1 and the pair {<>4,<} also models the concurrent behaviour
described by obs(P4).

To deal with obs(P2) and obs(P3) we need another relation, �, called weak causality,
defined as x � y iff for each run o we have ¬(y o→ x) (x is never executed after y). For
our four cases we have �2= {(a, b), (a, c), (b, c)}, �1=�4=<, and �3= {(a, b), (a, c),
(b, c), (c, b)}. Notice again that for i = 2, 3, the pair of relations {<,�i } and the set obs(Pi)

are equivalent in the sense that each is definable from the other (The set obs(Pi) can be
defined as the greatest set P O of partial orders built from a, b and c satisfying x < y ⇒
∀o ∈ P O. x

o→ y and x �i y ⇒ ∀o ∈ P O. ¬(y o→ x).)
Hence again in these cases (i = 2, 3) obs(Pi) and {<,�i } are tantamount, obs(Pi) �

{<,�i }, and so the pair {<,�i }, i = 2, 3, models the concurrent behaviour described by
obs(Pi). Note that �i alone is not sufficient, since (for instance) obs(P2) and obs(P2) ∪
{{a, b, c}} define the same �. The relations <, <>, � are not independent, since it can be
proven [18] that <=<> ∩ �.

Since �1 = <, �4 = < and <>i = < ∪ <−1 for i = 2, 3, 4, we also have {<>1,<} �
{<>1,�1} � Obs(P1), {<>i ,�i } � {<,�i } � Obs(Pi), for i = 2, 3, and {<>4,�4} �
{<} � Obs(P4).

Summing up we have (see the top of Fig. 1):

1. All sets of observations obs(Pi), for i = 1, 2, 3, 4 are modelled by appropriate pairs of
relations {<>i ,�i }, and obs(Pi) � {<>i ,�i }.

2. obs(Pi), for i = 2, 3, 4 can also be modelled by appropriate pairs of relations {<,�i },
and obs(Pi) � {<,�i }.

3. obs(P4) can be modelled by the relation < alone, and obs(P4) � {<}.

2 The fact that < equals
o3→ is coincidental, as there are not many partial orders that can be built from three

elements. The absence of such an ordering is interpreted differently: it means no causal relationship for <,

and simultaneous execution for
o3→.

3 Unless we assume that simultaneity is not allowed, or not observed, in which case obs(P1) = obs(P4) =
{o1, o2), obs(P2) = {o1}, obs(P3) = ∅.

123

284 R. Janicki

The programs P1, P2, P3, P4 can be modelled by a variety of means. Figure 1 shows how
they can be modelled by labelled transition systems (automata) A1, A2, A3, A4 and by Petri
nets N1, N2, N3, N4 . Note that all behaviours that might be generated by two concurrent (i.e.
non-sequential) events (actions) b and c are modelled by one of the four cases from Fig. 1.

The theory developed in [18] provides a hierarchy of models of concurrency, where each
model corresponds to a so called “paradigm”, or general rule about the structures of concur-
rent histories. In principle, a paradigm describes how simultaneity is handled in concurrent
histories. The paradigms are denoted by π1, . . . , π8. It turns out that only paradigms π1, π3,
π6 and π8 are (apparently) interesting from the point of view of concurrency theory. The
most general paradigm, π1, assumes no additional restrictions for concurrent histories. The
most restrictive paradigm, π8, simply says that if a set of partial orders ∆ is a concurrent
history (meaning in our case that ∆ = obs(Pi) for i = 1, 2, 3, 4) then

(∃o ∈ ∆. x
o↔ y

) ⇐⇒ (∃o ∈ ∆. x
o→ y

) ∧ (∃o ∈ ∆. y
o→ x

)
,

where
o↔ denotes simultaneity, i.e. x

o↔ y ⇐⇒ ¬(x o→ y) ∧ ¬(y o→ x). The paradigm
π3 assumes that if a set ∆ of partial orders is a concurrent history then

(∃o ∈ ∆. x
o→ y

) ∧ (∃o ∈ ∆. y
o→ x

)⇒ (∃o ∈ ∆. x
o↔ y

)
.

The paradigm π6 is symmetric to π3, it assumes a concurrent history ∆ satisfies

(∃o ∈ ∆. x
o↔ y

)⇒ (∃o ∈ ∆. x
o→ y

) ∧ (∃o ∈ ∆. y
o→ x

)
.

The paradigms π1, . . . , π8 create a kind of lattice [18], but when restricted to π1, π3, π6,
and π8, the hierarchy is clear: π8 = π3 ∧ π6, π3 and π6 are independent and both imply π1.
The relations < and � can only model concurrent histories conforming to π3, they cannot
model concurrent histories that only conforms to π6 or π1. The relations<> and � can handle
all paradigms; however, if π6 holds, then the relation � equals <, so the model is simpler.

In our case we have only three observations o1 = abc, o2 = acb, o3 = a{b, c}, and
of these only o3 = a{b, c} involves simultaneity. Recall that o1 = abc corresponds to

a
o1→ b

o1→ c, o2 = acb corresponds to a
o2→ c

o2→ b, and o3 = a{b, c} corresponds

to a
o3→ b ∧ a

o3→ c ∧ b
o3↔ c. Note that the only true atomic formula involving

oi↔ (up

to symmetry) is b
o3↔ c.

Obviously all obs(Pi), i = 1, 2, 3, 4, conform to the paradigm π1, but only obs(P2),
obs(P3) and obs(P4) conform to paradigm π3, obs(P1) conforms trivially to π6, and only
obs(P4) conforms to π8. An example that conforms neither to π3 nor to π6, only to π1, is
analysed in Sect. 6 (Example 7, program P8).

In P1 (and A1, N1 from Fig. 1), we have b
o1→ c and c

o2→ b but o3 /∈ obs(P1), so

∀x, y ∈ {a, b, c} ∀oi ∈ obs(P1). ¬x
o↔ y, which means obs(P1) does not conform to π3

(and consequently does not conform to π8). Since (∃o ∈ obs(P1). x
o↔ y) is false for all

x, y ∈ {a, b, c}, the set obs(P1) trivially satisfies π6 (and π1). Note that <1 = �1.
For obs(P2) and obs(P3), the statement

(∃o ∈ obs(Pi). x
o→ y

) ∧ (∃o ∈ obs(Pi). y
o→ x

)
,

for i = 2, 3, is always false, so

(∃o ∈ obs(Pi). x
o→ y

) ∧ (∃o ∈ obs(Pi). y
o→ x

)⇒ (∃o ∈ obs(Pi). x
o↔ y

)

123

Relational structures model of concurrency 285

is always true for i = 2, 3. Thus, obs(P2) and obs(P3) conform to the paradigm π3. Since

o3 ∈ obs(P2) ∩ obs(P3) therefore b
o3↔ c holds, but

(∃o ∈ obs(Pi). x
o→ y

) ∧ (∃o ∈ obs(Pi). y
o→ x

)

for i = 2, 3, is always false, which means that

(∃o ∈ obs(Pi). x
o↔ y

) ⇐⇒ (∃o ∈ obs(Pi). x
o→ y

) ∧ (∃o ∈ obs(Pi). y
o→ x

)

is false for i = 2, 3. Thus, obs(P2) and obs(P3) do not conform to the paradigm π8.

For the case of obs(P4), we have obs(P4) = {o1, o2, o3} and b
o1→ c ∧ c

o2→ b ∧ b
o3↔ c,

hence the formula

(∃o ∈ obs(P4). x
o→ y

) ∧ (∃o ∈ obs(P4). y
o→ x

) ⇐⇒ (∃o ∈ obs(P4). x
o↔ y

)

holds, i.e. obs(P4) conforms to the paradigm π8.
The programs P1, . . . , P4 (and P5, . . . , P8 in the remainder of the paper) are very simple,

were invented for illustrative purposes only, and do not contain any kind of loops. Moreover
the set of their (proper) executions creates exactly one concurrent history in each case.

Consider the following, slightly more realistic, concurrent system, Priority, described
below.

Example 2 (Priority)
The concurrent systems Priority comprises two sequential subsystems, such that:

− the first subsystem can cyclically engage in event a followed by event b,
− the second subsystem can cyclically engage in event b or in event c,
− the two systems synchronise by means of handshake communication,
− there is a priority constraint stating that if it is possible to execute event b then c must

not be executed.

The example Priority follows from [37] and Fig. 2 shows its Petri net with priority specifi-
cation [7,22], while corresponding COSY program [22] and corresponding CSP program [9]

a

b c

NPriority

b> c

a(1) c(1)

c(2)a(2)

b(1)

b(2)

< ∆2

a(1) c(1)

b(1)

< ∆1

Fig. 2 Petri net [7,22] specification of Priority from Example 2 and Hasse diagrams of<∆1 and<∆2 , where
∆1 = {abc, {a, c}b} and ∆2 = {abcabc, abc{a, c}b, {a, c}babc, {a, c}b{a, c}b}

123

286 R. Janicki

are given below:

C S PPriority = µP.(a→ b→ P)|| µP.(b→ �>c→ P)

C O SYPriority = priority b>c end

path a;b end

path b,c end.

This example has often been analysed in the literature ([7,20,22,37], usually under the
interpretation that a = ErrorMessage, b = StopAndRestart and c = SomeAction. In this case
the set of all system runs can be defined as

obs(Priori t y) = Pre f i x((c∗ ∪ ab ∪ {a, c}b)∗).
The set obs(Priori t y) defines the operational semantics of the system Priority and is the
set-theoretic union of all concurrent histories of Priority. Formal definition of concurrent
histories will be given in the next section, but, for example, the sets∆1 = {abc, {a, c}b} and
∆2 = {abcabc, abc{a, c}b, {a, c}babc, {a, c}b{a, c}b} are concurrent histories; ∆1 is the
set of all observations such that each event (action) a, b, c occurs once, and ∆2 is the set of
all observations such that each event a, b, c occurs twice. Since Priority contains loops, we
need to distinguish between different occurrences of the same event in an observation. We
will write a(i) to denote the i th occurrence of the event a. This notation is not needed when
sequences or step sequences are used (a step sequence {a, c}babc can be interpreted as an
abbreviation of {a(1), c(1)}b(1)a(2)b(2)c(2)), but is necessary for defining the relations <>, �
and <. For Priority we have “c(i) not later than a(i)” for all i .

Hasse diagrams of partial orders <∆1 and <∆2 are presented in Fig. 2, while:

�∆1=<∆1 ∪
{(

c(1), a(1)
)}
, �∆2=<∆2 ∪

{(
c(1), a(1)

)
,
(
c(2), a(2)

)}
,

<>∆i=<sym
∆i
, for i = 1, 2.

It may easily be verified that for example the concurrent histories∆1 and∆2 are tantamount
to the pairs of relations {<∆1 ,�∆1} and {<∆2 ,�∆2}, respectively. We will call the triple
S∆1

Priority = ({a(1), b(1), c(1)},<∆1 ,�∆1) an order structure that models ∆1, and the triple

S∆2
Priority = ({a(1), b(1), c(1), a(2), b(2), c(2)},<∆2 ,�∆2) an order structure ∆2. The similar

triples can be constructed for all concurrent histories of Priority. Note that Priority conforms
to paradigm π3, but not to π6.

It can be proved [18] that paradigm π3 implies <> = < ∪ <−1, which means that
(X,<>,�) and (X,<,�) are tantamount. It can also be proven [18] that π6 implies <
equals �, which means that (X,<>,�) and (X,<>,<) are tantamount. Since π8 = π3∧π6,
the paradigm π8 implies <> equals < ∪ <−1 and < equals �, i.e. in this case (X,<),
(X,<>,�) and (X,<,�) are all tantamount.

The most restrictive case,π8, corresponds to the classical “true concurrency” model where
causal partial orders are sufficient to model all aspects of concurrent behaviour. In the “true
concurrency” model, the formula that defines π8 is equivalent to a “Diagonal Property”
[8,10].

The paradigmπi is only one of the factors shaping concurrent histories (i.e. the sets obs(Pi)

in our example). Another important factor is the kind of partial orders that observable runs are
allowed to be. It is argued in [18] that observable runs of (discrete) software systems should
be modelled by initially finite interval orders; however, the results of [20] cover general
partial orders as well. Observable runs are frequently assumed to be stratified orders or even

123

Relational structures model of concurrency 287

total orders. This makes the modelling simpler, and such assumptions are often justified. It
appears that the axioms for (X,<>,�) and (X,<,�) depend heavily on what kind of partial
orders the observable runs are allowed to be. Under the assumption that only totally ordered
runs are allowed, the concept of a paradigm is irrelevant, since < alone models concurrent
behaviour and the relationship between sets of runs and the relation < follows directly from
Szpilrajn theorem [38]. The theory presented in this paper covers various types of partial
orders interpreted as observable runs, including the case where being a partial order is the
only assumption; however, the theory differs radically from case to case.

We can formulate our problem as follows:
What axioms must the triple (X,<>,�), (or (X,<,�) in case of π3 or π8) satisfy to be
considered as models of concurrent behaviours?

A detailed discussion of triples (X,<,�) that model concurrent behaviour under the
assumption of paradigm π3, is given in [20]. In this paper the case of (X,<>,�), i.e. π1 (the
most general case), and the case of (X,<>,<), i.e. π6, will both be analysed.

3 Observations, histories and paradigms

The mathematical model of concurrency that is used in this paper (and in [20]) was proposed
by Janicki and Koutny in [18]. The model is based on three fundamental concepts: observa-
tions of concurrent systems, concurrent histories, and paradigms of concurrency. In order to
make this paper self-contained; we briefly present a revised, adapted, and extended version
of this model. All of the results presented in this section are needed either to formulate and
prove the results of this paper or to improve their presentation. A few “new” results (ie., that
have not been explicitly formulated or proved before) are also presented.

3.1 Partial orders

A partial order is a pair po = (X,<) such that X is a non-empty set and < is an irreflexive
(¬(x < x)) and transitive (x < y ∧ y < z ⇒ x < z) relation on X . We say that X is the
domain of po. Sometime we also say that < is a partial order on X . The following notation
will be used throughout this paper. For two elements of X , a and b, we write:

• two distinct incomparable elements a and b of X will be denoted by a ∼ b, i.e. a ∼ b⇔
¬(a < b) ∧ ¬(b < a) ∧ a �= b, [∼]

• we will write a <∼ b if a < b or a ∼ b, and [<∼]
• we will write a <sym b if a < b or b < a. [<sym]

A partial order po1 = (X,<1) is an extension of another partial order po2 = (X,<2) if
for all x, y ∈ X , x <2 y ⇒ x <1 y, i.e. if <2 ⊆ <1.

A partial order (X,<) is said to be

• total if for all a, b ∈ X , either a < b or b < a or a = b;
• stratified if ∼ ∪ idX , where idX is identity on X , is an equivalence relation;
• interval if for all a, b, c, d ∈ X , a < c ∧ b < d �⇒ a < d ∨ b < c;
• initially finite if for every a ∈ X , {b | b <∼ a} is finite [18].

We will denote the classes of total, stratified, interval and (arbitrary) partial orders by T O ,
SO , I O and P O , respectively.

123

288 R. Janicki

a

b

c

d

<1

total

a

b c

d

<2

stratified

..

{a}

{b, c}

{d}

2

total

a

b c

d

<3

interval

...

Ba

Ea

Bb

Bc

Eb

Bd

Ec

Ed

3

total

ab

cd

< 4

not interval

Fig. 3 Various types of partial orders (represented as Hasse diagrams). The partial order <1 is an extension
of <2, <2 is an extension of <3, and <3 is and extension of <4. Note that order <1, being total, is uniquely
represented by a sequence abcd, the stratified order <2 is uniquely represented by a step sequence a{b, c}d.
Finite interval orders do not have a universally accepted sequence representations

It is easy to see that a total order is stratified and a stratified order is interval. Stratified
orders correspond to step sequences and they are often defined in an alternative way, namely, a
poset (X,<) is a stratified order iff there exists a total order (Y,≺) and a mapping φ : X → Y
such that

∀x, y ∈ X. x < y ⇐⇒ φ(x) ≺ φ(y).
This definition is illustrated in Fig. 3, letφ : {a, b, c, d} → {{a}, {b, c}, {d}}withφ(a) = {a},
φ(b) = φ(c) = {b, c}, and φ(d) = {d}. Note that for all x, y ∈ {a, b, c, d} we have
x <2 y ⇐⇒ φ(x) ≺2 φ(y).

For the interval orders, the name and intuition follow from Fishburn’s Theorem:

Theorem 1 [Fishburn [14] ([18] for initially finite case)]
A partial order po = (X,<) is interval (interval and initially finite) iff there exists a total
(total and initially finite) order (T,≺) and two mappings ϕ,ψ : X → T such that for all
x, y ∈ X,

1. ϕ(x) ≺ ψ(y) and
2. x < y ⇐⇒ ψ(x) ≺ ϕ(y). ��

Usually ϕ(x) is interpreted as the beginning and ψ(x) as the end of an interval x . This
theorem is also illustrated in Fig. 3 with <3 and ≺3. Let ϕ and ψ be defined as follows
ϕ,ψ : {a, b, c, d} → {Ba, Ea, Bb, Eb, Bc, Ec, Bd , Ed}, with ϕ(a) = Ba , ϕ(b) = Bb,
ϕ(c) = Bc, ϕ(d) = Bd , and with ψ(a) = Ea , ψ(b) = Eb, ψ(c) = Ec, ψ(d) = Ed . Then
for all x, y ∈ {a, b, c, d}, we have ϕ(x) ≺3 ψ(y) and x <3 y ⇐⇒ ψ(x) ≺3 ϕ(y).

Modelling concurrency usually assumes some form of discreteness, for instance the num-
ber of predecessors is finite, etc. This is captured by the concept of initial finiteness. It turns
out that many results need separate proofs under the initial finiteness assumption. In general,
if C is a class of partial orders then we will denote by CI F the subclass of all initially finite
partial orders in C.

3.2 Observations, concurrent histories and tantamount entities

A run (observation, instance of concurrent behaviour) is an abstract model of the execution
of a concurrent system. It was argued in [18] that

123

Relational structures model of concurrency 289

a

b

d

c

N5

a

b

d

c

N6

a

b c

d

oI =<I
5=<I

6

a

c
b

d

time

an example of intervals that
define the interval order oI

Fig. 4 Petri net models of programs P5 and P6 from Example 3, an interval order oI which is a possible
observation of both P5 and P6, and causality relations <I

5, <I
6. Even though oI =<I

5=<I
6, the interpretation

is very different, in oI incomparability is interpreted as simultaneity, while in <I
5 and <I

6 as no particular
casual relationship

an observation must be an initially finite order that is either total,
or stratified, or interval.

All observations from Fig. 1 are stratified (non-stratified partial orders require at least four
elements). An example of an observation that is interval but not stratified is given in Fig. 4.
The results of [20] are valid for all kinds of partial orders, not necessarily initially finite
or interval; however, separate proofs are frequently required for different cases. Following
[18,20] and the previous section, we will make a distinction in notation between general
posets and those used as runs. We will use o = (X,→o) rather than po = (X,<) to denote
an arbitrary run, and use↔o rather than ∼ to denote incomparability. Quite often we will
assume that an observation o is a special kind of partial order, for example stratified. We will
use the symbol O to denote any of partial orders (usually O ∈ {T O, SO, I O, P O}) and
write o ∈ O .

123

290 R. Janicki

Concurrent history is a complete set of equivalent runs.4 To explain the concept, assume
that all possible runs are total orders. A set∆ = {abc, cba} is not a concurrent history. Since
the intersection of the runs abc and cba (which in this case are total orders), denoted by <∆
or <{abc,cba}, is the empty set, it implies that there is no causal relationship between a, b,
and c. This means that for instance bca is a possible run, but bca /∈ ∆, a contradiction. Let
∆cl be the set of all total extensions of<{abc,cba}, i.e.∆cl = {abc, bac, acb, bca, cab, aba}.
This set is complete, as it is the set of all total extensions of<∆cl= ∅, so it can be considered
as a concurrent history.

If not all the runs are total, then a definition of concurrent histories requires using a more
complex analysis of the runs. The set<∆ from the example above can be seen as an invariant
characterizing the set ∆, as the set of all elements of ∆ satisfy the ordering relationship
defined by <∆. It was argued in [18] that a concurrent history is a set of partial orders (of
an appropriate type) with common domain that is fully characterized by all its relational
invariants.

A relational invariant over a set of partial orders ∆ is any relation R ⊆ X × X defined
by a formula of the type

(x, y) ∈ R ⇐⇒ ∀o ∈ ∆. φR(x, y, o),

where φR(x, y, o) is any propositional formula built from atoms x
o→ y, y

o→ x , x
o↔ y and

T rue; for example φR(x, y, o) = x
o→ y ∨ x

o↔ y.
Let RI nv(∆) denote the set of all relational invariants generated by ∆.
Let O be a class of partial orders5 and let∆ ⊆ O be a set of partial orders with a common

domain X .

• We will define ∆cl
O , the closure of ∆ with respect to set RI nv(∆) as the set of all partial

orders in O with domain X that satisfy:

o ∈ ∆cl
O ⇐⇒ (∀R ∈ RI nv(∆). ∀x, y ∈ X. (x, y) ∈ R ⇒ φR(x, y, o)).

We are now able to define formally the concept of concurrent history.

Definition 1 [18] A set of runs ∆ is a concurrent history in O iff ∆ = ∆cl
O . ��

Despite a relatively general definition, one may show (see [18] for details) that RI nv(∆)
consists of at most eight different relations, and at most two of these are independent i.e.
they cannot be calculated from each other by using the standard set theory operators union,
intersection and complement.

Define the relations <>∆, �∆, <∆ and ��∆ on X × X as

• x <>∆ y ⇐⇒ ∀o ∈ ∆. (x
o→ y ∨ y

o→ x
)
, [<>∆]

• x �∆ y ⇐⇒ ∀o ∈ ∆. (x
o→ y ∨ x

o↔ y
)
, [�∆]

• x <∆ y ⇐⇒ ∀o ∈ ∆. x
o→ y, [<∆]

• x ��∆ y ⇐⇒ ∀o ∈ ∆. x
o↔ y. [��∆]

The relation <∆ is a causality, an abstraction of the “earlier than” relation, as x <∆y
means that x is performed earlier than y in all observations from ∆.

4 The term “concurrent history” has been used by many authors, e.g., [10,25,31] and others, to denote formally
different concepts (although intuitively close) in the idea of concurrency. The concept used in this paper was
introduced in [16] and is close to that of [31].
5 Typically, but not necessarily, one of T O , SO , I O , P O .

123

Relational structures model of concurrency 291

The relation �∆ is a weak causality, abstracted from the “not later than” relation, since
x �∆ y means that x is performed not later than y in all observations from∆; in other words,
x may be performed earlier than y, or simultaneously with y, but not later than y.

The relation <>∆ is called commutativity and can be seen as an abstraction of “interlea-
ving” or the “not simultaneously” relation. In this case x <>∆ y means that x and y are not
performed simultaneously in any observation from ∆.

The relation ��∆ is called synchronisation. It is an abstraction of simultaneity, where
x ��∆ y means that x and y are simultaneous in all observations from ∆. We define this
relation only for completeness, as it will not be used in the rest of this paper. For more details
the reader is referred to [18].

Lemma 1 (from [18])

1. RI nv(∆) = {∅,<>∆,�∆,�−1
∆ ,<∆,<

−1
∆ , ��∆, X × X}.

2. RI nv(∆) is the smallest set of relations containing {<>∆,�∆} and closed under the
operations of union, intersection, complement and their inverse operations.

3. <∆ = <>∆ ∩ �∆, ��∆ = �∆ ∩ �−1
∆ .

The above results allow us to define the concept of a concurrent history in a slightly
different but equivalent way.

We say that a partial order (run) o = (X, o→) ∈ O is a partial order extension (or just an
extension) of the relations <>∆, �∆ and <∆, respectively, in O , if and only if

(extension of <>∆) ∀x, y ∈ X. x <>∆ y ⇒ (
x

o→ y ∨ y
o→ x

)

(extension of �∆) ∀x, y ∈ X. x �∆ y ⇒ (
x

o→ y ∨ x
o↔ y

)
,

(extension of <∆) ∀x, y ∈ X. x <∆ y ⇒ x
o→ y.

Corollary 1

1. The set ∆cl
O is the set of all partially ordered sets o = (X, o→) ∈ O, that are extensions

in O of both the relation <>∆ and the relation �∆.
2. x <>∆ y ⇐⇒ x <>∆cl

O
y and x �∆ y ⇐⇒ x �∆cl

O
y

Proof 1. From Lemma 1(2).
2. Since ∆ ⊆ ∆cl

O then <>∆cl
O
⊆ <>∆ and �∆cl

O
⊆ �∆. Suppose for some x and y

we have x <>∆ y and ¬(x <>∆cl
O

y). From the definition of <>∆cl
O

, we can conclude

¬(x <>∆cl
O

y) ⇐⇒ ∃ô ∈ ∆cl
O . x

ô↔ y. From Corollary 1(1) we have ô is and
extension of <>∆, hence, from the definition of extension of <>∆, x <>∆ y implies

x
ô→ y ∨ y

ô→ x , a contradiction. Hence <>∆cl
O
=<>∆. For the equality �∆cl

O
=�∆ we

proceed almost identically. ��
We may now say that a set of partially ordered sets∆with a common domain is a concurrent

history in O if it equals the set of all extensions of <>∆ and �∆ in O. This definition was
used in [13,15,20]; it makes our reasoning easier, but it does not explain the choice of <>∆
and �∆. Corollary 1 provides this explanation.

The statement “in O” is important. The fact that ∆ ⊆ O does not necessarily imply that
∆ must be a history in O . For example obs(P1) ⊆ T O but it is interpreted as a history in
SO . The sets obs(Pi), i = 2, 3, 4, are concurrent histories in stratified and interval orders
(all orders built from three elements are stratified), as obs(Pi) = obs(Pi)

cl
SO = obs(Pi)

cl
I O .

123

292 R. Janicki

The set ∆S = {abcd, abdc, a{b, d}c, ab{c, d}} is a concurrent history in the class of
stratified orders since ∆S = (∆S)

cl
SO , but it is not a concurrent history in the class of inter-

val orders as ∆S �= (∆S)
cl
I O = {abcd, abdc, a{b, d}c, ab{c, d}, oI }, where oI equals <3

from Fig. 3, i.e. <3 is an interval, but not stratified, order. The set ∆I = ∆S ∪ {oI } =
{abcd, abdc, a{b, d}c, ab{c, d}, oI }, obviously is not a concurrent history in the class of
stratified orders, but it is in the class of interval orders as ∆I = (∆I)

cl
I O .

The set obs(P1) = {abc, acb} is a concurrent history in both total orders and stratified
orders, but the behaviours it models are different in each case. In the class of stratified orders
{abc, acb} models the behaviour of program P1 (Petri net N1, transition system A1), while
in the class of total orders it also models the behaviour of program P4 (Petri net N4, transition
system A4 since if we remove the transition labelled by {b, c} from A4, we get A1). If only
total orders are allowed, we cannot distinguish between the behaviours of P1 and P4.

For the concurrent system Priority, one may easily check that, for example, ∆1 =
{abc, {a, c}b} and ∆2 = {abcabc, abc{a, c}b, {a, c}babc, {a, c}b{a, c}b} satisfy ∆1 =
(∆1)

cl
SO and ∆2 = (∆2)

cl
SO , so both ∆1 and ∆2 are concurrent histories in SO generated by

Priority.
For more detailed discussion of the theoretical properties of the above definition, the reader

is referred to [18].
If a set of partial orders ∆ is a concurrent history, then not only does it uniquely defines

the triple (X,<>∆,�∆), but it can also be completely reconstructed from the triple
(X,<>∆,�∆).

We say in such case that the set∆ and the triple (X,<>∆,�∆) are tantamount, and write
∆ � (X,<>∆,�∆). (See examples in Sect. 2.)

In general, we will say that two entities E1 and E2 are tantamount, and write E1 � E2, if
E1 can be transformed into E2 and E2 can be transformed into E1. For instance, a minimum
state automaton A, the regular language L(A) accepted by A, and the labelled directed graph
G A representing A, are all tantamount, A � L(A) � G A. Any partial order < and the set
of all its total order extensions T< are also tantamount, < � T<. We will not use the word
“equivalent”, as it usually implies that entities are of the same type, as “equivalent automata”,
“equivalent expressions”, etc. Tantamount entities can be of different types. From a formal
perspective, the tantamount relation � is an equivalence relation.

3.3 Restriction to totally ordered observations

Most of the results presented in this paper do not assume that all observations are total

orders, i.e. there exists an o over X and x, y ∈ X such that x
o↔ y. The situation when all

observations over a given set of events X are total orders (i.e. O = T O) is a valid special
case, but many results presented in the remainder of the paper are then irrelevant. It turns out
that if O = T O every concurrent history ∆ is tantamount to the partially ordered causality
(X,<∆), so the model with only causality relations is sufficient.

Lemma 2 (implicitly from [18])
Let ∆ be a concurrent history over X in T O, i.e. ∆ = ∆cl

T O . Then we have

1. <>∆= {(x, y) | x, y ∈ X ∧ x �= y} and �∆ = <∆,
2. ∆ is the set of all total extensions of <∆, i.e. ∆ = {o | o ∈ T O ∧ <∆⊆ o}.
3. ∆ � (X,<∆).
Proof 1. Clearly <>∆⊆ {(x, y) | x, y ∈ X ∧ x �= y}. Let x, y ∈ X , x �= y and let

o ∈ ∆. Since o is a total order then we have x
o→ y or y

o→ x . This holds for all

123

Relational structures model of concurrency 293

o ∈ ∆, hence x <>∆ y. From Lemma 1(3) we have <∆ = <>∆ ∩ �∆. Clearly
�∆⊆ {(x, y) | x, y ∈ X ∧ x �= y}, so �∆ = <∆.

2. From Corollary 1(2),∆ is the set of all extensions of<>∆ and �∆. But every total order
over is an extension of <>∆= {(x, y) | x, y ∈ X ∧ x �= y}, and from (1) above we have
�∆ = <∆.

3. From (2) above and the definition of ∆cl
O . ��

As was discussed in the previous subsection, the fact that ∆ = ∆cl
O ⊆ T O does not

necessarily imply O = T O . For example for ∆ = obs(P1) from Fig. 1, we would have
O = SO , obs(P1) = {abc, acb} ⊆ T O , and we have shown in Sect. 2 that obs(P1) �
({a, b, c},<>1,�1) and obs(P1) �� ({a, b, c},<1). Under the O = T O assumption, for
Fig. 1 we have obs(P1) = obs(P4) = {abc, acb}, obs(P2) = {abc}, obs(P3) = ∅.

In [18] it is argued that, unless “team observers” are allowed and special circumstances
are assumed, only initially finite interval orders can be observed. From Theorem 1 it follows
that each initially finite interval order of events can be modelled by an initially finite total
order of appropriate beginnings and ends of the events, so one may argue that we may always
assume that all observations are total. This is true, however, one may similarly argue that
complex numbers are redundant for they can be modelled by pairs or real numbers. But the
formalism of complex numbers is much easier and more intuitive than calculus of pairs of
reals. Modelling everything in terms of beginnings and ends would often result in models
which are unnecessarily complex, difficult to understand, and unintuitive.

3.4 Paradigms

The problem is to find axioms for the relations<> and � such that their partial order extensions
can be interpreted as some ∆cl . To solve this problem the notion of a paradigm has been
introduced.

As we mentioned earlier, a paradigm is a supposition or statement about the structure of
a history involving a treatment of simultaneity. For instance, let ∆ be a concurrent history.
The classical causality based approach usually stipulates that if there is a run o ∈ ∆ such

that a
o↔ b, then there must be a run such a precedes b and a run such that b precedes a.

Formally, paradigms, ω ∈ Par , are defined for event variables x , y, by a simple grammar

ω := true| f alse|∃o. x
o→ y|∃o. x

o← y|∃o. x
o↔ y|¬ω|ω ∨ ω|ω ∧ ω|ω⇒ ω,

A history∆ satisfies a paradigmω ∈ Par if for all distinct a, b ∈ dom(∆),ω(a, b) holds.
It was shown [18] that in the study of concurrent histories, we only need to consider eight
non-equivalent paradigms, denoted by π1, . . . , π8. Of those eight, only π1, π3, π6 and π8 are
important for our purposes. The most general paradigm, π1 = true, admits all concurrent
histories. The most restrictive paradigm, π8, admits concurrent histories ∆ such that

(∃o ∈ ∆. x
o↔ y

) ⇔ (∃o ∈ ∆. x
o← y

) ∧ (∃o ∈ ∆. x
o→ y

)
.

The paradigm π3, which is general enough to deal with most problems that cannot be dealt
with under π8, admits concurrent histories ∆ such that

(∃o ∈ ∆. x
o← y

) ∧ (∃o ∈ ∆. x
o→ y

) ⇒ (∃o ∈ ∆. x
o↔ y

)
.

The paradigm, π6, symmetric to π3, admits concurrent histories ∆ such that
(∃o ∈ ∆. x

o↔ y
) ⇒ (∃o ∈ ∆. x

o← y
) ∧ (∃o ∈ ∆. x

o→ y
)
.

123

294 R. Janicki

Clearly, π8 = π3 ∧ π6, π8 ⇒ π3 ⇒ π1, and π8 ⇒ π6 ⇒ π1. The paradigms will
determine the way histories can be represented by their relational invariants.

Lemma 3 [18]
Let ∆ be a concurrent history in O over a set of events X.

1. If ∆ conforms to π3, then <>∆ = <∆ ∪ <−1
∆ , and ∆ equals the set of all (o,

o→) ∈ O
that are extensions of both <∆ and �∆, i.e. ∆ � (X,<∆,�∆).

2. If ∆ conforms to π8, then <>∆ = <∆ ∪ <−1
∆ , �∆ = <∆, and ∆ equals the set of all

(o,
o→) ∈ O that are extensions of <∆ only, i.e. ∆ � (X,<∆).

3. If ∆ conforms to π6, then <∆ = �∆. ��

Lemma 3 simply says that if the paradigm π3 holds, causality, then <∆, and weak causality
(an abstraction of “not later than”), �∆, suffice to fully describe∆. If the paradigm π8 holds,
then a partial order<∆ suffices to fully describe∆, so the use of partial orders only to model
concurrent behaviour is justified. Finally, if π6 holds, then weak causality equals causality.
The axioms for relational structures (X,<,�), such that all their partial order extensions
can be interpreted as concurrent histories∆cl , were provided in [20]. We will briefly discuss
them (revised and modified) in the next section.

Even if O �= T O it may happen that a concurrent history∆ consists of only totally ordered

observations, i.e. ∆ = ∆cl
O ⊆ T O . Then (∃o ∈ ∆. x

o↔ y) equals False for all o ∈ ∆ and
all x, y ∈ X , so this case requires a special consideration.

Lemma 4 Let O be a class of partial orders, and let ∆ be a concurrent history over X
satisfying ∆ = ∆cl

O ⊆ T O. Then we have

1. ∆ conforms to π6.
2. If |∆| > 1 then ∆ does not conform to π3 (and consequently not to π8), and if |∆| = 1

then ∆ conforms trivially to π8.
3. <>∆= {(x, y) | x, y ∈ X ∧ x �= y}.

Proof 1. Clearly (∃o ∈ ∆. x
o↔ y) is False for all o ∈ ∆ and all x, y ∈ X , which trivially

implies π6.

2. If |∆| > 1, then there are o1, o2 ∈ ∆ such that x
o1→ y and y

o2→ x for some x, y ∈ X ,
i.e. π3 does not hold. If |∆| = 1 then both (∃o ∈ ∆. x

o↔ y) and (∃o ∈ ∆. x
o→

y ∧ ∃o ∈ ∆. y
o→ x) are False, so π8 does hold.

3. Similarly as the proof of Lemma 2(1). ��
It is important to remember that the cases O = T O and ∆cl

O ⊆ T O �= O are different.
In the first case, by Lemma 2, ∆ � (X,<∆), in the second case ∆ � (X,<∆) only when
|∆| = 1, otherwise ∆ �� (X,<∆).

4 Order structures

We now provide a formal theory of the relations < and �, interpreted as an abstraction of
“earlier than” and “not later than”. This is a revised version of main results of [20]. All of the
notions and results presented in this section are necessary to formulate and prove our results.

Following [20], we will call triples (X,<,�) order structures.

123

Relational structures model of concurrency 295

Definition 2 [20]

1. An order structure, or simply a structure, is a triple

S = (X,<,�)
where X is a non-empty set and<, � are two irreflexive binary relations on X such that
for all a, b ∈ X , we have

a < b⇒ ¬(b � a).

2. An order structure S = (X,<,�) is saturated if for all distinct a, b ∈ X we have

¬(a < b)⇒ b � a.

3. For any class Θ of ordered structures, Θsat denotes all of the saturated structures in Θ .
��

The assertion a < b ⇒ ¬(b � a) above is motivated by the intended interpretation of
< and≺ as, respectively, “earlier than” and “not later than” relations. At this point, however,
we do no assume < is a partial order. In all the special cases considered below < implicitly
becomes a partial order, but such a slightly more general definition simplifies some of the
proofs. If S = (X,<,�) is saturated, then< defines � and vice versa, i.e. (X,<) � (X,<,
�) � (X,�). If necessary we will use X S ,<S , �S to denote X ,<, � such that S = (X,<,�).

The result below shows that the concept of an ordered structure can be viewed as a
generalisation of the concept of a partial order.

Corollary 2 For every partial order (X,≺) we have:

1. (X,≺,≺∼) is a saturated order structure.
2. (X,≺,≺) is an order structure and it is saturated if and only if ≺ is total. ��
The operations of union, intersection and subset for ordered structures with the same domain
are defined component-wise. Let S = (X,<,�), S1 = (X,<1,�1), S2 = (X,<2,�2),
Si = (X,<i ,�i), i ∈ I . Then

• S =⋃
i∈I Si ⇐⇒ < = ⋃

i∈I <i ∧ � = ⋃
i∈I �i ,

• S =⋂
i∈I Si ⇐⇒ < = ⋂

i∈I <i ∧ � = ⋂
i∈I �i ,

• S1 ⊆ S2 ⇐⇒ <1⊆<2 ∧ �1⊆�2.

Note that
⋃

i∈I Si may not be an order structure, but
⋂

i∈I Si is always an order structure.
Also note that stratified order structures are maximal w.r.t. to ⊆.
We will also say that

• an order structure S2 is an extension of an order structure S1 if S1 ⊆ S2.

Now we introduce the important concept of extension completeness that will allow us to
connect concurrent histories and ordered structures.

Definition 3 [20]
A class Θ of ordered structures with possibly different domains is extension complete if for
every S = (X,<,�) ∈ Θ , the set ext sat

Θ (S) = {T ∈ Θsat | S ⊆ T } is non-empty and

S =
⋂

T∈extsat
Θ (S)

T .

��

123

296 R. Janicki

In other words,Θ is extension complete if any ordered structure inΘ can be represented using
its saturated extensions defined by Θ . Extension completeness is an interesting and useful
property for at least two reasons. Firstly, it provides a means of representing sets of partial
orders by only two relations. Secondly, if gives a straightforward formula for calculating a
structure from its extensions, much in the same way that a partial order can be derived from
its total order extensions. Another, more sophisticated interpretation is the subject of the next
section.

Corollary 3 If a class of structures Θ is extension complete, then for each S ∈ Θ , we have
S � ext sat

Θ (S). ��
The following four concrete classes of structures are used to model concurrent histories.

Definition 4 [20]

1. An order structure S = (X,<,�) is called a total, stratified, interval or partial order
structure, if the following conditions T1–T3, S1–S4, I1–I6 or P1–P4, respectively, are
satisfied:

T 1 a �� a T 3 a < b < c⇒ a < c [total]
T 2 a < b⇔ a � b

S1 a �� a S3 a � b � c⇒ a � c ∨ a = c [stratified]
S2 a < b⇒ a � b S4 a � b < c ∨ a < b � c⇒ a < c.

I 1 a �� a I 4 a < b � c ∨ a � b < c⇒ a � c
I 2 a < b⇒ a � b I 5 a < b � c < d ⇒ a < d [interval]
I 3 a < b < c⇒ a < c I 6 a � b < c � d ⇒ a � d ∨ a = d

P1 a �� a P3 a < b < c⇒ a < c [partial]
P2 a < b⇒ a � b P4 a � b < c ∨ a < b � c⇒ a � c.

2. A structure (X,<,�) is said to be initially finite if the set {b | b <∼ a} is finite for all
a ∈ X . ��

We will denote by T, S, I and P, respectively, the class of total, stratified, interval and
partial order structures. As with partial orders, if Θ is a class of structures, we denote by
ΘI F ⊆ Θ the subclass consisting of initially finite structures. One may verify easily that
T ⊂ S ⊂ I ⊂ P. Total order structures are in fact classical partial orders in disguise (since
< equals to �), and saturated total order structures are total orders in disguise (if a partial
order ≺ satisfies ≺=≺∼, it must be total). They were both introduced to show that the order
structure theory covers partial order theory.

The comprehensive theory of the above classes of structures was provided in Janicki and
Koutny [20]; however, all the four classes have been known for some time. Conditions I1–I5
follow from [29] where Lamport introduced a model for system execution using Lamport’s
concept of space-time relationship. The condition I6 was added (in Lamport’s framework) in
[2]. Initially finite interval structures were analysed and introduced in [18]. Stratified order
structures were introduced by Gaifman and Pratt in [12] and by Janicki and Koutny in [16].
Finite stratified order structures are analysed in detail in [19]. Total and partial order structures
were defined in [17]. The names were introduced in [20] and follow from the following result.

123

Relational structures model of concurrency 297

Proposition 1 (from [20])
Let Θ be a class of (total, stratified, interval, partial) order structures, respectively.

1. Se = (X,≺e,�e) ∈ Θsat if and only if �e=≺∼e and (X,≺e) is a (total, stratified,
interval, partial) order, respectively.

2. if S is initially finite then its saturated extensions are also initially finite. ��

From Proposition 1(1) it follows that if Θ is one of {T,S, I,P} then Θsat are also just
partial orders (of appropriate type) in disguise. By a small abuse of notation we may treat
the set ext sat

Θ (S), for S = (X,<,�), as a set of partial orders. Formally we may define
poext sat

Θ (S) = {≺e| (X,≺e,≺∼e) ∈ ext sat
Θ (S)}, and then use ext sat

Θ (S) to denote poext sat
Θ (S),

when it does not lead to any discrepancy.
The main results of [20] can be formulated as follows.

Theorem 2 [20, Theorem 2.9]
The classes of order structures T, S, I, P, TI F , SI F , II F , PI F are extension complete. ��
Corollary 4
Let Θ1, Θ2 be the two classes of ordered structures listed in Theorem 2 such that Θ1 ⊆ Θ2

and let S = (X,<,�) ∈ Θ1. Then

1. ext sat
Θ1
(S) ⊆ ext sat

Θ2
(S), and S =⋂

T∈extsat
Θ1
(S) T =⋂

T∈extsat
Θ2
(S) T .

2. S � ext sat
Θ1
(S) and S � ext sat

Θ2
(S). ��

Theorem 2 restricted to T is nothing more than the well known Szpilrajn Theorem6 [38] in
disguise. In general it can be seen as an extension of Szpilrajn’s ideas to partial orders that
are not necessarily total7 (see [17,20]). In this section the triples (X,<,�) do not have any
special interpretation.

5 Order structures and concurrent histories

Corollary 4 together with Lemma 3(1) suggest that ordered structures [i.e. the triples
(X,<,�)] might represent uniquely concurrent histories conforming to paradigm π3, which
is the subject of this section. The discussion of this problem is a little bit confusing in [20],
as the fact that order structures may belong to different classes is not explicitly discussed.
We hope this section will help elucidate this part of the theory proposed in [20].

For each class of structures Θ ∈ {T, S, I, P, TI F , SI F , II F , PI F }, let po(Θ) denote the
corresponding class of partial orders. For instance po(SI F) = SOI F , po(I) = I O , etc. In
this subsection we will interpret the elements of ext sat

Θ (S) as partial orders if S is in one of
the classes mentioned above.

Using Theorem 2 and Lemmas 2, 3, 4 we get the following result.

Proposition 2 [20,18]

1. LetΘ ∈ {S, I,P,SI F , II F ,PI F } be a class of order structures. For each order structure
S ∈ Θ , the set ext sat

Θ (S) is a concurrent history in po(Θ) that conforms to π3.
2. If Θ ∈ {T,TI F }, then ext sat

Θ (S) is a concurrent history in po(Θ) that conforms to π6.

6 Every partial is order equal to the intersection of all its total extensions [38].
7 However, the sets of partial orders must satisfy and equivalent of paradigm π3.

123

298 R. Janicki

Proof 1. From Theorem 2 and Lemma 3(1).
2. From Theorem 2, Lemmas 4(1), 3(3), 2(3) and the definition of T. ��
When using Proposition 2, it is important not to forget about Corollary 4(1) which indicates
that in some cases the different concurrent histories might define identical order structures.

Let us now analyse programs P1, P2, P3, P4 and Priority from Examples 1 and 2, and
Figs. 1 and 2.

The program P1 from Fig. 1 does not conform to π3 and O = SO �= T O , so the theory
presented above does not apply.

For the programs P2 and P3, the structures S2 = ({a, b, c},<2,�2) and S3 = ({a, b, c},
<3,�3) belong to SI F (but not to TI F), and ext sat

SI F
(Si) = obs(Pi) for i = 2, 3.

For the program P4 we have S4 = ({a, b, c},<4,�4) = ({a, b, c},<4,<4), S4 belongs
to TI F ⊂ SI F ⊂ II F ⊂ PI F , and ext sat

TI F
(S4) = {ab, ac} ⊂ ext sat

SI F
(S4) = ext sat

II F
(S4) =

ext sat
PI F
(S4) = obs(P4) = {ab, ac, {a, b}}.

For Priority we have an infinite set of concurrent behaviours (concurrent histories) and
an infinite set of appropriate stratified order structures that represent those behaviours. For
instance the triples S∆1

Priority = ({a(1), b(1), c(1)},<∆1 ,�∆1), and S∆2
Priority = ({a(1), b(1), c(1),

a(2), b(2), c(2)},<∆2 ,�∆2) belong to SI F , we have ext sat
SI F
(S∆1

Priority) = ext sat
II F
(S∆1

Priority) =
ext sat

PI F
(S∆1

Priority) = ∆1 and ext sat
SI F
(S∆2

Priority) = ext sat
II F
(S∆2

Priority) = ext sat
PI F
(S∆2

Priority) = ∆2.

Clearly S∆1
Priority and S∆2

Priority are extension complete.
In all of the cases discussed above, observations are either total or stratified orders. The

next two examples involve interval order observations, while the third one is an example of
a partial order structure that is not interval order structure.

Example 3 (interval order observations I)
Consider the following program:

P5: begin int x,y,z;
a: begin x:=0; y:=0; z:=0 end;
cobegin
begin
b: x=0 → begin y:=1; z:=z+1 end;
d: x=0 → begin z:=2*z; y:=0 end
end,
c: y=0 → x:=x+1
coend
end P5.

A Petri net with inhibitor arcs N5 corresponding to P5 is in Fig. 4. If interval order
observations are allowed (i.e. O = I O), and we are interested only in observations involving
the whole set {a, b, c, d} of events, then we have:

obsI O(P5) = {abdc, oI },
where oI is an interval order observation defined by a Hasse diagram in Fig. 4. The set
obsI O(P5) = {abdc, oI } conforms to π3 but not π8. The causality relation <I

5 defined by
obsI O(P5) is also presented in Fig. 4, while weak causality �I

5 and commutativity <>I
5 are

the following:

�I
5 = <I

5 ∪{(b, c), (d, c)}, <>I
5 = <I

5 ∪
(
<I

5

)−1
.

123

Relational structures model of concurrency 299

The order structure SI
5 = ({a, b, c, d},<I

5,�
I
5) belongs to II F but not to SI F and

ext sat
II F
(SI

5) = obsI O(P5). Hence SI
5 � obsI O(P5).

However, if only stratified observations are allowed (i.e. O = SO), we have:

obsSO(P5) = {abcd}, <S
5 = �I

5= abdc,

<>S
5 = <S

5 ∪
(
<S

5

)−1 = {abdc, cdba}.

The order structure SS
5 = ({a, b, c, d},<S

5 ,�
S
5) = ({a, b, c, d},<S

5 ,<
S
5) belongs to TI F ⊂

SI F ⊂ II F ⊂ PI F , and ext sat
TI F
(SS

5) = {abdc} = obsSO(P5) = ext sat
SI F
(SS

5) = ext sat
II F
(SS

5) =
ext sat

PI F
(SS

5). In this case we have SS
5 � ({a, b, c, d},<S

5) � obsSO(P5), as the case of
stratified orders is reducible to the case of total orders. The set obsSO(P5) conforms to π8

and obsI O(P5) �� obsSO(P5). ��
Example 4 (interval order observations II)
Consider the following program:

P6: begin int x,y,z;
a: begin x:=0; y:=0; z:=0 end;
cobegin
begin
b: x=0 → y:=y+1;
d: z:=z+1
end,
c: x:=x+1
coend
end P6.

A Petri net with inhibitor arcs N6 corresponding to P6 is also in Fig. 4. If interval order
observations are allowed (i.e. O = I O), and we are interested only in observations involving
the whole set {a, b, c, d} of events, then we have:

obsI O(P6) = {abdc, abdc, a{b, c}d, ab{c, d}, oI },
where oI is an interval order observation defined by the Hasse diagram in Fig. 4, similarly
to program P5. The set obsI O(P6) conforms to π3 but not π8. if only stratified observations
are allowed (i.e. O = SO), we have:

obsSO(P6) = {abdc, abdc, a{b, c}d, ab{c, d}}.
The set obsSO(P6) also conforms to π3 but not π8. Clearly obsI O(P6) is not equal to
obsSO(P6), however, both sets define identical causality, weak causality and commutati-
vity relations, namely <I

6 = <S
6 = <I

5 (see Fig. 4 for an appropriate Hasse diagram), and

�I
6 = �S

6 = <I
6 ∪{(b, c)}, <>I

6 = <>S
6 = <I

6 ∪
(
<I

6

)−1
.

The order structures SI
6 = SS

6 = ({a, b, c, d},<S
6 ,�

S
6) belong to SI F ⊂ II F ⊂ PI F ,

ext sat
SI F
(S6) = obsSO(P6) ⊂ ext sat

II F
(S6) = ext sat

PI F
(S6) = obsI O(P6). In this case we have

SS
6 = SI

6 , both SS
6 and SI

6 are extension complete, but ext sat
SI F
(S6) �= ext sat

II F
(S6). Hence

obsI O(P6) � obsSO(P6), even though obsI O(P6) �= obsSO(P6). ��

123

300 R. Janicki

Fig. 5 Partial orders oP , �P
and <P for Example 5 (<P is
the empty relation on {a, b, c, d})

a b

c d

oP

a b

c d

P

a b c d

< P

Example 5 (partial order structure but NO interval order structure)
Let oP , <P and �P be relations from Fig. 5. Consider the set of partial orders ∆ =
{{a, b, c}d, a{b, c, d}, oP } and the triple SP = ({a, b, c, d},<P ,�P). Note that∆ = ∆cl

P O ,
i.e. ∆ satisfies the definition of a history (Definition 1), and <∆ = <P , �∆ = �P . Fur-
thermore ∆ conforms to π3 and oP is not an interval order. The triple SP is a partial order
structure but not interval order structure, i.e. SP ∈ PI F\I, and ext sat

PI F
= ∆.

The set∆ is technically a concurrent history; however, its elements cannot be interpreted
as observations. It was argued in [18] that an observation must always be an initially finite
interval order, and oP ∈ ∆ is not an interval order. Hence we cannot provide any concurrent
system that generates ∆ and is modelled by SP . ��

It is important to point out that the results of this section and these of [12,20,29] either
assume or imply the paradigm π3, or O = T O , which suffices for most applications, but it
is not the most general case. Under the assumption of π3 we have to model the programs P1

and P7 (Fig. 6) by two sequential behaviours instead of a more natural modelling involving
concurrent behaviour.

s1

a

s2 s3

b c
s4

s5 s6

d

s7
N7

a

b c

d b
c

c d

{c, d}

A 7

a

b c

d
< I

t = < S
7

a b

c d
I
7= S

7

Fig. 6 Petri net N7 and transition system A7 corresponding to program P7 from Example 6, and appropriate
casuality and commutativity relations. The transition system A7 models P7 only if observations are restricted
to stratified orders (O = P O). Causality is represented as a Hasse diagram, while commutativity as the whole
relation

123

Relational structures model of concurrency 301

6 Generalised order structures

The previous two sections were mainly devoted to the theory of triples (X,<,�) where ‘<’
could be interpreted as “causality” and ‘�’ as “weak causality”. Such triples can adequately
model concurrent histories, but only if some conditions, constituting the paradigm π3 are
satisfied. Lemma 1(2) suggests that all concurrent histories (as defined by Definition 1) could
be modelled by triples of the type (X,<>,�), where <> is interpreted as “commutativity”.
In this section we develop a theory of such triples.

Definition 5 [13] A generalised order structure is a triple

G = (X,<>,�)
such that X is a non-empty set,<> and � are two irreflexive relations on X ,<> is symmetric,
and the triple SG = (X,<G ,�), where <G = <> ∩ �, is an order structure (i.e. <G is
irreflexive and for all x, y ∈ X , x <G y ⇒ ¬(y � a)).
For each generalised order structure G = (X,<>,�), the order structure SG = (X,<G ,�),
where <G = <> ∩ �, will be called the order structure induced by G. ��
• For each relation R (not necessarily a partial order), let Rsym denote the symmetric closure

of R, i.e. Rsym = R ∪ R−1.

The corollary below shows that the name “generalised” is justified, and slightly modified
order structures create a subclass of generalised order structures.

Corollary 5

1. For each order structure S = (X,<,�), the triple GS = (X,<sym,�) is a generalised
order structure.

2. For every partial order (X,<), the triples (X,<sym,<∼) and (X,<sym,<) are gene-
ralised order structures. ��

Definition 6 A generalised order structure G = (X,<>,�) is called saturated if<> =<sym
G ,

where <G=<> ∩ �, and SG = (X,<G ,�) is saturated (i.e. x <G y ⇔ ¬(y � x)). ��
If G = (X,<>,�) is saturated, then both<> and � are uniquely defined by the relation (not
necessarily a partial order here) <G = <> ∩ �, i.e. (X,<>,�) � (X,<G).

• For any class Θ of generalised ordered structures, Θsat is the class of all saturated gene-
ralised structures in Θ .

The result below shows that the generalised order structures can be seen as a further genera-
lisation of the concept of a partial order.

Corollary 6 For every partial order (X,≺) we have:

1. (X,≺sym,≺∼) is a saturated generalised order structure.
2. (X,≺sym,≺) is a generalised order structure and it is saturated if and only if ≺ is total.

��

The operations of union, intersection and subset for generalised ordered structures with
the same domain are defined component-wise. Let G = (X,<>,�), G1 = (X,<>1,�1),
G2 = (X,<>2,�2), Gi = (X,<>i ,�i), i ∈ I . Then

123

302 R. Janicki

• G =⋃
i∈I Gi ⇐⇒ <> = ⋃

i∈I <>i ∧ � = ⋃
i∈I �i ,

• G =⋂
i∈I Gi ⇐⇒ <> = ⋂

i∈I <>i ∧ � = ⋂
i∈I �i ,

• G1 ⊆ G2 ⇐⇒ <>1⊆<>2 ∧ �1⊆�2.

Note that
⋃

i∈I Gi may not be a generalised order structure, but
⋂

i∈I Gi always is a gene-
ralised order structure. We will also say that

• a generalised order structure G2 is an extension of a generalised order structure G1 if
G1 ⊆ G2.

We will now define extension completeness in the same manner as it was done for ordered
structures.

Definition 7 A class Θ of generalised order structures with possible different domains is
extension complete if for every generalised order structure G ∈ Θ , the set ext sat

Θ (G) = {T ∈
Θsat | G ⊆ T } is non-empty and

G =
⋂

T∈extsat
Θ (G)

T

��
In other words, Θ is extension complete if any generalised order structure in Θ can be
represented using its saturated extensions defined byΘ . All comments made after Definition 3
(extension completeness for ordered structures) are also valid for generalised order structures.

Corollary 7 If a class of generalised structures Θ is extension complete, then for each
S ∈ Θ , we have S � ext sat

Θ (S). ��
Now we restrict our attention to four concrete classes of generalised order structures.

Definition 8 A generalised order structure G = (X,<>,�) is called a total, stratified,
interval, partial or initially finite if the order structure SG = (X,<G ,�), where <G=
<> ∩ �, is total (axioms T1–T3), stratified (axioms S1–S4), interval (axioms I1–I6), partial
(axioms P1–P4), or initially finite, respectively. ��

We shall use GT, GS, GI and GP to denote, respectively, the classes of total, stratified,
interval and partial order generalised structures. One may verify easily that GT ⊂ GS ⊂
GI ⊂ GP. If Θ is a class of generalised structures, we denote by ΘI F ⊆ Θ the subclass
consisting of initially finite generalised structures. From Definition 8 we obtain immediately
the following result.

Corollary 8 If <G =<> ∩ � = � then G = (X,<>,�) is a generalised total order
structure. ��
Proposition 3 Let Θ be a class of generalised (total, stratified, interval, partial) order
structures, respectively.

1. Ge = (X,<>e,�e) ∈ Θsat if and only if there is a (total, stratified, interval, partial)
order (X,≺e) such that <>e=≺sym

e and �e=≺∼e .
2. if G is initially finite then its saturated extensions are also initially finite.

Proof From Definition 5 and Proposition 1. ��

123

Relational structures model of concurrency 303

From Proposition 3(1) it follows that if Θ is one of GT,GS,GI,GP then the elements of
Θsat are also just partial orders (of appropriate type) in disguise. By a small abuse of notation
we may treat the set ext sat

Θ (G), for G = (X,<>,�), as a set of partial orders. Formally
we may define poext sat

Θ (G) = {≺e| (X,≺sym
e ,≺∼e) ∈ ext sat

Θ (G), and then use ext sat
Θ (G) to

denote poext sat
Θ (G), when it does not lead to any confusion.

The generalised order structure G1 from Fig. 1 corresponding to the program P1 from
the Introduction is total, i.e. it belongs to GTI F , and ext sat

GTI F
(G1) = ext sat

GSI F
(G1) =

ext sat
GII F

(G1) = ext sat
GPI F

(G1) = obs(P1). One can easily verify by inspection that G1 of
Fig. 1 is extension complete.

We will now discuss three examples of more complex cases than G1. All the properties
discussed below can easily be verified by inspection.

Example 6 (generalised total order structures)
Consider the following program:

P7: begin int x,y;
a: begin x:=0; y:=0 end;
cobegin
begin
b: x:=x+1;
d: y:=y+1
end,
c: x:=x+2
coend
end P7.

A Petri net with inhibitor arcs N7 and a transition system A7, both corresponding to P7

are in Fig. 6. The program P7 can produce only stratified observations, even if observing
interval orders is allowed, i.e. the cases O = I O and O = SO are identical. If we are only
interested in observations involving the whole set {a, b, c, d} of events, then we have:

obsI O(P7) = obsSO(P7) = {abcd, abdc, acbd, ab{cd}}.
The concurrent history obsSO(P7) conforms to π6 but not to π3, causality and commutativity
relations, <I

7 = <S
7 and <>I

7 = <>S
7 , are depicted in Fig. 6, while weak causality �I

7 = �S
7

equals <I
7 (since π6 is satisfied).

The triple G7 = ({a, b, c, d},<>S
7 ,�

S
7) is a generalised total order structure, i.e. it belongs

to GTI F . However, ext sat
GTI F

(G7) = {abcd, abdc, acbd} �= obsSO(P7) = obsI O(P7) =
{abcd, abdc, acbd, ab{c, d}}, and G7 (treated as generalised total order structure) is not
extension complete. On the other hand G7 is also a generalised stratified (and interval,
partial) order structure, and ext sat

GSI F
(G7) = ext sat

GII F
(G7) = obsSO(P7) = obsI O(P7). It

can easily be verified that G7 is extension complete in GSI F (and in GII F or GPI F). Hence
we can write G7 � obsSO(P7).

Let us now assume that only totally ordered observations are allowed (i.e. O = T O). In
this case:

obsT O(P7) = {abcd, abdc, acbd}
and this is exactly the set of all total extension of the causality<T

7 that equals<I
7 from Fig. 6.

The triple GT
7 = ({a, b, c, d},<>T

7 ,�T
7), where

<>T
7= {(x, y) | x, y ∈ {a, b, c, d} ∧ x �= y}, and �T

7 = <T
7 ,

123

304 R. Janicki

is a generalised total order structure, but there is no need to construct and analyse it, as we
have here GT

7 � ({a, b, c, d},<T
7) � obsT O (P7) [see Lemma 2(3)]. Note a fundamental

difference between GT
7 and G1 from Fig. 1 (despite the fact that<>1 and<>T

7 are structurally
identical, X × X minus identity). In the case of G1 we assumed O = SO �= T O , so
G1 �� ({a, b, c},<1), for GT

7 we assumed O = T O , so clearly GT
7 � ({a, b, c, d},<T

7). ��

Example 7 (generalised stratified and interval order structures)
Consider the following program:

P8: begin int x,y;
a: begin x:=0; y:=0 end;
cobegin
begin
b: x:=x+1;
d: y=0 → y:=y+1
end,
c: x:=x+2
d: y:=y+2
coend
end P8.

A Petri net with inhibitor arcs N8 and a transition system A8, both corresponding to P8

are in Fig. 7. The transition system A8 corresponds to P8 only if all observations must be
stratified orders (i.e. when O = SO).

If interval order observations are allowed (i.e. O = I O), we have

obsI O(P8) = {abcde, abdce, acbde, ab{c, d}e, abc{d, e}, oI
1, oI

2},
where oI

1 and oI
2 are interval orders defined by Hasse diagrams in top right of Fig. 7. The

concurrent history obsI O(P8) conforms to neither π3 nor to π6.
Causality <I

8 and commutativity <>I
8 relations are also presented in Fig. 7, while weak

causality �I
8 satisfies:

�I
8 = <I

8 ∪{(d, e)}.
The triple G I

8 = ({a, b, c, d, e},<>I
8,�I

8) is a generalised interval order structure that
belongs to the class GII F\GS and ext sat

GII F
(G I

8) = obsI O(P8). One may easily verify by

inspection that G I
8 is extension complete. Clearly G I

8 � obsI O(P8).
If only stratified observations are allowed (i.e. O = SO) we have:

obsSO(P8) = {abcde, abdce, acbde, ab{c, d}e, abc{d, e}},
and obsSO(P8) also conforms to neither π3 nor to π6.

Causality<S
8 and commutativity<>S

8 relations are described in Fig. 7, and weak causality
�S

8 is given by:

�S
8 = <S

8 ∪{(d, e)}.
Note that in this case we have <I

8 �=<S
8 , �I

8 �=�S
8 and <>I

8 �=<>S
8 . The triple GS

8 =
({a, b, c, d, e},<>S

8 ,�
S
8) is a generalised stratified order structure that belongs to GSI F\GT

123

Relational structures model of concurrency 305

a

b c

d e
< I

8

a

b c

d e
< S

8

a

b c

d

e
< T

8

a

b

cd

eoI
1

a

b

c

d

e

oI
2

a

b

cd

e

I
8

a

b

cd

e

S
8

s1

a

s2 s3

b c
s4

s5 s6

ed

s7 s8
N8

a

b c

d b
c

c
d

{c, d}

e
{d, e}

A8

Fig. 7 Petri net N8, transition system A8 and appropriate relations corresponding to the program P8 from
Example 7. Partial orders are represented as Hasse diagrams, the graphs for <>I

8 and <>S
8 represent whole

relations

and GS
8 is extension complete. We also have ext sat

GSI F
(GS

8) = obsSO(P8) and GS
8 �

obsSO(P8).
If only totally ordered observations are allowed (i.e. O = T O) we have:

obsT O (P8) = {abcde, abdce, acbde},
and obsT O(P8) is just the set of all total extensions of the partial order <T

8 from Fig. 7. By
Lemma 2(3) we have ({a, b, c, d, e},<T

8) � obsT O(P8), so a construction of any generalised
order structure is not needed. Note that <T

8 �=<I
8 and <T

8 �=<S
8 . ��

Example 8 (generalised partial order structures)
Let o1, o2, o3, o4,<P and<>P be relations defined in Fig. 8. Define X ={a, b, c, d, e, f, g, h},
<>P = X × X\<>P , �P = <P ∪{(g, h)}. Consider the set of partial orders ∆ =
{o1, o2, o3, o4} and the triple G P = ({a, b, c, d},<>P ,�P). Note that ∆ = ∆cl

P O , i.e.

123

306 R. Janicki

a

b

d

f

c

e

g

h
o1

b

a

d

f

c

e

g

h
o2

a

b

d

f

c

e

g h

o3

b

a

d

f

c

e

g h

o4

a b

d

f

c

e

g h

<P

a b

d

f

c

e

g

h

P

Fig. 8 The relations for Example 8 partial orders are represented as Hasse diagrams, the graph for <>
represents the whole relation

∆ satisfies the definition of a history (Definition 1), and<∆ = <P , �∆ = �P ,<>∆ = <>P .
Furthermore ∆ conforms only to π1 and none of o1, o2, o3, o4, is not an interval order. The
triple G P is a generalised partial order structure but not generalised interval order structure,
i.e. G P ∈ GPI F\GI, and ext sat

GPI F
= ∆. Furthermore G P is extension complete.

Similarly as in the case of SP from Example 5 (and for similar reasons), we cannot provide
any concurrent system that generates ∆ = {o1, o2, o3, o4}. ��

Before further analysis of extension completeness of appropriate generalised order struc-
tures, we need another definition of “extension”.

• A partial order (X,≺) is an extension of a generalised order structure (X,<>,�) if and
only if <> ⊆ ≺sym and � ⊆ ≺∼.

The following lemma gives some simple necessary and sufficient conditions for extension
completeness. We will use it often in the remainder of this paper.

Lemma 5 Let G = (X,<>,�) be a generalised structure and Ω any non-empty set of
partial orders that extend G. Then <> = ⋂

≺∈Ω ≺sym, and � = ⋂
≺∈Ω ≺∼ if and only if

for all distinct x, y ∈ X we have:

1. ¬(x <> y)⇒ ∃ ≺∈ Ω. ¬(x ≺ y) ∧ ¬(y ≺ x)
2. ¬(x � y)⇒ ∃ ≺∈ Ω. y ≺ x.

Proof Note that (1) is equivalent to (
⋂
≺∈Ω ≺sym) ⊆<>, and (2) is equivalent to

(
⋂
≺∈Ω ≺∼) ⊆ �, so the implication (⇒) holds.

(⇐) Suppose (1) and (2) hold. From the definition of extension, for all x, y ∈ X , x <> y ⇒
∀ ≺∈ Ω. x ≺sym y and x � y ⇒ ∀ ≺∈ Ω. x ≺sim y, i.e. <> ⊆ ⋂

≺∈Ω ≺sym and
� ⊆ ⋂

≺∈Ω ≺∼. ��
The next lemma states when the union of order structures is an order structure.

Lemma 6 Let (Q,≺) be an upper semi-lattice,8 and {Sr | r ∈ Q}, where Sr = (X,<r ,

�r), be a class of (total, stratified, interval, partial) order structures such that r1 � r2 ⇒
(<r1⊆<r2 ∧ �r1⊆�r2). Then S = (X,<,�), where < = ⋃

r∈Q <r and � = ⋃
r∈Q �r , is

also a (total, stratified, interval, partial) order structure.

8 A partial order (X,<) is an upper semi-lattice if for any x, y ∈ X there is z ∈ X such that x ≤ z ∧ y ≤ z.
In particular any total order is an upper semi-lattice.

123

Relational structures model of concurrency 307

Proof (Total) In this case <r = �r for each r ∈ Q. Since x �<r x for any r ∈ Q, x �< x . If
x < y < z, then by definition there exist r1 and r2 such that x <r1 y and y <r2 z. By the
hypothesis, Q is an upper semi-lattice, so there is a r ∈ Q such that r1 � r and r2 � r , hence
<r1⊆<r and <r2⊆<r . It follows that x <r y and y <r z, hence x <r z. Therefore x < z.
(Stratified) S1: Since x ��r x for any t ∈ Q, x ��S x .
S2: If x < y, then by definition there is r ∈ Q such that x <r y, hence x �r y. So x � y.
S3: If x � y � z, then by definition there exist r1 and r2 such that x �r1 y and y �r2 z. By
the hypothesis, Q is an upper semi-lattice, so there is a r ∈ Q such that r1 � r and r2 � r ,
hence �r1⊆�r and �r2⊆�r . It follows that x �r y and y �r z, hence x �r z ∨ x = z.
Therefore x � y ∨ x = z.
S4: Similarly to the proof of S3.
(Interval) I1 as S1, I2 as S2, I3 as (Total), I4, I5, I6 similarly to S3.
(Partial) P1 as S1, P2 as S2, P3 as (Total), P4 similarly to S3. ��

The above two lemmas will be used in proofs of our main results. Lemma 5 is a natural
extension of Lemma 2.1 from [20]. Unfortunately, as opposed to [20], we are unable to give
one set of proofs that fits all cases; we have to go case by case. We will start with the case of
generalised stratified order structures, and end with generalised total order structures.

For later use, for any order structure S = (X,<,�) we define the following sets [20]:

(WS)a = {a} ∪ {c|c � a} (WS)
a = {a} ∪ {c|a � c}

(YS)a = {a} ∪ {c|c < a} (YS)
a = {a} ∪ {c|a < c}.

The above sets will be used in several proofs in the remainder of the paper.

6.1 Generalised stratified order structures

In order to prove that generalised stratified order structures are extension complete, it suffices
to show that conditions (1) and (2) of Lemma 5 are satisfied.

The proof below is intuitively quite straightforward, we just construct appropriate partial
orders, but the constructions are quite complex and lengthy, and employ transfinite induction.
The technique we will use was developed in [20] to prove Theorem 2. Preliminary version
of this subsection has been published as [13].

We will start with proving condition (2).

Lemma 7 Let G = (X,<>,�) ∈ GSI F (G ∈ GS) and let a, b ∈ X be any two distinct
elements such that ¬(b � a). Then there exists ≺∈ SO I F (≺∈ SO) such that ≺ extends G
(i.e. <>⊆≺sym and �⊆≺∼) and a ≺ b.

Proof By Proposition 1(1), it suffices to show there exists a T = (X,<T ,�T) ∈ Ssat
I F such

that (X,<sym
T ,�T) extends G and x ≺ y ⇐⇒ x <T y. By definition, SG = (X,<G ,�),

where <G = <> ∩ �, is in SI F . Consider the order structure S0 = (X,<0,�0) where

<0=<G ∪(WS)a × (WS)
b,

and

�0=� ∪(WS)a × (WS)
b.

Clearly a <0 b and <0 ∩ <>=�0 ∩ <>. We show that S0 ∈ SI F .
S1 and S2 hold trivially. To show that S3 holds, suppose x �0 y �0 z. Since we have

¬(b � a) and (WS)a ∩ (WS)
b = ∅, then

(x, y) ∈ (WS)a × (WS)
b ∧ (y, z) ∈ (WS)a × (WS)

b

123

308 R. Janicki

is impossible. Thus we have either

(i) x � y � z, or
(ii) x � y ∧ (y, z) ∈ (WS)a × (WS)

b, or
(iii) (x, y) ∈ (WS)a × (WS)

b ∧ y � z.

If (i) holds, then x � z ∨x = z, so x �0 z ∨x = z.
If (ii) holds, then x � y � a, which implies x � a ∨x = a, hence x ∈ (WS)a . Then we have
(x, z) ∈ (WS)a × (WS)

b, therefore x �0 z.
Similarly, if (iii) holds, then z ∈ (WS)

b and (x, z) ∈ (WS)a × (WS)
b, so x �0 z.

Thus in any case, x �0 y �0 z �⇒ x �0 z ∨ x = z, that is S3 holds.
The proof for S4 is very similar. Suppose x �0 y <0 z. Since ¬(b � a) and (WS)a ∩

(WS)
b = ∅ then

(x, y) ∈ (WS)a × (WS)
b ∧ (y, z) ∈ (WS)a × (WS)

b

does not hold. Thus, either

(i) x � y < z, or
(ii) x � y ∧ (y, z) ∈ (WS)a × (WS)

b, or
(iii) (x, y) ∈ (WS)a × (WS)

b ∧ y < z.

If (i) holds, then we have x < z, so x <0 z.
If (ii) holds, then x � y < a, which implies x < a, hence x ∈ (WS)a . This means
(x, z) ∈ (WS)a × (WS)

b, therefore x <0 z.
Similarly, if (iii) holds, then z ∈ (WS)

b and (x, z) ∈ (WS)a × (WS)
b, so x <0 z.

Therefore in any case, x �0 y <0 z⇒ x <0 z.
The proof of the case x <0 y �0 z is almost the same, hence S4 holds.

Finally, it is easy to see that for any h ∈ X ,

(WS0)
h ⊆ (WS)

h ∪ (WS)
a .

Therefore S0 is also initially finite. The rest of the proof is a refinement of the proof of
Lemma 2.2 in [20].

Since S is initially finite, X is countable, hence we may assume that there is a well order,
� say, of X such that each element in X is preceded only by finitely many elements. We
extend � lexicographically to X × X and we define � = � ∪ idX .

We now show, by �-induction, that for each pair (c, d) ∈ X × X , we can associate
Scd = (X,<cd ,�cd) ∈ SI F such that for all pairs (c, d), (e, f) ∈ X × X , there exists
Sef = (X,<e f ,�e f) ∈ SI F and the following are satisfied

<0⊆<cd ∧ �0⊆�cd , (1)

(e, f) � (c, d) �⇒<e f⊆<cd ∧ �e f⊆�cd , (2)

c �= d �⇒ c <cd d ∨ d �cd c, (3)

<cd ∩ <>=�cd ∩ <> . (4)

Moreover, for all g ∈ X ,

(WScd)
g ⊆ (WS0)

g ∪
⎛

⎝
⋃

h�c

(WS0)
h

⎞

⎠ . (5)

Let (m,m) be the minimal pair w.r.t. the well ordering � in X × X . Set Smm = S0. Of
course Smm ∈ SI F , and it trivially satisfies (1), (2), (3), (4) and (5).

123

Relational structures model of concurrency 309

Now let (e, f) ∈ X × X be a pair such that Scd ∈ SI F are defined for all (c, d) � (e, f)
and satisfy (1), (2), (3), (4), and (5). There are only finite such (c, d)’s, so there is a maximal
pair, (ĉ, d̂) say. If (e = f) ∨ (e <ĉd̂ f) ∨ (f �ĉd̂ e), then define Sef = Sĉd̂ ; else set
Sef = (X,<e f ,�e f) where

<e f=<ĉd̂ ∪
(
Wĉd̂

)
e × (Wĉd̂)

f ,

and

�e f=�ĉd̂ ∪
(
Wĉd̂

)
e × (Wĉd̂)

f .

Similarly as for S0 we can show that Sef ∈ SI F . It is also clear that Sef satisfies (1), (2), (3)
and (4) above. For any g ∈ X ,

(
WSef

)g ⊆ (
WSĉd̂

)g ∪ (
WSĉd̂

)e
.

By (5) for all (c, d) � (e, f), we obtain

(
WSef

)g ⊆
⎛

⎝(WS0)
g ∪

⎛

⎝
⋃

h�ĉ

(WS0)
h

⎞

⎠

⎞

⎠ ∪
⎛

⎝
(
WS0

)e ∪
⎛

⎝
⋃

h�ĉ

(
WS0

)h

⎞

⎠

⎞

⎠

⊆ (
WS0

)g ∪
⎛

⎝
⋃

h�e

(WS0)
h

⎞

⎠ .

Thus Sef = (X,<e f ,�e f) also satisfies (5). Next we define

T = (X,<T ,�T), where <T=
⋃

(c,d)∈X×X

<cd , and �T=
⋃

(c,d)∈X×X

�cd .

By Lemma 6, T = (X,<T ,�T) ∈ S. Clearly, a <T b. By (3) T is saturated, i.e. x <T

y ⇐⇒ ¬(y �T x), or, equivalently x �T y ⇐⇒ x <sim
T y. To show that T is also

initially finite, observe that for any g ∈ X ,

(WT)
g ⊆

⋃

(c,d)∈X×X

(
WScd

)g =
⋃

d∈X

((
⋃

c�g

(
WScd

)g

)

∪ (
WSgd

)g ∪
(

⋃

g�c

(
WScd

)g

))

.

By (2), we can prove that
⋃

c�g(WScd)
g ⊆ (WSgd)

g. Suppose x ∈⋃
g�c(WScd)

g . If x = g,
then x ∈ (WSgd)

g . Else there is a pair (c, d) with g � c such that x �Scd g which implies
¬(g <cd x). By (2), ¬(g <gd x), which in turn, by (3), implies that x �gd g. It follows that
x ∈ (WSgd)

g . Thus,
⋃

g�c

(WScd)
g ⊆ (WSgd)

g.

Therefore
(WT)

g ⊆
⋃

d∈X

(WSgd)
g ⊆

⋃

h�g

(WS0)
h . (6)

Since there are only finitely many elements proceeding g and S0 is initially finite, we see that
the last union in (6) is a finite set. This shows that T is initially finite.

Finally, we show that<T is an extension of G. By construction of T , we have �⊆�T=<∼T .
We only need to show that<>⊆<sym

T = (<T ∪(<T)
−1). Suppose c <> d , then c �= d . By (3),

c <T d∨d �T c. If c <T d , we are done. Otherwise d �T c. By (4),<T ∩ <> = �T ∩ <>,

123

310 R. Janicki

hence d <T c. So in any case, c <T d ∨ d <T c. Hence we set ≺ = <T and this completes
the proof of Lemma 7 for initially finite stratified generalised order structures. For just
stratified generalised order structure we proceed identically, just omitting all references to
initial finiteness. ��

Now we will show that the condition (1) of Lemma 5 is also satisfied.

Lemma 8 Let G = (X,<>,�) ∈ GSI F (G ∈ GS) and a, b ∈ X be any distinct pair such
that ¬(b <> a). Then there exists ≺∈ SOI F (SO) such that ≺ extends G (i.e. <>⊆≺sym

and �⊆≺∼) and a ≺∼ b ∧ b ≺∼ a.

Proof The idea of the proof is the same as in the proof of Lemma 7. Since<> is symmetric,
¬(b <> a) implies ¬(a <> b). By definition, SG = (X,<G ,�), where <G = <> ∩ �,
is in SI F . We first show that there is an S0 = (X,<0,�0) ∈ SI F such that S0 extends S,
a �0 b, b �0 a and <0 ∩ <>=�0 ∩ <>.

Define S′0 ∈ SI F as follows: If a � b, then S′0 = S; else S′0 = (X,<′0,�′0) where

<′0 = <G ∪ (YS)a × (YS)
b − {(a, b)},

and

�′0 = � ∪ (YS)a × (YS)
b.

Clearly S ⊆ S′0 and a �′0 b. By virtually repeating the part of proof of Lemma 7 that shows
“S0 ∈ SI F ” we show S′0 ∈ SI F . Moreover, it is clear that <′0 ∩ <> = �′0 ∩ <>.

Define S0 as follows: If b �′0 a, then S0 = S′0; else S0 = (X,<0,�0) where

<0 = <′0 ∪
(
YS′0

)
b ×

(
YS′0

)a − {(b, a)},
and

�0 = �′0 ∪ (YS′0)b × (YS′0)
a .

Again it is clear that SG ⊆ S′0 ⊆ S0 and a �0 b and b �0 a. And a routine check, as in
the beginning of the proof of Lemma 7, shows that S′0 ∈ SI F . Moreover, it is also clear that
<0 ∩ <> = �0 ∩ <>.

Now by the same construction as the one in the second part of the proof of Lemma 7 above
(which is a refinement of the proof of Lemma 2.2 in [20]), we see that there exists T ∈ Ssat

I F
such that T = (X,<T ,�T) extends G and a �T b and b �T a. Since T is saturated this
implies a <∼T b and b <∼T a. Hence we set ≺ = <T .

This completes the proof of Lemma 8 for initially finite stratified generalised order struc-
tures. For just stratified generalised order structures we proceed identically, just omitting all
references to initial finiteness. ��

Lemmas 7 and 8 imply that the necessary and sufficient conditions in Lemma 5 for
extension completeness are satisfied by the class GSI F and GS. Therefore we can formulate
the following theorem—the main result of this subsection.

Theorem 3 The classes of generalised ordered structures GS and GSI F are extension
complete.

Proof From Lemmas 5,7 and 8. ��

123

Relational structures model of concurrency 311

6.2 Generalised interval order structures

The triple ({a, b, c, d},<>I
8,�I

8) from Fig. 7 is an example of a generalised interval order
structure which is not stratified.

It seems the technique used in previous section is not enough to prove an analogue of
Theorem 3 for generalised interval order structures. To do that we need Theorem 1 (Fishburn’s
Theorem [14,18]) and the following results from [1,14,38].

Lemma 9 [38] Let po = (X,<) be a partial order and a, b ∈ X, a ∼ b. Define Y =
{a} ∪ {y | y < a}, Z = {b} ∪ {z | b < z}. Then (X,<ab) = (X,< ∪ Y×Z) is a partial
order and a <ab b. ��
Theorem 4 [1] Let S = (X,<,�) be an interval order structure. Then there is a partial
order (T,≺) and two mappings ϕ,ψ : X → T such that T = ϕ(X) ∪ ψ(X), and for all
distinct a, b ∈ X,

1. ϕ(a) ≺ ψ(a),
2. {ϕ(a), ψ(a)} ∩ {ϕ(b), ψ(b)} = ∅,
3. a < b ⇐⇒ ψ(a) ≺ ϕ(b),
4. a � b ⇐⇒ ϕ(a) ≺ ψ(b). ��

The above theorem can be seen as a generalisation of Fishburn’s Theorem (Theorem 1) to
order structures. It turns out that an analogue of Theorem 4 also holds for initially finite
interval order structures.

Theorem 5 Let S = (X,<,�) be an initially finite interval order structure. Then there
is an initially finite partial order (T,≺) and two mappings ϕ,ψ : X → T such that
T = ϕ(X) ∪ ψ(X), and for all distinct a, b ∈ X,

1. ϕ(a) ≺ ψ(a),
2. {ϕ(a), ψ(a)} ∩ {ϕ(b), ψ(b)} = ∅,
3. a < b ⇐⇒ ψ(a) ≺ ϕ(b),
4. a � b ⇐⇒ ϕ(a) ≺ ψ(b).

Proof Let (T,≺) be a poset from Theorem 4 and let y ∈ T . Then there is b ∈ X such that
y = ϕ(b) or y = ψ(b). Since ϕ(b) ≺ ψ(b), it suffices to consider the case y = ψ(b). Since
S is initially finite, then {a | a <∼ b} = {a | ¬(b < a)} is finite. We also have

¬(b < a) ⇐⇒ ¬(ψ(a) ≺ ϕ(b)) ⇐⇒ ϕ(a) ≺ ψ(b) ∨ ϕ(a) ∼ ψ(b),
which means if {a | ¬(b < a} is finite, the set

{ϕ(a) | ϕ(a) ≺ ψ(b)} ∪ {ϕ(a) | ϕ(a) ∼ ψ(b)}
is also finite.

We will show that the set {x | x ≺∼ y} is finite.
Since T = ϕ(X) ∪ ψ(X) and y = ψ(b), we have

{x | x ≺∼ y} = {ϕ(a) | ϕ(a) ≺ ψ(b)} ∪ {ψ(a) | ψ(a) ≺ ψ(b)} ∪
{ϕ(a) | ϕ(a) ∼ ψ(b)} ∪ {ψ(a) | ψ(a) ∼ ψ(b)}.

We have already shown that the set {ϕ(a) | ϕ(a) ≺ ψ(b)} ∪ {ϕ(a) | ϕ(a) ∼ ψ(b)} is finite.

123

312 R. Janicki

Consider the set {ψ(a) | ψ(a) ≺ ψ(b)}.
Since ϕ(a) ≺ ψ(a) then we haveψ(a) ≺ ψ(b)⇒ ϕ(a) ≺ ψ(b), so the cardinality of the set
{ψ(a) | ψ(a) ≺ ψ(b)} is smaller than or equal to the cardinality of the set {ϕ(a) | ϕ(a) ≺
ψ(b)}, i.e. {ψ(a) | ψ(a) ≺ ψ(b)} is finite. Consider now the set {ψ(a) | ψ(a) ∼ ψ(b)}.
Since ϕ(a) ≺ ψ(a), then

ψ(a) ∼ ψ(b)⇒ ¬(ψ(b) ≺ ϕ(a))⇔ ϕ(a) ≺ ψ(b) ∨ ϕ(a) ∼ ψ(b).
Hence the cardinality of {ψ(a) | ψ(a) ∼ ψ(b)} is smaller than the cardinality of {ϕ(a) |
ϕ(a) ≺ ψ(b)} ∪ {ϕ(a) | ϕ(a) ∼ ψ(b), which means {ψ(a) | ψ(a) ∼ ψ(b)} is also finite,
which ends the proof. ��

The results of Theorems 4 and 5 can be extended to generalized structures.

• A relation R ⊆ X × X is acyclic if and only if for all x ∈ X , ¬(x R∗x).

Theorem 6 Let G = (X,<>,�) be a generalised interval order structure. Then there is a
partial order (T,≺), two mappings ϕ,ψ : X → T , and an acyclic relation � ⊆ T×T such
that T = ϕ(X) ∪ ψ(X), and for all distinct a, b ∈ X and x, y ∈ T ,

1. ϕ(a) ≺ ψ(a),
2. {ϕ(a), ψ(a)} ∩ {ϕ(b), ψ(b)} = ∅,
3. x ≺ y ⇒ x � y,
4. a <> b ⇐⇒ ψ(a) � ϕ(b) ∨ ψ(b) � ϕ(a)
5. a <G b ⇐⇒ ψ(a) ≺ ϕ(b), where <G = <> ∩ �
6. a � b ⇐⇒ ϕ(a) ≺ ψ(b).
Furthermore, if G is initially finite then (T,≺) is also initially finite.

Proof Let <G=<> ∩ �, and let <t be any total extension of <G . Define a relation R on X
as R =<> ∩ <t . Note that <>= R ∪ R−1, <G⊆ R and R\ <G= R\ �. Let T = (X,≺)
be a partial order given by Theorem 4. Then (1), (2), (5) and (6) above are satisfied. We define
the relation �R as follows

x �R y ⇐⇒ (∃a, b ∈ X. x = ψ(a) ∧ y = ϕ(b) ∧ a Rb ∧ ¬(a <G b)).

First note that ψ(a) �= ϕ(b) since a Rb implies a �= b, so �R is irreflexive. We also have
x �R y ⇒ ¬(a <G b)⇔ ¬(ψ(a) ≺ ϕ(b))⇔ ¬(x ≺ y), hence �R ∩ ≺= ∅. Assume that
x �R y ∧ y ≺ x . This implies y = ϕ(b) ≺ x = ψ(a), and, by (6) above, b � a. By R ⊆<>,
we also have a <> b, so altogether we have b � a ∧ ¬(a <G b) ∧ a <> b, which imply
b <G a. But b <G a implies bRa, so we have a Rb and bRa, a contradiction as R ⊆<t .
Hence x �R y ⇒ ¬(y ≺ x), i.e. �R ∩ ≺sym= ∅. Similarly we show �−1

R ∩ ≺sym= ∅, hence
�sym

R ∩ ≺sym= ∅. Now we show that for all x, y, z ∈ T ,¬(x �R y�R z). Note that x �R y�R z
implies ∃ax , by, ay, bz ∈ X. x = ψ(ax)∧ y = ϕ(by) = ψ(ay)∧ z = ψ(bz). By Theorem 4
we have ϕ(a) ≺ ψ(a) for all a ∈ X , and a �= b⇒ {ϕ(a), ψ(a)} ∩ {ϕ(b), ψ(b)} = ∅ for all
a, b ∈ X , so the statement ∃ay, by ∈ X. y = ϕ(ay) = ψ(by) is false. Hence the relation �R

is acyclic. Define the relation � on T as follows:

x � y ⇐⇒ x ≺ y ∨ x �R y.

Since both ≺ and � are acyclic (≺ is a partial order) and �sym
R ∩ ≺sym= ∅, then � is acyclic

as well, and furthermore (3) above is satisfied.
Clearly a Rb ⇐⇒ ((a Rb ∧ ¬(a <G b)) ∨ a <G b), which means

a Rb ⇐⇒ ψ(a) ≺ ϕ(b) ∨ ψ(a) �R ϕ(b) ⇐⇒ ψ(a) � ϕ(b).

123

Relational structures model of concurrency 313

Since<> = R ∪ R−1, we have proved point (4) of this Theorem. This means all (1)–(6) are
satisfied. Initial finiteness of (T,≺) follows from Theorem 5. ��
We can now show extension completeness of generalised interval order structures.

Theorem 7 The classes of generalised interval order structures GI and of generalised ini-
tially finite interval order structures GII F , are extension complete.

Proof Let G = (X,<>,�) be a generalised interval order structure and let Ω be a set of
interval orders that extend G. First we show that Ω �= ∅. Let (T,≺) be a partial order from
Theorem 6, and let (T,≺t) be any total order satisfying x � y ⇒ x ≺t y, where � is a relation
given by Theorem 6. Since � is acyclic, such ≺t always exists. Clearly x ≺ y ⇒ x � y ⇒
x ≺t y. Define po = (X,<p) as a <p b ⇐⇒ ψ(a) ≺t ϕ(b). By Theorem 1, <p is an
interval order. Now, let a, b ∈ X . We have

a <> b⇒ ψ(a) � ϕ(b) ∨ ψ(b) � ϕ(a)
⇒ ψ(a) ≺t ϕ(b) ∧ ψ(b) ≺t ϕ(a)⇒ a <p b ∨ b <p a,

a � b⇒ ϕ(a) ≺ ψ(b)⇒ ϕ(a) ≺t ψ(b)

⇔ ¬(ψ(b) ≺t ϕ(a))⇔ ¬(b <p a)⇒ a <∼p b.

HenceΩ is non-empty. We now show that the conditions (1) and (2) of Lemma 5 are satisfied.
Define <G=<> ∩ � and let ¬(a <> b). Since <sym

G ⊆<>, we have ¬(a <
sym
G b), i.e.

a ∼G b. We will consider two cases (a � b ∧ b � a) and ¬(a � b ∧ b � a).

Case (a � b ∧ b � a). In this case then any element <T ofΩ satisfies a <∼T b and b <∼T a,
i.e. a ∼T b, so (1) of Lemma 5 holds.

Case ¬(a � b ∧ b � a). In this case by Theorem 6, we have

a ∼G b ⇐⇒ ψ(a) ∼ ϕ(b) ∧ ϕ(a) ∼ ψ(b).
Define the partial order ≺̂ = (≺ϕ(b)ψ(a))ϕ(a)ψ(b) by applying the construction from Lemma 9
twice. By Lemma 9 we now have ϕ(a)≺̂ψ(b) and ϕ(b)≺̂ψ(a). Let (T, ≺̂t) be any total
extension of (T, ≺̂). Define the poset po = (X,<p) by

c <p d ⇐⇒ ψ(c)≺̂tϕ(d).

By Theorem 1, po is an interval order, and proceeding similarly as at the beginning of this
proof, one may show that po ∈ Ω . Moreover we have

ϕ(a)≺̂tψ(b)⇒ ¬(ψ(b)≺̂tϕ(a))⇒ ¬(b <p a)⇔ a <∼p b,

ϕ(b)≺̂tψ(a)⇒ ¬(ψ(b)≺̂tϕ(a))⇒ ¬(a <p b)⇔ b <∼p a,

and so Lemma 5(1) is also satisfied in this case.
Suppose¬(a � b). Hence¬(a <G b), i.e. b <G a∨a ∼G b. If b <G a then any element

<T fromΩ satisfies b <T a, so Lemma 5(2) holds. Assume that a ∼G b. From Theorem 6,

¬(a � b)⇔ ¬(ϕ(a) ≺ ψ(b))
⇔ (ψ(b) ≺ ϕ(a) ∨ ϕ(a) ∼ ψ(b))
⇔ b <G a ∨ ϕ(a) ∼ ψ(b)).

This means in this case we have:

a ∼G b⇒ ϕ(a) ∼ ψ(b)).

123

314 R. Janicki

Define the partial order ≺̇ =≺ψ(b)ϕ(a) on T using the construction from Lemma 9. By
Lemma 9 we haveψ(b)≺̇ϕ(a). Let (T, ≺̇t) be any total extension of (T, ≺̇). Define the poset
qo = (X,<q) by

c <q d ⇐⇒ ψ(c)≺̇tϕ(d).

By Theorem 1, qo is an interval order, and proceeding similarly as at the beginning of this
proof, one may show that qo ∈ Ω . In this case we have:

ψ(b)≺̇tϕ(a)⇒ b <q a,

and so Lemma 5(2) is satisfied.
Thus, by Lemma 5, the class GI is extension complete. Now suppose that G is also initially

finite. From Theorem 6 the partial order (T,≺) is initially finite, and from the definition of
initial finiteness every total extension is also initially finite. Consider the poset po from the first
part of the proof, i.e. a <p b ⇐⇒ ψ(a) ≺t ϕ(b). Note that a <∼p b ⇐⇒ ¬(b <p a) ⇐⇒
ϕ(b) ≺t ψ(a). Hence {a | a <∼p b} is initially finite because {x | x ≺t ψ(a)} is finite.
Similarly for the remaining constructions. Therefore the entire proof can be formulated
using initially finite posets only. Thus GII F is also extension complete. ��

The proof of Theorem 7 is less straightforward and elegant than the proof of Theorem 3,
but it is also mathematically less sophisticated and much easier to follow. Unfortunately this
technique cannot be applied to generalised stratified order structures since an equivalence of
Theorem 4 does not exist for stratified order structures (see [18]).

6.3 Generalised partial order structures

An equivalence of Theorem 4 does not exist for general partial orders either, but the technique
used for generalised stratified order structures can be applied in this case. We will show that
conditions (1) and (2) of Lemma 5 are satisfied, using very similar reasoning as in the case
of stratified order structures. We start with proving condition (2).

Lemma 10 Let G = (X,<>,�) ∈ GPI F (G ∈ GP) and let a, b ∈ X be any two distinct
elements such that ¬(b � a). Then there exists ≺∈ P O I F (≺∈ P O) such that ≺ extends G
(i.e. <>⊆≺sym and �⊆≺∼) and a ≺ b.

Proof The proof is very similar to the proof of Lemma 7. We will only present the parts that are
different. By Proposition 1(1), it suffices to show there exists a T = (X,<T ,�T) ∈ Psat

I F such
that (X,<sym

T ,�T) extends G and x ≺ y ⇐⇒ x <T y. By definition, SG = (X,<G ,�),
where <G = <> ∩ �, is in PI F . Consider the order structure S0 = (X,<0,�0) where

<0=<G ∪(WS)a × (WS)
b,

and

�0=� ∪(WS)a × (WS)
b.

Clearly a <0 b and<0 ∩ <>=�0 ∩ <>. We show that in this case S0 satisfies P1–P4 and is
initially finite.

P1 and P2 hold trivially. To show that P3 holds, suppose that x <0 y <0 z. Since we have
¬(b � a) and (WS)a ∩ (WS)

b = ∅,
(x, y) ∈ (WS)a × (WS)

b ∧ (y, z) ∈ (WS)a × (WS)
b

is impossible. Thus we have either

123

Relational structures model of concurrency 315

(i) x < y < z, or
(ii) x < y ∧ (y, z) ∈ (WS)a × (WS)

b, or
(iii) (x, y) ∈ (WS)a × (WS)

b ∧ y < z.

If (i) holds, then x < z, thus x <0 z.
If (ii) holds, we have x < y < a, which implies x < a, i.e. x ∈ (WS)a . Hence (x, z) ∈
(WS)a × (WS)

b, therefore x <0 z.
Similarly, if (iii) holds, then z ∈ (WS)

b and (x, z) ∈ (WS)a × (WS)
b, so x <0 z.

So in any case, x <0 y <0 z �⇒ x <0 z ∨ x = z, that is P3 holds.
The proof of P4 is very similar. Suppose x �0 y <0 z. Since ¬(b � a) and (WS)a ∩

(WS)
b = ∅, then

(x, y) ∈ (WS)a × (WS)
b ∧ (y, z) ∈ (WS)a × (WS)

b

does not hold. Thus we have either

(i) x � y < z, or
(ii) x � y ∧ (y, z) ∈ (WS)a × (WS)

b, or
(iii) (x, y) ∈ (WS)a × (WS)

b ∧ y < z.

If (i) holds, then x � z, thus we have x <�0 z.
If (ii) holds, we have x � y < a, which implies x � a, hence x ∈ (WS)a . Then (x, z) ∈
(WS)a × (WS)

b, therefore x �0 z.
Similarly, if (iii) holds, then z ∈ (WS)

b and (x, z) ∈ (WS)a × (WS)
b, so x �0 z.

So in any case we have x �0 y <0 z⇒ x �0 z.
The proof of the case x <0 y �0 z is almost the same, hence P4 holds.

Finally, it is easy to see that for any h ∈ X ,

(WS0)
h ⊆ (WS)

h ∪ (WS)
a .

Therefore S0 is also initially finite. The rest of the proof is an exact copy of the appropriate
part of the proof of Lemma 7. ��

Now we will show that condition (1) of Lemma 5 is also satisfied.

Lemma 11 Let G = (X,<>,�) ∈ GPI F (G ∈ GP) and let a, b ∈ X be any distinct pair
such that ¬(b <> a). There exists ≺∈ P OI F (P O) such that ≺ extends G (i.e. <>⊆≺sym

and �⊆≺∼) and a ≺∼ b ∧ b ≺∼ a.

Proof This is very similar to the proof of Lemma 8. Since <> is symmetric, we have
¬(b <> a) implies ¬(a <> b). By definition, SG = (X,<G ,�), where <G = <> ∩ �,
is in PI F . We first show that there is an S0 = (X,<0,�0) ∈ PI F such that S0 extends S,
a �0 b, b �0 a and <0 ∩ <>=�0 ∩ <>.

Define S′0 ∈ SI F as follows: If a � b, then S′0 = S; else S′0 = (X,<′0,�′0) where

<′0 = <G ∪ (YS)a × (YS)
b − {(a, b)},

and

�′0 = � ∪ (YS)a × (YS)
b.

Clearly S ⊆ S′0 and a �′0 b. By virtually repeating the part of proof of Lemma 10 that shows
“S0 ∈ PI F ”, we show that S′0 ∈ PI F . Moreover, it is also clear that<′0 ∩ <> = �′0 ∩ <>.

Define S0 as follows: If b �′0 a, then S0 = S′0; else S0 = (X,<0,�0) where

<0 = <′0 ∪
(
YS′0

)
b ×

(
YS′0

)a − {(b, a)},

123

316 R. Janicki

and

�0 = �′0 ∪
(
YS′0

)
b ×

(
YS′0

)a
.

Again it is clear that SG ⊆ S′0 ⊆ S0 and a �0 b and b �0 a. And a routine check, as the one
at the beginning of the proof of Lemma 10, shows that S′0 ∈ PI F . Moreover, it is clear that
<0 ∩ <> = �0 ∩ <>. The rest of the proof is an exact copy of the appropriate part of the
proof of Lemma 8. ��

Lemmas 10 and 11 imply that the necessary and sufficient conditions in Lemma 5 for
extension completeness are satisfied by the classes GPI F and GP. Therefore the we can
formulate the following Theorem.

Theorem 8 The classes of generalised ordered structures GP and GPI F are extension com-
plete.

Proof From Lemmas 5, 10 and 11. ��
6.4 Generalised total order structures

While all classes of order structures considered in Sect. 3 are extension complete, for genera-
lised order structures this is true only for GS, GI and GP. Total order structures from GT are
not always extension complete. The total order structure G1 of Fig. 1 is extension complete,
while G7 from Example 6 is not extension complete when treated as an element of GT.

Proposition 4 A generalised total order structure G = (X,<>,�) is extension complete if
and only if <>= {(x, y) | x, y ∈ X ∧ x �= y}.
Proof If G = (X,<>,�) is a generalised total order structure then �=<G is a partial order.
(⇒) A saturated generalised total order structure is of the form (X,≺sym,≺) where ≺ is a
total order. But for every total order ≺ on X , we have

≺sym = {(x, y) | x, y ∈ X ∧ x �= y}.
Hence <>=⋂

T∈extsat
GT(G)

≺sym
T = {(x, y) | x, y ∈ X ∧ x �= y}.

(⇐) If <>= {(x, y) | x, y ∈ X ∧ x �= y} and �=≺G is a partial order, then the triple
(X,<>T ,≺T) belongs to ext sat

GT(G) if and only if <>T= {(x, y) | x, y ∈ X ∧ x �= y} and
≺T is a total extension of ≺G . Thus G is extension complete. ��

Since every generalised total order structure also belongs to GS, if <> �= {(x, y) | x, y ∈
X ∧ x �= y} then ext sat

GT(G) ⊂ ext sat
GS(G), and from Theorem 3,

G =
⋂

T∈extsat
GS(G)

T,

i.e. G is extension complete in GS. For instance for G7 from Fig. 6, we have ext sat
GT(G7) =

{abcd, abdc, acbd} ⊂ ext sat
GS(G7) = {abcd, abdc, acbd, ab{c, d}}, and G7 is extension

complete when treated as a generalised stratified order structure.
Finally note that even extension complete generalised order structures are not partial orders

in disguise, as opposed to total order structures from the previous section. The generalised
total order structure G1 from Fig. 1 is extension complete, but it is not tantamount to any
partial order.

In this entire section the triples (X,<>,�) do not have any special interpretation, and
the results can be seen as another extension of Szpilrajn’s ideas [38] to partial orders that are
not necessarily total, and this time no assumption about the sets of partial orders is made.

123

Relational structures model of concurrency 317

7 Generalised order structures and concurrent histories

Structurally the relationship between Generalised Order Structures and Concurrent Histories
is similar to that of between Order Structures and Concurrent Histories which was discussed
in Sect. 5. The only substantial difference is the case of Generalised Total Order Structures.

First note that if a generalised order structure G = (X,<>,�) satisfies<> = ≺sym
G where

≺G = <> ∩ �, then each property of G is fully described by its induced order structure
SG = (X,≺G ,�). In particular we have the following result.

Corollary 9 Let G = (X,<>,�) ∈ Θ be a generalised order structure and let <G = <
∩ �, SG = (X,<G ,�). If <> = <sym

G , then

(X,≺sym
e ,≺∼e) ∈ ext sat

Θ (G) ⇐⇒ (X,≺e,≺∼e) ∈ ext sat
Θ (SG).

��
The above result together with Lemma 3(1) and Proposition 2 indicate that when the paradigm
π3 is satisfied, we do not need generalized order structures at all, the modelling power of
order structures from Sect. 3 is sufficient. If the paradigm π6 holds we only need generalized
total order structures.

Proposition 5 Let∆ be a concurrent history with a domain X conforming to π6 in O, where
O is any class of partial orders. Then the triple G = (X,<>∆,�∆) is a generalised total
order structure

Proof From the definitions of <>∆, �∆ and Lemma 3(3). ��
Because the class of total order structures is not extension complete, the counterpart of

Corollary 4 is a bit more elaborate. It can be formulated as follows.

Corollary 10

1. Let Θ1,Θ2 ∈ {GS, GI, GP, GSI F , GII F , GPI F }, Θ1 ⊆ Θ2, and let the generalised
order structure G = (X,<>,�) ∈ Θ1. Then
(a) ext sat

Θ1
(G) ⊆ ext sat

Θ2
(G), and S =⋂

T∈extsat
Θ1
(G) T =⋂

T∈extsat
Θ2
(G) T .

(b) S � ext sat
Θ1
(G) and S � ext sat

Θ2
(G).

2. Let Θ1 ∈ {GT,GTI F }, Θ2 ∈ {GS, GI, GP, GSI F , GII F , GPI F }, and Θ1 ⊆ Θ2. If
G = (X,<>,�) ∈ Θ1 is extension complete, then
(a) ext sat

Θ1
(G) ⊆ ext sat

Θ2
(G), and S =⋂

T∈extsat
Θ1
(G) T =⋂

T∈extsat
Θ2
(G) T .

(b) S � ext sat
Θ1
(G) and S � ext sat

Θ2
(G).

3. Let Θ1 ∈ {GT,GTI F }, Θ2 ∈ {GS, GI, GP, GSI F , GII F , GPI F }, and Θ1 ⊆ Θ2. If
G = (X,<>,�) ∈ Θ1 is not extension complete, then
(a) ext sat

Θ1
(G) ⊂ ext sat

Θ2
(G), and

⋂
T∈extsat

Θ1
(G) T �= S =⋂

T∈extsat
Θ2
(G) T .

(b) S �� ext sat
Θ1
(G) but S � ext sat

Θ2
(G). ��

For each class of generalised order structures Θ ∈ {GT, GS, GI, GP, GTI F , GSI F , GII F ,
GPI F }, let po(Θ) denotes the class of partial orders with the corresponding name. For
instance po(GSI F) = SOI F , po(GI) = I O , etc. For the rest of this subsection, we will
interpret the elements of ext sat

Θ (G) as partial orders if G is in one of the classes mentioned
above (see comments after Propositions 1 and 3).

We have the following analogue of Proposition 2 for generalised order structures.

123

318 R. Janicki

Proposition 6

1. Let Θ ∈ {GS, GI, GP, GSI F , GII F , GPI F } be a class of generalised order structures.
For each G ∈ Θ , the set ext sat

Θ (G) is a concurrent history in po(Θ) that conforms to π1.
2. Let Θ ∈ {GT,GTI F }. If G ∈ Θ is extension complete, then the set ext sat

Θ (G) is a
concurrent history in po(Θ) that conforms to π6.

3. Let Θ1 ∈ {GT,GTI F }, Θ2 ∈ {GS, GI, GP, GSI F , GII F , GPI F }, and Θ1 ⊆ Θ2. If
G ∈ Θ1 is not extension complete, then the set ext sat

Θ2
(G) is a concurrent history in

po(Θ2) that conforms to π6.

Proof 1. From the definition of extension completeness and Theorems 3, 7 and 8.
2. From the definition of extension completeness and Proposition 4.
3. From part (1) and Corollary 10(3). ��

When using Proposition 6 it is important to keep Corollary 10 in mind. Let us now analyse
appropriate examples from Examples 1–8. The generalised order structure G1 = ({a, b, c},
<>1,�1) from Fig. 1 that corresponds to the program P1 is extension complete and belongs
to GTI F and ext sat

GTI F
(G1) = obs(P1) = {abc, acb}.

For the program P7 of Example 6 we have G7 = ({a, b, c, d},<>S
7 ,�

S
7), and G7 ∈

GTI F ⊂ GSI F is not extension complete (<>S
7 does not satisfy Proposition 4) if viewed as

an element of GTI F . However, it is extension complete if viewed as an element of GSI F , and
ext sat

GSI F
(G7) = obsSO(P7) = {abcd, abdc, acbd, ab{c, d}} = obsI O(P7). It can easily be

checked that the concurrent history ext sat
GSI F

(G7) conforms to the paradigm π6.

The generalised order structure G I
8 = ({a, b, c, d, e},<>I

8,�I
8) that corresponds to the

program P8 from Example 7 belongs to GII F but not to GSI F , and we have ext sat
GII F

(G8) =
obsI O(P8).

However, the generalised order structure GS
8 = ({a, b, c, d, e},<>S

8 ,�
S
8) that also cor-

responds to the program P8 from Example 7 under the assumption that only stratified orders
are allowed as observations, belongs to GSI F ⊂ GII F , and ext sat

GSI F
(G8) = obsSO(P8).

An example of a generalised partial order structure that is not a generalised interval order
structure is analysed in Example 8 (the triple G P). We have G P ∈ GPI F\GI. The set ∆
from Fig. 5 is technically a concurrent history (it satisfies Definition 1); however, its elements
cannot be interpreted as observations. As we mentioned when analysing Example 5, it was
argued in [18] that an observation must always be an initially finite interval order, and neither
of oi ∈ ∆, i = 1, . . . , 4 is an interval order. Hence we cannot provide any concurrent system
that generates ∆ from Fig. 8.

8 Final comments

In this paper, we refined the notion of generalised structures introduced in [13], and proved
that the classes of stratified, interval and partial generalised order structures are extension
complete, while total generalised order structures are extension complete only if the relation
<> has a special form. The total generalised order structures here differ from those in [13,15],
and are more in the spirit used in [20].

The concept of a concurrent history from [18] was revisited, redefined, and analysed. The
special but common case, when only totally ordered observations are allowed, was analysed
in detail. We have shown (in a more convincing way than in [18,20]) that if only totally
ordered observations are allowed, neither the theory presented in this paper, nor that of [20],
is needed.

123

Relational structures model of concurrency 319

The theory of order structures of [20] was also revisited and reformulated in the new
framework. We emphasize the fact that order structures may belong to various different
classes, and this needs to be taken into consideration when concurrent histories are modelled.
This issue is not discussed in [20]. The theory presented in this paper is therefore an extension
of that of [20]. If a generalized order structure G = (X,<>,�) satisfies<> = (<> ∩ �)sym,
then all properties of G are fully described by the appropriate properties of the order structure
SG = (X,<> ∩ �,�), and the complete theory of order structures is given in [20].

The generalised order structures model all kinds of concurrent histories (see [18]); howe-
ver, if the paradigm π3 does hold, appropriate generalised order structures are just order
structures in disguise, so the simpler model of [20] can be used. If the paradigm π6 holds
(and π3 does not), we have a relatively simple but also tricky case of generalised total order
structures.

We have illustrated all the concepts by a variety of simple examples.
From a purely mathematical point of view the results of this paper can be seen as gene-

ralisations of Szpilrajn’s Theorem [38], from total orders to stratified, interval and general
partial orders, without any restrictions on the structure of sets of partial orders, and as the
full generalisation of the results of [20]. The generalised partial order structures (and partial
order structures of [20]) do not have an obvious interpretation in concurrency theory, but they
represent the most unrestricted case of the theory.

An immediate application of the results obtained here seems to be in the concurrent
system synthesis problem area. We believe that the approach introduced in [33] could now,
after employing the results of this paper, handle cases like program P1 from the introduction.

We also believe that all results that use the model of [19] (finite version of [18]) and [18]
([23,27,36], etc.) can be relatively easily extended to the model presented in this paper. In
some cases this should extend the area of applications.

The main results of this paper, Theorems 3, 7, and 8, although highly motivated by concur-
rency theory, are entirely independent of any particular interpretation.

Ackowledgments The author gratefully acknowledges the anonymous referees, whose comments signifi-
cantly contributed to the final version of this paper. The formal definition of generalised order structures is
due to Guangyuan Guo. Wolfram Kahl is thanked for a hint that helped to prove Theorem 6. Jeff Zucker and
Marek R. Janicki are thanked for correcting many errors.

References

1. Abraham, U., Ben-David, S., Magodor, M.: On global-time and inter-process communication. In: Seman-
tics for Concurrency, Workshops in Computing, pp. 311–323. Springer, Heidelberg (1990)

2. Anger, F.D.: On Lamport’s interprocess communication model. ACM TOPLAS 11(3), 404–417 (1989)
3. Baldan, P., Busi, N., Corradini, A., Pinna, M.: Domain and event structure semantics for petri nets with

read and inhibitor arcs. Theor. Comput. Sci. 323, 129–189 (2004)
4. Begstra J.A., et al. (eds.): The Handbook of Process Algebras. Elsevier, Amsterdam (2000)
5. Best, E., de Boer, F., Palamedissi, C.: Partial order and SOS semantics for linear constraint programs. In:

Lecture Notes in Computer Science, vol. 1282, pp. 256–273. Springer, Heidelberg (1997)
6. Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. Springer, Heidelberg (2001)
7. Best, E., Koutny, M.: Petri net semantics of priority systems. Theor. Comput. Sci. 94, 141–158 (1992)
8. Best, E., Koutny, M.: Operational and denotational semantics for the box algebras. Theor. Comput.

Sci. 211, 1–83 (1999)
9. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating systems. J. ACM 31, 560–

599 (1984)
10. Degano, P., Montanari, U.: Concurrent histories; a basis for observing distributed systems. J. Comput.

Syst. Sci. 34, 422–467 (1987)
11. Diekert, V., Rozenberg, G. (eds.) The Book of Traces. World Scientific, Singapore (1995)

123

320 R. Janicki

12. Gaifman, H., Pratt, V.: Partial order models of concurrency and the computation of functions. In: Procee-
dings of LICS’87, pp. 72–85

13. Guo, G., Janicki, R.: Modelling Concurrent Behaviours by Commutativity and Weak Causality Relations.
In: Proceedings of AMAST’02. Lecture Notes in Computer Science, vol. 2422, pp. 178–191 (2002)

14. Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. J. Math. Psych. 7, 144–149
(1970)

15. Janicki, R.: A generalisation of a relational structures model of concurrency. In: Proceedings of ICTAC’04.
Lecture Notes in Computer Science, vol. 3407, pp. 84–98 (2005)

16. Janicki, R., Koutny, M.: Invariants and paradigms of concurrency theory. In: Proceedings of PARLE’91.
Lecture Notes in Computer Science, vol. 506, pp. 59–74 (1991)

17. Janicki, R., Koutny, M.: Order structures and generalisation of Szpilrajn’s theorem. In: Proceedings of
FSTTCS’93. Lecture Notes in Computer Science, vol. 761, pp. 348–357 (1993)

18. Janicki, R., Koutny, M.: Structure of concurrency. Theor. Comput. Sci. 112, 5–52 (1993)
19. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf. Comput. 123(1), 1–16 (1995)
20. Janicki, R., Koutny, M.: Fundamentals of modelling concurrency using discrete relational structures. Acta

Informatica 34, 367–388 (1997)
21. Janicki, R., Koutny, M.: On causality semantics of nets with priorities. Fundam. Inf. 38, 222–255 (1999)
22. Janicki, R., Lauer, P.E.: Specification and Analysis of Concurrent Systems: The COSY Approach. Sprin-

ger, Heidelberg (1992)
23. Juhás, G., Lorenz, R., Mauser, S.: Synchronous + Concurrent = Earlier Than + Not Later Than. In:

Proceedings of ACSD’06 (Application of Concurrency To System Design), pp. 261–272. IEEE Press,
New York (2006)

24. Juhás, G., Lorenz, R., Neumair, C.: Synthesis of controlled behaviour with modules of signal nets.
In: Proceedings of ATPN’04. Lecture Notes in Computer Science, vol. 3099, pp. 233–257. Springer,
Heidelberg (2004)

25. Katz, S., Peled, D.: Defining conditional independence using collapses. In: Semantics for Concurrency,
Workshops in Computing, pp. 262–290. Springer, Heidelberg (1990)

26. Klaudel, H., Pommereau, F.: A class of composable and preemptible high-level petri nets witn and
application to a multi-tasking system. Fundam. Inf. 50, 33–55 (2002)

27. Kleijn, H.C.M., Koutny, M.: Process semantics of P/T-nets with inhibitor arcs. In: Lecture Notes in
Computer Science, vol. 1825, pp. 261–281. Springer, Heidelberg (2000)

28. Kleijn, H.C.M., Koutny, M.: Process semantics of general inhibitor nets. Inf. Comput. 190, 18–69 (2004)
29. Lamport, L.: The mutual exclusion problem: Part I—A theory of interprocess communication; Part II—

Statements and solutions. J. ACM 33(2), 313–326 (1986)
30. Lamport, L.: What it means for a concurrent programm to satisfy a specification: why no one has specified

priority. In: Proceedings of the 12th ACM Symposium on Programming Languages, pp. 78–83 (1985)
31. Mazurkiewicz, A.: Trace theory. In: Lecture Notes in Computer Science, vol. 225, pp. 297-324. Springer,

Heidelberg (1986)
32. Milner, R.: Operational and algebraic semantics of concurrent processes. In: van Leuween, J. (ed.) Hand-

book of Theoretical Computer Science, vol. 2, pp. 1201-1242. Elsevier, Amsterdam (1993)
33. Pietkiewicz-Koutny, M.: The synthesis problem for elementary net systems. Fundam. Inf. 40(2,3),

310–327 (1999)
34. Pinna, G.M.: Event structures with disabling/enabling relation and event automata. Funadam. Inf. 73(3),

409–430 (2006)
35. Reisig, W.: Elements of Distributed Algorithms. Springer, Heidelberg (1998)
36. Roux, O.H., Lime, D.: Time petri nets with inhibitor arcs. Formal semantics and state space complexity.

In: Proceedings of ATPN’04. Lecture Notes in Computer Science, vol. 3099, pp. 370–390. Springer,
Heidelberg (2004)

37. Shields, M.W.: On the non-sequential behaviours of systems possessing a general free-choice-property,
CSR-92-81. Department of Computer Science, University of Edinburgh (1981)

38. Szpilrajn, E.: Sur l’extension de l’ordre partial. Fundam. Math. 16, 386–389 (1930)
39. Vogler, W.: Timed testing of concurrent systems. Inf. Comput. 121, 149–171 (1995)
40. Vogler, W.: Partial order semantics and inhibitor arcs. In: Lecture Notes in Computer Science, vol. 1295,

pp. 508–517. Springer, Heidelberg (1997)
41. Wollowski, R., Beister, J.: Precise petri net modelling of critical races in asynchronous arbiters and

synchronizers. In: Proceedings of 1st Workshop on Hardware Design and Petri Nets, Lisbon, pp. 46-65
(1998)

42. Wollowski, R., Beister, J.: Comprehensive causal specification of asynchronous controller and arbiter
behaviour. In: Yakovlev, A., Gomes, L., Lavagno, L. (eds.) Hardware Design and Petri Nets. Kluwer,
Dordrecht (2000)

123

	Relational structures model of concurrency
	Abstract
	Introduction
	Motivation and intuition
	Observations, histories and paradigms
	Partial orders
	Observations, concurrent histories and tantamount entities
	Restriction to totally ordered observations
	Paradigms
	Order structures
	Order structures and concurrent histories
	Generalised order structures
	Generalised stratified order structures
	Generalised interval order structures
	Generalised partial order structures
	Generalised total order structures
	Generalised order structures and concurrent histories
	Final comments
	Ackowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

