
Acta Informatica (2006) 42(8/9): 617–638
DOI 10.1007/s00236-006-0009-9

ORIGINAL ARTICLE

Nikolaj Tatti

Safe projections of binary data sets

Received: 23 May 2005 / Accepted: 25 January 2006 / Published online: 1 March 2006
C© Springer-Verlag 2006

Abstract Selectivity estimation of a boolean query based on frequent itemsets can
be solved by describing the problem by a linear program. However, the number
of variables in the equations is exponential, rendering the approach tractable only
for small-dimensional cases. One natural approach would be to project the data to
the variables occurring in the query. This can, however, change the outcome of the
linear program.

We introduce the concept of safe sets: projecting the data to a safe set does not
change the outcome of the linear program. We characterise safe sets using graph
theoretic concepts and give an algorithm for finding minimal safe sets containing
given attributes. We describe a heuristic algorithm for finding almost-safe sets
given a size restriction, and show empirically that these sets outperform the trivial
projection.

We also show a connection between safe sets and Markov Random Fields and
use it to further reduce the number of variables in the linear program, given some
regularity assumptions on the frequent itemsets.

1 Introduction

Consider the following problem: given a large, sparse matrix that holds boolean
values, and a boolean formula on the columns of the matrix, approximate the prob-
ability that the formula is true for a random row of the matrix. A straightforward
exact solution is to evaluate the formula on each row. Now consider the same
problem using instead of the original matrix a family of frequent itemsets, i.e., sets
of columns where true values co-occur in a large fraction of all rows [1, 2]. An

N. Tatti (B)
HIIT Basic Research Unit, Laboratory of Computer and Information Science,
Helsinki University of Technology, Finland
E-mail: ntatti@cc.hut.fi

618 N. Tatti

optimal solution is obtained by applying linear programming in the space of prob-
ability distributions [3, 11, 19], but since a distribution has exponentially many
components, the number of variables in the linear program is also large and this
makes the approach infeasible. However, if the target formula refers to a small
subset of the columns, it may be possible to remove most of the other columns
without degrading the solution; somewhat surprisingly, it is not safe to remove all
columns that do not appear in the formula. In this paper we investigate the ques-
tion of which columns may be safely removed. Let us clarify this scenario with
the following simple example.

Example 1 Assume that we have three attributes, say a, b, and c, and a data set D
having five transactions

D = {(1, 0, 1), (0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 0, 0)}.
Let us consider five itemsets, namely a, b, c, ab, and ac. The frequency of an
itemset is the fraction of transactions in which all the attributes appearing in the
itemset occur simultaneously. This gives us the frequencies θa = 3

5 , θb = 2
5 ,

θc = 3
5 , θab = 1

5 , and θac = 1
5 . Let θ = [θa, θb, θc, θab, θac]T . Let us now assume

that we want to estimate the frequency of the formula b ∧ c. Consider now a
distribution p defined on these three attributes. We assume that the distribution
satisfies the frequencies, that is, p(a = 1) = θa , p(a = 1, b = 1) = θab, etc.
We want to find a distribution minimising/maximising p(b ∧ c = 1). To convert
this problem into a linear program we consider p as a real vector having 23 = 8
elements. To guarantee that p is indeed a distribution we must require that p sum
to 1 and that p ≥ 0. The requirements that p must satisfy the frequencies can be
expressed in a form Ap = θ for a certain A. In addition, p(b ∧ c = 1) can be
expressed as cT p for a certain c. Thus we have transform the original problem
into a linear program

min cT p s.t.
∑

p = 1, p ≥ 0, Ap = θ.

Solving this program (and also the max-version of the program) gives us an in-
terval I = [1

5 , 2
5] for possible frequencies of p(b ∧ c = 1). This interval has the

following property: A rational frequency η ∈ I if and only if there is a data set
having the frequencies θ and having η as the fraction of the transactions satisfy-
ing the formula b ∧ c. If we, however, delete the attribute a from the data set and
evaluate the boundaries using only the frequencies θb and θc, we obtain a different
interval I ′ = [0, 2

5].
The problem is motivated by data mining, where fast methods for computing

frequent itemsets are a recurring research theme [10]. A potential new applica-
tion for the problem is privacy-preserving data mining, where the data is not made
available except indirectly, through some statistics. The idea of using itemsets as
a surrogate for data stems from [16], where inclusion-exclusion is used to approx-
imate boolean queries. Another approach is to assume a model for the data, such
as maximum entropy [21]. The linear programming approach requires no model
assumptions.

The boolean query scenario can be seen as a special case for the following
minimisation problem: Let K be the number of attributes. Given a family F of

Safe projections of binary data sets 619

itemsets, frequencies θ for F , and some function f that maps any distribution de-
fined on a set {0, 1}K to a real number find a distribution satisfying the frequencies
θ and minimising f . To reduce the dimension K we assume that f depends only
on a small subset, say B, of items, that is, if p is a distribution defined on {0, 1}K

and pB is p marginalised to B, then we can write f (p) = f (pB). The projection
is done by removing all the itemsets from F that have attributes outside B.

The question is, then, how the projection to B alters the solution of the min-
imisation problem. Clearly, the solution remains the same if we can always extend
a distribution defined on B satisfying the projected family of itemsets to a distri-
bution defined on all items and satisfying all itemsets in F . We describe sufficient
and necessary conditions for this extension property. This is done in terms of a
certain graph extracted from the family F . We call the set B safe if it satisfies the
extension property.

If the set B is not safe, then we can find a safe set C containing B. We will
describe an efficient polynomial-time algorithm for finding a safe set C containing
B and having the minimal number of items. We will also show that this set is
unique. We will also provide a heuristic algorithm for finding a restricted safe set
C having at maximum M elements. This set is not necessarily a safe set and the
solution to the minimisation problem may change. However, we believe that it is
the best solution we can obtain using only M elements.

The rest of the paper is organised as follows: Some preliminaries are described
in Sect. 2. The concept of a safe set is presented in Sect. 3 and the construction
algorithm is given in Sect. 4. In Sect. 5 we explain in more details the boolean
query scenario. In Sect. 6 we study the connection between safe sets and MRFs.
Section 7 is devoted to restricted safe sets. We present empirical tests in Sect. 8 and
conclude the paper with Sect. 9. Proofs for the theorems are given in Appendix.

2 Preliminaries

We begin by giving some basic definitions. A 0–1 database is a pair 〈D, A〉, where
A is a set of items {a1, . . . , aK } and D is a data set, that is, a multiset of subsets
of A.

A subset U ⊆ A of items is called an itemset. We define an itemset indicator
function SU : {0, 1}K → {0, 1} such that

SU (z) =
{

1, zi = 1 for all ai ∈ U

0, otherwise
.

Throughout the paper we will use the following notation: We denote a random
binary vector of length K by X = X A. Given an itemset U we define XU to
be the binary vector of length |U | obtained from X by taking only the elements
corresponding to U .

The frequency of the itemset U taken with respect of D, denoted by U (D), is
the mean of SU taken with respect D, that is, U (D) = 1

|D|
∑

z∈D SU (z). For more
information on itemsets, see e.g. [1].

An antimonotonic family F of itemsets is a collection of itemsets such that
for each U ∈ F each subset of U also belongs to F . We define straightforwardly

620 N. Tatti

the itemset indicator function SF = {SU | U ∈ F} and the frequency F(D) =
{U (D) | U ∈ F} for families of itemsets.

If we assume that F is an ordered family, then we can treat SF as an ordinary
function SF : {0, 1}K → {0, 1}L , where L is the number of elements in F . Also
it makes sense to consider the frequencies F(D) as a vector (rather than a set).
We will often use θ to denote this vector. We say that a distribution p defined on
{0, 1}K satisfies the frequencies θ , if Ep[SF] = θ .

Given a set of items C , we define a projection operator in the following way:
A data set DC is obtained from D by deleting the attributes outside C . A projected
family of itemsets FC = {U ∈ F | U ⊆ C} is obtained from F by deleting the
itemsets that have attributes outside C . The projected frequency vector θC is de-
fined similarly. In addition, if we are given a distribution p defined on {0, 1}K , we
define a distribution pC to be the marginalisation of p to C . Given a distribution
q over C we say that p is an extension of q if pC = q .

3 Safe projection

In this section we define a safe set and describe how such sets can be characterised
using certain graphs.

We assume that we are given a set of items A = {a1, . . . , aK } and an anti-
monotonic family F of itemsets and a frequency vector θ for F . We define P to be
the set of all probability distributions defined on the set {0, 1}K . We assume that
we are given a function f : P → R mapping a distribution to a real number. Let
us consider the following problem:

PROBLEM P:
Minimise f (p)
subject to p ∈ P

Ep[SF] = θ.

(1)

That is, we are looking for the minimum value of f among the distributions sat-
isfying the frequencies θ . Generally speaking, this is a very difficult problem.
Each distribution in P has 2K entries and for large K even the evaluation of f (p)
may become infeasible. This forces us to make some assumptions on f . We as-
sume that there is a relatively small set C such that f does not depend on the
attributes outside C . In other words, we can define f by a function fC such that
fC (pC) = f (p) for all p. Similarly, we define PC to be the set of all distribu-
tions defined on the set {0, 1}|C|. We will now consider the following projected
problem:

PROBLEM PC :
Minimise fC (q)
subject to q ∈ PC

Eq [SFC] = θC .

Let us denote the minimising distribution of Problem P by p̂ and the minimising
distribution of Problem PC by q̂ . It is easy to see that f (p̂) ≥ fC (q̂). In order to
guarantee that f (p̂) = fC (q̂), we need to show that C is safe as defined below.

Safe projections of binary data sets 621

Definition 1 Given an antimonotonic family F and frequencies θ for F , a set C
is θ -safe if for any distribution q ∈ PC satisfying the frequencies θC , there exists
an extension p ∈ P satisfying the frequencies θ . If C is safe for all θ , we say that
it is safe.

Example 2 Let us continue Example 1. We saw that the outcome of the linear
program changes if we delete the attribute a. Let us now show that the set C =
{b, c} is not a safe set. Let q be a distribution defined on the set C such that
q(b = 0, c = 0) = 0, q(b = 1, c = 0) = 2

5 , q(b = 0, c = 1) = 3
5 , and

q(b = 1, c = 1) = 0. Obviously, this distribution satisfies the frequencies θb and
θc. However, we cannot extend this distribution to a such that all the frequencies
are to be satisfied. Thus, C is not a safe set.

We will now describe a sufficient condition for safeness. We define a depen-
dency graph G such that the vertices of G are the items V (G) = A and the edges
correspond to the itemsets in F having two items E(G) = {{ai , a j } | ai a j ∈ F}.
The edges are undirected. Assume that we are given a subset C of items and select
x /∈ C . A path P = (ai1, . . . , aiL) from x to C is a graph path such that x = ai1
and only aiL ∈ C . We define a frontier of x with respect of C to be the set of the
last items of all paths from x to C

front(x, C) = {aiL | P = (ai1, . . . , aiL) is a path from x to C}.
Note that front(x, C) = front(y, C), if x and y are connected by a path not going
through C . The following theorem gives a sufficient condition for safeness.

Theorem 1 Let F be an antimonotonic family of itemsets. Let C be a set of items
C ⊆ A such that for each x /∈ C the frontier of x is in F , that is, front(x, C) ∈ F .
It follows that C is a safe set.

The vague intuition behind Theorem 1 is the following: x has influence on C only
through front(x, C). If front(x, C) ∈ F , then the distributions marginalised to
front(x, C) are fixed by the frequencies. This means that x has no influence on C
and hence it can be removed.

We saw in Examples 1 and 2 that the projection changes the outcome if the
projection set is not safe. This holds also in the general case:

Theorem 2 Let F be an antimonotonic family of itemsets. Let C be a set of
items C ⊆ A such that there exists x /∈ C whose frontier is not in F , that is,
front(x, C) /∈ F . Then there are frequencies θ for F such that C is not θ -safe.

Safeness implies that we can extend every satisfying distribution q in Problem PC
to a satisfying distribution p in Problem P. This implies that the optimal values of
the problems are equal:

Theorem 3 Let F be an antimonotonic family of itemsets. If C is a safe set, then
the minimum value of Problem P is equal to the minimum value of Problem PC
for any query function and for any frequencies θ for F .

If the condition of being safe does not hold, that is, there is a distribution q that
cannot be extended, then we can define a query f resulting 0 if the input dis-
tribution is q , and 1 otherwise. This construction proves the following theorem:

622 N. Tatti

a

b
c

d
e

f

Fig. 1 An example of dependency graph

Theorem 4 Let F be an antimonotonic family of itemsets. If C is not a safe set,
then there is a function f and frequencies θ for F such that the minimum value of
Problem P is strictly larger than the minimum value of Problem PC .

Example 3 Assume that we have 6 attributes, namely, {a, b, c, d, e, f }, and an
antimonotonic family F whose maximal itemsets are ab, bc, cd , ad , de, ce, and
a f . The dependency graph is given in Fig. 1.

Let C1 = {a, b, c}. This set is not a safe set since front(d, C1) = ac /∈ F . On
the other hand the set C2 = {a, b, c, d} is safe since front(f, C2) = a ∈ F and
front(e, C2) = cd ∈ F .

The proof of Theorem 1 reveals also an interesting fact:

Theorem 5 Let F be an antimonotonic family of itemsets and let θ be frequencies
for F . Let C be a safe set. Let pM E be the maximum entropy distribution defined
on A and satisfying θ . Let q M E be the maximum entropy distribution defined on
C and satisfying the projected frequencies θC . Then q M E is pM E marginalised
to C.

The theorem tells us that if we want to obtain the maximum entropy distribution
marginalised to C and if the set C is safe, then we can remove the items outside
C . This is useful since finding maximum entropy using Iterative Fitting Proce-
dure requires exponential amount of time [7, 12]. Using maximum entropy for
estimating the frequencies of itemsets has been shown to be an effective method
in practice [21]. In addition, if we estimate the frequencies of several boolean
formulae using maximum entropy distribution marginalised to safe sets, then the
frequencies are consistent. By this we mean that the frequencies are all evaluated
from the same distribution, namely pM E .

4 Constructing a safe set

Assume that we are given a function f that depends only on a set B, not neces-
sarily safe. In this section we consider a problem of finding a safe set C such that
B ⊆ C for a given B. Since there are usually several safe sets that include B,
for example, the set of all attributes A is always a safe set, we want to find a safe
set having the minimal number of attributes. In this section we will describe an
algorithm for finding such a safe set. We will also show that this particular safe set
is unique.

The idea behind the algorithm is to augment B until the safeness condition is
satisfied. However, the order in which we add the items into B matters. Thus we

Safe projections of binary data sets 623

need to order the items. To do this we need to define a few concepts: A neighbour-
hood N (x | r) of an item x of radius r is the set of the items reachable from x by
a graph path of length at most r , that is,

N (x | r) = {y | ∃P : x → y, |P| ≤ r}. (2)

In addition, we define a restricted neighbourhood NC (x | y) which is similar to
N (x | r) except that now we require that only the last element of the path P in
Eq. (2) can belong to C . Note that NC (x | r) ∩ C ⊆ front(x, C) and that the
equality holds for sufficiently large r .

The rank of an item x with respect of C , denoted by rank(x | C), is a vector v
of length |A|− 1 such that vi is the number of elements in C to whom the shortest
path from x has the length i , that is,

vi = |C ∩ (NC (x | i) − NC (x | i − 1))|.
We can compare ranks using the bibliographic order. In other words, if we let
v = rank(x | C) and w = rank(y | C), then rank(x | C) < rank(y | C)
if and only if there is an integer M such that vM < wM and vi = wi for all
i = 1, . . . , M − 1.

We are now ready to describe our search algorithm. The idea is to search the
items that violate the assumption in Theorem 1. If there are several candidates,
then items having the maximal rank are selected. Due to efficiency reasons, we
do not look for violations by calculating front(x, C). Instead, we check whether
NC (x | r) ∩ C ∈ F . This is sufficient because

NC (x | r) ∩ C /∈ F ⇒ front(x, C) /∈ F .

This is true because NC (x | r) ∩ C ⊆ front(x, C) and F is antimonotonic. The
process is described in full detail in Algorithm 1.

Algorithm 1 The algorithm for finding a safe set C . The required input is B, the
set that should be contained in C , and an antimonotonic family F of itemsets. The
graph G is the dependency graph evaluated from F .

C ⇐ B.
repeat

r ⇐ 1.
V ⇐ {x | ∃y ∈ C, xy ∈ E(G)} − C {V contains the neighbours of C .}
repeat

For each x ∈ V , Ux ⇐ NC (x | r) ∩ C .
if there exists Ux such that Ux /∈ F then

Break {A violation is found.}
end if
r ⇐ r + 1.

until no Ux changed
if there is a violation then

W ⇐ {x ∈ V | Ux /∈ F} {W contains the violating items.}
v ⇐ max{rank(x | C) | x ∈ W }.
Z ⇐ {x ∈ W | rank(x | C) = v}
C ⇐ C ∪ Z {Augment C with the violating items having the largest rank.}

end if
until there are no violations.

624 N. Tatti

We will refer to the safe set Algorithm 1 produces as safe(B | F). We will
now show that safe(B | F) is the smallest possible, that is,

| safe(B | F)| = min{|Y | | B ⊆ Y, Y is a safe set}.
The following theorem shows that in Algorithm 1 we add only necessary items
into C during each iteration.

Theorem 6 Let C be a set of items during some iteration of Algorithm 1 and let
Z = {x ∈ W | rank(x | C) = v} be the set of items as it is defined in Algorithm 1.
Let Y be any safe set containing C. Then it follows that Z ⊆ Y .

Corollary 1 A safe set containing B containing the minimal number of items is
unique. Also, this set is contained in each safe set containing B.

Corollary 2 Algorithm 1 produces the optimal safe set.

Example 4 Let us continue Example 3. Assume that our initial set B is {a, b, c}.
We note that front(d, B) = front(e, B) = ac /∈ F . Therefore, B is not a safe set.
The ranks are rank(d | B) = 2 and rank(e | B) = [1, 1]T (the trailing zeros are
removed). It follows that the rank of d is larger than the rank of e and therefore
d is added into B during Algorithm 1. The resulting set C = {a, b, c, d} is the
minimal safe set containing B.

5 Frequencies of boolean formulae

A boolean formula f : {0, 1}K → {0, 1} maps a binary vector to a binary value.
Given a family F of itemsets and frequencies θ for F we define a frequency inter-
val, denoted by fi(f | F, θ), to be

fi(f | F, θ) = {Ep[f] | Ep[SF] = θ},
that is, a set of possible frequencies coming from the distribution satisfying given
frequencies. For example, if the formula f is of form a1 ∧ . . . ∧ aM , then we are
approximating the frequency of a possibly unknown itemset.

Note that this set is truly an interval and its boundaries can be found using the
optimisation problem given in Eq. (1). It has been shown that finding the bound-
aries can be reduced to a linear programming [3, 11, 19]. However, the problem is
exponential in K and therefore it is crucial to reduce the dimension. Let us assume
that the boolean formula depends only on the variables coming from some set, say
B. We can now use Algorithm 1 to find a safe set C including B and thus to reduce
the dimension.

Example 5 Let us continue Example 3. We assign the following frequencies to
the itemsets: θx = 0.5 where x ∈ {a, b, c, d, e, f }, θbd = 0.5, θcd = 0.4, and the
frequencies of the rest itemsets in F are equal to 0.25. We consider the formula
f = b ∧ c. In this case f depends only on B = {b, c}. If we project directly to B,
then the frequency is equal to fi(f | FB, θB) = [0, 0.5].

The minimal safe set containing B is C = {a, b, c, d}. Since θbd = 0.5 it
follows that b is equivalent to d . This implies that the frequency of f must be
equal to fi(f | FC , θC) = θcd = 0.4.

Safe projections of binary data sets 625

There exists many problems similar to ours: A well-studied problem is called
PSAT in which we are given a CNF-formula and probabilities for each clause ask-
ing whether there is a distribution satisfying these probabilities. This problem is
NP-complete [9]. A reduction technique for the minimisation problem where the
constraints and the query are allowed to be conditional is given in [14]. However,
this technique will not work in our case since we are working only with uncondi-
tional queries. A general problem where we are allowed to have first-order logic
conditional sentences as the constraints/queries is studied in [15]. This problem is
shown to be NP-complete. Though these problems are of more general form they
can be emulated with itemsets [4]. However, we should note that in the general
case this construction does not result an antimonotonic family.

There are many alternative ways of approximating boolean queries based on
statistics: For example, the use of wavelets has been investigated in [17]. Query
estimation using histograms was studied in [18] (though this approach does not
work for binary data). We can also consider assigning some probability model to
data such as Chow-Liu tree model or mixture model (see e.g. [6, 21, 22]). Finally,
if B is an itemset and we know all the proper subsets of B and B is safe, then to
estimate the frequency of B we can use inclusion-exclusion formulae given in [5].

6 Safe sets and junction trees

Theorem 1 suggests that there is a connection between safe sets and Markov Ran-
dom Fields (see e.g. [13] for more information on MRF). In this section we will
describe how the minimal safe sets can be obtained from junction trees. We will
demonstrate through a counter-example that this connection cannot be used di-
rectly. We will also show that we can use junction trees to reformulate the optimi-
sation problem and possibly reduce the computational burden.

6.1 Safe sets and separators

Let us assume that the dependency graph G obtained from a family F of itemsets
is triangulated, that is, the graph does not contain chordless circuits of size 4
or larger. In this case we say that F is triangulated. For simplicity, we assume
that the dependency graph is connected. We need some concepts from Markov
Random Field theory (see e.g. [13]): The clique graph is a graph having cliques of
G as vertices and two vertices are connected if the corresponding cliques share a
mutual item. Note that this graph is connected. A spanning tree of the clique graph
is called a junction tree if it has a running intersection property. By this we mean
that if two cliques contain the same item, then each clique along the path in the
junction tree also contains the same item. An edge between two cliques is called
a separator, and we associate with each separator the set of items mutual to both
cliques.

We also make some further assumptions concerning the family F : Let V be
the set of items of some clique of the dependency graph. We assume that every
proper subset of V is in F . If F satisfies this property for each clique, then we
say that F is clique-safe. We do not need to have V ∈ F because there is no node
having an entire clique as a frontier.

626 N. Tatti

bc

d

e

a

ab
bcd bce

ab
bce bcdab

bcd

bce

Fig. 2 An example of an dependency graph, a corresponding clique graph, and the possible
junction trees

Let us now investigate how safe sets and junction trees are connected. First,
fix some junction tree, say T , obtained from G. Assume that we are given a set B
of items, not necessarily safe. For each item b ∈ B we select some clique Qb ∈
V (T) such that b ∈ Qb (same clique can be associated with several items). Let
b, c ∈ B and consider the path in T from Qb to Qc. We call the separators along
such paths inner separators. The other separators are called outer separators. We
always choose cliques Qb such that the number of inner separators is the smallest
possible. This does not necessarily make the choice of the cliques unique, but
the set of inner separators is always unique. We also define an inner clique to be
a clique incident to some inner separator. We refer to the other cliques as outer
cliques.

Example 6 Let us assume that we have 5 items, namely {a, b, c, d, e}. The depen-
dency graph, its clique graph, and the possible junction trees are given in Fig. 2.

Let B = {a, d}. Then the inner separator in the upper junction tree is the left
edge. In the lower junction tree both edges are inner separators.

The following three theorems describe the relation between the safe sets con-
taining B and the inner separators.

Theorem 7 Let F be an antimonotonic, triangulated and clique-safe family of
itemsets. Let T be a junction tree. Let C be a set containing B and all the items
from the inner separators of B. Then C is a safe set.

The following corollary follows from Corollary 1.

Corollary 3 Let F be an antimonotonic, triangulated and clique-safe family of
itemsets. Let T be a junction tree. The minimal safe set containing B may contain
(in addition to the set B) only items from the inner separators of B.

Theorem 8 Let F be an antimonotonic, triangulated and clique-safe family of
itemsets. There exists a junction tree such that the minimal safe set is precisely the
set B and the items from the inner separators of B.

Theorem 8 raises the following question: Is there a tree, not depending on B,
such that the minimal safe set is precisely the set B and the items from the inner
separators. Unfortunately, this is not the case as the following example shows.

Example 7 Let us continue Example 6. Let B1 = {a, d} and B2 = {a, e}. The
corresponding minimal safe sets are C1 = {a, b, d} and C2 = {a, b, e}. The first
case corresponds to the upper junction tree given in Fig. 2, and the latter case
corresponds the lower junction tree.

Safe projections of binary data sets 627

6.2 Reformulation of the optimisation problem using junction trees

We have seen that a optimisation problem can be reduced to a problem having 2|C|
variables, where C is a safe set. However, it may be the case that C is very large.
For example, imagine that the dependency graph is a single path (ai1, . . . , aiL) and
we are interested in finding the frequency for ai1 ∧ aiL . Then the safe set contains
the entire path. In this section we will try to reduce the computational burden even
further.

The main benefit of MRF is that we are able to represent the distribution as a
fraction of certain distributions. We can use this factorisation to encode the con-
straints. A small drawback is that we may not be able to express easily the dis-
tribution defined on B, the set of which the query depends. This happens when
B is not contained in any clique. This can be remedied by adding edges to the
dependency graph.

Let us make the previous discussion more rigorous. Let f be a query function
and let B be the set of attributes of which f depends. Let C = safe(B | F) be
the minimal safe set containing B. Project the items outside C and let G be the
connectivity graph obtained from FC . We add some additional edges to G. First,
we make the set B fully connected. Second, we triangulate the graph. Let T be a
junction tree of the resulting graph.

Since B is fully connected, there is a clique Qr such that B ⊆ Qr . For each
clique Qi in T we define pi to be a distribution defined on Qi . Similarly, for each
separator S j we define q j to be a distribution defined on S j . Denote by Si the
collection of separators of a clique Qi .

PROBLEM LP:
Minimise f (pr)
subject to For each Qi ∈ V (T),

pi satisfies θQi

pi is an extension of q j
for each S j ∈ Si .

(3)

The following theorem states that the above formulation is correct:

Theorem 9 The problem in Eq. (3) solves correctly the optimisation problem.

Note that we can remove all q j by combining the constraining equations. Thus
we have replaced the original optimisation problem having 2|C| variables with
a problem having

∑
2|Qi | variables. The number of cliques in T is bounded by

|C |, the number of attributes in the safe set. To see this select any leaf clique
Qi . This clique must contain a variable that is not contained in any other clique
because otherwise Qi is contained in its parent clique. We remove Qi and repeat
this procedure. Since there are only |C | attributes, there can be only |C | cliques.
Let M be the size of the maximal clique. Then the number of variables is bounded
by |C |2M . If M is small, then solving the problem is much easier than the original
formulation.

Example 8 Assume that we have a family of itemsets whose dependency graph G
is a path (ai1, . . . , aiL) and that we want to evaluate the boundaries for a formula
ai1 ∧ aiL . We cannot neglect any variable inside the path, hence we have a linear
program having 2L variables.

628 N. Tatti

By adding the edge {ai1, aiL } to G we obtain a cycle. To triangulate the graph
we add the edges {ai1, ai j } for 3 ≤ j ≤ L − 1. The junction tree in consists of
L − 2 cliques of the form ai1ai j ai j+1 , where 2 ≤ j ≤ L − 1. The reformulation of
the linear program gives us a program containing only (L − 2)23 variables.

7 Restricted safe sets

Given a set B Algorithm 1 constructs the minimal safe set C . However, the set C
may still be too large. In this section we will study a scenario where we require
that the set C should have M items, at maximum. Even if such a safe set may not
exist we will try to construct C such that the solution of the original minimisa-
tion problem described in Eq. (1) does not alter. As a solution we will describe a
heuristic algorithm that uses the information available from the frequencies.

First, let us note that in the definition of a safe set we require that we can
extend the distribution for any frequencies. In other words, we assume that the
frequencies are the worst possible. This is also seen in Algorithm 1 since the
algorithm does not use any information available from the frequencies.

Let us now consider how we can use the frequencies. Assume that we are given
a family F of itemsets and frequencies θ for F . Let C be some (not necessarily
a safe) set. Let x /∈ C be some item violating the safeness condition. Assume
that each path from x to C has an edge e = (u, v) having the following property:
Let θuv , θu , and θv be the frequencies of the itemsets uv, u, and v, respectively.
We assume that θuv = θuθv and that the itemset uv is not contained in any larger
itemset in F . We denote the set of such edges by E .

Let W be the set of items reachable from x by paths not using the edges
in E . Note that the set W has the same property than x . We argue that we
can remove the set W . This is true since if we are given a distribution p de-
fined on A − W , then we can extend this distribution, for example, by setting
p(X A) = pM E (XW)p(X A−W), where pM E (XW) is the maximum entropy distri-
bution defined on W . Note that if we remove the edges E , then Algorithm 1 will
not include W .

Let us now consider how we can use this situation in practice. Assume that
we are given a function w which assign to each edge a non-negative weight. This
weight represents the correlation of the edge and should be 0 if the independence
assumption holds. Assume that we are given an item x /∈ C violating the safeness
condition but we cannot afford adding x into C . Define H to be the subgraph
containing x , the frontier front(x, C) and all the intermediate nodes along the
paths from x to C . We consider finding a set of edges E that would cut x from
its frontier and have the minimal cost

∑
e∈E w(e). This is a well-known min-cut

problem and it can be solved efficiently (see e.g. [20]). We can now use this in
our algorithm in the following way: We build the minimal safe set containing the
set B. For each added item we construct a cut with a minimal cost. If the safe set
is larger than a constant M , we select from the cuts the one having the smallest
weight. During this selection we neglect the items that were added before the
constraint M was exceeded. We remove the edges and the corresponding itemsets
and restart the construction. The algorithm is given in full detail in Algorithm 2.

Safe projections of binary data sets 629

Algorithm 2 The algorithm for finding a restricted safe set C . The required input
is B, the set that should be contained in C , an antimonotonic family F of itemsets,
a constant M which is an upper bound for |C |, and a weight function w for the
edges. The graph G is the dependency graph evaluated from F .

C ⇐ B.
repeat

Find a violating item x having the largest rank.
if |C | + 1 > M then

Let H be the graph containing x , front(x, C) and all the intermediate nodes.
Let Ex be the min-cut of H cutting x and front(x, C) from each other.
Let vx be the cost of Ex .

end if
C ⇐ C + x .

until there are no violations.
if |C | > M then

Let x be the item such that vx is the smallest possible.
Remove the edges Ex from the dependency graph.
Remove the itemsets corresponding to the edges from F .
Remove also possible higher-order itemsets to preserve the antimonotonicity of F .
Restart the algorithm.

end if

Example 9 We continue Example 5. As a weight function for the edges we use
the mutual information. This gives us wbd = 0.6931 and wcd = 0.1927. The rest
of the weights are 0. Let B = {b, c}. We set the upper bound for the size of the
safe set to be M = 3. The minimal safe set is C = {a, b, c, d}. The min cuts are
Ea = {(a, b), (a, c)} and Ed = {(d, b), (d, c)}. The corresponding weights are
va = 0 and vd = wbd + wcd > 0. Thus by cutting the edges Ea we obtain the set
Cr = {b, c, d}. The frequency interval for the formula b ∧ c is fi(f | FCr , θCr) =
0.4 which is the same as in Example 5.

8 Empirical tests

We performed empirical tests to assess the practical relevance of the restricted
safe sets, comparing it to the (possibly) unsafe trivial projection. We mined itemset
families from two data sets, and estimated boolean queries using both the safe pro-
jection and the trivial projection. The first data set, which we call Paleo,1 describes
fossil findings: the attributes correspond to genera of mammals, the transactions to
excavation sites. The Paleo data is sparse, and the genera and sites exhibit strong
correlations. The second data set, which we call Mushroom, was obtained from
the FIMI repository.2 The data is relatively dense.

First we used the APRIORI [2] algorithm to retrieve some families of itemsets.
A problem with APRIORI was that the obtained itemsets were concentrated on the
attributes having high frequency. A random query conducted on such a family will
be safe with high probability—such a query is trivial to solve. More interesting
families would the ones having almost all variables interacting with each other,
that is, their dependency graphs have only a small number of isolated nodes. Hence

1 Paleo was constructed from NOW public release 030717 available from [8].
2 http://fimi.cs.helsinki.fi

http://fimi.cs.helsinki.fi

630 N. Tatti

0 20 40 60 80
0

500

1000

1500

2000

2500

3000
Mushroom, σ = 0.8 x 10 −6

the size of a safe set

th
e

nu
m

be
r

of
 q

ue
rie

s

0 20 40 60 80
0

500

1000

1500

2000

2500

3000
Paleo, σ = 3 x 10−3

th
e

nu
m

be
r

of
 q

ue
rie

s

the size of a safe set

Fig. 3 Distributions of the sizes of safe sets. The left histogram is obtained from Paleo data by
using σ = 3 × 10−3 as the threshold parameter for modified APRIORI. The right histogram is
obtained from Mushroom data with σ = 0.8 × 10−8

we modified APRIORI: Let A be the set containing all items and for each a ∈ A let
m(a) be the frequency of a. Let m be the smallest frequency m = mina∈A m(a)
and define s(a) = m(a)/m. Let U be an itemset and let θU be its frequency.
Define ηU = ∏

a∈U s(a). We modify APRIORI such that the itemset U is in the
output if and only if the ratio θU /ηU is larger than given threshold σ . Note that this
family is antimonotonic and so APRIORI can be used. By this modification we are
trying to give sparse items a fair chance and in our tests the relative frequencies
did produce more scattered families.

For each family of itemsets we evaluated 10000 random boolean queries. We
varied the size of the queries between 2 and 4. At first, such queries seem too sim-
ple but our initial experiments showed that these queries do result large safe sets.
A few examples are given in Fig. 3. In most of the queries the trivial projection is
safe but there are also very large safe sets. Needless to say that we are forced to
use restricted safe sets.

Given a query f we calculated two intervals i1(f) = fi(f | FB, θB) and
i2(f) = fi(f | FC , θC) where B contains the attributes of f and C is the restricted
safe set obtained from B using Algorithm 2. In other words, i1(f) is obtained by
using the trivial projection and i2(f) is obtained by projecting to the restricted
safe set. As parameters for Algorithm 2 we set the upper bound M = 8 and the
weight function w to be the mutual information.

We divided queries into two classes. A class TRIVIAL contained the queries in
which the trivial projection and the restricted safe set were equal. The rest of the
queries were labelled as COMPLEX. We also defined a class ALL that contained
all the queries.

As a measure of goodness for a frequency interval we considered the differ-
ence between the upper and the lower bound. Clearly i2(f) ⊆ i1(f), so if we
define a ratio r(f) = ‖i2(f)‖

‖i1(f)‖ , then it is always guaranteed that 0 ≤ r(f) ≤ 1.
Note that the ratio for the queries in TRIVIAL is always 1.

The ratios were divided into appropriate bins. The results obtained from Paleo
data are shown in the contingency table given in Tables 1 and 2 and the results for
Mushroom data are given in Tables 3 and 4.

Safe projections of binary data sets 631

Table 1 Counts of queries obtained from Paleo data and classified according to the ratio r(f),
giving the relative tightness of the bounds from restricted safe sets compared to the trivial pro-
jections. A column represents a family of itemsets used as the constraints. The parameter σ is
the threshold given to the modified APRIORI. The class TRIVIAL contains the queries in which
the projections were equal; COMPLEX contains the remaining queries. For example, there were
15 complex queries having the ratios between 0.4 − 0.6 in the first family

σ × 10−3

Class r ≥ r < 3 3.25 3.5 3.75 4

COMPLEX 0 0.2 1 0 0 0 0
0.2 0.4 0 1 1 0 0
0.4 0.6 15 11 10 5 4
0.6 0.8 74 53 50 55 45
0.8 1 238 173 124 99 68
1 3289 1931 1353 1116 868

TRIVIAL 1 6383 7831 8462 8725 9015

Table 2 Probability of r(f) = 1 among the complex queries and among all queries. The queries
were obtained from Paleo data. A column represents a family of itemsets used as the constraints.
The parameter σ is the threshold given to the modified APRIORI

σ × 10−3

Class 3 3.25 3.5 3.75 4

COMPLEX 91.0% 89.0% 88.0% 87.5% 88.1%
ALL 96.7% 97.6% 98.1% 98.4% 98.8%

Table 3 Counts of queries obtained from Mushroom data and classified according to the ratio
r(f), giving the relative tightness of the bounds from restricted safe sets compared to the trivial
projections. A column represents a family of itemsets used as the constraints. The parameter σ is
the threshold given to the modified APRIORI. The class TRIVIAL contains the queries in which
the projections were equal; COMPLEX contains the remaining queries

σ × 10−6

Class r ≥ r < 0.8 0.9 1

COMPLEX 0.0 0.2 46 38 42
0.2 0.4 96 81 80
0.4 0.6 302 261 260
0.6 0.8 96 86 69
0.8 1 168 118 109
1 4738 4146 3993

TRIVIAL 1 4554 5270 5447

By examining Tables 1 and 2 we conclude the following: If we conduct a
random query of form f , then in 97%–99% of the cases the frequency intervals
are equal i1(f) = i2(f). However, if we limit ourselves to the cases where the
projections differ (the class COMPLEX), then the frequency interval is equal only
in about 90% of the cases. In addition, the probability of i1(f) being equal to
i2(f) increases as the threshold σ grows.

632 N. Tatti

Table 4 Probability of r(f) = 1 among the complex queries and among all queries. The queries
were obtained from Mushroom data. A column represents a family of itemsets used as the con-
straints. The parameter σ is the threshold given to the modified APRIORI

σ × 10−6

Class 0.8 0.9 1

COMPLEX 87.0% 87.7% 87.7%
ALL 92.9% 94.2% 94.4%

The same observations apply to the results for Mushroom data (Tables 3 and 4):
In 93%–94% of the cases the frequency intervals are equal i1(f) = i2(f), but if
we consider only the cases where projections differ, then the percentage drops to
88%. The percentages are slightly smaller than those obtained from Paleo data
and also there are relatively many queries whose ratios are very small.

The computational burden of a trivial query is equivalent for both trivial pro-
jection and restricted safe set. Hence, we examine complex queries in which there
is an actual difference in the computational burden. The results suggest that in abt.
10% of the complex queries the restricted safe sets produced tighter interval.

9 Conclusions

We started our study by considering the following problem: Given a family F of
itemsets, frequencies for F , and a boolean formula find the bounds of the fre-
quency of the formula. This can be solved by linear programming but the problem
is that the program has an exponential number of variables. This can be remedied
by neglecting the variables not occurring in the boolean formula and thus reducing
the dimension. The downside is that the solution may change.

In the paper we defined a concept of safeness: Given an antimonotonic family
F of itemsets a set C of attributes is safe if the projection to C does not change
the solution of a query regardless of the query function and the given frequencies
for F . We characterised this concept by using graph theory. We also provided an
efficient algorithm for finding the minimal safe set containing some given set.

We should point out that while our examples and experiments were focused
on conjunctive queries, our theorems work with a query function of any shape.

If the family of itemsets satisfies certain requirements, that is, it is triangu-
lated and clique-safe, then we can obtain safe sets from junction trees. We also
show that the factorisation obtained from a junction tree can be used to reduce the
computational burden of the optimisation problem.

In addition, we provided a heuristic algorithm for finding restricted safe sets.
The algorithm tries to construct a set of items such that the optimisation problem
does not change for some given itemset frequencies.

We ask ourselves: In practice, should we use the safe sets rather than the triv-
ial projections? The advantage is that the (restricted) safe sets always produce
outcome at least as good as the trivial approach. The downside is the additional
computational burden. Our tests indicate that if a user makes a random query then
in abt. 93%–99% of the cases the bounds are equal in both approaches. However,

Safe projections of binary data sets 633

this comparison is unfair because there is a large number of queries where the
projection sets are equal. To get the better picture we divide the queries into two
classes TRIVIAL and COMPLEX, the first containing the queries such that the pro-
jections sets are equal, and the second containing the remaining queries. In the
first class there is no improvement in the outcome but there is no additional com-
putational burden (checking that the set is safe is cheap comparing to the linear
programming). If a query was in COMPLEX, then in 10% of the cases projecting
on restricted safe sets did produce more tight bounds.

Acknowledgements The author wishes to thank Heikki Mannila and Jouni Seppänen for their
helpful comments.

A Appendix

This section contains the proofs for the theorems presented in the paper.

A.1 Proof of Theorem 1

Let θ be any consistent frequencies for F . Let H = FC . To prove the theorem we will show
that any distribution defined on items C and satisfying the frequencies θC can be extended to a
distribution defined on the set A and satisfying the frequencies θ .

Let W = A − C . Partition W into connected blocks Wi such that x, y ∈ Wi if and only if
there is a path P from x to y such that P ∩ C = ∅. Note that the items coming from the same
Wi have the same frontier. Therefore, front(Wi , C) is well-defined. We denote front(Wi , C)
by Vi .

Let pM E be the maximum entropy distribution defined on the items A and satisfying θ .
Note that there is no chord containing elements from Wi and from C − Vi at the same time. This
implies that we can write pM E as

pM E (X A) = pM E (XC)
∏

i

pM E (XWi , XVi)

pM E (XVi)
.

Let p be any distribution defined on C and satisfying the frequencies θC . Note that pM E (XVi) =
p(XVi), and hence we can extend p to the set A by defining

p(X A) = p(XC)
∏

i

pM E (XWi , XVi)

pM E (XVi)
.

To complete the proof we will need to prove that p satisfies the frequencies θ . Select any itemset
U ∈ F . There are two possible cases: Either U ⊆ C , which implies that U ∈ H and since p
satisfies θC it follows that p also satisfies θU .

The other case is that U has elements outside C . Note that U can have elements in only
one Wi , say, W j . This in turn implies that U cannot have elements in C − front(W j , C), that is,
U ⊆ W j ∪ Vi . Note that pM E (XWi , XVi) = p(XWi , XVi). Since pM E satisfies θ , p satisfies θU .
This completes the theorem.

A.2 Proof of Theorem 2

Assume that we are given a family F of itemsets and a set C such that there exists x /∈ C
such that front(x, C) /∈ F . Select Y ⊆ front(x, C) to be some subset of the frontier such that

634 N. Tatti

Y /∈ F and each proper subset of Y is contained in F . We can also assume that paths from x
to Y are of length 1. This is done by setting the intermediate attributes lying on the paths to be
equivalent with x . We can also set the rest of the attributes to be equivalent with 0. Therefore,
we can redefine C = Y , the underlying set of attributes to consist only of Y and x , and F to be

F = {Z | Z ⊂ C, Z �= C} ∪ {yx | y ∈ C}.
Let θ = {θZ | Z ∈ F} be the frequencies for the itemset family F such that

θZ = 0.5−|Z | if Z ⊂ C
θZ = 0.5 if Z = x
θZ = c if Z = xy for y ∈ C,

(4)

where c is a constant (to be determined later).
Define n to be the number of elements in C . Let k be the number of ones in the random bit

vector XC . Let us now consider the following three distributions defined on C :

p1(XC) =
{

2−n+1, n − k is even
0, n − k is odd

p2(XC) = 2−n

p3(XC) =
{

2−n+1, n − k is odd
0, n − k is even

.

Note that all three distributions satisfy the first condition in Eq. (4). Note also that pi (XC)
depends only on the number of ones in XC . We will slightly abuse the notation and denote
pi (k) = pi (XC), where XC is a random vector having k ones.

Assume that we have extended pi (XC) to pi (XC , Xx) satisfying θ . We can assume that
pi (XC , Xx) depends only on the number of ones in XC and the value of Xx . Define ci (n, k) =
pi (XC , Xx = 1), where XC is a random vector having k ones. Note that

0.5 = pi (Xx = 1) =
n∑

k=0

(
n

k

)
ci (n, k).

If we select any attribute z ∈ C , then

c = pi (Xz = 1, Xx = 1) =
n∑

k=1

(
n − 1

k − 1

)
ci (n, k).

If we now consider the conditions given in Eq. (4) and require that pi (Xx = 1) = θx = 0.5 and
also require that pi (Xz = 1, Xx = 1) = c is the largest possible, then we get the following three
optimisation problems:

PROBLEM Pi :
Maximise ci (n) = ∑n

k=1

(n−1
k−1

)
ci (n, k)

subject to ci (n, k) ≥ 0
ci (n, k) ≤ pi (k)

0.5 = ∑n
k=0

(n
k

)
ci (n, k)

(5)

If we can show that the statement

c1(n) = c2(n) = c3(n)

is false, then by setting c = max(c1(n), c2(n), c3(n)) in Eq. (4) we obtain such frequencies that
at least one of the distributions pi cannot be extended to x . We will prove our claim by assuming
otherwise and showing that the assumption leads to a contradiction.

Note that
(n−1

k−1

)
/
(n

k

) = k/n. This implies that the maximal solution c2(n) has the unique
form

c2(n, k) =

2−n, k > n
2

2−n−1, k = n
2 and n is even

0, otherwise.

(6)

Safe projections of binary data sets 635

Define series b(n, k) = 1
2 (c1(n, k) + c3(n, k)). Note that b(n, k) is a feasible solution for Prob-

lem P2 in Eq. (5). Moreover, since we assume that c2(n) = c1(n) = c3(n), it follows that b(n, k)
produces the optimal solution c2(n). Therefore, b(n, k) = c2(n, k). This implies that c1(n, k)
and c3(n, k) have the forms

c1(n, k) =
{

2c2(n, k), n − k is even

0, n − k is odd
(7)

c3(n, k) =
{

2c2(n, k), n − k is odd

0, n − k is even
. (8)

Assume now that n is odd. The conditions of Problems P1 and P3 imply that

n∑

k=0

(
n

k

)
c1(n, k) = 0.5 =

n∑

k=0

(
n

k

)
c3(n, k).

By applying Eqs. (6)–(8) to this equation we obtain, depending on n, either the identity
(

n

n

)
+

(
n

n − 2

)
+ · · · +

(
n

n+1
2

)
=

(
n

n − 1

)
+

(
n

n − 3

)
+ · · · +

(
n

n+3
2

)

or (
n

n

)
+

(
n

n − 2

)
+ · · · +

(
n

n+3
2

)
=

(
n

n − 1

)
+

(
n

n − 3

)
+ · · · +

(
n

n+1
2

)
.

Both of these identities are false since the series having the term
(n

n+1
2

)
is always larger. This

proves our claim for the cases where n is odd.
Assume now that n is even. The assumption c1(n) = c3(n) together with Eqs. (6)–(8)

implies the identity
(

n − 1

n − 1

)
+

(
n − 1

n − 3

)
+ · · · + 1

2

(
n − 1
n
2 − 1

)
=

(
n − 1

n − 2

)
+

(
n − 1

n − 4

)
+ · · · +

(
n − 1

n
2

)
.

We apply the identity (
n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
(9)

to this equation and cancel out the equal terms from both sides. This gives us the identity

1

2

(
n − 1
n
2 − 1

)
=

(
n − 2
n
2 − 1

)
.

By applying again Eq. (9) we obtain
(

n − 2
n
2 − 2

)
=

(
n − 2
n
2 − 1

)
.

This is true for no n and thus we have proved our claim.

A.3 Proof of Theorem 5

Denote by E(p) the entropy of a distribution p. We know that E(q M E) ≥ E(pM E
C). Assume

now that q is a distribution satisfying the frequencies θC . Let us extend q as we did in the proof
of Theorem 1:

p(X A) = q(XC)
∏

i

pM E (XWi , XVi)

pM E (XVi)
.

636 N. Tatti

The entropy of this distribution is of the form E(p) = E(q) + c, where

c =
∑

i

E(pM E
Wi ∪Vi

) − E(pM E
Vi

)

is a constant not depending on q . This characterisation is valid because pM E
Vi

= qVi . If we let

q = q M E , it follows that

E(pM E) ≥ E(p) = E(q M E) + c ≥ E(pM E
C) + c.

If we now let q = pM E
C , it follows that p = pM E and this implies that E(pM E) = E(pM E

C)+ c.
Thus E(q M E) = E(pM E

C). The distribution maximising entropy is unique, thus pM E
C = q M E .

A.4 Proof of Theorem 6

Assume that there is x ∈ Z such that x /∈ Y . Let Ux = {u1, . . . , uL } be as it is defined in
Algorithm 1. Let Pi be the shortest path from x to ui and define vi to be the first item on Pi
belonging to Y . There are two possible cases: Either vi = ui which implies that ui ∈ front(x, Y),
or ui is blocked by some other element in Y . If Ux ⊆ front(x, Y), then the safeness condition is
violated. Therefore, there exists u j such that v j �= u j .

We will prove that v j outranks x , that is, rank(v j | C) > rank(x | C). It is easy to see
that it is sufficient to prove that rank(v j | Ux) > rank(x | Ux). In order to do this note that
{v1, . . . , vL } ⊆ front(x, Y) ∈ F . Therefore, because of the antimonotonic property of F , there
is an edge from v j to each vi . This implies that there is a path Ri from v j to ui such that
|Ri | ≤ |Pi |, that is, the length of Ri is smaller or equal than the length of Pi . Also note, that
since v j lies on Pj , there exists a path R j from v j to u j such that |R j | < |Pj |. This implies that
rank(v j | Ux) > rank(x | Ux).

Also, note that Ux ⊂ N (v j | r), where r is the search radius defined in Algorithm 1. This
implies that v j is discovered during the search phase, that is, v j is one of the violating nodes.

To complete the proof we need to show that v j is a neighbour of C . Since x is a neighbour
of C , there is uk such that there is an edge between x and uk . This implies that vk = uk . Since
there is an edge between v j and vk , it follows that v j is neighbour of C .

A.5 Proof of Theorem 7

Let a be some item belonging to some inner clique Q but not belonging in any inner separator.
The clique Q is unique and the only reachable items of C from a are the inner separators incident
to Q. Since Q is a clique, it follows from the clique-safeness assumption that the frontier of a is
included in F .

Let now a be any item that is not included in any inner clique. There exists a unique inner
clique Q such that all the paths from a to C go through this clique. This implies that the frontier
of a is again the inner separators incident to Q.

A.6 Proof of Theorem 8

We will prove that if we have an item a coming from some inner separator and not included in the
minimal safe set, then we can alter the junction tree such that the item a is no longer included in
the inner separators. For the sake of clarity, we illustrate an example of the modification process
in Fig. 4.

Let G be the dependency graph and T the current junction tree. Let C be the minimal safe
set containing B and let a /∈ C be an item coming from some inner separator. Let us consider
paths (in G) from a to its frontier. For the sake of clarity, we prove only the case where the paths
from a to C are of length 1. The proof for the general case is similar.

Safe projections of binary data sets 637

ab

bcx

behx deefx

gh

hix

ab

behx

bcx

efx

hix

de

gh

Fig. 4 Two equivalent junction trees. Our goal is to find the minimal safe set for B = {a, d, g}.
The left junction tree is before the modification and the right is after the modification. We see
that the attribute x is not included in the inner separators in the right tree. The sets appearing in
the proof are as follows: The minimal safe set C is adgbeh. I consists of 3 separators bx , ex ,
and hx . The other separators belong to J . V consists of 4 cliques bcx , e f x , hix , and behx . The
clique Q is behx

Let I be the collection of inner separators containing a. Let V be the collection of (inner)
cliques incident to the inner separators included in I . The pair (V, I) defines a subtree of T . Let
J be the set of inner separators incident to some clique in V but not included in I . Note that each
item coming from the inner separators included in J must be included in C because otherwise
we have violated the assumption that the paths from a to its frontier are of length 1.

The frontier of a consists of the items of the inner separators in J and of possibly some
items from the set B. By the assumption the frontier is in F and thus it is fully connected. It
follows that there is a clique Q containing the frontier. If Q /∈ V , a clique from V closest to Q
also contains the frontier. Hence we can assume Q ∈ V .

Select a separator E ∈ J . Let U /∈ V be the clique incident to E . We modify the tree by
cutting the edge E and reattaching U to Q. The procedure is performed to each separator in J .
The obtained tree satisfies the running intersection property since Q contains the items coming
from each inner separators included in J . If the frontier contained any items included in B, then
Q contains these items. It is easy to see that each clique in V , except for the clique Q, becomes
outer. Therefore, a is no longer included in any inner separator.

A.7 Proof of Theorem 9

Let p̂ be the optimal distribution. Then by marginalising we can obtain p̂i , and q̂ j which produce
the same solution for the reduced problem.

To prove the other direction let p̂i , and q̂ j be the optimal distributions for the reduced
problem. Since the running intersection property holds, we can define the joint distribution p̂ by
p̂ = ∏

i p̂i /
∏

j q̂ j . It is straightforward to see that p̂ satisfies the frequencies. This proves the
statement.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in
large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, pp. 207–216. Washington, DC, 26–28
(1993)

2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of as-
sociation rules. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.)
Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press/The MIT
Press (1996)

638 N. Tatti

3. Bykowski, A., Seppänen, J.K., Hollmén, J.: Model-independent bounding of the supports
of Boolean formulae in binary data. In: Lanzi, P.L., Meo, R. (eds.) Database Support for
Data Mining Applications: Discovering Knowledge with Inductive Queries, LNCS 2682,
pp. 234–249. Springer Verlag (2004)

4. Calders, T.: Computational complexity of itemset frequency satisfiability. In: Proceedings of
the 23nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database System
(2004)

5. Calders, T., Goethals, B.: Mining all non-derivable frequent itemsets. In: Proceedings of the
6th European Conference on Principles and Practice of Knowledge Discovery in Databases.
(2002)

6. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with dependence
trees. IEEE Transactions on Information Theory 14(3), 462–467 (May 1968)

7. Darroch, J., Ratchli, D.: Generalized iterative scaling for log-linear models. The Annals of
Mathematical Statistics 43(5), 1470–1480 (1972)

8. Forselius, M.: Neogene of the old world database of fossil mammals (NOW). University of
Helsinki, http://www.helsinki.fi/science/now/ (2005)

9. Georgakopoulos, G., Kavvadias, D., Papadimitriou, C.H.: Probabilistic satisfiability. Jour-
nal of Complexity 4(1), 1–11 (March 1988)

10. Goethals, B., Zaki, M.J. (eds.): FIMI ’03, Frequent itemset mining implementations. In:
Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementations,
19 December 2003, Melbourne, Florida, USA, vol. 90 of CEUR Workshop Proceedings
(2003)

11. Hailperin, T.: Best possible inequalities for the probability of a logical function of events.
The American Mathematical Monthly 72(4), 343–359 (Apr. 1965)

12. Jiroušek, R., Přeušil, S.: On the effective implementation of the iterative proportional fitting
procedure. Computational Statistics and Data Analysis 19, 177–189 (1995)

13. Jordan, M.I. (ed.): Learning in graphical models. MIT Press (1999)
14. Lukasiewicz, T.: Efficient global probabilistic deduction from taxonomic and probabilistic

knowledge-bases over conjunctive events. In: Proceedings of the Sixth International Con-
ference on Information and Knowledge Management, pp. 75–82 (1997)

15. Lukasiewicz, T.: Probabilistic logic programming with conditional constraints. ACM Trans-
actions on Computational Logic (TOCL) 2(3), 289–339 (July 2001)

16. Mannila, H., Toivonen, H.: Multiple uses of frequent sets and condensed representations
(extended abstract). In: Knowledge Discovery and Data Mining, pp. 189–194 (1996)

17. Matias, Y., Vitter, J.S., Wang, M.: Wavelet-based histograms for selectivity estimation. In
Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 448–
459 (1998)

18. Muralikrishna, M., DeWitt, D.: Equi-depth histograms for estimating selectivity factors for
multi-dimensional queries. In Proceedings of ACM SIGMOD International Conference on
Management of Data, pp. 28–36 (1988)

19. Nilsson, N.: Probabilistic logic. Artificial Intelligence 28(1), 71–87 (1986)
20. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization Algorithms and Complexity.

Dover, 2nd edn. (1998)
21. Pavlov, D., Mannila, H., Smyth, P.: Beyond independence: Probabilistic models for query

approximation on binary transaction data. IEEE Transactions on Knowledge and Data En-
gineering 15(6), 1409–1421 (2003)

22. Pavlov, D., Smyth, P.: Probabilistic query models for transaction data. In: Proceedings of the
seventh ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 164–173 (2001)

http://www.helsinki.fi/science/now/

