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Abstract We investigate a general framework which can be instantiated in or-
der to obtain type systems for graph rewriting, allowing us to statically infer be-
havioural properties of a graph. We describe conditions such as the subject reduc-
tion property and compositionality that should be satisfied by such a framework.
We present a methodology for proving these conditions, specifically we prove that
it is sufficient to show properties that are local to graph transformation rules. In or-
der to show the applicability of this framework, we describe in several case studies
how to integrate existing type systems (for the π-calculus and the λ-calculus) and
a system for typing acyclic graphs.

1 Introduction

Today’s software systems are becoming increasingly more complex, concurrent
and dynamic in nature. Examples for such systems are communication protocols,
mobile processes in dynamically evolving networks and pointer structures on the
heap generated by a program. This development requires the design of new verifi-
cation and analysis methods which are specifically suited for dynamically evolv-
ing systems. From current work on verification environments [2, 7, 19, 46] for
programming languages such as C or Java a trend emerges: It seems that a mix
of several techniques will be the preferred method for software verification in the
future.
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One promising technique for this mix are certainly type systems, which allow
us to inductively infer behavioural information from a system description. There
is a rich theory of type systems going far beyond types for variables and methods
as used in imperative programming languages. Functional languages [37] have
an especially elaborate type theory, but there has also been much work on pro-
cess calculi such as the π-calculus [32, 36, 41] and the ambient calculus [6].
More general theories of types for process calculi are described in [20, 21]. Type
systems are usually characterized by compositionality and modularity, i.e., the
type of a term can be derived from the types of its subterms. Very often type
systems also allow efficient type inference and can thus be used for fast debug-
ging and quickly deriving basic properties of a system. This makes type systems,
in combination with other methods, very useful tools for program analysis and
verification.

In order to describe a general framework for type systems of concurrent and
dynamically evolving systems, it is first necessary to determine a modelling lan-
guage for such systems. Our work is based on graph transformation systems [44],
which are a simple and intuitive, but at the same time rigorous and general, for-
malism, in which dynamically evolving systems and interacting processes can be
specified. We will specifically work with hypergraphs where an arbitrarily long se-
quence of nodes can be attached to an edge. As will be shown later, all necessary
ingredients of a type system can be naturally integrated into graph transforma-
tion systems. We feel that graph transformation systems are a good choice, since
rewriting on graph-like structures has also emerged as the basis of a different en-
compassing theory, namely that of deriving labelled transitions and bisimulation
congruences for a set of reaction rules [13, 23, 34].

In this setting two important questions have to be answered: What does the
type of a graph look like? What are the essential properties of a type system that
should be present in the general framework? It turns out that the former question
is not very hard to answer: The type of a graph is again a graph. There are two
reasons for this choice: First, complex types for functional languages or process
calculi are often represented by infinite regular trees, i.e., trees with only finitely
many subtrees. Such a regular tree can be finitely represented by a graph in a
straightforward way. Second, in graph rewriting there already exists the concept
of type graph [8], which is a graph over which all productions have to be typed.
Otherwise, however, a type graph, which has to be fixed a priori and which can
not be used for system analysis, is quite different from the types presented in this
paper.

The latter question concerns the essential properties of a type system. Here we
have identified the following properties:

– correctness
If a system has a certain type, then we can conclude that this system has certain
properties.

– type invariance, also called subject reduction property
Types are invariant under reduction. Or put differently: The type describes an
invariant property of the system under consideration.

– compositionality
The type of a system can always be derived from the types of its subsystems.
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– subtypes and principal types
Types are ordered with respect to how much information they contain, i.e. with
respect to their precision, and every system has a smallest type with respect to
that order.

– type inference
There exists a method for computing the (principal) type of a system.

While the first three properties seem to be fairly standard for type systems,
the last two properties are certainly debatable since they are not satisfied by ev-
ery type system. In our type systems, however, these two properties hold, since
they greatly simplify working with type systems and since type inference gives us
an effective method for system analysis. The subtype relation for graphs can be
naturally defined by graph morphisms. Furthermore we add an extra layer of lat-
tice annotations to type graphs in order to be able to express more specific system
properties. This can be compared to frameworks for dataflow analysis or abstract
interpretation [39] which are also parameterized over lattices.

Before we can define type systems for graphs, the following problem has to
be solved: It is not entirely clear what it means to define a type inductively on the
structure of a graph. Graphs are usually not defined inductively, they are defined
as tuples containing a set of edges and a set of nodes. But there exists also an
algebraic view on graphs which regards graphs as objects that can be composed
and decomposed using operators on graphs [5, 15]. For our purposes it seems most
convenient to describe graph construction using an explicit “construction plan”
that can be applied to different graphs as long as they have the same external
interface. This construction plan describes how graphs are attached independently
of their internal structure by attaching nodes in their interfaces.

Our design decisions in developing a general framework were the following:
The framework should be natural and not overly complex, but it should still be
possible to embed existing well-known type systems, such as type systems for the
λ-calculus and the π-calculus. It seemed also natural in this setting to integrate
type inference into the typing rules and thus create type systems from which the
algorithm for computing principal types can be immediately derived. The cen-
tral aim for setting up this framework was to provide a proof methodology for
showing that the essential properties of a type system, such as type invariance, are
indeed satisfied. Specifically, it is sufficient to show the subject reduction property
locally for graph transformation rules, the subject reduction property for global
transformations then follows automatically.

This paper mainly focusses on the definition and justification of the type
framework, the introduction of the proof methodology and the embedding of other
type systems. An example for a useful application of this general framework (typ-
ing of (un)trustworthy applets) can be found in [25].

During the development of this framework we found the following mathe-
matical concepts to be useful: colimits for graph construction, lattices and join-
morphisms in order to specify type annotations, functors for having a clear corre-
spondence between graph morphisms and the transformation of type annotations
and closure operators. As a consequence the paper uses some concepts from cate-
gory theory [4, 35]. These appear mainly in some of the proofs, especially in the
proofs of Propositions 1 and 3. The rest of the paper should be understandable
without any knowledge of category theory.
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Fig. 1 (a) A discrete hypergraph and (b) a single hyperedge

2 Hypergraph rewriting and hypergraph annotation

We first define some basic notions concerning hypergraphs (see also [18]) and
a method for inductively constructing hypergraphs. This concept has previously
been introduced in [24, 30].

We are using the following notation. If s̃ ∈ A∗ is a string of elements of the
set A, then Set(s̃) denotes the set underlying s̃ and �s̃�i stands for the i-th element
of s̃. If f : A → B is a function, then f (s̃) denotes the pointwise application of f
to every element of A, resulting in a string of B∗.

Definition 1 (Hypergraph) Let L be a fixed set of labels. A hypergraph H =
(VH , EH , cH , lH , χH ) consists of a set of nodes VH , a set of edges EH , a con-
nection mapping cH : EH → V ∗H , an edge labelling lH : EH → L and a string
χH ∈ V ∗H of external nodes or interface nodes. A hypergraph morphism (or
simply morphism) ϕ : H → H ′ (consisting of mappings ϕV : VH → VH ′ and
ϕE : EH → EH ′) maps nodes to nodes and edges to edges, preserving connec-
tions and labelling, i.e., ϕV (cH (e)) = cH ′(ϕE (e)) and lH (e) = lH ′(ϕE (e)).

A strong morphism (denoted by the arrow �) additionally preserves external
nodes, i.e. ϕV (χH ) = χH ′ . We write H ∼= H ′ (H is isomorphic to H ′) if there is
a bijective strong morphism from H to H ′.

The arity of a hypergraph H is defined as ar(H) = |χH | while the arity of an
edge e of H is ar(e) = |cH (e)|. External nodes are the interface of a hypergraph
towards its environment and are used to attach hypergraphs.

Notation: We call a hypergraph discrete, if its edge set is empty. By m we
denote a discrete graph of arity m ∈ lN with m nodes where every node is external
(see Fig. 1(a), external nodes are labelled 1, 2, . . . in their respective order).

The hypergraph H = [�]n contains exactly one edge e with label � where
cH (e) = χH , ar(e) = n and VH = Set(χH ) (see Fig. 1(b)). We draw hyperedges
in such a way that the sequence cH (e) is enumerated from left to right.

The next step is to define a method (first introduced in [24]) for the annota-
tion of hypergraphs with lattice elements and to describe how these annotations
are transformed under morphisms. We use annotated hypergraphs as types where
the annotations can be considered as extra typing information, therefore we some-
times use the terms annotated hypergraph and graph type as synonyms.

Definition 2 (Annotated Hypergraphs) Let A be a mapping assigning a com-
plete lattice A(H) = (I,≤) to every hypergraph and a function Aϕ : A(H) →
A(H ′) to every morphism ϕ : H → H ′. We assume that A satisfies:

Aϕ ◦Aψ = Aϕ◦ψ AidH = idA(H)

Aϕ(
∨

A) =∨{Aϕ(a) | a ∈ A} Aϕ(⊥) = ⊥
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where ∨ is the join-operation, A is a subset of the lattice A(H) and⊥ is its bottom
element.

If a ∈ A(H), then H together with the lattice element a is called an annotated
hypergraph and is denoted by H [a]. Furthermore ϕ : H [a] →A H ′[a′] is called
an A-morphism if ϕ : H → H ′ is a hypergraph morphism and Aϕ(a) ≤ a′.
Furthermore H [a] and H ′[a′] are called isomorphic (written H [a] ∼= H ′[a′]) if
there exists a strong bijective A-morphism ϕ with Aϕ(a) = a′ between them.

Annotations can be used in order to add information to graph types that can
not directly be derived from the graph structure or that requires additional manip-
ulation (such as closure operations). A typical example is the case where nodes
can be seen as communication ports and the annotations provide information on
whether an external port can be used for input, for output or for both (see also
Sect. 4.2).

Example 1 We consider the following annotation mapping A as an example. Let
(L ,≤) be an arbitrary lattice. We define A(H) to be the set of all mappings from
VH into L (which yields a lattice with pointwise order). So let a : VH → L be an
element of A(H) and let ϕ : H → H ′, v′ ∈ VH . We define: Aϕ(a) = a′ where
a′ : VH ′ → L with a′(v′) = ∨

ϕ(v)=v′ a(v). That is, we take the join of the lattice
annotations of all nodes that are mapped to v′.

From the point of view of category theory, A is a functor from the category
of hypergraphs and hypergraph morphisms into the category of lattices and join-
morphisms (i.e. functions preserving the join operation of the lattice). The obvious
(forgetful) functor from the category of annotated hypergraphs into the category
of hypergraphs without annotations is an opfibration, which can be obtained by
the Grothendieck construction [4]. This property, however, is of no consequence
for the rest of this paper.

As in type systems types are usually defined inductively over the structure of
a term, we want to define graph types inductively over the structure of a graph.
However, it is not immediately clear how to decompose a graph. In order to have
a clear concept for the composition and decomposition of hypergraphs, we now
introduce a method for attaching (annotated) hypergraphs with a construction plan
consisting of discrete graph morphisms.

Definition 3 (Hypergraph Construction) Let H1[a1], . . . , Hn[an] be annotated
hypergraphs and let ζi : mi → D, i ∈ {1, . . . , n} be hypergraph morphisms where
ar(Hi ) = mi and D is discrete. Furthermore let ϕi : mi � Hi be the unique strong
morphisms from mi into Hi .

For this construction we assume that the node and edge sets of H1, . . . , Hn
and D are pairwise disjoint. Furthermore let ≈ be the smallest equivalence on
their nodes satisfying ζi (v) ≈ ϕi (v) for i ∈ {1, . . . , n}, v ∈ Vmi . The nodes of the
constructed graph are the equivalence classes of ≈. We define a hypergraph H as

D
n
i=1(Hi , ζi ) =

((
VD ∪

⋃n

i=1
VHi

)
/≈ ,

⋃n

i=1
EHi , cH , lH , χH

)

where cH (e) = [v1]≈ . . . [vk]≈ if e ∈ EHi and cHi (e) = v1 . . . vk . Furthermore
lH (e) = lHi (e) if e ∈ EHi . We also define χH = [v1]≈ . . . [vk]≈ if χD = v1 . . . vk .
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Fig. 2 An example for hypergraph construction

If n = 0, the result of the construction is D itself.
We construct embeddings ϕ : D � H and ηi : Hi → H by mapping every

node to its equivalence class and every edge to itself. Then the construction of
annotated graphs can be defined as follows:

D
n
i=1(Hi [ai ], ζi ) =

(
D

n
i=1(Hi , ζi )

) [∨n

i=1
Aηi (ai )

]
.

In other words: we join all graphs D, H1, . . . , Hn and fuse exactly the nodes
which are the image of one and the same node in the mi, the image of χD becomes
the new sequence of external nodes. The new lattice annotation is the supremum
of all annotations ai , transferred to the new graph H .

Example 2 We present an example for graph construction, where we combine two
hypergraphs H1, H2 using the discrete morphisms ζ1 : 3 → D and ζ2 : 2 → D
depicted in Fig. 2 below (ignore the grey nodes for the moment). The resulting
hypergraph is H . The following points are noteworthy:

– The first external node of m1 and the first external node of m2 are mapped to
the same node in D, which means that the respective nodes of H1 and H2 are
to be fused in H .

– The hypergraph H2 contains duplicates in its sequence of external nodes. This
causes all nodes that are to be fused with either the first or the second node
of H2 to be fused themselves, which occurs to the two nodes attached to the
A-edge.

– The discrete graph D contains an internal and an external node which are not
in the range of the ζi . This indicates that they are still present in the resulting
graph H , but not attached to any edge, i.e., they are isolated.

To continue this example we assume an annotation mapping as in Example 1
where L = {true, false} with false < true. If in H1 and H2 we colour all nodes
that are labelled true in grey, then, in the annotation mapping for H , exactly the
nodes that are the image of at least one grey node will be again grey.
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Fig. 3 An alternative notation for graph construction

Fig. 4 A multi-hole graph context representing H1 �� H2

We also use another, more intuitive notation for graph construction, which
we call multi-hole graph context. Let ζi : mi → D, i ∈ {1, . . . , n}. Then we
depict D

n
i=1(Hi , ζi ) by drawing the hypergraph (VD, {e1, . . . , en}, cH , lH , χD)

where cH (ei ) = ζi (χmi) and lH (ei ) = Hi (see Fig. 3). Note that the edges of this
hypergraph containing the Hi are depicted by using dashed lines. If there is an
edge with a dashed line labelled with an edge [�]n we preferably draw it with a
solid line and label it with � (see e.g. Fig. 12).

Example 3 Using the notion of multi-hole graph context we can draw
n

2
i=1(Hi , ζi ) where ζ1, ζ2 : n � n as in Fig. 4. Here we fuse the external nodes

of H1 and H2 in their respective order and denote the resulting graph by H1 �H2.

It can be shown that this form of graph construction is as expressive as other
operators or operations on graphs, such as the graph expressions of Bauderon
and Courcelle [5] or hyperedge replacement [18]. Furthermore every graph has a
unique normal form which corresponds to its decomposition into hyperedges.

In terms of category theory, D
n
i=1(Hi [ai ], ζi ) is the colimit of the ζi and the

ϕi regarded as A-morphisms (D and the mi are annotated with the bottom element
⊥). The properties of the annotation mapping, given in Definition 2, are needed to
show that D

n
i=1(Hi [ai ], ζi ) is in fact a colimit.

Proposition 1 (Hypergraph Construction as a Colimit) Let H1[a1], . . . ,
Hn[an] be annotated hypergraphs with mi = ar(Hi ), let ζi : mi[⊥] →A D[⊥]
be discrete morphisms and let ϕi : mi[⊥] �A Hi [ai ] be the unique strong mor-
phisms.

Then H [a] = D
n
i=1(Hi [ai ], ζi ) (with morphisms ηi , ϕ of Definition 3) is

the colimit of the ζi and the ϕi in the category of annotated hypergraphs and A-
morphisms (see Fig. 5).

Proof The proof is straightforward and is thus omitted. �

From the fact that graph construction can be described by a colimit, we can
immediately derive another interesting fact, which will be needed later on.
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Fig. 5 Hypergraph construction as a colimit

Fig. 6 Proof of Proposition 2

Proposition 2 Let ψi : Ti �A T ′i , i ∈ {1, . . . , n} be strong A-morphisms. Then
there exists a strong A-morphism ψ : D

n
i=1(Ti , ζi )→ D

n
i=1(T ′i , ζi ).

Proof We set T = D
n
i=1(Ti , ζi ) and T ′ = D

n
i=1(T ′i , ζi ). Furthermore let

ζi : mi[⊥] →A D[⊥], ϕi : mi[⊥] →A Ti ,

ϕ : D[⊥] �A T, ηi : Ti →A T,

ϕ′i : mi[⊥] →A Ti , ϕ′ : D[⊥] �A T ′, η′i : T ′i → T ′

be the morphisms of the two colimits. Since the ϕ′i are the unique strong mor-
phisms, it holds that ϕ′i = ψi ◦ϕi . Therefore (η′i ◦ψi ) ◦ϕi = η′i ◦ϕ′i = ϕ′ ◦ ζi , i.e.,
the diagram consisting of the morphisms ϕi , ζi , η′i ◦ψi and ϕ′ commutes. The uni-
versal property of the colimit implies the existence of a morphism ψ : T →A T ′.
(This situation is depicted in Fig. 6). Furthermore ϕ′ = ψ ◦ ϕ, and therefore ψ is
also a strong morphism. �

Having established the notion of graph construction it is now straightforward
to define hypergraph rewriting.

Definition 4 (Hypergraph Rewriting) Let R be a set of pairs (L , R) (called
rewriting rules), where the left-hand side L and the right-hand side R are both
hypergraphs of the same arity. Then→R is the smallest relation generated by the
pairs of R and closed under hypergraph construction.

Our approach is equivalent to rewriting in the double-pushout approach [12]
using discrete interface graphs only (for more details concerning this claim see
[29]). Note that every rewriting rule with a non-discrete interface can in principle
be simulated by a rule with a discrete interface by deleting and recreating the edges
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in the interface. This is equivalent in all contexts in which concurrency aspects are
not taken into account.

We need one more concept: A linear mapping which is an inductively defined
transformation, mapping hypergraphs to hypergraphs and adding annotation.

Definition 5 (Linear Mapping) A function from hypergraphs to hypergraphs is
called arity-preserving if it preserves arity and isomorphism classes of hyper-
graphs.

Let t be an arity-preserving function that maps hypergraphs of the form [�]n
to annotated hypergraphs. Then t can be extended to arbitrary hypergraphs by
defining t ( D

n
i=1([li ]ni , ζi )) = D

n
i=1(t ([li ]ni ), ζi ) and is then called a linear

mapping.

A linear mapping t is always well-defined and satisfies

t ( D
n
i=1(Hi , ζi )) ∼= D

n
i=1(t (Hi ), ζi )

for arbitrary hypergraphs Hi . Note that the construction operator on the left-hand
side of the equation operates on ordinary hypergraphs, while the one on the right-
hand side operates on annotated hypergraphs.

3 Type systems for graph rewriting

3.1 Basic requirements for type systems

Having introduced all underlying notions we now specify the requirements for
type systems. The basic assumption is that the type of a hypergraph is an annotated
hypergraph. As will be seen later this is a convenient requirement that allows
us to regard a graph as an abstract representation of the behaviour of a graph
transformation system.

We assume that there is a fixed set R of rewriting rules, an annotation mapping
A, a predicate X on hypergraphs (representing the property we want to check), a
property Y on graph types and a relation � with the following meaning: if H � T
where H is a hypergraph and T a graph type (annotated with respect to A), then
we say that H has type T . It is required that H and T have the same arity.

We demand that � satisfies the following conditions: first, a type should contain
information concerning the properties of a hypergraph, i.e., if a hypergraph has a
type and Y holds for this type, then we can be sure that the property X holds for
the hypergraph.

Correctness: (1)

H � T ∧ Y (T ) ⇒ X (H)

During reduction, the type stays invariant.

Subject reduction property: (2)

H � T ∧ H →R H ′ ⇒ H ′ � T

From (1) and (2) we can conclude that H �T , Y (T ) and H →∗
R H ′ imply X (H ′),

that is X holds during the entire reduction.
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The strong A-morphisms introduced in Definition 2 impose a preorder on
graph types. It should always be possible to weaken the type with respect to that
preorder. Since intuitively a graph type represents structure that may be present,
adding new parts or fusing components results in a less precise type.

Weakening: (3)

H � T ∧ T �A T ′ ⇒ H � T ′

We also demand that the type system is compositional, i.e., a graph has a type if
and only if this type can be obtained by typing its subgraphs and combining these
types. It will be necessary to take into account effects caused by non-context-free
rewriting rules. Hence it is not possible to obtain the type of an expression simply
by combining the types of the subgraphs in exactly the same way the expression is
constructed and so we introduce a partial arity-preserving mapping ρ doing some
post-processing. Since ρ might be partial, its application to a graph type is not nec-
essarily defined. So it might be the case in the first line below that D

n
i=1(Hi , ζi )

does not have a type.

Compositionality: (4)

∀ i : Hi � Ti ⇒ D
n
i=1(Hi , ζi ) �

T
︷ ︸︸ ︷
ρ( D

n
i=1(Ti , ζi ))

whenever T is defined
D

n
i=1(Hi , ζi ) � T ⇒ ∃ T1, . . . , Tn :

((∀i : Hi � Ti ) ∧ ρ( D
n
i=1(Ti , ζi )) �A T )

A last condition—the existence of minimal types—may not be strictly needed for
type systems, but type systems satisfying this condition are much easier to handle.

Existence of minimal types: (5)

H typable ⇒ ∃ T : (H � T ∧ ∀ T ′ : (H � T ′ ⇐⇒ T �A T ′))

3.2 Introducing a more specific type system

Let us now assume that types are computed from graphs in the following way:
there is a linear mapping t , such that H � ρ(t (H)), if ρ(t (H)) is defined, and all
other types of H are derived by the weakening rule, i.e., ρ(t (H)) is the minimal
type of H .

The meaning of the mappings t and ρ can be explained as follows: t is a
transformation local to edges, abstracting from irrelevant details and adding an-
notation information to a graph. The mapping ρ on the other hand, is a global
(closure) operation, merging or removing parts of a graph in order to anticipate
future reductions and thus ensuring the subject reduction property.

The motivation to use closure operators came from the area of abstract inter-
pretation [9, 10] and from unification as it is used in type inference algorithms
[43]. Furthermore the type system was tailored in such a way as to be able to inte-
grate well-known existing type systems (see Sect. 4). Presenting the type system
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using the mappings t and ρ is convenient, since we obtain a formalism already
close to type inference algorithms, but there exists a rule-based formulation as
well (see below). It might be the case that in order to extend the framework and
integrate more complex type systems, it is necessary to rely on the rule-based
formulation and design a separate type inference algorithm.

In this setting it is sufficient to prove some simpler conditions, especially the
proof of (2) can be conducted locally.

Theorem 1 Let A be a fixed annotation mapping, let ρ be an arity-preserving
mapping as above, let t be a linear mapping, let X and Y be predicates on hyper-
graphs respectively graph types and let H � T if and only if ρ(t (H)) �A T . Let
us further assume that ρ and Y satisfy1

T �A T ′ ∧ Y (T ′) ⇒ Y (T ) (6)

ρ( D
n
i=1(Ti , ζi )) ∼= ρ( D

n
i=1(ρ(Ti ), ζi )) (7)

T �A T ′ ⇒ ρ(T ) �A ρ(T ′) (8)

Then the relation � satisfies conditions (1)–(5) if and only if it satisfies

Y (ρ(t (H))) ⇒ X (H) (9)

(L , R) ∈ R ⇒ ρ(t (R)) �A ρ(t (L)) (10)

Proof We first show that (9) and (10) imply (1)–(5)

(1) Let H � T and Y (T ). From the definition of � it follows that ρ(t (H)) �A T
and (6) implies that Y (ρ(t (H))) is satisfied. With (9) we conclude that X (H)
holds.

(2) Let H � T and H →R H ′. From the definition of � it follows that
ρ(t (H)) �A T .
The relation →R is defined via the closure of R under hypergraph con-
struction, i.e., H ∼= D

n
i=1(Hi , ζi ), H ′ ∼= D

n
i=1(H ′

i , ζi ) and there is a rule
(L , R) ∈ R such that Hj ∼= L and H ′

j
∼= R. For all other i with i �= j it holds

that Hi ∼= H ′
i .

Since ρ and t preserve isomorphism classes, it holds that ρ(t (Hi )) ∼= ρ(t (H ′
i ))

and with (10) it follows that ρ(t (R)) �A ρ(t (L)). From Proposition 2 it
follows that

D
n
i=1(ρ(t (H ′

i )), ζi ) �A D
n
i=1(ρ(t (Hi )), ζi ).

Finally, Conditions (8) and (7) imply that

ρ(t (H ′)) ∼= ρ( D
n
i=1(ρ(t (H ′

i )), ζi )) �A ρ( D
n
i=1(ρ(t (Hi )), ζi ))

∼= ρ(t (H)) �A T .

Hence ρ(t (H ′)) �A T and this implies H ′ � T .
(3) Let H �T and T �A T ′. From the definition of � it follows that ρ(t (H)) �A

T �A T ′ and therefore H � T ′.
1 In an equation of the form T ∼= T ′ we assume that T is defined if and only if T ′ is defined.

And in a condition of the form T �A T ′ we assume that T is defined if T ′ is defined.
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(4) We show that both parts of the condition are satisfied:
– We assume that there are graph types Ti such that Hi � Ti . It follows that

ρ(t (Hi )) �A Ti . Since A-morphisms are preserved by graph construction
(see Proposition 2) and by the operation ρ (see Condition (8)) we conclude
with Proposition 2 that

ρ(t ( D
n
i=1(Hi , ζi ))) ∼= ρ( D

n
i=1(ρ(t (Hi )), ζi ))

�A ρ( D
n
i=1(Ti , ζi )).

And therefore D
n
i=1(Hi , ζi ) � ρ( D

n
i=1(Ti , ζi )) whenever the type graph

is defined.
– Let D

n
i=1(Hi , ζi )�T . From the definition of � and with (7) it follows that

ρ( D
n
i=1(ρ(t (Hi )), ζi )) �A T .

We set Ti = ρ(t (Hi )) and hence Hi � Ti is satisfied.
(5) Let H be typable, i.e. T = ρ(t (H)) is defined. We show that T is the minimal

type. If H � T ′ for any graph type T ′ it follows from the definition of � that
T = ρ(t (H)) �A T ′. If, on the other hand, T ∼= ρ(t (H)) �A T ′, it follows
immediately with (3) that H � T ′.

We will now show that (1)–(5) imply (9) and (10).

– (9) We assume that Y (ρ(t (H))) holds. Since H�ρ(t (H)), Condition (1) implies
that X (H) holds.

– (10) let (L , R) ∈ R, that is L →R R and L � ρ(t (L)). Condition (2) implies
that R � ρ(t (L)). And from the definition of � it follows that ρ(t (R)) �A
ρ(t (L)). �

Notes: If a graph rewriting rule satisfies Condition (10), we sometimes also
say that this rule can be typed.

The fact that local type invariance implies global type invariance is one of the
main features of this framework. Examples for rules satisfying Condition (10) can
be found in later sections in Figs. 10 and 20.

It is a direct consequence of Condition (7) above that the operator ρ is idem-
potent, i.e. ρ(ρ(T )) ∼= ρ(T ). Regard the identity graph construction with n = 1
and ζ1 : n � n where n = ar(T ).

This restriction to a more specialised type system is partly motivated by Con-
dition (10) describing local type invariance and partly by the fact that it allows
a classical rule-based formulation. By definition H � T holds if and only if
ρ(t (H)) �A T . If we assume that Conditions (6)–(10) are satisfied, this holds
if and only if H � T can be derived using the following typing rules.

[�]m � ρ(t ([�]m))

∀ i : Hi � Ti

D
n
i=1(Hi , ζi ) � ρ( D

n
i=1(Ti , ζi ))

H � T, T �A T ′
H � T ′

We can now summarize all components needed for a type framework in our
setting.
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Definition 6 (Type Framework) A type framework is a tuple (A, t, ρ, X, Y )
where

– A is an annotation mapping.
– t is a linear mapping mapping hypergraphs to annotated hypergraphs.
– ρ is a partial arity-preserving mapping from annotated hypergraphs to anno-

tated hypergraphs.
– X is a predicate on hypergraphs.
– Y is a predicate on annotated hypergraphs.

and Conditions (6)–(9) are satisfied.
A type framework is called type framework for a set of rewriting rules R if

additionally Condition (10) holds for all rules in R.

3.3 Deriving properties of the closure operator ρ

In order to come to terms with a global operator such as ρ defined above, we
present two ways to derive ρ such that at least some of the required properties
hold automatically. The first method is described in Sect. 3.3.1 and is based on
universal properties. It will be employed in Sects. 4.2 and 4.3 in order to define
type frameworks related to type systems of the π-calculus and the λ-calculus. The
second method, described in Sect. 3.3.2 reduces a graph to its external interface.
We will refer to it again in Sect. 4.1, where a type framework for typing acyclic
graphs is developed.

In many ways, the operator ρ is related to closure operators on lattices, which
are used in abstract interpretation [11].

Definition 7 (Closure operator on lattices) Let (L ,≤) be a lattice consisting
of a set L and a partial order ≤. A mapping ρ : L → L is called upper closure
operator if it satisfies the following three conditions:

– ρ is monotone.
– ∀l ∈ L : l ≤ ρ(l), i.e., ρ is extensive.
– ∀l ∈ L : ρ(ρ(l)) = ρ(l), i.e., ρ is idempotent.

The monotonicity of ρ is analogous to Condition (8). Furthermore one can
easily derive that ρ(

∨n
i=1 �i ) = ρ(

∨n
i=1 ρ(�i )), where �1, . . . , �n ∈ L and

∨

stands for the least upper bound. This is strongly related to Condition (7).
It is not in all cases convenient to demand the equivalent of extensivity, i.e.,

there must not necessarily be a morphism T �A ρ(T ). But sometimes the oper-
ation ρ can be characterised by a universal property with the intuitive notion that
ρ(T ) is the “smallest” graph type (with respect to the preorder �A) for which
T �A ρ(T ) and a property C hold (see Proposition 3).

3.3.1 Characterizing closure operators by a universal property

Following these ideas, the morphism T �A ρ(T ) can also be seen as the
initial element in a comma category (T ↓ F) where F is the obvious functor
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Fig. 7 Characterisation of ρ(T ) by a universal property

from the category of hypergraphs satisfying C (with all strong morphisms between
them) into the category of all hypergraphs with strong morphisms. In other words,
the category (T ↓ F) has as objects all graph morphisms of the form ϕ′ : T �A
T ′, where C(T ′) is satisfied. And for two such objects ϕ′ : T �A T ′, ϕ′′ : T →
T ′′ an arrow with source ϕ′ and target ϕ′′ is a morphism ψ : T ′ �A T ′′ such that
ψ ◦ ϕ′ = ϕ′′, i.e., the diagram commutes.

All this can be defined without making use of comma categories in the follow-
ing way:

Proposition 3 Let C be a property on graph types. We characterize ρ(T ) in the
following way: ρ(T ) satisfies C, there is a morphism ϕ : T �A ρ(T ) and for ev-
ery other morphism ϕ′ : T �A T ′ where C(T ′) holds, there is a unique morphism
ψ : ρ(T ) �A T ′ such that ψ ◦ ϕ = ϕ′ (see Fig. 7). Furthermore we demand that

(i) If there exists a morphism ϕ : T �A T ′ such that C(T ′) holds, then ρ(T ) is
defined.

(ii) Every discrete graph D satisfies condition C.

Then if ρ(T ) is defined, it is unique up to isomorphism. Furthermore ρ satisfies
Conditions (7) and (8).

Proof For the purpose of this proof let HA be the category of hypergraphs an-
notated by A, H′A the category of annotated hypergraphs which can be folded,
i.e., the application of ρ is defined, and let HC

A the category of annotated hyper-
graphs satisfying C . It obviously holds that HC

A is a subcategory of H′A, and H′A
is a subcategory of HA. Now let E be the (inclusion) functor which embeds HC

A
straightforwardly into H′A.

Because of the universal property through which ρ is defined, it follows that
ρ : H′A → HC

A can be extended to the left adjoint of E (compare [35], IV.1., The-
orem 2) and is therefore a functor. This implies that whenever there is a morphism
T �A T ′, then there exists also a morphism ρ(T ) �A ρ(T ′), whenever ρ(T ) is
defined. Furthermore ρ(T ) must be defined whenever ρ(T ′) is defined, according
to Condition (i) in Proposition 3. Combined, this implies that Condition (8) holds.

Left adjoints preserve colimits ([35], V.5), i.e., if for two categories A, X , the
functor F : A → X is a left adjoint, it holds that ColX F(D) ∼= F(ColA D) where
ColA D is the colimit of the diagram D in the category A.

In our case A = H′A and X = HA. Translating the preservation result into
this setting implies that the colimit of a diagram ζi : mi → D, ϕi : mi � Ti in
the category H′A followed by the application of ρ gives a result isomorphic to
the colimit of the diagram ζi : mi → D, ϕ′i : mi � ρ(Ti ) in the category HC

A.
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Again ϕi and ϕ′i are the unique strong morphisms. By diagram-chasing we can
easily show that the latter colimit is isomorphic to the colimit of the ζi , ϕ

′
i in the

category H′A, followed by the application of ρ. Since ρ does not modify discrete
graphs (Condition (ii)), this immediately implies Condition (7) if both sides of the
equation are defined.

If the right-hand side of the equation is defined, then we can conclude with
Proposition 2 that there are morphisms

D
n
i=1(Ti , ζi ) �A D

n
i=1(ρ(Ti ), ζi ) �A ρ( D

n
i=1(ρ(Ti ), ζi )),

where the last graph satisfies condition C . Hence Condition (i) of Proposition 3
implies that the left-hand side of the equation is defined as well.

If the left-hand side is defined, then we can immediately infer that the right-
hand side is defined, since colimits are preserved by adjoints. �

Note that this proposition can be shown conveniently using well-known results
from category theory. A proof without using category theory is also possible, but
considerably longer (see [26]).

3.3.2 Reduction to external nodes

A different, and often useful way to define ρ is to reduce the type graph together
with its annotation to its external nodes. This means restricting the type informa-
tion to the interface. We will use this definition again in Sect. 4.1.

Definition 8 Let A be an annotation mapping, let ϕ : G → H be a graph mor-
phism and let b ∈ A(H). We define redϕ(b) =∨{a | Aϕ(a) ≤ b}.

Let T = H [b] be an A-annotated hypergraph of arity n. We define the reduc-
tion to external nodes ρ(T ) of T to be the discrete annotated graph X [redϕ(b)]
where X consists of the external nodes of H , i.e.,

VX = Set(χH ), EX = ∅, χX = χH

and ϕ : X � H is the unique strong morphism from X into H .

All reductions satisfy Condition (8), but we can only give a partial answer
concerning Condition (7).

Proposition 4 Let ρ be defined as in Definition 8. Then ρ satisfies Condition (8)
and furthermore there is a strong A-morphism

ι : ρ( D
n
i=1(ρ(Ti ), ζi )) �A ρ( D

n
i=1(Ti , ζi )),

which is a strong isomorphism on the underlying (discrete) graphs.

Proof We will first show that, for a given graph type T = H [b], there is a strong
injective A-morphism ρ(T ) �A T . Let X [a] = ρ(T ). First, there obviously is a
strong injective morphism X � H . It is left to show that Aϕ(redϕ(b)) ≤ b. This
holds since Aϕ(

∨{a | Aϕ(a) ≤ b}) = ∨{Aϕ(a) | Aϕ(a) ≤ b} ≤ b.
Let us now consider Condition (8). Let ψ : T �A T ′ be a strong A-morphism

where T = H [b], T ′ = H ′[b′]. Furthermore let ρ(T ) = X [a], ρ(T ′) = X ′[a′]
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and let ϕ : ρ(T ) �A T , ϕ′ : ρ(T ′) �A T ′ be the corresponding morphisms. If
we restrict ψ to external nodes we obtain a morphism ψ ′ : X → X ′ such that that
ψ ◦ ϕ = ϕ′ ◦ ψ ′.

It is left to show that Aψ ′(a) ≤ a′. It holds that a = ∨{c | Aϕ(c) ≤ b} and
hence Aψ ′(a) =∨{Aψ ′(c) | Aϕ(c) ≤ b} and a′ =∨{c′ | Aϕ′(c′) ≤ b′}. In order
to show the inequality, we will show that every element in the first set is contained
in the second set. We take a lattice element Aψ ′(c) such that Aϕ(c) ≤ b. It follows
that Aϕ′(Aψ ′(c)) = Aϕ′◦ψ ′(c) = Aψ◦ϕ(c) = Aψ(Aϕ(c)) ≤ Aψ(b) ≤ b′, since
ψ is an A-morphism.

We now examine Condition (7). Since there are morphisms ρ(Ti ) �A Ti , the
existence of a strong morphism

D
n
i=1(ρ(Ti ), ζi ) �A D

n
i=1(Ti , ζi )

follows from Proposition 2. Hence the existence of a strong morphism

ι : ρ( D
n
i=1(ρ(Ti ), ζi )) �A ρ( D

n
i=1(Ti , ζi ))

follows from Condition (8). It is straightforward to see that ι is an isomorphism
on the underlying graphs. �

Example 4

– The reduction to external nodes satisfies Condition (7), if the lattice A(H) for
a hypergraph H consists of all mappings of the form a : V n

H → L where L is
an arbitrary fixed lattice (see also the example after Definition 2).

– Now, as a counterexample, consider the family of lattices

A(H) = ({V ′ | d(H) ⊆ V ′ ⊆ VH },⊆),

where d(H) = {v ∈ VH | ∃ e ∈ EH ∃ i, j : (i �= j ∧ �cH (e)�i = v =
�cH (e)� j )}, i.e., d(H) is the set of all nodes of H that appear more than once
in a sequence of nodes attached to an edge e. For a morphism ϕ : G → H and
V ∈ A(G) we define Aϕ(V ) = ϕ(V ) ∪ d(H), which gives us an annotation
mapping.
Now let H = [�]2 be a 2-ary edge with an arbitrary label �, χH = v1v2 and
annotation V ′ = ∅. We consider the unique morphism ζ : 2 → 1. That is, the
effect of graph construction with ζ is to glue the two nodes of a 2-ary graph
together.
It holds that ρ(H [V ′]) = 2[∅] and thus ρ( D (ρ(H [V ′]), ζ )) = 1[∅]. On the
other hand ρ( D (H [V ′], ζ )) = ρ(1[{w}]) = 1[{w}], where w is the single
node of the discrete graph 1.

We present another closure operator which actually satisfies Condition (7) and
which will be used in Sect. 4.1.

Proposition 5 Let A(H) be the lattice consisting of all transitive irreflexive rela-
tions R ⊆ VH × VH with ⊆ as partial order. In order to obtain a proper lattice
we add � as top element.

For a morphism ϕ : G → H and R ⊆ (VG × VG) ∪ {�}, we define

Aϕ(R) =
{

TC(ϕ(R)) if R �= � and TC(ϕ(R)) is irreflexive
� otherwise
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Fig. 8 Figure for the proof of Proposition 5

where TC stands for the transitive closure operation. Then A is an annotation
mapping and the reduction to external nodes as defined in Definition 8 satisfies
Condition (7).

Proof It is straightforward to check that A is a valid annotation mapping.
First, let us observe that the effect of reduction to the external nodes can in

this case be described as follows: If ϕ : X �A H where X consists of the external
nodes of H and R ∈ A(H) with R �= �, then

redϕ(R) = {(w1, w2) ∈ VX × VX | (ϕ(w1), ϕ(w2)) ∈ R}.
It is easy to check that this relation is transitive and irreflexive.
We set T̂ = D

n
i=1(ρ(Ti ), ζi ), T = D

n
i=1(Ti , ζi ), X [R] = ρ(T ) and X̂ [R̂] =

ρ(T̂ ). According to Proposition 4 there exists a strong morphism ι : X̂ [R̂] �A
X [R], which is an isomorphism on the underlying graphs X̂ , X and which satisfies
Aι(R̂) ⊆ R. It is left to show that Aι(R̂) ⊇ R.

The situation is equivalent to the ones in the proofs of Proposition 2 and 4 and
is depicted in Fig. 8 as a commuting diagram.

We assume that R �= � and let (w1, w2) be a pair of nodes that is contained
in R. It follows that (ξ(w1), ξ(w2)), where both nodes ξ(w1) and ξ(w2) are ex-
ternal, is contained in the annotation of T . The annotation of T has the form
TC(

⋃n
i=1 TC(ηi (Ri ))) = TC(

⋃n
i=1 ηi (Ri )), where Ri is the annotation of Ti for

i ∈ {1, . . . , n}. Since R �= �, we can assume that Ri �= � for all i .
In other words, there is a sequence of pairs (v1, i1), . . . , (vk, ik) where i j ∈

{1, . . . , n} and v j is a node of Ti j such that (i) ηi1(v1) = ξ(w1) and ηik (vk) =
ξ(w2); (ii) either i j = i j+1 and (v j , v j+1) ∈ Ri j or v j ≈ v j+1 where ≈ is the
equivalence defined in Definition 3.

Since two different nodes can only be related by the ≈-relation if both are
external, and furthermore the relations Ri are transitive, we can assume without
loss of generality that all nodes v1, . . . , vk are external. Hence there exists a se-
quence of pairs (u1, i1), . . . , (uk, ik) where u j is a node of ρ(Ti j ) such that (iii)
ηi1(ψi1(u1)) = ψ(η̂i1(u1)) = ξ(w1) and ηik (ψik (uk)) = ψ(η̂ik (uk)) = ξ(w2);
(iv) either i j = i j+1 and (u j , u j+1) is contained in the annotation of ρ(Ti j ) or
u j ≈ u j+1.

This implies that (η̂i1(u1), η̂ik (uk)), where both nodes are external in T̂ , is
contained in the annotation of T̂ and there is a pair (y1, y2) in R̂ such that ξ̂ (y1) =
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Fig. 9 Example: Condition (7) holds for annotations as defined in Proposition 5

η̂i1(u1) and ξ̂ (y2) = η̂ik (uk). It holds that ξ(ι(y1)) = ψ(ξ̂(y1)) = ψ(η̂i1(u1)) =
ξ(w1) and similarly ξ(ι(y1)) = ξ(w2). Since ξ is injective it holds that ι(y1) = w1

and ι(y2) = w2. Hence (w1, w2) is contained in Aι(R̂).
If, on the other hand, R = �, then we obtain R̂ = � by a similar reasoning.

�

Example 5 Figure 9 shows an instance graph construction and shows that Condi-
tion (7) is satisfied for this example. A pair (v1, v2) contained in the relation is
represented by an unlabelled arrow.

Naturally, the closure operators presented in this section, have to be computed,
respectively implemented if we want to mechanize this general framework. While
computing the restriction to external nodes (see Definition 8) seems to be rather
straightforward, it is less clear how to give an algorithm for computing the closure
defined by a universal property (see Definition 3). Examples, however, suggest that
in most practical cases it is quite straightforward to derive a method for computing
the closure.

4 Case studies

4.1 Typing acyclic graphs

As a first simple example we present a type system for typing acyclic graphs.
Acyclicity is an important concept one wants to verify in the verification of dy-
namically changing data structures such as trees or lists. It is a common property
to be checked in shape analysis [45]. Such a type system might be also useful for
detecting deadlocks caused by cyclic dependencies in the resource graph.

In this section we assume that all edges are binary, i.e., for every edge e in a
graph H it holds that ar(e) = 2. There should be no problem to define a similar
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Fig. 10 Examples of typable and non-typable rules

type system for hypergraphs, provided one has fixed some notion of acyclicity for
hypergraphs.

The type system consists of the following components:

– An annotation mapping A, which assigns to a graph H the set of all transitive
irreflexive relations over the nodes of H as described in Proposition 5.

– A linear mapping t , which assigns to every binary edge [�]2 the graph type
2[{(v1, v2)}] where χ2 = v1v2

– A closure operator ρ which corresponds to the reduction of a graph type to its
external nodes, according to Definition 8.

– A predicate X on hypergraphs where X (H) = true whenever H is acyclic.
– And finally a predicate Y on graph types where Y (T ) = true whenever the

annotation of T is different from �.

From Propositions 4 and 5 we can derive that this type system satisfies Condi-
tions (7) and (8). We can easily check that Conditions (6) and (9) are satisfied as
well and that (A, t, ρ, X, Y ) is indeed a type framework according to Definition 6.

Example 6 In order to give an example we consider the three rules in Fig. 10.
The types of the left-hand and right-hand sides are given as well. Rule 1 is a
typical example of a rule that can be typed, in this case the right-hand side does
not introduce additional connectedness compared to the left-hand side. Rule 2
can not be typed since there is no strong morphism from a graph consisting of
one node only into the discrete graph 2. Note also that the application of this
rule might destroy the acyclicity of a graph; for instance, if there is another edge
in parallel with the A-edge, it is turned into a loop by applying this production.
Rule 3 however satisfies Condition (2), specifically the annotation of its left-hand
side is�, the largest element in the lattice. Intuitively, any graph to which this rule
can be applied, is already cyclic and hence no harm can be done by applying this
rule.

Motivated by this example we can now state a sort of completeness result:
For every rule r that can not be typed, there is an acyclic graph H such that the
application of r to H at an appropriate position creates a cycle.
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Proposition 6 Let r = (L , R) be a rewriting rule which can not be typed and
the annotation of ρ(t (L)) is not equal to �. Then there exists an acyclic graph H
such that r can be applied to H resulting in a graph H ′ with a cycle.

Proof Let X L [aL ] = ρ(t (L)) and X R[aR] = ρ(t (R)) with aL �= � and there is
no strong A-morphism X R[aR] �A X L [aL ]. This fact can be due to the following
two reasons:

– There is no strong morphism on the underlying graphs. That is, there are in-
dices i, j with i �= j such that �χR�i = �χR� j , but �χL�i �= �χL� j .
We construct a graph H by adding an edge to the left-hand side L . If the pair
(�χX L �i , �χX L � j ) is contained in aL we add a binary edge with source node
�χL�i and target node �χL� j . Otherwise we add a binary edge going in the
opposite direction. Since aL �= � and hence L is acyclic, the resulting graph
will still be acyclic.
Application of the rewriting rule r will turn this additional edge into a loop.

– There is a strong morphism ϕ : X R � X L on the underlying graphs, but
Aϕ(aR) �≤ aL . We distinguish two cases:
– If aR = �, then the right-hand side R already contains a cycle. Setting

H = L , we can replace H by R, thus obtaining a cycle.
– If aR �= �, then there must be a pair (�χX R�i , �χX R� j ) ∈ aR such that

(�χX L �i , �χX L � j ) �∈ aL . Again we add a binary edge with source �χL� j
and target �χL�i to L , obtaining a graph H . Since there is no path from
�χL�i to �χL� j in L , adding this edge does not introduce a cycle. We
replace L in H by R and obtain H ′. The graph H ′ contains an edge from
�χH ′ � j to �χH ′ �i (the new edge) and a path from �χH ′ �i to �χH ′ � j (which
is contained in the right-hand side), and hence a cycle.

Variants: A simple variant of this type system would be to check the acyclicity
of certain edges with specific edge labels only. This can be easily achieved by
modifying the linear mapping t .

4.2 A type system for the π-calculus

In the next two sections we will show that it is possible to embed existing type
systems into the framework. We will do so by presenting two type systems, one
for the π-calculus and the other for the λ-calculus, and by showing what form the
calculi and their type systems take in the graph rewriting framework.

We first give a short introduction to the asynchronous polyadic π-calculus [36]
without choice and matching, already introduced in [27]. We assume that N is a
fixed set of names, c ∈ N and ã, x̃ ∈ N ∗. The syntax of a process can be described
as follows :

p ::= 0 (nil process)
| (νc)p (restriction)
| c〈ã〉 (output)
| c(x̃).p (input)
| p1|p2 (parallel composition)
| !p (replication)
| wrong (error)
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Table 1 Operational semantics of the π-calculus

Rules of Structural Congruence:

p1|p2 ≡ p2|p1 p1|(p2|p3) ≡ (p1|p2)|p3 (νc)(νb)p ≡ (νb)(νc)p

(νc)0 ≡ 0 ((νc)p1)|p2 ≡ (νc)(p1|p2) if c �∈ fn(p2)

p|0 ≡ p !p ≡!p|p
!wrong ≡ wrong wrong|p ≡ wrong (νc)wrong ≡ wrong

Reduction Rules:

c(x̃).p | c〈ã〉 → p{ã/x̃} if |ã| = |x̃ |
c(x̃).p | c〈ã〉 → wrong if |ã| �= |x̃ |

p → p′
p|q → p′|q

p → p′
(νc)p → (νc)p′

q ≡ p, p → p′, p′ ≡ q ′
q → q ′

We can now define the operational semantics of the π-calculus: Structural con-
gruence ≡ is the smallest congruence closed under renaming of bound names
(α-conversion) and under the rules given in Table 1. The rules generating the re-
duction relation→ are also listed in Table 1. By p{ã/x̃}we denote the substitution
of the names �x̃�i by �ã�i in p (with possible α-conversion in order to avoid cap-
ture). Furthermore fn(p) denotes the set of free names of a process p.

A process reduces to wrong whenever an arity mismatch or “bad redex” oc-
curs. The variant of the type system that we will study ensures that a typable
process will never contain such a bad redex. There are other, more complex, type
sytems for the π-calculus checking more complicated properties, such as [32, 41]
among others.

Our next step is to present a graph rewriting semantics for this variant of the π-
calculus (see also [27]). Other ways of encoding the π-calculus into graph rewrit-
ing can be found in [16, 17, 48].

We will then apply the theory presented in Sect. 3, introduce a type system
avoiding runtime errors produced by mismatching arities and show that it satisfies
the conditions of Theorem 1. Afterwards we show that a graph has a type if and
only if the corresponding π-calculus process has a type in a standard type system
with infinite regular trees.

Definition 9 (Process Graphs) A process graph P is inductively defined as fol-
lows: P is a hypergraph with a duplicate-free string of external nodes. Further-
more each edge e is either labelled (k, n)Q where Q is again a process graph,
0 ≤ n ≤ ar(Q) and 1 ≤ k ≤ ar(e) = ar(Q) − n (e is a process waiting for a
message with n ports arriving at its k-th node), with !Q where ar(Q) = ar(e) (e
is a process able to replicate itself) or with the constant M (e is a message sent to
its last node).
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Fig. 11 Operational semantics for process graphs

Fig. 12 The linear mapping for process graphs

The reduction relation is generated by the rules (REP) (replication) and
(COM) (reception of a message by a process) in Fig. 11 and is closed under iso-
morphism and graph construction. In the definition of replication we reuse the
operator � defined earlier in Example 3.

A process graph contains a bad redex if it contains a subgraph corresponding
to the left-hand side of rule (COM) with n �= r . We define the predicate X as
follows: X (P) if and only if P does not contain a bad redex.

We now propose a type system for process graphs by defining the mappings t
and ρ. (Note that in this case, the graph types are trivially annotated by ⊥ and so
we omit the annotation mapping.)

The linear t mapping is defined on the hyperedges as follows: t ([M]n) = [�]n
where � is a new edge label, t ([!Q]m) = t (Q) (see Fig. 12) and t ([(k, n)Q]m) is
defined in Fig. 12 (in the notation explained in Example 2). It holds that n +m =
ar(Q).

The mapping ρ is defined according to Proposition 3 where C is as follows:

C(T ) ⇐⇒
∀ e1, e2 ∈ ET : (�cT (e1)�ar(e1) = �cT (e2)�ar(e2) ⇒ e1 = e2).

The linear mapping t extracts the communication structure from a process
graph, i.e. an edge of the form [�]n indicates that its nodes (except the last) might
be sent or received via its last node. Then ρ makes sure that the arity of the arriving
message matches the expected arity and that nodes that might get fused during
reduction are already fused in ρ(t (H)). In order to achieve this, the mapping ρ
iteratively merges all edges having a common last node. Whenever two such edges
have a different arity, the closure is undefined.

The condition that we want to check is simply that ρ(t (H)) is defined. Thus
we set Y (T ) = true for every graph type T .
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Fig. 13 A drawing of t (Red), where Red is a bad redex

Proposition 7 Let A be the trivial annotation mapping (where every lattice con-
sists of a single element ⊥) and let the mappings ρ and t and the predicates X
and Y be defined as above. Then (A, t, ρ, X, Y ) is a type framework for the rules
(REP) and (COM), i.e., Conditions (6)–(10) of Theorem 1 are satisfied.

Thus if P � T , P will never produce a bad redex during reduction.

Proof We show that A, ρ, t , X , Y satisfy the conditions of Theorem 1.

(6) This obviously holds since Y (T ) = true for every graph T .
(7), (8) We have to show that the conditions of Proposition 3 are satisfied.

The universal property holds by definition and it is left to show that ρ(T )
is defined whenever there is a morphism ϕ : T → T ′ with C(T ′). We are
regarding equivalence relations ∼ on edges and nodes such that factoring
through ∼ is well-defined. Specifically, it must be the case that e ∼ e′ im-
plies �cT (e)�i ∼ �cT (e′)�i for all indices i .
We show the existence of a smallest such equivalence which additionally sat-
isfies that �cT (e)�ar(e) ∼ �cT (e′)�ar(e′) implies e ∼ e′. It can be shown that
factoring through this equivalence gives us a graph isomorphic to ρ(T ).
It is easy to show that the intersection of two equivalences satisfying the above
conditions is again an equivalence satisfying these conditions. So, in order to
show that a smallest relation exists, it is enough to prove the existence of any
such relation. The relation ∼ defined by e ∼′ e′ ⇐⇒ ϕ(e) = ϕ(e′) and
v ∼′ v′ ⇐⇒ ϕ(v) = ϕ(v′) is such a relation. This implies that ρ(T ) is
defined.

(9) Let Y (ρ(t (H))) hold, which means that ρ(t (H)) is defined. Let us assume
that H contains a bad redex Red, which implies that t (H) contains t (Red)
which is depicted in Fig. 13 where n �= r .
Furthermore ρ(t (H)) is defined only if ρ(t (Red)) is defined. We show that
ρ(t (Red)) is undefined. The two edges to the right of t (Red) are denoted by
e respectively e′. If there were a morphism ψ : t (Red) �A ρ(t (Red)), then it
would hold that ψ(e) = ψ(e′), because of Condition C . This, however, is a
contradiction, since ar(e) �= ar(e′) and arities are preserved by morphisms.

(10) We show the local subject reduction property for both rules (in the case of
(REP) for both directions).
(REP) We first consider the direction from right to left, i.e., L = Q � [!Q]m

and R = [!Q]m . We assume that ρ(t (Q � [!Q]m)) is defined and since
ρ(t (Q � [!Q]m)) ∼= ρ(ρ(t (Q)) � t ([!Q]m)) we know that ρ(t (Q)) is
also defined and there exists a strong A-morphism from ρ(t (Q)) into
ρ(t (Q � [!Q]m)).
Concerning the direction from left to right, i.e. L = [!Q]m and R =
Q � [!Q]m : we assume that ρ(t (L)) ∼= ρ(t (Q)) is defined and therefore
ρ(t (Q)) � ρ(t (Q)) ∼= ρ(t (Q)) � ρ(t ([!Q]m)) is defined. Since there is
an A-morphism from this graph into ρ(t (Q)) ∼= ρ(t (L)), it follows with
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Fig. 14 Transformation of ρ(t (L))

Proposition 3, that

ρ(t (R)) ∼= ρ(ρ(t (Q))�ρ(t ([!Q]m)))

is defined and that ρ(t (R)) �A ρ(ρ(t (L))) ∼= ρ(t (L)).
(COM) In this case ρ(t (R)) ∼= ρ(t (Q)) and t (L) is the graph type depicted

above in Fig. 13 with r = n. With Condition (7) and the graph construction
operation we can transform ρ(t (L)) as shown in Fig. 14.
It follows immediately that there is a strong morphism from ρ(t (R)) ∼=
ρ(t (Q)) into ρ(t (L)). �

We now compare our type system to a standard type system of the π-calculus.
An encoding of process graphs into the asynchronous π-calculus can be defined
as follows (see also [27]).

Definition 10 (Encoding) Let P be a process graph, let N be the name set of the
π-calculus and let t̃ ∈ N ∗ such that |t̃ | = ar(P). We define �t̃ (P) inductively as
follows:

�a1...an+1([M]n+1) = an+1〈a1, . . . , an〉 �t̃ ([!Q]m) = !�t̃ (Q)

�a1...am ([(k, n)Q]m) = ak(x1, . . . , xn).�a1...am x1...xn (Q)

�t̃ ( D
n
i=1(Pi , ζi )) = (ν µ(VD\Set(χD)))(�µ(ζ1(χm1 ))(P1) | . . . |

�µ(ζn(χmn ))(Pn))

where ζi : mi → D, i ∈ {1, . . . , n} and µ : VD → N is a mapping such that
µ restricted to VD\Set(χD) is injective, µ(VD\Set(χD)) ∩ µ(Set(χD)) = ∅ and
µ(χD) = t̃ . Furthermore the names x1, . . . , xn ∈ N are fresh.

The encoding of a discrete graph is included in the last case, if we set n = 0
and assume that the empty parallel composition represents the nil process 0.

An operational correspondence can be stated as follows:

Proposition 8 Let p be an arbitrary expression in the asynchronous polyadic π-
calculus without summation. Then there exists a process graph P and a duplicate-
free string t̃ ∈ N ∗ such that �t̃ (P) ≡ p. Furthermore for process graphs P, P ′
and for every duplicate-free string t̃ ∈ N ∗ with |t̃ | = ar(P) = ar(P ′) it is true
that:

– P ∼= P ′ implies �t̃ (P) ≡ �t̃ (P ′).
– P →∗ P ′ implies �t̃ (P) →∗ �t̃ (P).
– �t̃ (P) →∗ p �= wrong implies that P →∗ Q and �t̃ (Q) ≡ p for some

process graph Q.
– �t̃ (P) →∗ wrong iff P →∗ P ′ for a process graph P ′ containing a bad redex.
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Table 2 Typing rules for the π-calculus

� # 0
� # p � # q

� # p | q
� # p
� # ! p

�, a : t # p
� # (νa)p

�(a) = [t1, . . . , tm ] �, x1 : t1, . . . , xm : tm # p
� # a(x1, . . . , xm).p

�(a) = [�(a1) . . . , �(am)]
� # a〈a1, . . . , am〉

We now compare our type system with a standard type system of the π-
calculus: a type tree is a regular tree, i.a., a potentially infinite ordered tree with
only finitely many non-isomorphic subtrees. A type tree is represented by the tuple
[t1, . . . , tn] where t1, . . . , tn are again type trees, the children of the root. A type
assignment � = x1 : t1, . . . , xn : tn assigns names to type trees where �(xi ) = ti .
By �, x : t we denote a type environment � with an additional assignment of the
type t to the name x . If an assignment to x is already contained in �, then this
assignment is overwritten by x : t .

The rules of the type system given in Table 2 are simplified versions of the
ones from [40], obtained by removing the subtyping annotations.

We will now show that if a process graph has a type, then its encoding has
a type in the π-calculus type system and vice versa. In order to express this we
first describe the unfolding of a graph type into type trees, which we model using
so-called consistent mappings.

Definition 11 (Consistent Mapping) Let T be a graph type and let σ be a map-
ping from VT into the set of type trees. The mapping σ is called consistent, if it sat-
isfies for every edge e ∈ ET : cT (e) = v1 . . . vnv ⇒ σ(v) = [σ(v1), . . . , σ (vn)].

For consistent mappings we can show the following useful lemmas:

Lemma 1 Every graph type of the form ρ(t (P)) has a consistent mapping.

Proof We know that ρ(t (P)) satisfies condition C . So we can define: For any
node v of T for which there is no edge e ∈ VT with �cT (e)�ar(e) = v, let σ(v)
be an arbitrary type tree. For all other nodes v there is a unique edge e with
�cT (e)�ar(e) = v and we set σ(v) = [σ(v1), . . . , σ (vn)] if cT (e) = v1 . . . vnv.
The definition has a fixed-point, which is then our mapping σ . �

Lemma 2 Let ϕ : T → T ′ be a graph morphism and let σ ′ be a mapping which
is consistent for T ′. We define σ(v) = σ ′(ϕ(v)) for every v ∈ VT . Then σ is
consistent for T .

Proof Let e ∈ ET with cT (e) = v1 . . . vnv. Then

σ(v) = σ ′(ϕ(v)) = σ ′(ϕ(�cT (e)�n+1)) = σ ′(�cT ′(ϕ(e))�n+1)

= [σ ′(�cT ′(ϕ(e))�1), . . . , σ
′(�cT ′(ϕ(e))�n)]

= [σ ′(ϕ(�cT (e)�1)), . . . , σ
′(ϕ(�cT (e)�n))]

= [σ(�cT (e)�1), . . . , σ (�cT (e)�n)]
= [σ(v1), . . . , σ (vn)]. �
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Lemma 3 Let T be a graph type which has a consistent mapping σ . Then it holds
that ρ(T ) is defined and there is a consistent mapping σ ′ for ρ(T ) such that
σ ′(�χρ(T )�i ) = σ(�χT �i ).

Proof We define an equivalence ∼ on the nodes and edges of T in the following
way: v1 ∼ v2 ⇐⇒ σ(v1) = σ(v2) and e1 ∼ e2 ⇐⇒ σ(�cT (e1)�ar(e1)) =
σ(�cT (e2)�ar(e2)). Factoring T by ∼ yields a well-defined hypergraph T̂ = T/∼
into which T can be mapped by a strong graph morphism. Furthermore it can be
shown that T/∼ has a consistent mapping σ∼, defined on the equivalence classes
by σ∼([v]∼) = σ(v).

If, for two edges e = [e1]∼, e′ = [e2]∼ of T̂ it holds that �cT̂ (e)�ar(e) =
�cT̂ (e′)�ar(e′), then σ∼(�cT̂ (e)�ar(e)) = σ∼(�cT̂ (e′)�ar(e′)), from which it follows

that σ(�cT (e1)�ar(e1)) = σ(�cT (e2)�ar(e2)) and hence e1 ∼ e2 and e = e′. Thus T̂
satisfies Condition C .

Hence ρ(T ) is defined and there exist morphisms ϕ : T → ρ(T ) and ψ : ρ(T )

�A T̂ such that ψ(ϕ(e)) = [e]∼ and ψ(ϕ(v)) = [v]∼ for an edge e and a node v
of T . We define a consistent mapping σ ′ for ρ(T ) as follows: σ ′(v′) = σ∼(ψ(v′)).
Then it follows from Lemma 2 that σ ′ is consistent and furthermore σ(�χT �i ) =
σ∼([�χT �i ]∼) = σ∼(�χT̂ �i ) = σ∼(ψ(�χρ(T )�i )) = σ ′(�χρ(T )�i ). �

Having shown these three lemmas we are now ready for the main result of this
section. We show the correspondence between the original π-calculus type system
and the type system for process graphs. Note that in the following proof we will
often abbreviate a type environment of the form x1 : t1, . . . , xn : tn by xi : ti .

Proposition 9 Let P a process graph with P � T . Let n = ar(T ) and let σ be a
consistent mapping for T . Then it holds for every duplicate-free string t̃ of length
n that

�t̃�1 : σ(�χT �1), . . . , �t̃�n : σ(�χT �n) # �t̃ (P).

Now let � # �t̃ (P). Then there exists a graph type T such that P � T and a
consistent mapping σ such that for every i ∈ {1, . . . , |t̃ |} it holds that σ(�χT �i ) =
�(�t̃�i ).

Proof We prove the two main parts of this proposition, starting with the first part.
Let P � T , which implies that there is a morphism ϕ : ρ(t (P)) � T . Furthermore
let σ ′ be a mapping which is consistent for T .

Now we can define a mapping σ on the nodes of ρ(t (P)) with σ(v) =
σ ′(ϕ(v)). From Lemma 2 it follows that σ is also consistent and furthermore σ
and σ ′ coincide on the external nodes. So it is sufficient to show our claim for
T = ρ(t (P)).

We will do so by induction on P but with a stronger induction hypothesis: let t̃
be a string of names (possibly with duplicates), σ be a consistent mapping for T =
ρ(t (P)) such that �t̃�i = �t̃� j implies σ(�χT �i ) = σ(�χT � j ) (we will say that σ

and t̃ are compatible). Then it holds that �t̃�1 : σ(�χT �1), . . . , �t̃�n : σ(�χT �n) #
�t̃ (P).

From this we can derive the original claim, since t̃ is duplicate-free by defini-
tion. We will only prove the case of graph construction and omit the other (easier)
cases.
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– P = D
n
i=1(Pi , ζi ). We set Ti = ρ(t (Pi )) and in this case it holds that T =

ρ(t (P)) ∼= ρ( D
n
i=1(Ti , ζi )).

Let T = D
n
i=1(Ti , ζi ), let ηi : Ti → T and ϕ : D → T be the standard em-

beddings generated by graph construction and let ψ : T � T be the morphism
which exists according to the definition of ρ.
We define mappings σi on the Ti by setting σi (v) = σ(ψ(ηi (v))). According
to Lemma 2, the σi are consistent.
We now prove a property concerning σ and µ: Let µ : VD → N be the
function defined in the encoding (Definition 10). We show that µ(v) =
µ(v′) implies σ(ψ(ϕ(v))) = σ(ψ(ϕ(v′))). If µ(v) = µ(v′), then either
v = v′ and the claim holds obviously, or there are indices i, j such that
v = �χD�i , v′ = �χD� j and �t̃�i = �µ(χD)�i = µ(v) = µ(v′) =
�µ(χD)� j = �t̃� j . Then it follows with the fact that σ and t̃ are compat-
ible, that σ(ψ(ϕ(v))) = σ(ψ(ϕ(�χD�i ))) = σ(�χT �i ) = σ(�χT � j ) =
σ(ψ(ϕ(�χD� j ))) = σ(ψ(ϕ(v′))).
We show that σi and µ(ζi (χmi)) are compatible. Let �µ(ζi (χmi))� j =
�µ(ζi (χmi))�k . This implies that µ(ζi (�χmi� j )) = µ(ζi (�χmi�k)) and it fol-
lows with the property shown above that

σi (�χTi � j ) = σ(ψ(ηi (�χTi � j ))) = σ(ψ(ϕ(ζi (�χmi� j ))))

= σ(ψ(ϕ(ζi (�χmi�k)))) = σ(ψ(ηi (�χTi �k))) = σi (�χTi �k).

Then the induction hypothesis implies that

�i = �µ(ζi (χmi))� j : σi (�χTi � j ) # �µ(ζi (χmi ))
(Pi ).

Now let � be a type assignment, containing all assignments of the form
µ(v) : σ(ψ(ϕ(v))) for all v ∈ VD . From (µ(v) = µ(v′) ⇒ σ(ψ(ϕ(v))) =
σ(ψ(ϕ(v′)))) shown above, it follows that � is well-defined and since
σi (�χTi � j ) = σ(ψ(ϕ(ζi (χmi)))), it follows that � can be obtained from
any �i by adding extra type assignments. Thus it follows by weakening that
� # �µ(ζi (χmi))(Pi ). With the rule for parallel composition it follows that

� # �µ(ζ1(χm1))(P1) | . . . | �µ(ζn(χmn))(Pn).

Now let � be a type assignment containing all assignments of the form
µ(v) : σ(ψ(ϕ(v))) for v ∈ Set(χD). The restriction rule of the π-calculus
type system implies that

� # (ν µ(VD\Set(χD)))(�µ(ζi (χmi))(P1) | . . . | �µ(ζi (χmi))(Pn)),

that is � # �t̃ (P). It is left to show that � = �t̃�i : σ(�χT �i ). This is quite
straightforward, since µ(v), v ∈ Set(χD) is exactly �t̃�i if v = �χD�i , and in
this case σ(ψ(ϕ(v))) = σ(ψ(ϕ(�χD�i ))) = σ(�χT �i ).

Now let � # �t̃ (P), where t̃ is a duplicate-free sequence of names. We show
that T = ρ(t (P)) is defined and that there is a mapping σ consistent with T , such
that σ(�χT �i ) = �(�t̃�i ). We proceed by induction on P . Again we prove only
one case.
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– P = D
n
i=1(Pi , ζi ) which implies that

�t̃ (P) = (ν µ(VD\Set(χD)))(�µ(ζ1(χm1 ))(P1) | . . . | �µ(ζn(χmn ))(Pn))

and µ : VD → N and µ(χD) = t̃ .
It follows from the typing rules of the π-calculus that there is a type assign-
ment �, which is exactly � enriched by type assignments of the form µ(v) : tv
for all v ∈ VD\Set(χD) and that � # �µ(ζi (χmi ))

(Pi ).
The induction hypothesis thus implies that all Ti = ρ(t (Pi )) are defined
and that there are mappings σi consistent with Ti such that σi (�χTi � j ) =
�(�µ(ζi (χmi))� j ).
Now we define T̂ = D

n
i=1(Ti , ζi ). We know that T = ρ(t (P)) is defined

if and only if ρ(T̂ ) is defined. In order to show this, we define a consistent
mapping σ̂ for T̂ . We assume that ηi : Ti → T̂ , ϕ : D � T̂ are the standard
embeddings generated by the graph construction and we define σ̂ as a consis-
tent mapping for T̂ in the following way:

σ̂ (v̂) =
{

σi (v) if v̂ = ηi (v)

�(µ(v)) = tv if v̂ = ϕ(v)

We first have to show that σ̂ is well-defined: let ϕi : mi � Ti be the unique
strong morphisms from mi into Ti . When we restrict all morphisms to the
node sets, then the (ηi )V and ϕV are still the colimit of the (ϕi )V and the
(ζi )V , since colimits in the category of hypergraphs are taken componentwise.
We show that � ◦ µ ◦ (ζi )V = σi ◦ (ϕi )V :

�(µ(ζi (�χmi� j ))) = σi (�χTi � j ) = σi (ϕi (�χmi� j )).

Because of the colimit property, there must be a unique mapping σ̂ from the
nodes of T̂ into the set of type trees such that σ̂◦(ηi )V = σi and σ̂◦ϕV = �◦µ.
This is exactly the mapping σ̂ defined above.
It is left to show that σ̂ is consistent for T̂ : Let e be one of the edges of T̂ .
It follows that there must be a e′ ∈ ETi such that e = ηi (e′). If cT̂ (e) =
v1 . . . vn+1, it follows that v j = ηi (�cTi (e

′)� j ). Thus

σ̂ (vn+1) = σ̂ (ηi (�cTi (e
′)�n+1)) = σi (�cTi (e

′)�n+1)

= [σi (�cTi (e
′)�1), . . . , σi (�cTi (e

′)�n)]
= [σ̂ (ηi (�cTi (e

′)�1)), . . . , σ̂ (ηi (�cTi (e
′)�n))]

= [σ̂ (v1), . . . , σ̂ (vn)].
Lemma 3 implies that T = ρ(T̂ ) = ρ(t (P)) is defined and that there is a
mapping σ consistent with T such that σ(�χT �i ) = σ̂ (�χT̂ �i ). Thus it holds
that σ(�χT �i ) = σ̂ (�χT̂ �i ) = σ̂ (ϕ(�χD�i )) = �(µ(�χD�i )) = �(�t̃�i ). �

Example 7 As an example, we regard the process graph P depicted in Fig. 15. It
consists of two edges, both able to replicate themselves, where the edge on the left-
hand side waits for incoming messages on its first and only node. Each message
should be equipped with two nodes, to the first of which another message is sent.
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Fig. 15 An example process graph

Fig. 16 Typing the example process graph

The edge on the right-hand side produces arbitrarily many messages to be received
by the edge on the left-hand side. Note that this process graph has an infinite
reduction sequence (not even counting the replication steps) and can evolve into
arbitrarily many different processes. If we denote the innermost process graph of
arity 3 on the left-hand side edge by P ′, then P →∗ P � P ′ � . . . � P ′.

If we set t̃ = abc, its π-calculus counterpart is

�t̃ (P) = ! a(x, y).x〈a〉 | ! a〈b, c〉 = p,

which reduces to ! a(x, y).x〈a〉 | ! a〈b, c〉 | b〈c〉 | . . . | b〈c〉. The process p can
be typed under the type assignment � = a : t, b : [t], c : t ′ where t ′ is an arbitrary
type tree and t is the solution of the fixed-point equation t = [[t], t ′]. Note that
the infinity of the tree is not caused by replication, but rather by the fact that the
left-hand side process emits its own name as the content of a message.

Now, computing t (P) yields the graph type depicted in Fig. 16, where the edge
in the middle is generated by applying t to the process abstraction [(1, 2)Q]1, and
the other two edges are generated by t ([M]2) respectively t ([M]3). Computing
ρ(t (P)) fuses the two rightmost edges. We indicate a consistent mapping σ by
mapping the nodes to appropriate type trees. This consistent mapping corresponds
exactly to the type assignment � given above.

In a way, the graph-based type system is closer to Milner’s sort system [36] for
the π-calculus than to more recent type systems as presented above. In our setting
sorts correspond to nodes and the object sort mapping of Milner’s system can be
immediately derived from the edge set of the type graph.

Variants: It is fairly simple to define variants of the type system that enable us
to derive more specific properties of processes. We can obtain a simple type system
typing input/output-behaviour of processes, by using an annotation mapping A
that assigns to every node v an element of the lattice ({none, in, out, both},≤)
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Fig. 17 Typing the example process graph with lattice annotations

where none < in < both and none < out < both. The intuitive meaning of
labelling a node v with out is, that there might be a message with v as target
port. Similarly, if a node v is labelled in, it means that there might be a process
listening at v for a message. The rest of the definition of the annotation mapping
A is analogous to the one in Example 1.

The components of the type system are the following:

– A linear mapping t that is defined in analogy to the original linear mapping
apart from the lattice annotation. In the case of t ([M]n) we assign out to
the last external node and none to all other nodes, whereas in the case of
t ([(k, n)Q]m) we use the annotation for t (Q) and additionally take the join
of the annotation of the k-th external node and in.

– The folding operation is again defined according to Proposition 3 with the
exact same condition C .

So, from the point of graph structure, we obtain exactly the same graph types,
only the annotations differ. There are several meaningful and useful ways to define
the predicates X and Y , for instance:

– For a fixed index j define that X (H) holds if there is no message edge e
labelled M such that �cH (e)�ar(e) = �χH� j , i.e., there is no message at-
tached to the j-th external node. The corresponding predicate Y is Y (H [a]) =
(a(�χH� j ) ≤ in).

– For a fixed index j define that X (H) holds if there is no edge e labelled
(k, n)Q such that �cH (e)�k = �χH� j , i.e., there is no process listening
at the j-th external node. The corresponding predicate Y is Y (H [a]) =
(a(�χH� j ) ≤ out).

Example 8 For the example process graph in Fig. 15 we obtain the graph type
depicted in Fig. 17.

This is a simpler version of type systems checking input/output-capabilities of
mobile processes [31, 32, 41] and has already been presented in [24, 30].

4.3 A type system for the λ-calculus

We will now present an encoding of λ-expressions into graphs—similar to the way
this is done in term graph rewriting—and a type system for the resulting graphs.
We proceed in a way rather similar to the previous section on type systems for
the π-calculus. However, the encoding of the expressions and the type systems
are of a different nature and thus give us a new perspective concerning graph
types.
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Table 3 Typing rules of the λ-calculus

n ∈ N

� # n : nat
b ∈ {true, false}

� # b : bool
�(x) = τ
� # x : τ

� # M : nat, � # N : nat
� # M + N : nat

� # M : nat, � # N : nat
� # Eq(M, N ) : bool

� # M : bool, � # N1 : τ, � # N2 : τ
� # if M then N1 else N2 : τ

� # M : τ → σ, � # N : τ
� # M N : σ

�, x : τ # M : σ
� # λx .M : τ → σ

We are using the following variant of the λ-calculus, a similar language is
called PCF in [37]. We are using a fixed set X of variables. A λ-expression N is
of the following form:

N ::= λx .N (abstraction)
| N1 N2 (application)
| x (variable)
| b (boolean)
| n (natural number)
| M + N (plus)
| Eq(M, N ) (equality)
| if N then N1 else N2 (if-then-else)

where N , M, N1, N2 are λ-expressions, x ∈ X is a variable, b ∈ {true, false} and
n ∈ N. The set of free variables of a λ-expression M is denoted by free(M).

Expressions of the λ-calculus are typed by the typing rules given in Table 3,
where we are using recursive types. A type τ has the following syntax:

τ ::= bool | nat | τ1 → τ2 | x | µx.τ

The operator µ binds the variable x and it is used to create recursive types. We
are equating a type with its “unfolding”, which is always a regular tree, i.e., a (pos-
sibly infinite) tree with only finitely many subtrees. This is equivalent to factoring
the set of types according to the congruence generated by µx.τ = τ {µx.τ/x} on
all types.

A type environment � is a set of assignments of the form x : τ , where x ∈ X
and τ is a type. Each variable occurs at most once in every type environment.
Again, we write �(x) = τ whenever x : τ appears in �.

Based on these definitions we can now give the typing rules of the λ-calculus,
summarized in Table 3. We assume that all occurring types are closed expressions
without free variables.

If a λ-expression M can be typed with type τ under any type environment, this
guarantees absence of runtime errors for M , such as the application of a function
to parameters of incorrect type. Furthermore, if we use types without recursion,
termination for a well-typed λ-expression is guaranteed [37].

In order to encode λ-expressions into hypergraphs, we are using the following
types of edges: 3-ary edges labelled λ, denoting function abstraction; 3-ary edges
labelled @, denoting function application; unary edges labelled true, false or with
a natural numbers n ∈ N; 3-ary edges labelled Eq or+ and 4-ary edges labelled if.
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Fig. 18 Encoding λ-expressions as hypergraphs

Variables will not be represented by hyperedges, but by nodes. The encod-
ing itself takes a λ-expression M and a duplicate-free string x̃ ∈ X∗, such that
free(M) ⊆ Set(x̃) and returns a graph E(M, x̃) of arity |x̃ | + 1, where the first
external node represents the expression itself and the other external nodes denote
the free variables contained in x̃ . We demand that all bound variables are different
from each other and different from the free variables.

The encoding is inductively defined as depicted in Fig. 18. The encodings of
plus, equality and if-then-else are defined by analogy to that of function applica-
tion, producing edges labelled +, Eq and if. We assume that the tentacle pointing
upwards from an edge is attached to the first node of an edge, whereas the po-
sitions of the tentacles pointing downwards are numbered from left to right in
counter-clockwise order.

Example 9 Encoding the λ-expression λ f.( f ((λx .(x+3))5)) results in the hyper-
graph depicted on the left of Fig. 19.

This encoding is similar to the encodings used in term graph rewriting [3, 22,
47]. One of the main ideas behind these encodings is sharing: If a subterm occurs
more than once in a λ-expression, it is represented only once and is pointed to
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Fig. 19 The λ-graph for λ f.( f ((λx .(x + 3))5)) (left) and its graph type (right)

Fig. 20 β-reduction in the linear case and the typing of the left-hand side

from several places. This concept of sharing is not pursued in the encoding given
below, but the type system would work just as well in the presence of sharing.
Furthermore variables are represented by nodes instead of names.

By contrast with the encoding of the π-calculus we are not using a hierarchical
encoding, but encode a λ-expression into a “flat” graph structure. The resulting
graphs are called λ-graphs. Giving an operational semantics for such term graphs
is not entirely trivial, since β-reduction or ensuing reductions may involve the
copying of entire subgraphs. Since type systems are the main topic of this section,
this issue is beyond the scope of this paper. We only give the rule for the linear
case in Fig. 20 (left), where we assume that there is at most one occurrence of
any variable in a λ-expression. The edges labelled λ and @ are removed and the
remaining nodes are attached in such a way that the substitution is performed
(attaching nodes 3 and 4) and that the expression underneath the λ-operator is
moved to the top (attaching nodes 1 and 2).

In our graph types, we are remodelling the λ-calculus types defined above.
We are using graphs without annotations, having the following edge labels: 3-ary
edges labelled→ and unary edges labelled either bool or nat.
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Fig. 21 Definition of the linear mapping t

Recursion is not modelled explicitly, but is represented by cycles in the graph.
We are using the linear mapping t depicted in Fig. 21 and a closure operation ρ as
in Proposition 3 with condition C defined as follows:

A graph type T satisfies C , if for every two edges e1, e2 with �cT (e1)�1 =
�cT (e2)�1 it holds that e1 = e2.

Again, A is the trivial annotation mapping, assigning a single-element lattice to
every hypergraph. In a way very similar to Proposition 7 it can now be shown that
Conditions (7) and (8) are satisfied.

Example 10 We come back to the previous example graph H depicted on the left-
hand side of Fig. 19 and compute ρ(t (H)). On the right-hand side of Fig. 19 t (H)
and ρ(t (H)) are depicted. For the corresponding λ-expression it holds that

� # λ f.( f ((λx .(x + 3))5)) : (nat → τ)→ τ

for any type environment � and any type τ .
If we now regard the graph type in Fig. 19 we can reconstruct the type (nat →

τ) → τ starting from the only external node labelled 1. A node which is not the
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first node of an →-edge, can represent any type. This is true for the node vτ in
ρ(t (H)), this is the node representing the type τ . Everything that is not directly
reachable from external nodes could in principle be garbage-collected.

Example 11 The rewriting rule (L , R) for the linear λ-calculus in Fig. 20 can be
typed. On the right of Fig. 20 we depict t (L) and its transformation into ρ(t (L)).
The type ρ(t (R)) of the right hand side is equal to R itself and there clearly exists
a strong morphism ρ(t (R)) � ρ(t (L)).

There is a clear correspondence between the original type system for the λ-
calculus and the graph-based type system. In analogy to Sect. 4.2 we first define
the notion of a consistent mapping.

Definition 12 (Consistent Mapping) Let T be a graph type and let σ be a map-
ping from VT into the set of λ-calculus types. The mapping σ is called consistent,
if it satisfies for every edge e ∈ ET :

– if lT (e) =→ and cT (e) = v1v2v3, then it holds that σ(v1) = σ(v2)→ σ(v3).
– if lt (e) = bool and cT (e) = v, then it holds that σ(v) = bool.
– if lt (e) = nat and cT (e) = v, then it holds that σ(v) = nat.

We will now state a series of lemmas that lead to the main result of this sec-
tion. The proofs are similar to the proofs of the analogous Lemmas 1, 2 and 3 in
Sect. 4.2 and are therefore not given here.

Lemma 4 Every graph type of the form ρ(t (P)) has a consistent mapping.

Lemma 5 Let ϕ : T → T ′ be a graph morphism and let σ ′ be a mapping which
is consistent for T ′. We define σ(v) = σ ′(ϕ(v)) for every v ∈ VT . Then σ is
consistent for T .

Lemma 6 Let T be a graph type which has a consistent mapping σ . Then it holds
that ρ(T ) is defined and there is a consistent mapping σ ′ for ρ(T ) such that
σ ′(�χρ(T )�i ) = σ(�χT �i ).

It is now possible to prove that a λ-expression can be typed if and only if
its corresponding graph can be typed and furthermore the types are related in a
specific way.

Proposition 10 Let M be a λ-expression and let x̃ be a duplicate-free sequence
of variables of length n such that free(M) ⊆ Set(x̃).

Let E(M, x̃) � T and let σ be a consistent mapping for T . Then it holds that
�x̃�1 : σ(�χT �2), . . . , �x̃�n : σ(�χT �n+1) # M : σ(�χT �1).

Now let � # M : τ and let Set(x̃) be contained in the variables of �. Then there
exists a graph type T such that E(M, x̃)�T and a consistent mapping σ such that
for every i ∈ {1, . . . , n} it holds that σ(�χT �1) = τ and σ(�χT �i+1) = �(�x̃�i )
for i ∈ {1, . . . , n}.
Proof We show the first part of the proposition by structural induction on M .
It is sufficient to show the claim for T = ρ(t (E(M, x̃))). Otherwise let T0 =
ρ(t (E(M, x̃))) and let σ be a consistent mapping for T . There is a strong mor-
phism ϕ : T0 �A T . We set σ0 = σ ◦ϕ and σ0 is consistent according to Lemma 5.
It follows that �x̃�1 : σ0(�χT0�2), . . . , �x̃�n : σ0(�χT0�n+1) # M : σ(�χT0�1) and
since σ0(�χT0�i ) = σ(�χT �i ), the claim of the proposition follows. For reasons of
space we only prove one case.
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Fig. 22 ρ(t (E(N1 N2, x̃)))

application: Let M be of the form N1 N2. In this case T = ρ(t (E(M, x̃))) has
the form depicted in Fig. 22. We set Ti = ρ(t (E(Ni , x̃))) for i ∈ {1, 2} and
denote by T0 the graph inside the closure operator ρ.
Clearly, there is a strong morphism ψ : T0 → T and there are mor-
phisms ηi : Ti → T0 and since T has a consistent mapping σ ,
Lemma 5 implies that σi = σ ◦ ψ ◦ ηi is a consistent mapping for
Ti . Since E(Ni , x̃) � Ti , it follows from the induction hypothesis that
�x̃�1 : σi (�χTi �2), . . . , �x̃�n : σi (�χTi �n+1) # Ni : σi (�χTi �1).
Because of the definition of the σi it holds that σ1(�χT1� j ) = σ2(�χT2� j ) =
σ(�χT � j ) for j ∈ {2, . . . , n + 1}. Furthermore it holds that

σ1(�χT1�1) = σ(ψ(η1(�χTi �1))) = σ(ψ(v1))

= σ(ψ(v2))→ σ(�χT �1)

= σ(ψ(η2(�χT2�1)))→ σ(�χT �1)

= σ2(�χT2�1)→ σ(�χT �1),

since there is an edge ψ(e) labelled→ with cT (ψ(e)) = ψ(v1) ψ(v2)�χT �1.
Then the typing rule for application gives us

�x̃�1 : σ(�χT �2), . . . , �x̃�n : σ(�χT �n+1) # N1 N2 : σ(�χT �1).

We now show the second part of the proposition, again by structural induction
on M . Again, we show only one of the cases.

application: Let M = N1 N2 with � # M : τ . From the typing rules we can infer
that � # N1 : τ ′ → τ and � # N1 : τ ′. Since Set(x̃) is contained in the vari-
ables of �, we can infer from the induction hypothesis that there exist graph
types Ti , i ∈ {1, 2} such that E(Ni , x̃) � Ti . Furthermore there are consistent
mappings σi for the Ti such that σ1(�χT1�1) = τ ′ → τ , σ2(�χT2�1) = τ ′ and
σi (�χTi � j+1) = �(�x̃� j ) for j ∈ {1, . . . , n}.
From Condition (4), the definition of the encoding E(N1 N2, x̃) (see Fig. 19)
and the definition of the linear mapping (see Fig. 21), we can then infer that
E(N1 N2, x̃) � T , whenever the graph T , depicted in Fig. 23, is defined.
We denote the graph inside the closure operator ρ by T0. Clearly, there are
injective morphisms ηi : Ti → T0. We define a mapping σ0 for T0 as fol-
lows: We set σ0(ηi (vi )) = σi (vi ) for every node vi of Ti . Furthermore we
set σ0(�χT0�1) = τ . Because of the properties of the σi , the mapping σ0 is
well-defined and consistent.
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Fig. 23 The graph type T of E(N1 N ,2 x̃)

Fig. 24 The λ-graph for the paradoxical combinator Y and its graph type

Lemma 6 implies that T = ρ(T0) is defined and there is a consistent map-
ping σ for T such that σ(�χT �i ) = σ0(�χT0�i ) for i ∈ {1, . . . , n + 1}.
Hence σ(�χT �1) = σ0(�χT0�1) = τ and σ(�χT �i+1) = σ0(�χT0�i+1) =
σ0(η1(�χT1�i+1)) = σ1(�χT1�i+1) = �(�x̃�i ) and that finishes the proof of
this case. �

The graph type system presented here has some advantages over the standard
type system for the λ-calculus: No type environments are required and type infer-
ence, including unification, is already included in the typing procedure.

Example 12 As another example, this time involving recursive types, we regard
the paradoxical combinator Y = λh.((λx .h(xx))(λy.h(yy))), which replaces the
fixed-point operator and which can be used to “emulate” recursive function calls.
It can be typed # Y : (τ → τ) → τ , but only using recursive types. The λ-graph
for Y and its graph type are depicted in Fig. 24. Note that node vx in the graph
type represents the type of x and λh.h(xx), which must be typed by x : µx.(x →
τ) # x : µx.(x → τ) respectively h : τ → τ # λx .h(xx) : µx.(x → τ).
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Variants: It should not be difficult to show that a λ-expression can be typed
without using recursive types if and only if the corresponding λ-graph has a cycle-
free graph type.

5 Conclusion

We consider this work to be a first step towards a more general and encompassing
theory of types for graphs and dynamically evolving systems, even if there are
probably many type systems that do not fit well into this framework.

The need for such type systems manifests itself in work on analysis of graph-
like dynamic structures such as work on types for process calculi already men-
tioned in the introduction, HD-automata [38] for the verification of π-calculus
processes and shape analysis [45]. The idea of composing graphs in such a way
that they satisfy a certain property was already presented by Lafont in [33] where
it is used to obtain deadlock-free nets. Another related work is [14] where shape
types are specified using context-free graph grammars and an algorithm for invari-
ance checking is given.

An interesting direction of future work will certainly be the theoretically sound
integration of different techniques including type systems in order to obtain pow-
erful and practical analysis techniques for concurrent and distributed systems. In
this context we are also interested in a combination of type systems with other
techniques for the verification of graph transformation systems [1, 42].

Other avenues for research are suggested by the contents of this paper: First, it
seems to be reasonable to search for a technique allowing the automatic derivation
of type systems from given graph rewriting rules. Probably some basic require-
ments such as the lattice annotation and the closure operator ρ have to be fixed,
but then it seems feasible to obtain the linear mapping by checking type invariance
for the rules and using some sort of fixed-point iteration until a suitable invariant
is found.

Second, it is tempting to replace lattices with monoids and thus obtain a type
system able to count, i.e., one might be able to derive upper bounds for the number
of edges with a certain label present at any given time. However, using monoids
instead of lattices introduces many technical difficulties which are not easy to
solve. It should be worthwile to try and overcome those difficulties by adapting
type systems for the π-calculus working with monoids [28, 32].

Acknowledgements I would like to thank the anonymous referees for their valuable and helpful
comments.
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