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Abstract In this paper we provide a bridge between the infinite state models used
in control theory to describe the evolution of continuous physical processes and the
finite state models used in computer science to describe software. We identify classes
of control systems for which it is possible to construct equivalent (bisimilar) finite state
models. These constructions are based on finite, but otherwise arbitrary, partitions of
the set of inputs or outputs of a control system.

1 Introduction

1.1 Motivation

The formal specification, design and analysis of software systems is usually based on
the use of finite state models such as transition systems, Buchi automata, etc. This
fact creates a real challenge for embedded systems in which continuous components
described by infinite state models, such as differential equations, interact with software
modules. Although much is known about these hybrid systems, as can be seen from the
proceedings of the latest workshops on the subject [15–19], systematic design method-
ologies are still lacking. In this paper we propose an important step towards a “correct
by design” synthesis theory for embedded systems by replacing infinite state models
of physical systems with equivalent finite state models. The possibility of expressing
the dynamics of control systems through finite state models offers great promises for
new design techniques addressing the requirements of both continuous and discrete
components. Not only do these finite state models offer a common framework bridg-
ing control theory and computer science but they also enable the use of algorithmic
synthesis techniques that are traditionally not considered in control theory.
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1.2 Contributions

The existence of finite state models is addressed through two different perspectives:
an input and an output perspective. The input perspective is based on the specification
of a desired input set as a finite partition of the existing infinite input set. Each ele-
ment of this partition can be identified with a symbol and the objective is to construct
an equivalent control system having these symbols as inputs. This symbolic view of
inputs is natural since embedded software/hardware can only influence the dynamics
of the physical world through a finite set of inputs. We show that these control systems
with symbolic inputs always exist and that under suitable assumptions (linearity and
controllability) they have a finite number of states. The output perspective is identical
to the input perspective except that the starting point is a finite partition of the infinite
output set of a control system. This is also a natural starting point since embedded
software/hardware can only react to the physical environment through a finite descrip-
tion of its state. Starting from such symbolic description of the output of a control
system the objective is to construct the simplest equivalent control system generating
the same symbolic outputs. Under the relevant technical assumptions (linearity and
controllability for example) we show existence and finiteness of these models. These
finiteness results encompass existing results by the author and coworkers [40,41,43]
and also provide new examples of systems which were previously not known to admit
symbolic models.

1.3 Related work

The idea of using symbolic models for the control of continuous systems is not new and
motivated much research in the area of hybrid systems [5,9,10,21,26,27,35,37,39,45].
Even though the use of symbolic models was advocated by these and many other
researchers, the applicability of the proposed methods has always remained an open
problem due to the lack of results ensuring existence of symbolic models for control
systems. Initial attempts to the construction of symbolic models for control systems
were based on integrals of motion [8,36]. Integrals or constants of motion are a quite
natural way of defining state space partitions compatible with the continuous dynam-
ics. The results in this paper, however, apply to classes of systems for which constants
of motion do not necessarily exist and can therefore be seen as complementary to
existing work, especially to [8]. Another line of inquiry, also related to the work
presented in this paper, is the study of quantized control systems [6,30]. Symbolic
models based on input quantization represent a different approach to symbolic con-
trol. Quantized input models are obtained by selecting a countable subset of the input
space contrasting with finite bisimulations which are obtained by selecting a finite
partition of the state or input and state space. Even though this observation seems to
suggest a certain duality between these approaches, further research is still required
to attest and formalize such duality. A different but related line of research consists of
the study of bisimulations of purely continuous [28,42,44] or hybrid systems [20,33].
The work described in these references represents another approach to complexity
reduction through the use of bisimulation based abstractions.

In the case of dynamical systems the situation is much better understood. Starting
with Alur and Dill’s work on timed automata [2], a fair amount of work was done to
push the boundaries of the class of systems admitting finite bisimulations. This work
culminated with the papers [1,13,14,32] introducing the decidable classes of multi-rate
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and rectangular hybrid automata. On the purely continuous side, we mention the work
of Lafferriere and co-workers [23] which used o-minimality to ensure existence of sym-
bolic models. See also [7] for a simpler and more insightful proof of the same results.
Unfortunately the techniques based on o-minimality do not extend to control systems
since the space of inputs is usually infinite dimensional (for example the space of
piece-wise constant functions) and thus fails to be captured by o-minimal structures.

1.4 Organization

The results presented in this paper were developed in the setting of category theory [22]
and in a framework very similar to the one used in [46] to compare different models
for concurrency. However, for the sake of readability, we limited the use of category
theory to the notion of morphism, essential for the results to be presented, and to the
notions of completion. In particular, all the proofs are explicit and involve no category
theoretic concepts. The readers averse to abstract constructions are invited to use the
concrete results presented in Corollaries 4.9 and 5.6 as motivation for the abstract
perspective taken in this paper.

The paper is organized as follows. The class of control systems considered in this
paper and the corresponding morphisms are introduced in Sect. 2 while the notion
of bisimulation is discussed in Sect. 3. Input induced bisimulations are the topic of
Sect. 4 where their existence is proved. Finite bisimulations induced by inputs are
also discussed and conditions for their existence established. Sect. 5 focuses on output
induced bisimulations. Existence conditions are provided in this section for infinite
and finite output induced bisimulations. The paper finishes with some discussion of the
presented results in Sect. 6. For completeness, some results on equivalence relations
are collected in an Appendix at the end of the paper.

2 Control systems and their morphisms

Control systems are usually defined by a differential equation:

d
dt

x = F(x, u)

where x ∈ R
n denotes the state and u ∈ R

m denotes the input. Consider for example
a block of mass m attached to a wall through a spring as displayed in Fig. 1. From
basic physics we know that the sum of the forces acting on the block is given by ma
where a is the acceleration of the block. The spring induces a force −Kd proportional
to the displacement d of the block and where K models the physical properties of the
spring. If u is an external force also acting on the block we have:

ma = −Kd + u

Noting that acceleration is the time derivative of velocity v and that velocity is the
time derivative of the displacement d we arrive at the following differential equation
describing the evolution of the block:

d
dt

v = −Kd + u

d
dt

d = v
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Fig. 1 Block attached to a
wall through a spring

d

u

0

We can thus regard this systems as a control system with F and state x given by:

F(x, u) =
[−Kd + u

v

]
, x =

[
v
d

]
∈ R

2

and where u ∈ R is the input.
Under standard regularity conditions (see for example [38]) on the map F : R

n ×
R

m → R
n and on a curve u : [0, τ ] → R

m with τ > 0, there exists a curve x : [0, τ ] → R
n

satisfying:
d
dt

x(t) = F(x(t), u(t)) (2.1)

for almost all t ∈ [0, τ ]. The curve u is considered an input trajectory and it is chosen
in order to ensure that the resulting state trajectory x satisfies certain desirable prop-
erties. We may be interested, for example, in choosing u in order to guarantee that the
block in Fig. 1 moves from d = 0 to some other desired displacement. If we denote
the set of all such input trajectories by U and if we denote by f the map sending the
pair (x(0), u) ∈ M × U to x(τ ) ∈ M we can regard a control system simply as a map:

f : M × U → M

where M = R
n is the state set and U is the set of input trajectories. In this paper we

will make two assumptions regarding the set U:

(1) We will assume that elements of U are regular enough so that for each pair
(x, u) ∈ M × U there exists always a well defined curve x satisfying (2.1) with
x(0) = x. Examples of choices for U include piece-wise constant, piece-wise
continuous and piece-wise smooth curves.

(2) We will assume that curves in U are defined on intervals [0, τ ] for some fixed, but
otherwise arbitrary, τ > 0. This is the case, for example, when control schemes
are implemented in microprocessors through periodic tasks that are executed
every τ > 0 units of time.

Given the above discussion we shall model control systems as a map:

f : M × U → M (2.2)

describing the state f (x, u) ∈ M resulting from applying input curve u ∈ U at the state
x ∈ M. To simplify notation we will denote an element of U simply by u instead of u.
Moreover, we will refer to this element u as an input rather than as an input curve.

In many situations the resulting state f (x, u) cannot be observed directly but rather
through an output map:

r : M → P (2.3)
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transforming states x ∈ M into outputs r(x) ∈ P. This is the case in our block exam-
ple if we only have a sensor measuring the displacement of the block. Although we
regard the state as an element (v, d) ∈ R

2, we only have access to sensor measurements
providing the displacement r(v, d) = d ∈ R.

We will usually denote a control system by the pair (f , r) or by M×U
f� M

r� P
when we want to emphasize the input, state and output sets. When P = M and
r = 1M (1M is the identity function on M) we will simply denote a control system by

M × U
f� M. Since our ultimate objective is to obtain finite models for (2.2) we

shall not require any additional structure on the sets M, U and P or on the maps f
and r.

Recall that in [46] a transition system is defined as a quadruple (S, i, L, Tran) where
S is a set of states, i ∈ S is a distinguished state, L is a set of labels and Tran ⊆ S×L×S

is a transition relation. A control system M × U
f� M also defines a transition rela-

tion given by the graph of f , that is, �(f ) = {(x, u, y) ∈ M × U × M | f (x, u) = y} ⊂
M ×U ×M. We thus conclude that both models are very close in the way they capture
the dynamics. However, control systems are not equipped with a distinguished initial
state but they are equipped with an observation map r : M → P. This distinguishes the
models with respect to observations. For control systems, observations are obtained
through the map r acting on the state while for transition systems, as defined in [46],
observations are directly available as the labels l ∈ L of transitions in Tran.

The notion of morphism between control systems will be instrumental for the
results developed in this paper. Intuitively, a morphism between control systems is a
triple of maps describing how inputs, states and outputs of one system are related to
inputs, states and outputs of another system.

Definition 2.1 Let M × U
f� M

r� P and N × V
g� N

s� Q be control
systems. A morphism α : (f , r) → (g, s) from (f , r) to (g, s) is given by a triple of maps
α = (α1, α2, α3) : M × U × P → N × V × Q with α1 : M → N, α2 : M × U → V and
α3 : P → Q, making the following diagram commutative:

M × U
f � M

r � P

N × V

α1 × α2

� g � N

α1

� s � Q

α3

�

(2.4)

that is, satisfying the following equalities:

α1 ◦ f (x, u) = g(α1(x), α2(x, u)) (2.5)

α3 ◦ r = s ◦ α1 (2.6)

When P = M, Q = N, r = 1M and s = 1N we shall denote a morphism α simply as a
pair α = (α1, α2) : M × U → N × V.

The introduced notion of morphism is also very close to the notion of morphism
between transition systems in [46]. The important difference is that we work with
totally defined maps and that the map α2 : M × U → V mapping inputs (or labels) to
inputs (or labels) is state dependent.

In a morphism α = (α1, α2) : f → g, the map α2 can be many times determined
from the map α1 as the next result shows.
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Proposition 2.2 Let M × U
f� M and N × V

g� N be control systems and let
α1 : M → N be a map. If the following inclusion holds:

α1 ◦ f (x, U) ⊆ g(α1(x), V)

there exists a map α2 : M × U → V such that (α1, α2) is a morphism from f to g.
Furthermore, if gy : V → N is injective for every y ∈ α1(M), then α is unique.

Proof Assume that α1 ◦ f (x, U) ⊆ g(α1(x), V) holds. Then, for every (x, u) ∈ M × U,
α1 ◦ f (x, u) ∈ g(α1(x), V) so that we can define α2 at (x, u) to be any v ∈ V satisfying:

α1 ◦ f (x, u) = g(α1(x), v) (2.7)

This construction immediately provides a map α2 : M × U → V making (α1, α2) a
morphism from f to g. Assume now that gy is injective for every y ∈ α1(M). Then, the
choice of v ∈ V satisfying (2.7) is unique thus defining α2 uniquely. �	

We will also need to analyze the behavior of f in several steps and the follow-
ing notation will be very useful in that regard. We denote by U∗ the monoid freely
generated by U, that is, the set of all finite length strings obtained by concatenating
elements in U. Note that the string of zero length, denoted by ε, also belongs to U∗.
We will also have the opportunity to use U≤k to denote the set of all strings of length
smaller or equal than k ∈ N. If u = u1u2 . . . un ∈ U∗, we will use u(i) to denote the
ith element of the string u, that is, u(i) = ui with the convention that u(0) = ε and we
will use u[i] to denote the first i elements of u, that is, u[i] = u1u2 . . . ui. Several maps
extend in a unique way to the sets U∗ and U≤k. Map f ∗ : M × U∗ → M is defined
by f ∗(x, ε) = x and by the recursion f ∗(x, u) = f ∗(f (x, u(1)), u(2)u(3) . . . u(n)) for any
string u of length n. Map f ≤k : M × U≤k → M is the restriction of f ∗ to M × U≤k. We
will also use α∗

2 : M × U∗ → V∗ to denote the extension of α2 : M × U → V defined
by α∗

2(x, ε) = x and by the recursion α∗
2(x, u) = α2(x, u(1))α∗

2(f (x, u(1)), u(2) . . . u(n))

for any string u of length n. The notation fx and α2x will be used to denote the func-
tions defined by fx(u) = f (x, u) and α2x(u) = α2(x, u), respectively. Other notational
conventions used through the paper are as follows. For a map φ : A → B we will
denote by φ(A), φ−1(b) and φ−1(C) with b ∈ B and C ⊆ B, the sets ∪a∈A{φ(a)},
{a ∈ A | φ(a) = b} and ∪c∈Cφ−1(c), respectively, and |A| will denote the cardinality
of set A.

3 Morphisms and bisimulations

The notion of bisimulation [25,29] is usually defined with respect to transition systems
as operational models. Although control systems also define transition relations we
shall define bisimulation relations directly for control systems:

Definition 3.1 Let M × U
f� M

r� O and N × V
g� N

s� O be control
systems with the same output set O. A relation R ⊆ M ×N is said to be a bisimulation
relation between (f , r) and (g, s) if for every (x1, y1) ∈ R the following holds:

(1) r(x1) = s(y1);
(2) for any u ∈ U, f (x1, u) = x2 implies the existence of v ∈ V such that g(y1, v) = y2

and (x2, y2) ∈ R;
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(3) for any v ∈ V, g(y1, v) = y2 implies the existence of u ∈ U such that f (x1, u) = x2
and (x2, y2) ∈ R.

There is an important difference between this notion and the one introduced in [25,29].
We require related states to match on outputs but we do not require transitions to
match on labels. This modeling choice is motivated by control applications where
the state carries important physical information about the system and the desired
behavior is described in terms of the state evolution. The input, however, is a signal
that we can arbitrarily manipulate in order to enforce the desired output behavior.
Nevertheless, it is not difficult to see that bisimilar control systems still exhibit the
same output behavior.

Instead of working with Definition 3.1 it will be more convenient, at the technical
level, to work with the following class of morphisms.

Definition 3.2 A morphism α : (f , r) → (g, s) from control system M × U
f� M

r� P to control system N × V
g� N

s� Q is said to be fiber surjective if
α2 : M × U → V is fiber surjective, that is, α2x : U → V is surjective for every x ∈ M.
Morphism α is said to be surjective if it is fiber surjective and both α1 : M → N and
α3 : P → Q are surjective maps.

The choice of fiber-surjective morphisms is justified by the following result.

Proposition 3.3 Let α : (f , r) → (g, s) be a fiber surjective morphism from control

system M × U
f� M

r� P to control system N × V
g� N

s� Q. The
graph of the map α1, defined by �(α1) = {(x, y) ∈ M × N | α1(x) = y}, is a bisim-

ulation relation between control system M × U
f� M

α3◦r� Q and control system

N × V
g� N

s� Q.

Proof Let (x, y) ∈ �(α1). Then α1(x) = y and it follows from (2.6) that α3 ◦ r(x1) =
s ◦ α1(x) = s(y) thus showing that requirement (1) in Definition 3.1 is satisfied.

Assume now that f (x1, u) = x2 and α1(x1) = y1. Then by (2.5) we have α1(x2) =
α1 ◦ f (x1, u) = g(α1(x1), α2(x2, u)) = g(y1, v) thus showing that requirement (2) in
Definition 3.1 also holds with v = α2(x1, u).

Finally we prove requirement (3). Let α1(x1) = y1 and g(y1, v) = y2. Since α is
fiber surjective, there exists u ∈ U satisfying α2(x1, u) = v. If we denote by x2 the
state f (x1, u), it follows from (2.5) that α1(x2) = α1 ◦ f (x1, u) = g(α1(x1), α2(x1, u)) =
g(y1, v) = y2 which concludes the proof. �	

Note that not every bisimulation can be obtained as the graph of a fiber-surjective
morphism. However, this kind of bisimulation will suffice for the results presented in
this paper.

4 Input induced bisimulations

In this section we discuss the construction of bisimilar control systems induced by
inputs. Consider the block example described in the previous section and assume we
want to develop a controller, to be implemented in embedded hardware/software,
whose objective is to force the block to a desired displacement different from zero.
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This controller will change the displacement of the block through an actuator exerting
a force u on the block. However, the actuator can only enforce1 a finite number of
force values. Let us assume that these values are −1, 0 and 1 and that the actuator
transforms requests into forces according to the following map:

α2(x, u) =
⎧⎨
⎩

−1 if u(0) ≤ −1
0 if −1 < u(0) < 1
1 if u(0) ≥ 1

(4.1)

It is therefore natural to construct a bisimilar control system with input set V =
{−1, 0, 1} describing the dynamics of the original control system under these new
inputs.

4.1 Existence of input induced bisimulations

Starting from a control system M × U
f� M

r� P and a map α2 : M × U → V

there may exist several possible ways to obtain a control system N×V
g� N

s� Q
and a morphism α : (f , r) → (g, s). Among these we will be interested in the minimally
restrictive one which can be singled out through the following unique factorization
property.

Definition 4.1 Let M ×U
f� M

r� P be a control system and α2 : M ×U → V a

map. The α2-completion of (f , r) is a triple ((g, s), α1, α3) where N ×V
g� N

s� Q
is a control system, α1 : M → N and α3 : P → Q are maps making α = (α1, α2, α3) :
M × U × P → N × V × Q a morphism from (f , r) to (g, s) with the following property:

for any control system N′ × V
g′
� N′ s′� Q′ and morphism α′ = (α′

1, α2, α′
3) :

(f , r) → (g′, s′) there exists a unique morphism β = (β1, 1V , β3) : (g, s) → (g′, s′)
satisfying α′ = β ◦ α.

Note that bisimilarity between f and its α2-completion now follows trivially if one
choses α2 to be fiber surjective. However, we shall study α2-completions for maps α2
that are not necessarily fiber-surjective since this extra generality adds no additional
complications.

To understand the unique factorization property required by Definition 4.1 let us

consider a control system M × U
f� M with M = {x1, x2, x3}, U = {u1, u2, u3} and

f defined on Table 1 and also represented in Fig. 2. If the map α2 : M × U → V
is defined by α2(x, u1) = v1 = α2(x, u2) and α2(x, u3) = v2 for every x ∈ M and if

V = {v1, v2}, then control systems N×V
g� N and O×V

h� O defined on Table 2
and represented in Fig. 3 can be equipped with morphisms α = (α1, α2) : f → g and
γ = (γ1, α2) : f → h also defined on Table 2.

Among all the possible control systems equipped with a morphism from f , of

which N × V
g� N and O × V

h� O are two examples, the unique factor-
ization property in Definition 4.1 isolates the “least constrained” solution. To illus-

trate this point, let us assume that O × V
h� O satisfies the unique factorization

1 Alternatively we can assume that although the actuator can generate a force with an infinite number
of intensities, it can only receive finitely many different requests from the software implementation
of a controller.
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Table 1 Definition of control
system f

x u f (x, u)

x1 u1 x1
x1 u2 x3
x1 u3 x2
x2 u1 x2
x2 u2 x2
x2 u3 x2
x3 u1 x1
x3 u2 x1
x3 u3 x2

Fig. 2 Graphical
representation of control
system f : M × U → M

x1

x2

x3

u3 u1 ,u2

u3
u3

u1

u1 ,u2

u2

Table 2 Definition of control
systems g and h, and of maps
α1 and γ1

x y o v g(y, v) h(o, v) α1 γ1

y1 v1 y1
y1 v2 y2
y2 v1 y2
y2 v2 y1

o1 v1 o1
o1 v2 o1

x1 y1
x2 y2
x3 y1
x1 o1
x2 o1
x3 o1

y1
y2

v2
v1

v1
v2

o1
v1 ,v2

Fig. 3 Graphical representation of control systems g : N × V → N and h : O × V → O

property. Then, there must exist a unique morphism β = (β1, 1V) : h → g sat-
isfying β ◦ γ = α. However, no such morphism exists since if β1(o1) = y1, then
β1 ◦ h(o1, v2) = β1(o1) = y1 �= y2 = g(β1(o1), v2). Similarly, if β1(o1) = y2 we have
β1 ◦ h(o1, v2) = β1(o1) = y1 �= y2 = g(β1(o1), v2). On the other hand it is not difficult
to see that there exists a unique morphism β from g to h given by β1(y1) = o1 = β1(y2).
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Control system h is thus over-constrained in the sense that too many states are mapped
by the map γ1 into the same state. It is in this sense that we can see the unique fac-
torization requirement in Definition 4.1 as the specification of the least constrained
control system equipped with a morphism from (f , r).

The unique factorization property of α2-completions guarantees that (g, s) is unique
up to isomorphism. Even though this is true in more general contexts it is illustrative
to see how it works in this particular case. Let us assume that (g, s) and (h, t) are
α2-completions of (f , r). Then, since (g, s) is a α2-completion there exists a unique
morphism βgh : (g, s) → (h, t). Since (h, t) is also a α2-completion there exists a
unique morphism βhg : (h, t) → (g, s). Composing βgh with βhg we obtain a morphism
βgh ◦ βhg : (g, s) → (g, s) from (g, s) to (g, s). Furthermore, 1(g,s) = (1N , 1V , 1Q) is also
a morphism from (g, s) to (g, s) and from uniqueness of βgh and βhg follows unique-
ness of βgh ◦ βhg which implies the equality βgh ◦ βhg = 1(g,s). The same argument
applied to the composition βhg ◦ βgh : (h, t) → (h, t) leads to βhg ◦ βgh = 1(h,t) from
which we conclude that βgh is an isomorphism thus showing that (g, s) is unique up to
isomorphism.

The following result shows that output maps have no contribution for the existence
of α2-completions. We shall therefore assume throughout this section that output sets
equal the state sets and that output maps are the identity.

Proposition 4.2 Consider control system M × U
f� M

1M� M and the map α2 :
M × U → V. If the α2-completion of (f , 1M) exists, then the α2-completion of M ×
U

f� M
r� P also exists for any output map r : M → P.

Proof Let N × V
g� N

s� Q be the α2-completion of (f , 1M). We shall construct
the α2-completion of (f , r) from g. Consider the maps r : M → P and α1 : M → N.
There is a unique,2 up to isomorphism, way of constructing α3 : P → R and t : N → R
satisfying α3 ◦ r = t ◦ α1. Let X = P + N (+ denotes disjoint union) and let S be
the equivalence relation on X generated by the pairs (α1(x), r(x)) for every x ∈ M.
Define R = X/S, α3 = πS ◦ iP and t = πR ◦ iN where iP : P → X and iN : N → X are
the natural inclusions and πS : X → R = X/S is the natural projection. The equality
α3 ◦ r = t ◦ α1 follows immediately by construction of R, α3 and t. Furthermore, maps
α3 and t have the following property. For any other maps a : P → T and b : N → T
there exists one and only one map:

c : R → T (4.2)

satisfying:

a = c ◦ α3 (4.3)

b = c ◦ t (4.4)

We leave to the reader to verify that the desired unique map c is given by c([p]) = a(p)

and c([n]) = b(n) for any p ∈ P and n ∈ N.
We now claim that ((g, t), α1, α3) is the α2-completion of (f , r). It is obvious that

α is a morphism from (f , r) to (g, t) since (α1, α2) satisfy (2.5) and α3 satisfies (2.6).
Let now (g′, s′) be any other control system equipped with a morphism (α′

1, α2, α′
3) :

(f , r) → (g′, s′). Since (g, s) is the α2-completion of (f , r) there exists one and only

2 What we are about to construct is the push-out of r : M → P and α1 : M → N.
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one map β1 : N → N′ making (β1, 1V) a morphism from g to g′ and satisfying
(β1, 1V) ◦ (α1, α2) = (α′

1, α2). To conclude the proof we only need to show existence
and uniqueness of β3 : R → P′ satisfying β3 ◦ t = s′ ◦ β1 and β3 ◦ α3 = α′

3. But this
follows at once by taking a = α′

3, b = s′ ◦ β1 in (4.3) and (4.4), and β3 = c. �	
We now arrive at one of the main contributions of this section.

Theorem 4.3 The α2-completion of a control system M × U
f� M exists for any

map α2 : M × U → V.

Theorem 4.3 shows that bisimilar control systems induced by α2 maps always exist
in the class of control systems considered in this paper. Furthermore, when α2 is
fiber-surjective, the resulting α2-completion is guaranteed to be bisimilar to (f , r).

Proof The proof of Theorem 4.3 makes essential use of the following lemma which
can be seen as the key ingredient of the classical Myhill-Nerode canonical realization
result. The same ideas have been used before to generalize realization theory to more
abstract contexts [3,12].

Lemma 4.4 Let 
 : (M × V∗) × V → (M × V∗) be the control system defined by

((x, v1), v2) = (x, v1v2). For any map γ : M → N and for any control system N ×
V

g� N there exists a unique morphism δ = (δ1, 1V) : 
 → g such that δ1(x, ε) = γ (x).

Proof of Lemma 4.4 Map δ1 is defined by δ1(x, v) = g∗(γ (x), v). This choice results in
a morphism since:

δ1 ◦ 
((x, v1), v2) = δ1(x, v1v2) by definition of 


= g∗(γ (x), v1v2) by definition of δ1

= g(g∗(γ (x), v1), v2) by definition of g∗

= g(δ1(x, v1), 1V(v2)) by definition of δ1

Furthermore δ1(x, ε) = g∗(γ (x), ε) = γ (x). To show uniqueness consider any other
morphism (δ′

1, 1V) : 
 → g. We immediately have δ′
1(x, ε) = γ (x) = δ1(x, ε). For any

(x, v) ∈ M × V∗ equality between δ′
1 and δ1 follows from:

δ′
1(x, v) = δ′

1 ◦ 
((x, ε), v) by definition of 


= g(δ′
1(x, ε), 1V(v)) since (δ′

1, 1V) is a morphism

= g(γ (x), v) since δ′
1(x, ε) = γ (x)

= g(δ1(x, ε), 1V(v)) since δ1(x, ε) = γ (x)

= δ1 ◦ 
((x, ε), v) since (δ1, 1V) is a morphism

= δ1(x, v) by definition of 


�	
We now return to the proof of Theorem 4.3

The desired completion N × V
g� N will be obtained from control system 


defined in Lemma 4.4. The state set N is defined as the quotient of M × V∗ by the
equivalence relation R generated by the pairs:(

(f (x, u), ε), (x, α2(x, u))
)

(4.5)
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and invariant under the family of maps maps {
v}v∈V (invariant under 
 for short).
Map α1 is the composition πR ◦ i where i : M → M × V∗ is the inclusion i(x) = (x, ε).
Finally, we define control system g by:

g([(x, v1)], v2) = [(x, v1v2)] = [
((x, v1), v2)] (4.6)

It follows from invariance of R under h that g is well defined. To show that α is indeed
a morphism consider any (x, u) ∈ M × U. The following sequence of identities:

α1 ◦ f (x, u) = πR ◦ i ◦ f (x, u)

= πR(f (x, u), ε) by definition of i

= [(f (x, u), ε)] by definition of πR

= [(x, α2(x, u))] by (4.5)

= [
((x, ε), α2(x, u))] by definition of 


= g([(x, ε)], α2(x, u)) by definition of g

= g(πR ◦ i(x), α2(x, u)) by definition of i and πR

= g(α1(x), α2(x, u)) by definition of α1

shows that α is a valid morphism.
Consider now any other control system g′ : N′ × V → N′ and any other map

α′
1 : M → N′ making α′ = (α′

1, α2) a morphism from f to g′. Map α′
1 factors as

α′
1 = δ1 ◦ i where i : M → M × V∗ is the inclusion i(x) = (x, ε) and δ1 the unique map

δ1 : M × V∗ → N′ whose existence is asserted by Lemma 4.4. Map α1 : M → N also
factors as α1 = πR ◦ i. Provided that we can show that:

πR(x1, v1) = πR(x2, v2) ⇒ δ1(x1, v1) = δ1(x2, v2) (4.7)

we can define β : N → N′ by β([(x, v)]) = δ1(x, v). This is what we will now show by
proving that the equivalence relation S on M × V∗ defined by ((x1, v1), (x2, v2)) ∈ S
when δ1(x1, v1) = δ1(x2, v2) is invariant under 
 and contains the pairs:(

(f (x, u), ε), (x, α2(x, u))
)

Invariance under 
 follows immediately from the fact that (δ1, 1V) is a morphism from

 to g′. Consider now an arbitrary point (x, u) ∈ M × U. From the fact that α′ : f → g′
is a morphism we have:

α′
1 ◦ f (x, u) = g′(α′

1(x), α2(x, u))

Since α′ factors as α′ = (δ1, 1V) ◦ (i, α2):

δ1 ◦ i ◦ f (x, u) = g′(δ1 ◦ i(x), α2(x, u))

We now use the fact that (δ1, 1V) is a morphism from h to g′ to conclude:

δ1 (f (x, u), ε)

= δ1 ◦ i ◦ f (x, u) by definition of i

= g′(δ1 ◦ i(x), 1V ◦ α2(x, u)) since (δ1, 1V) ◦ (i, α2) = α′ is a morphism from f to g′

= g′(δ1(x, ε), α2(x, u)) by definition of i

= δ1 ◦ 
((x, ε), α2(x, u)) since (δ1, 1V) is a morphism from 
 to g′

= δ1(x, α2(x, u)) by definition of 
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We thus conclude that S is invariant under 
 and contains the pairs:(
(f (x, u), ε), (x, α2(x, u))

)
Since R is the coarsest equivalence relation satisfying these two properties it follows
that (4.7) holds and β1 : N → N′ is well defined. The fact that (β1, 1V) is a morphism
and unique is inherited from the same properties of (δ1, 1V) proved in Lemma 4.4.
The proof is therefore complete. �	

Throughout the remaining paper we will be especially interested in α2-completions
for fiber surjective maps α2. In this case, α2-completions admit the following simplified
description that will later be used to establish existence of symbolic completions.

Proposition 4.5 Given a control system f : M × U → M, if α2 : M × U → V is fiber
surjective, then the α2-completion of f admits the following description:

(1) N = M/S where S is the coarsest equivalence relation on M satisfying for any
x ∈ M:

α∗
2(x, u1) = α∗

2(x, u2) ⇒ (
f ∗(x, u1), f ∗(x, u2)

) ∈ S

(2) α1 = πS : M → M/S = N;
(3) g is defined by g(y, v) = α1◦f (x, u) for any (x, u) ∈ M×U such that α(x, u) = (y, v).

Proof Consider the equivalence relation R on M ×V∗ defined by (4.5) in the proof of
Theorem 4.3. The proof will consist in showing that every (x, v) ∈ M×V∗ is equivalent
under R to (f ∗(x, u), ε) for any u ∈ U such that α∗

2(x, u) = v. This equivalence allows
to identify each equivalence class of R with an element of the form (f ∗(x, u), ε) thus
showing that we can equivalently describe R by equivalence relation S. The proof will
be done by induction on the length of v.

For |v| = 1 the result follows from (4.5).
Let now |v| = l + 1 and assume the result holds for all v′ ∈ Vl. We will show that

(x, v) is equivalent under R to (f ∗(x, u), ε). Consider (x, v[l]). Since v[l] ∈ Vl we know
that ((x, v[l]), (f ∗(x, u′), ε)) ∈ R for any u′ ∈ Ul such that α∗

2(x, u′) = v[l]. We also
know that S is invariant under h so that:(

(x, v[l]v(l + 1)), (f ∗(x, u′), v(l + 1))
) ∈ R (4.8)

Since |v(l + 1)| = 1 it follows from (4.5) that:(
(f ∗(x, u′), v(l + 1)), (f ∗(x, u′u′′), ε)

) ∈ R (4.9)

for any u′′ ∈ U such that α2(f ∗(x, u), u′′) = v(l + 1). Transitivity of R applied to (4.8)
and (4.9) now implies that (x, v) = (x, v[l]v(l +1)) is equivalent under R to (f ∗(x, u), ε)
where u = u′u′′ ∈ Ul+1 is any element satisfying α∗

2(x, u) = v. �	
4.2 Existence of input induced symbolic bisimulations

In this section we characterize which α2-completions result in control systems with
finite state set. The finiteness results developed in this section will require the notion
of reachable control system.

Definition 4.6 A control system M × U
f� M is said to be reachable from x0 ∈ M

if f ∗
x0

: U∗ → M is surjective.
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We will restrict our attention to maps α2 : M × U → V that are fiber surjective
onto a finite set V. Fiber surjectivity will imply bisimilarity while finiteness of V can

be assumed without loss of generality since if N × V
g� N is a control system with

finite state set, then we need an input set V with no more than |N| elements as there
are no more than |N| states that can be reached from any state in N.

Theorem 4.7 Let M × U
f� M be a control system reachable from x0 ∈ M and let

α2 : M × U → V be a fiber surjective map onto a finite set V. The α2-completion of f
has finite state set iff there exists k ∈ N such that α1 ◦ f ≤k

x0 : U≤k → N is surjective.

Proof Consider the family of sets {Ev}v∈V≤k where each set Ev is defined by the points
x ∈ M for which the following conditions are satisfied:

(1) there exists a u ∈ U≤k such that f ≤k(x0, u) = x;
(2) α∗

2(x0, u) = v.

We first note that by Proposition 4.5 each set Ev is totally contained in an equivalence
class of S. We now claim that S has no more than

∑k
i=1 |V|i equivalence classes. This

follows from the surjectivity assumption on α1 ◦ f ≤k
x0 : U≤k → N which implies that

cardinality of N equals the cardinality of the image of α1 ◦ f ≤k
x0 which, in view of

α1 ◦ f ≤k
x0 = g≤k

α1(x0)
◦ α2(x0, ·), is bounded by

∑k
i=1 |V|i.

Assume now that the α2-completion g of f has finite state set, let y0 = α1(x0) and
let y ∈ gn

y0
(Vn) for any n ∈ N. Fiber surjectivity of α2 implies fiber surjectivity of αn

2
from which we conclude existence of u ∈ Un satisfying αn

2 (x0, u) = v for any v ∈ Vn

satisfying gn
y0

(v) = y. We now use the fact that α : f → g is a morphism to con-
clude α1 ◦ f n(x0, u) = gn(y0, v) = gn(α1(x0), α2(x0, u)) which shows that α1 ◦ f n

x0
(Un) =

gn
y0

(Vn). To conclude the proof it suffices to show that gn
y0

(Vn) = g≤k
y0

(
V≤k

)
for some

fixed k ∈ N. But this follows at once from the observation that finiteness of the state
set of g implies that y can be reached from y0 in no more than k = |N| − 1 steps. �	

Even though Theorem 4.7 provides us with a necessary and sufficient condition for
finiteness of input completions, we cannot test surjectivity of α1 ◦ f ≤k

x0 without deter-
mining α1. The following corollary strengths surjectivity of α1 ◦ f ≤k

x0 to a condition not
requiring a priori knowledge of α1.

Corollary 4.8 Let M × U
f� M be a control system reachable from x0 ∈ M and let

α2 : M × U → V be a fiber surjective map onto a finite set V. If there exists k ∈ N such
that f ≤k

x0 : U≤k → M is surjective then the α2-completion of f has finite state set

We can use Corollary 4.8 to identify a concrete class of control systems admitting
finite bisimulations. The assumption we need is reachability from some point x0 ∈ M
in a finite number k of steps and this can easily be characterized for linear control
systems.

Corollary 4.9 Let M × U
f� M be a discrete-time controllable linear system, that is,

f (x, u) = Ax + Bu with x ∈ R
n, u ∈ R

m, A and B matrices of appropriate dimensions
and the matrix [An−1B|An−2B| . . . |B] has rank n. Then, for any fiber surjective map
α2 : M × U → V onto a finite set V, the α2-completion of f has finite state set.
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Proof The result follows from Corollary 4.8 once we establish the existence of x0 ∈ M
and k ∈ N making f ≤k

x0 : U≤k → R
n surjective. However, this follows at once from

standard results in linear systems theory [4,38] which guarantee surjectivity of f ≤n
x0 :

U≤n → R
n for any x0 ∈ R

n under the linearity and controllability assumptions. �	
We now illustrate Corollary 4.9 in the simplest discrete-time controllable linear

system:

x1(t + τ) = x2(t)

x2(t + τ) = u(t)

where x = (x1, x2) ∈ R
2 is the state, u ∈ R is the input and τ > 0. Let α2 be defined by:

α2(x, u) =
⎧⎨
⎩

−1 if u ≤ −1
0 if −1 < u < 1
1 if u ≥ 1

(4.10)

For simplicity we will identify −1, 0, 1 with the symbols −, 0, +, respectively and we
introduce the sets U− = {u ∈ R | α2(u, x) = −1}, U0 = {u ∈ R | α2(u, x) = 0} and
U+ = {u ∈ R | α2(u, x) = 1}. Starting at the origin and applying the inputs in the
symbolic set V = {−, 0, +} we construct the following sets:

Sj = {(x1, x2) ∈ R
2 | x1 = 0 ∧ x2 ∈ Uj}, j ∈ {−, 0, +} (4.11)

representing points that are identified under equivalence relation S defined in Prop-
osition 4.5. Applying inputs again we obtain a complete description of S given by the
following sets defining its equivalence classes:

Si
j = {(x1, x2) ∈ R

2 | x1 ∈ Ui ∧ x2 ∈ Uj}, i, j ∈ {−, 0, +} (4.12)

The resulting control system N × V
g� N is defined by:

g(Si
j, −) = Sj

− g(Si
j, 0) = Sj

0 g(Si
j, +) = Sj

+, i, j ∈ {−, 0, +}
where N is identified with ∪i,j∈{−,0,+}{Si

j} which has nine elements.

5 Output induced bisimulations

A different kind of completion can be obtained by specifying a map redefining the
output rather than redefining the input. This motivates the study of symbolic models
induced by outputs. We can use again the block example to illustrate the need for
this kind of construction. Recall that we are interested in developing a controller
to be implemented in embedded hardware/software in order to force the block to a
non-zero displacement. Since we do not know the initial displacement of the block,
this controller will change the applied force u based on measurements of the block
displacement. However, we only have a sensor providing displacement measurements
and furthermore the controller implementation can only deal with finitely many val-
ues. We can thus assume, for example, that the state (v, d) is transformed into symbols
to be used by the controller software/hardware according to the following rule:

α3(v, d) =
⎧⎨
⎩

−1 if d ≤ −1
0 if −1 < d < 1
1 if d ≥ 1

(5.1)
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It is therefore natural to ask for the existence of an equivalent but simpler model of
the continuous dynamics describing the evolution of the symbols −1, 0 and 1 defining
the new output set Q.

5.1 Existence of output induced bisimulations

In this section we consider output completions induced by a map α3 : P → Q and
defined as follows:

Definition 5.1 Let M × U
f� M

r� P be a control system and let α3 : P →
Q be a surjective map. The α3-completion of (f , r) is a triple ((g, s), α1, α2) where

N × V
g� N

s� Q is a control system and α1 : M → N and α2 : M × U → V are
maps making α = (α1, α2, α3) : M × U × P → N × V × Q a surjective morphism from
(f , r) to (g, s) with the following property:

For any control system N′ × V′ g′
� N′ s′� Q and surjective morphism α′ =

(α′
1, α′

2, α3) : (f , r) → (g′, s′) there exists a unique surjective morphism β = (β1, β2, 1Q) :
(g′, s′) → (g, s) satisfying α = β ◦ α′.

Note that although the definition of α3-completion is very similar to the definition
of α2-completion, there is an important difference between the two: the direction of
morphism β. Requiring existence of a morphism β : (g, s) → (g′, s′) would lead to
the trivial solution (g, s) = (f , r) and α = 1(f ,r). However, this reversal in the direc-
tion of morphism β will require additional assumptions to guarantee existence of
α3-completions. Part of these assumptions have already been built in the definition of
α3-completion through the use of the adjective surjective. In particular, requiring α

to be surjective guarantees that α3-completions are bisimilar to (f , r). The remaining
assumptions require the following notion of indistinguishability.

Definition 5.2 Let M × U
f� M

r� P be a control system and let α3 : P → Q
be a map. The indistinguishability relations {[[α3]]i}i∈N induced by α3 are recursively
defined by:

[[α3]]0 = {
(x1, x2) ∈ M × M | α3 ◦ r(x1) = α3 ◦ r(x2)

}
[[α3]]i+1 = {

(x1, x2) ∈ [[α3]]0 | ∀u1 ∈ U ∃u2 ∈ U
(
f (x1, u1), f (x2, u2)

) ∈ [[α3]]i

∧ ∀u2 ∈ U ∃u1 ∈ U
(
f (x1, u1), f (x2, u2)

) ∈ [[α3]]i
}

Two states x1, x2 ∈ M are said to be distinguishable by α3 in n ∈ N steps if (x1, x2) /∈
[[α3]]n and they are said to be distinguishable if there exists n ∈ N such that they
are distinguishable in n steps. Two states that are not distinguishable are said to be
indistinguishable.

The indistinguishability relations introduced in Definition 5.2 are no more than
a variation of the sequence of relations leading to the coarsest relation compatible
with the transition relation defined by f [11,31]. The only difference is the fact that
we allow the pairs (f (x1, u1), f (x2, u2)) ∈ [[α3]]i to have different inputs u1 and u2.
This difference is a natural consequence of Definition 3.1 requiring matching of the
outputs instead of matching of the labels.

Note that it follows from the definition of indistinguishability relation that if there
exists a k ∈ N such that [[α3]]k = [[α3]]k+1 then [[α3]]k = [[α3]]i for all i ≥ k. In
general, the sequence of indistinguishability relations need not stabilize after a finite
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number of steps. In this case we shall work with the limit relation (see the Appendix
for several notions related to relations):

[[α3]] = lim
i→∞ [[α3]]i

which is in fact a bisimulation relation between (f , r) and (f , r). Since [[α3]]i+1 refines
[[α3]]i and π[[α3]]0 = α3 ◦ r, the map π[[α3]][[α3]]0 : M/[[α3]] → Q satisfies:

π[[α3]][[α3]]0 ◦ π[[α3]] = α3 ◦ r (5.2)

Existence of α3-completions can now be characterized using [[α3]].

Theorem 5.3 Let M × U
f� M

r� P be a control system with a surjective output
map and let α3 : P → Q be a surjective map. If for any (x1, x2) /∈ [[α3]] the following
equality holds: ∣∣∣π[[α3]] ◦ f (x1, U)

∣∣∣ =
∣∣∣π[[α3]] ◦ f (x2, U)

∣∣∣ (5.3)

then, the α3-completion of (f , r) exists.

Proof We construct control system N × V
g� N with N = M/[[α3]] and V any

set of cardinality |π[[α3]] ◦ f (x, U)|. Set V is independent of the point x ∈ M since
by assumption (x1, x2) /∈ [[α3]] implies |π[[α3]] ◦ f (x1, U)| = |π[[α3]] ◦ f (x2, U)| and
for (x1, x2) ∈ [[α3]] it follows from the definition of [[α3]] that |π[[α3]] ◦ f (x1, U)| =
|π[[α3]] ◦ f (x2, U)|. Control system g is defined by letting gy : V → N be any isomor-
phism between V and π[[α3]] ◦ f (x, U) where x is any point satisfying π[[α3]](x) = y.
By definition of [[α3]], for any x1 and x2 such that π[[α3]](x1) = y = π[[α3]](x2) we
have π[[α3]] ◦ f (x1, U) = π[[α3]] ◦ f (x2, U) thus showing that gy does not depend on the
choice of x. Furthermore, an isomorphism between V and π[[α3]] ◦ f (x, U) always exists
since these sets have the same cardinality. If we now denote π[[α3]] by α1 it follows by
construction of g that α1 ◦ f (x, U) ⊆ g(α1(x), V) and that gy is injective. Therefore,
by Proposition 2.2 there exists a unique map α2 making (α1, α2) a morphism from
f to g. Note that α2 is necessarily fiber surjective since α1 ◦ f (x, U) = g(α1(x), V)

and gα1(x) is a bijection between V and g(α1(x), V). In view of (5.2) we equip g
with the output map s = π[[α3]][[α3]]0 . This results in the desired surjective morphism
α = (α1, α2, α3) : (f , r) → (g, s) where surjectivity of s follows from surjectivity of r
and α3.

Let now N′ × V′ g′
� N′ s′� Q be any other control system equipped with

a surjective morphism α′ = (α′
1, α′

2, α3) : (f , r) → (g′, s′). Since α′
2 is fiber surjective

and α1 surjective, the equivalence relation S ⊆ M × M defined by (x1, x2) ∈ S if
α′

1(x1) = α′
1(x2) is a bisimulation relation. Furthermore, α3 ◦ r factors through πS = α′

1
since α3 ◦ r = s′ ◦ α′

1. However, [[α3]] is the coarsest equivalence relation satisfying
these properties which implies existence of a surjective map πS[[α3]] = β1 : N′ → N
satisfying β1 ◦ πS = π[[α3]]. We also have:

β1 ◦ πS ◦ f (x, u) = π[[α3]] ◦ f (x, u)

⇒ β1 ◦ g′(α′
1(x), α′

2(x, u)) = g(α1(x), α2(x, v)) since α1 and α′
1 are morphisms

⇒ β1 ◦ g′(α′
1(x), V′) ⊆ g(α1(x), V) = g(β1 ◦ α′

1(x), V) since S refines [[α3]]

It now follows from injectivity of gy and Proposition 2.2 the existence of a unique
map β2 making (β1, β2) a morphism from g′ to g. Fiber urjectivity of β2 can be shown
by the same argument used to show fiber surjectivity of α2 in the first part of the
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proof and it follows from β1 ◦ α′
1 = α1 that (β1, β2) ◦ (α′

1, α′
2) = (α1, α2). Furthermore,

(β1, β2) is unique, up to isomorphism, since β1 is uniquely determined by α1 and α′
1

while β2 is uniquely determined by β1 and g, and g is unique up to the isomorphisms
gy : V → N. To conclude the proof we only need to show that (2.6) is satisfied, that
is, that s′ = s ◦ β1 holds. But this follows from s ◦ α1 = α3 ◦ r = s′ ◦ α′

1 combined with:
β1 ◦ α′

1 = α1 which results in s ◦ β1 ◦ α′
1 = s′ ◦ α′

1. Surjectivity of α′
1 allows to simplify

the previous expression and to obtain the desired equality s′ = s ◦ β1. �	
The assumption expressed by equality (5.3) cannot be dropped since this can

prevent the unique factorization property enjoyed by α3-completions. This fact is

illustrated in the following example. Consider control system M × U
f� M with

M = {x1, x2, x3}, U = {u1, u2}, Q = {q1, q2} and defined in Table 3. In this case we
have [[α3]]0 = [[α3]]1 = [[α3]]. In particular π[[α3]] = α3. Condition (5.3) is violated
since: ∣∣α3 ◦ f (x1, U)

∣∣ = 2 �= 1 = ∣∣α3 ◦ f (x3, U)
∣∣

Furthermore, the cardinality of the input set V of g has to be 2 since |α3 ◦ f (x1, U)| = 2
and for simplicity we will take V = U. We will now show that no control system
with state set N = M/[[α3]] and input set U satisfies the conclusions of Theorem 5.3.
Existence of a morphism from f to g, implies that g satisfies:

α3 ◦ f (x1, U) = {[x1], [x3]} ⊆ g([x1], V), α3 ◦ f (x3, U) = {[x3]} ⊆ g([x3], V)

At state [x1], g is uniquely determined (up to isomorphism) by the fact that
α3 ◦ f (x1, u1) = α3 ◦ f (x2, u1) and α3 ◦ f (x1, u2) = α3 ◦ f (x2, u2). We can thus de-
fine g([x1], u1) = [x1] = α3 ◦ f (x1, u1) = α3 ◦ f (x2, u1) and g([x1], u2) = [x3] =
α3 ◦f (x1, u2) = α3 ◦f (x2, u2). At state [x3] we must have g([x3], u1) = g([x3], u2) = [x3].
We will now show that there exists no fiber surjective map α2 : M × U → V making
α = (α1, α2) : f → g a morphism such that for any other morphism α′ : f → g′ there
exists a unique morphism β : g′ → g satisfying β ◦ α′ = α. For any fiber surjective
map α2 we must have α2(x3, u1) �= α2(x3, u2). Let us assume that α2(x3, u1) = u1 and
α2(x3, u2) = u2 since the same argument works for α2(x3, u1) = u2 and α2(x3, u2) = u1.
Consider now control system g′ = g and map α′

2 : M × U → V defined by:

α′
2(x3, u1) = u1, α′

2(x3, u2) = u2, α′
2(x4, u1) = α2(x4, u2), α′

2(x4, u2) = α2(x4, u1)

and inducing morphism α′ = (α1, α′
2) : f → g′. Existence of a morphism β : g′ → g

satisfying β ◦ α′ = α implies that:

β2([x3], a) = β2 ◦ (α1, α′
2)(x3, a) = α2(x3, a) = a (5.4)

β2([x3], u2) = β2 ◦ (α1, α′
2)(x3, u2) = α2(x3, u2) = u2 (5.5)

Table 3 Definition of control
system f and map α3

x u f (x, u) α3(x)

x1 u1 x1 q1
x1 u2 x3 q1
x2 u1 x2 q1
x2 u2 x4 q1
x3 u1 x3 q2
x3 u2 x4 q2
x4 u1 x4 q2
x4 u2 x4 q2
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However, at x4 we have:

β2([x4], α′
2(x4, a)) = β2([x3], α′

2(x4, a)) since α3(x4) = α3(x3)

= β2([x3], α2(x4, u2)) by definition of α′
2

= α2(x4, u2) since by (5.4) and (5.5), β2[x3] = 1U

We thus see that β2([x4], α′
2(x4, a)) = α2(x4, u2) �= α2(x4, a) thus violating the desired

equality β ◦ α′ = α. Therefore, no fiber surjective morphism β : g′ → g satisfying
β ◦ α′ = α can exist. Furthermore, the unique factorization property of α3-comple-
tions is violated even if we try to define g on a larger set N since in this case there
would be several choices of maps β1 : M/[[α3]] → N that could be completed to a
morphism from g′ to g.

5.2 Existence of output induced symbolic α2-completions

We now turn our attention to existence of symbolic α3-completions. Since [[α3]] is the
coarsest bisimulation relation between (f , r) and (f , r) satisfying (5.2) the following
corollary of Theorem 5.3 is immediate:

Corollary 5.4 Let M × U
f� M

r� P be a control system with surjective output
map and let α3 : P → Q be a surjective map onto a finite set Q for which the α3-comple-
tion (g, s) of (f , r) exists. Control system (g, s) has finite state set iff there exists a k ∈ N

such that any pair of distinguishable states by α3 is distinguishable in k steps.

Corollary 5.4, by equating finiteness of α3-completions to finite distinguishability,
suggest that we should identify the class of control systems generating the same out-
puts after a certain finite number of steps since this guarantees stabilization of the
indistinguishability relations after a finite number of steps. We formalize this notion
in the next result.

Corollary 5.5 Let M × U
f� M

r� P be a control system with surjective output
map and let α3 : P → Q be a surjective map onto a finite set Q. If [[α3]] satisfies (5.3)
and for any x1, x2 ∈ M and u ∈ U∗ there exists a k ∈ N for which the following holds:

r ◦ f ∗(x1, u[i]) = r ◦ f ∗(x2, u[i]) ∀i ≥ k

then the α3-completion of (f , r) exists and has finite state set.

We can use Corollary 5.5 to identify concrete classes of control systems admitting
finite bisimulations.

Corollary 5.6 Let M × U
f� M

r� P be a control system and let α3 : P → Q be
a surjective map satisfying any of the following assumptions:

(1) f is a discrete-time controllable linear system, that is, f (x, u) = Ax + Bu with
x ∈ R

n, u ∈ R
m, A and B are matrices of appropriate dimensions and the matrix

[An−1B|An−2B| . . . |B] has rank n;
(2) f is a discrete-time linear system, α3 is a linear map and (f , α3) is

output-controllable, that is, f (x, u) = Ax + Bu with x ∈ R
n, u ∈ R

m, A and B
matrices of appropriate dimensions, α3(x) = Cx ∈ R

o with C a matrix of appro-
priate dimensions, and the matrix [CAn−1B|CAn−2B| . . . |CB] has rank o.

If [[α3]] satisfies (5.3) then the α3-completion of f exists and has finite state set.
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Note that even if [[α3]] fails to satisfy (5.3) a finite state bisimilar control system
still exists and this is sufficient for most of the applications.

Proof Let us first assume that f (x, u) = Ax + Bu is in Brunovsky normal form. For
m = 1 this normal form is given by:

y1(t + τ) = y2(t)

y2(t + τ) = y3(t)
...

yn(t + τ) = v(t) (5.6)

By inspecting (5.6) we immediately conclude that f j+n(y, v) = (v(j), v(j + 1), . . . ,
v(j + n)) for j ≥ 0 which implies r ◦ f ∗(y, v[i]) = r ◦ f ∗(y′, v[i]) for i ≥ n and for any
map r : R

n → P. The assumptions of Corollary 5.5 are thus satisfied. For m > 1 a
similar argument applies since in this case the Brunovsky normal form is given by
several blocks of the form (5.6). For general controllable linear systems the result
follows from the previous argument and from the fact [4,38] that any controllable
linear system is isomorphic to a linear system in Brunovsky normal form.

By Kalman’s decomposition Theorem [4,38] any linear control system can be
decomposed as:

[
x1(t + 1)

x2(t + 1)

]
=

[
A11 A12

0 A22

] [
x1(t)
x2(t)

]
+

[
B1
0

]
u(t) (5.7)

where x1(t + 1) = A11x1(t) + A12x2(t) + B1u(t) is controllable. It then follows from
the previous argument that any linear control system equipped with an output map
r : M = R

n → P admits a finite bisimulation provided that r factors as r = s ◦ π

for any map s : R
o → P and for the projection π(x) = x1. This factorization condi-

tion can be checked by determining if the matrix [CB|CAC| . . . |CAn−1B] defines a
surjective linear transformation when r is a linear transformation and C is its matrix
representation. �	

Let us consider again the simplest discrete-time controllable linear system:

x1(t + τ) = x2(t)

x2(t + τ) = u(t)

with r(x1, x2) = (x1, x2) and let α3 be given by:

α3(x) =
⎧⎨
⎩

−1 if x1 ≤ −1
0 if −1 < x1 < 1
1 if x1 ≥ 1

(5.8)

The relation [[α3]]0 is defined the following three equivalence classes:

Sj = {(x1, x2) ∈ R
2 | x1 ∈ Xj}, j ∈ {−, 0, +}

where X− =] − ∞, −1], X0 =] − 1, 1[ and X+ = [1, ∞[. Relation [[α3]]1 satisfies
[[α3]]1 = [[α3]]2 and is defined by the equivalence classes:

Si
j = {(x1, x2) ∈ R

2 | x1 ∈ Xi ∧ x2 ∈ Xj}, j ∈ {−, 0, +}
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The α3-completion is now given by:

g(Si
j, X−) = Sj

− g(Si
j, X0) = Sj

0 g(Si
j, X+) = Sj

+, i, j ∈ {−, 0, +}

where V is identified with ∪i∈{−,0,+}{Xi} and N identified with ∪i,j∈{−,0,+}{Si
j}. The

fact that the α3 completion is the same as the α2-completion presented in Sect. 4
for the same control system is due to the fact that we have chosen a control sys-
tem of a very special form (Brunovsky normal form). In general, α2-completions and
α3-completions are not isomorphic.

6 Discussion

In this paper we have presented two very general constructions on the class of control
systems: α2-completions and α3-completions. The first class of completions is mathe-
matically very natural since no conditions are necessary for its existence. This implies
that Theorem 4.3 is valid in a variety of different contexts obtained by imposing
different structure on control systems (linearity, smoothness, analyticity, etc). This is
in sharp contrast with α3-completions which exist under stricter conditions. One of
those conditions is surjectivity of the involved morphisms which has to be considerably
strengthened when more structure is imposed such as smoothness for example. This
is a consequence of Theorem 5.3 being based on the fact that every surjective map
φ : A → B can be seen as the projection from A to A/S where S is the equivalence
relation on A identifying points a1 and a2 when φ(a1) = φ(a2).

A third type of completion could also be considered if one starts with a control
system and a map α1 : M → N between state sets. However, since our objective is to
obtain bisimilar models, either the graph of α1 already defines a bisimulation or there
is no possibility of obtaining a bisimilar model by constructing a control system with
state set N. This fact justifies why α1-completions have not been considered in this
paper.

Even though we make a distinction between inputs and outputs this distinction
is not natural in many systems and it would be interesting to extend the results of
this paper by dropping this distinction. Such behavioral approach [34] could help
understand how to relate the sufficient conditions for the existence of symbolic mod-
els provided by Corollaires 4.8 and 5.5 and lead to a deeper understanding of which
control systems are essentially finite.

Ongoing research is focusing on extending and characterizing new classes of sys-
tems satisfying the sufficient conditions for the existence of finite completions. While
Corollary 4.8 requires reachability in a finite number of steps, Corollary 5.5 requires
a finite output controllability or tracking assumption ensuring that the effect of the
initial state will only influence the output in a finite number of steps. Even though
the conditions required by Corollary 5.5 appear to be stronger than those required by
Corollary 4.8, the possibility of choosing the output map appears to provide greater
flexibility in the use of Corollary 5.5.

Acknowledgment This research was partially supported by the National Science Foundation
CAREER award 0446716.
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Appendix

Recall that an equivalence relation R on a set A is a subset R ⊆ A × A satisfying:

(1) Reflexivity: ∀a ∈ M, (a, a) ∈ R;
(2) Symmetry: ∀a1, a2 ∈ M, (a1, a2) ∈ R implies (a2, a1) ∈ R;
(3) Transitivity: (a1, a2) ∈ R and (a2, a3) ∈ R implies (a1, a3) ∈ R.

Given an equivalence relation R ⊆ A × A, we denote by [a] the equivalence class
containing a ∈ A and by πR : A → A/R the (surjective) natural projection map
taking each point a ∈ A to its equivalence class [a]. Conversely, any surjective map
φ : A → B defines an equivalence relation on A whose equivalence classes are given
by φ−1(b) for each b ∈ B.

An equivalence relation R2 ⊆ A × A is said to refine equivalence relation R1 ⊆
A×A if for every equivalence class E2 of R2 there is an equivalence class E1 of R1 such
that E2 ⊆ E1. Equivalently, R2 refines R1 if there exists a map πR2R1 : A/R2 → A/R1
satisfying πR2R1 ◦ πR2 = πR1 . Map πR2R1 takes an equivalence class E2 of R2 into the
unique equivalence class πR2R1(E2) of R1 containing E2.

Any arbitrary relation R ⊆ A × A can be completed to an equivalence relation
by adding the identity relation I = {(a1, a2) ∈ A × A | a1 = a2} to R, resulting in
R ∪ I, and by closing R ∪ I under reflexivity and transitivity. This closure R is called
the equivalence relation generated by R and it is the coarsest equivalence relation
containing the pairs (a1, a2) ∈ R in the sense that any other equivalence relation
containing the pairs (a1, a2) ∈ R is a refinement of R.

Consider now an equivalence relation R ⊆ A×A and a map f : A → A. Relation R
is said to be invariant under map f when (a1, a2) ∈ R implies (f (a1), f (a2)) ∈ R. In this
case f induces a map f/R : A/R → A/R defined by

(
f/R

)
([a]) = [f (a)]. Map f/R is

well define since for any a2, a3 ∈ [a1] we have (f (a2), f (a1)) ∈ R and (f (a3), f (a1)) ∈ R.
Consequently, [f (a2)] = [f (a3)] = [f (a1)] = (

f/R
)
([a1]). If an equivalence relation

R is not invariant under a map f , we can close it under f resulting in the coarsest
equivalence relation R containing the pairs (a1, a2) ∈ R and invariant under f , that is,
any other equivalence relation containing the pairs (a1, a2) ∈ R and invariant under f
is a refinement of R.

Consider now a sequence of equivalence relations {Ri}i∈N on a set A where for
each i ∈ N, Ri+1 is a refinement of Ri. The limit of this sequence is an equivalence
relation R = limi→∞ Ri refining every equivalence relation Ri and such that for any
other equivalence relation S refining every equivalence relation Ri, S is a refinement
of R.
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