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Abstract Types in processes delineate specific classes of interactive behaviour in
a compositional way. Key elements of process theory, in particular behavioural
equivalences, are deeply affected by types, leading to applications in the descrip-
tion and analysis of diverse forms of computing. As one of the examples of types
for processes, this paper introduces a second-order polymorphic π-calculus based
on duality principles, building on type structures coming from typed π-calculi,
Linear Logic and game semantics. Of various extensions of first-order typed π-
calculi with polymorphism, the present paper focusses on the linear polymorphic
π-calculus, extending its first-order counterpart [46]. Fundamental elements of
the theory of linear polymorphic processes are studied, including establishment
of their strong normalisability using Girard’s “candidates,” introduction of a be-
havioural theory of polymorphic labelled transitions which strengthens Pierce-
Sangiorgi’s polymorphic bisimulation via duality, and a fully abstract embedding
of System F in polymorphic processes, establishing a precise connection between
the universe of polymorphic functions and the universe of polymorphic processes.
The proof combines process-theoretic reasoning with techniques from game se-
mantics. The abstract nature of polymorphic labelled transitions plays an essential
role in full abstraction, elucidating subtle aspects of polymorphism in functions
and interaction.

1 Introduction

Types in processes delineate specific classes of interactive behaviour in a
compositional way. Key elements of process theory, in particular behavioural
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equivalences, are deeply affected by types [25, 28, 35], allowing precise en-
capsulation of the semantics of significant classes of computation [12, 20, 21,
46, 47]. If the theory of processes offers a basis for the description of gen-
eral computational behaviour [29], then types could be a fundamental tool for
the description and analysis of diverse forms of computational behaviour using
processes.

This paper studies one instance of types for processes, centring on the no-
tion of genericity. Genericity is a useful concept in software engineering which
allows encapsulation of design decisions such that data-structures and algorithms
can be changed more independently. It arises in two distinct but closely related
forms: one, which we may refer to as universal, aids generic manipulation of
data, as in lists, queues, trees or stacks. The other existential form facilitates
hiding of structure from the outside, asking for it to be treated generically. In
both cases, genericity partitions programs into parts that depend on the pre-
cise nature of the data under manipulation and parts that do not, supporting
principled code reuse and precise type-checking. For example, C++ evolved
from C by adding genericity in the form of templates (universal) and objects
(existential).

It is known that key aspects of genericity for sequential functional computation
are captured by second-order polymorphism where type variables, in addition to
program variables, can be abstracted and instantiated. In particular, the two forms
of genericity mentioned above are accounted for by the two forms of quantifica-
tion coming from logic, ∀ and ∃. Well-known formalisms incorporating genericity
include System F (the second-order λ-calculus) [16, 42], ML [31] in its various
guises and GJ (Generic Java) [15]. Centring on these and other formalisms, a rich
body of studies on type disciplines, semantics and proof principles for genericity
has been accumulated.

The present work aims to offer a π-calculus based starting point for reposition-
ing and generalising the preceding functional account of genericity in the broader
realm of interaction. We are partly motivated by the lack of a general mathemati-
cal basis of genericity that also covers state, concurrency and nondeterminism. For
example, the status of two fundamental concepts for reasoning about generic com-
putation, relational parametricity [42] and its dual simulation principle [1, 32, 41],
is only well-understood for pure functions. But a mathematical basis of diverse
forms of generic computation is important when we wish to reason about software
made up from many components with distinct behavioural properties, from purely
functional behaviour to programs with side effects to distributed computing, all of
which may exhibit certain forms of genericity.

The π-calculus is a small syntax for communicating processes in which we can
precisely represent many classes of computational behaviour [9, 12, 20, 21, 30, 46,
47]. Can we find a uniform account of genericity for diverse classes of computa-
tional behaviour using the π-calculus? This work presents our initial results in this
direction, concentrating on a polymorphic variant of the linear π-calculus [46]. It
turns out that the duality principle embodied in the linear type structure naturally
extends to second-order quantification, leading to a powerful theory of polymor-
phism that allows precise embedding of existing polymorphic functional calculi
and unifies some of the significant technical elements of the known theories of
genericity.
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1.1 Summary of contributions

Below we list the key technical achievements of the present paper.

– Introduction of the linear polymorphic π-calculus based on duality principles.
Here “linear” means, intuitively speaking, that processes always return an out-
put when invoked. In the sequential setting, it also means processes always
terminate (strong normalisation, SN). For proving our calculus is linear, we
use methods based on reducibility candidates [2, 16, 17], in addition to those
from the study in typed process calculi [46].

– A theory of behavioural equivalences based on a generic labelled transition
system applicable to both sequential and concurrent polymorphic processes.
Our transition relation is strongly guided by duality-based type information
which contributes to its high-level of abstraction, enhancing a construction by
Pierce and Sangiorgi [36].

– Establishment of a fully abstract embedding of System F into the linear poly-
morphic π-calculus. The abstract nature of our generic transitions, which leads
to comparatively few transitions as well as abstract treatment of existential
types, is used for obtaining full abstraction, where System F’s impredicativity
makes direct syntactic reasoning hard.

The full abstraction result not only connects the world of processes with one of the
best-studied formalisms for polymorphic functions, but also opens the possibility
to use the rich heritage of studies on polymorphic functions in the world of typed
processes, combined with wider representability and reasoning tools to theories of
processes. Among others the polymorphic extensions of other first-order theories,
including affine processes [12], control [21], stateful behaviour [20] and concur-
rency [20] are built on the basis of the present theory. These extensions will be
treated in the sequels of the present paper.

1.2 Related work

Second-order polymorphism for the λ-calculus was developed by Girard [16] and
Reynolds [42], both focussing on universal abstraction. Later Mitchell and Plotkin
[32, 41] relate the dual form, existential abstraction, to data hiding. Based on a
duality principle, the present theory unifies these two uses of polymorphism, data-
hiding and parametricity, into a single framework, both operationally and in typ-
ing. The unification is accompanied by new reasoning techniques such as generic
labelled transitions.

Turner [43] is the first to study impredicative polymorphism in the π-calculus,
giving a type-preserving encoding of System F. His type discipline is incorporated
into Pict [37]. Vasconcelos [44] studies a predicative polymorphic typing disci-
pline and shows that it can type-check interesting polymorphic processes while
allowing tractable type inference. Our use of a duality principle (whose origin can
be traced back to Linear Logic [17]) is the main difference from those previous
approaches. The definability argument in Sect. 7, which leads to full abstraction,
crucially depends on this duality principle.

Pierce and Sangiorgi [36] investigate a behavioural equivalence for Turner’s
calculus and observe that existential types can reduce the number of transitions by
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prohibiting interactions at hidden channels. Lazić and his colleagues [26] show
that when programs manipulate data abstractly (called data independence), a
transition system with a parametricity property can be used for reasoning, lead-
ing to efficient model checking techniques. The generic labelled transition unifies,
and in some cases strengthens, these ideas as dual aspects of a single framework.

Pitts [38, 39] studies contextual congruences in PCF-like polymorphic func-
tional calculi and characterises them via syntactic logical relations, cf. [40]. There
is an analogous way to construct logical relations in the present setting, lead-
ing to a similar characterisation result (the construction is closely related with
the duality-closed relation we use for the proof of strong normalisability). The
transition-based reasoning discussed in the present paper gives a less abstract but
more tractable reasoning technique.

Recently, several studies of the semantics of polymorphism based on games
and other intensional models have appeared. Hughes [22] presents game seman-
tics for polymorphism in which strategies pass arenas to represent type passing
and proves full abstraction for System F. His model is somewhat complex due
to its direct representation of type instantiation. Murawski and Ong [34] simplify
Hughes approach substantially, but do not obtain full abstraction for impredicative
polymorphism. Abramsky and Lenisa [5, 6] give a fully abstract model for pred-
icative polymorphism using interaction combinators. [3] presents another model
based on game semantics. Fully abstract embedding of impredicative polymor-
phism is left as an open issue in these works. In view of the relationship between
π-calculi and game semantics [12, 19, 23], it would be interesting to use typed
processes from the present work to construct game-based categories.

1.3 Structure of the paper

This paper is the full version of [13], giving full technical details of the theory
of linear polymorphic processes. The reader interested in related work is invited
to consult [12, 20, 21, 46, 47]. Section 2 informally illustrates the key ideas with
examples. Section 3 introduces the syntax and typing rules, and proves Subject
Reduction. Section 4 establishes strong normalisability of linear polymorphic pro-
cesses. Section 5 studies a generic labelled transition system and the induced
equivalences. Section 6 demonstrates the reasoning power of generic labelled tran-
sitions by way of non-trivial examples. Section 7 concludes with a fully abstract
embedding of System F.

2 Generic processes, informally

This section introduces key ideas with simple examples. We start with the follow-
ing small process, which encodes the identity function, λy.y. We use the standard
syntax of the asynchronous version of the π-calculus [18].

!x(yz).z〈y〉
Here z〈y〉 is an output of y along the channel z and !x(yz).z〈y〉 is a replicated
input, repeatedly receiving two names y and z at x . After having received y and
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z, it sends y along z. For typing this process (in a Curry-style system), we assign
each channel a type which specifies how it can carry arguments. Let us assume the
corresponding identity function has functional type τ ⇒ τ . In the standard typing
system of the π-calculus [28, 45], the above agent is typed as follows:

� !x(yz).z〈y〉 � x :(τ (τ ))

where (τ (τ )) represents that name x inputs or outputs two arguments with type
τ and type (τ ). As first refinement, we attach action modes to types to ensure
the linearity and direction of channel usage. Duality is defined between input and
output. Hence x in the above identity agent is typed by:

(τ (τ )↑)!

τ indicates the dual of τ (which is inductively defined by dualising input and out
modes). (τ )↑ sends a name of type τ exactly once, while (τ (τ )↑)! indicates the
behaviour of receiving two names at a replicated input channel, one used as τ and
the other as (τ )↑.

Based on linearity and duality, the polymorphic identity is now typed as fol-
lows.

�!x(yz).z〈y〉 � x :∀X.(X(X)↑)!

Here X is a type variable and X indicates the dual of X. ∀X universally abstracts
X, saying X can be any type. It is important to bear in mind that ∀X binds X and
its dual X simultaneously (as in [17]). The operational content of typing a channel
with a type variable is to enforce that y cannot be used as an interaction point
which would require a concrete type. In the above example, y with a variable X
only appears as a value in a message.

Next we consider a process whose type is dual to that of the above agent. Let
t〈y〉 def=!y(a1a2z).z〈a1〉, not〈cw〉 def=!c(a1a2z).w〈a2a1z〉 and B

def= ∀X.(XX(X)↑)!
which are, respectively, truth, negation and the polymorphic boolean type.

� x(yz)(t〈y〉|z(w).e(c)not〈cw〉) � x :∃X.(X(X)↓)?, e :(B)↑ (1)

This process sends y and z (respectively representing the truth and the continu-
ation) via x , where x(yz)P stands for (ν yz)(x〈yz〉|P). Then it receives a single
name at z and sends its negation via e. ↓ means “input once” while ? stands for
“output to a replication.” To understand the typing, let’s look at the situation before
existential abstraction:

� x(yz)(t〈y〉|z(w).e(c)not〈cw〉) � x :(B(B)↓)?, e :(B)↑ (2)

Abstracting B and its dual at x simultaneously, we obtain ∃X.(X(X)↓)? (∃X binds
both X and X). Thus existential abstraction hides the concrete type B.

The types ∀X.(X(X)↑)! and ∃X.(X(X)↓)? are dual to each other and indicate
that composition of two processes is possible. When composed, the process inter-
acts as follows. Below and henceforth we write id〈x〉 for !x(yz).z〈y〉.

id〈x〉 | x(yz)(t〈y〉|z(w).e(c)not〈cw〉)
−→ id〈x〉 | (ν yz)(z〈y〉|t〈y〉|z(w).e(c)not〈cw〉)
−→ id〈x〉 | (ν y)(t〈y〉|e(c)not〈cy〉)
≈ id〈x〉 | e(c)f〈c〉
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Here f〈c〉 def=!c(xyz).z〈y〉 (representing falsity) and ≈ is the standard weak bisimi-
larity. As this interaction indicates, a universally abstracted name, after its receipt
from the environment, can only be used to be sent back to the environment as a
free name or be discarded for non-linear names. The dual existential side can then
count on such behaviour of the interacting party: in the above case, the process on
the right-hand side can expect that, via z, it would receive the name y as a free
name which it has exported in the initial reduction, as it indeed does in the second
transition.

This duality plays the key role in defining generic labelled transitions, which
induce behavioural equivalences more abstract than non-generic ones and which
are applicable to the reasoning over a wide range of generic behaviours. We use
an example of a generic transition sequence of the process in (1).

x(yz)(t〈y〉|z(w).e(c)not〈cw〉) x(yz)−→ z〈y〉−→ t〈y〉|e(c)not〈cy〉 (3)

A crucial point in this transition is that it does not allow a bound input in the
second action, because the protocol at existentially abstracted names is opaque.
The induced name substitution then opens a channel for internal communication.
In contrast, the process in (2), different from (1) only in type, has the following
transition sequence.

x(yz)(t〈y〉|z(w).e(c)not〈cw〉) x(yz)−→ z(w)−→ t〈y〉|e(c)not〈cw〉.
Note that we have a bound input in the second action; the transition sequence
is now completely controlled by type information, without sending/receiving
concrete values. Under this duality principle, possible actions at w are no
longer opaque but are specified by the type information B. In this way existen-
tial/universal type variables correspond to free name passing, while concrete types
(which rigorously specify protocols of interaction by their type structure) corre-
spond to bound name passing.

We further examine the effect of free input. The process on the right in (3) has
the following transitions.

t〈y〉|e(c)not〈cy〉 e(c)−→ c(w1w2c1)−→ τ−→ c1〈w2〉−→ t〈y〉|not〈cy〉 (4)

Here, because y is existentially quantified, t〈y〉 can never interact with processes
in the environment. Hence an input transition at y never happens. Consequently,
at the third step the only possible action is internal τ -action at y between t〈y〉
and message y〈w2w1c1〉 generated from not〈cy〉. Thus the process in (2) in effect
behaves as the falsity. On the other hand, in (4), t〈y〉 is always accessible from
the environment, hence t〈y〉 and not〈cw〉 can behave independently without in-
ternal communication. For example, at the second step, it can have a bound input
transition y(w′1w′2c′1) from the environment.

This way, the duality in the type structure is precisely reflected by a duality in
behaviour. This duality principle is also essential in the construction of the second-
order semantic types for proving the strong normalisability of linear polymorphic
processes and for various embedding results.
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3 A polymorphic π-calculus

3.1 Processes

We use the asynchronous version of the π-calculus [14, 18]. Simple in construc-
tion, the calculus in its untyped form can represent a wide range of computational
behaviours, including the untyped λ-calculus [27], objects [24] and distributed
computation [10]. Let x, y, . . . range over a countable set N of names. Vectors
of names are written ỹ. Processes, ranged over by P, Q, R, . . ., are given by the
following grammar.

P ::= x(ỹ).P | !x(ỹ).P | x〈ỹ〉 | P|Q | (ν x)P | 0

Names in round parentheses act as binders. We assume the standard α-equality
≡α . In each of these agents, the leftmost free name is called the subject, while
ỹ is the vector of objects. The process x(ỹ).P inputs a vector of names (to be
instantiated at ỹ) via its subject x with a continuation P . Its replicated counter-
part is !x(ỹ).P . x〈ỹ〉 outputs ỹ along x . Having replication just for input guarded
processes is well-known to be sufficient for Turing universality and is easier to
type than more general forms of replication. The parallel composition of P and Q
is P|Q and (ν x)P makes x private to P . 0 indicates the lack of behaviour. The
structural equality ≡ is the smallest congruence inductively generated from the
following axioms.

– If P ≡α Q then P ≡ Q.
– P|Q ≡ Q|P , P ≡ P|0, P|(Q|R) ≡ (P|Q)|R, P ≡ P|0,
– (νx)(νy)P ≡ (νy)(νx)P , (νx)0 ≡ 0, x /∈ fn(P)⇒ (νx)(P|Q) ≡ P|(νx)Q.

The reduction relation −→ is generated from:

– x(ỹ).P | x〈z̃〉 −→ P{z̃/ỹ}
– !x(ỹ).P | x〈z̃〉 −→ !x(ỹ).P | P{z̃/ỹ}
– P −→ Q ⇒ (νx)P −→ (νx)Q
– P −→ P ′ ⇒ P|Q −→ P ′|Q
– P ≡ P ′ −→ Q′ ≡ Q ⇒ P −→ Q

The multi-step reduction→→ is defined as −→∗ ∪ ≡.

3.2 Types

Our typing judgements are of the form �φ P � A where the action type A sum-
marises P’s channel usage through channels types assigned to each of P’s free
names, and by causality arrows between the channel types. The IO-mode φ indi-
cates whether P has an active thread or not. The linear type discipline as a whole
offers three kinds of information.

– Directional: does P use the channel for input or output?
– Quantitative: how often is the channel being used?
– Qualitative: what kind of data flows over the channel?

In the following, we show how these ideas are materialised by the linear type
discipline.
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3.2.1 Action modes

Channel types are inductively made up from type variables and action modes. The
four action modes speak about the directional and quantitative sides of channel
usage:

↓ Linear input, ↑ Linear output,
! Server at replicated input, ? Client requests to !.

Input modes are ↓, !, while ↑, ? are output modes. Input/output modes are to-
gether called directed modes. We let p, p′, . . . (resp. pI, resp. po) denote directed
(resp. input, resp. output) modes. We define p, the dual of p, by: ↓ =↑, ! = ? and
p = p.

Action modes may be best understood by considering what λ-abstractions do,
seen from the outside: they receive an argument and may later return some value
that (usually) depends on the argument. In our translation into the π-calculus (cf.
Sect. 7), a λ-term is mapped to a process, and it just waits around for being in-
voked with an argument. This means it is a process !x(ṽ).P . Such a process is
a server located at x . Replication is necessary, because a function, and hence its
translation, may be used more than once, or not at all. Since everything is a pro-
cess in π-calculi, arguments supplied to servers are the names of other servers,
those where the argument is produced. When executing an invocation, a server
asks the argument servers what their values are. Channels, like x in !x(ṽ).P , used
by servers for invocations, have ! as action mode. Dually, the client sends its in-
vocation of a server on a ?-moded channel. But what about the server returning
a result to a client? We want the client to receive the result for its own unique
last uncompleted invocation, hence the channel used for returning a value should
be used at most once. If we know that the server will always terminate, as we do
when translating strongly normalising calculi like System F, we can strengthen
this requirement to channels for return values being used exactly once. That is the
point of ↓ and (dually) ↑.

3.2.2 Syntax

We now formally define the syntax of channel types. Channel types, ranged over
by τ, σ, γ, . . ., are given by the following grammar.

τ ::= τI | τO | � τI ::= XO | ∀X̃.(τ̃O)
pI τO ::= XO | ∃X̃.(τ̃I)

po

where X, Y, . . . range over type variables, which is a countable set that comes with
a self-inverse and irreflexive bijection X (as found in [17]), i.e. X = X and X �= X.
Each X is assigned a directed action mode p, often written X p, so that the mode
of X is always dual to that of X.

We have three different kinds of channel types: input channels, output chan-
nels and � which indicates that a channel is no longer available for further com-
position with the outside. In quantified types like ∀X̃.(τ̃O)

pI , vectors X̃ and τ̃O are
not required to have the same or non-zero length. We write (τ̃ )pI to abbreviate
∀ε.(τ̃ )pI and (τ̃ )po is short for ∃ε.(τ̃ )po . Quantifiers bind type variables in pairs,
so that both X and X are bound in ∀X.τ and ∃X.τ . One could say that the former
is an abbreviation for ∀{X, X}.τ and the latter for ∃{X, X}.τ . Type substitution,



Genericity and the π-calculus 91

which should always respect action modes, is similarly shorthanded: for example
(X(X)↑)!{τ/X} is (τ (τ )↑)! . The set ftv(τ ) of free type variables in τ also automat-
ically includes duals, e.g. ftv(X) = {X, X}. This formulation based on dual type
variables follows [17].

A type τ is closed if ftv(τ ) = ∅. τI and τO are called input types and
output types, respectively. The dual τ of τ is the result of dualising all action
modes, type variables and quantifiers in τ . For example ∀X.∃Y.((X)↓((Y)↑)!)? =
∃X.∀Y.((X)↑((Y)↓)?)! . We set

md(X p) = p, md((τ̃ )p) = p,
md(∀X.τ ) = md(∃X.τ ) = md(τ ), md(�) =� .

We often write τ p if md(τ ) = p. As in [12, 20, 47, 46], we assume a sequentiality
constraint on channel types which requires that

– in (τ1...τn)
! , md(τ j ) = ↑ for a unique j (for simplicity we assume j = n from

now on), else md(τi ) = ? and dually for (τ1...τn)
? ;

– in (τ1...τn)
↓, each τi has mode ?, dually for (τ1...τn)

↑.

These conditions come from [4, 19, 23]. They ensure that names used for input
carry only output names and vice versa (IO-alternation), and that a replicated input
receives, besides replicated names in the environment, exactly one linear name for
answering to the client. These conditions are not essential for our main result, full
abstraction, but lead to a clean behavioural theory.

Composability of types is given by � on channel types: � is the least binary,
associative and commutative partial operation on channel types such that

τ↑ � τ↓ = � τ ! � τ ? = τ ! τ ? � τ ? = τ ? .

Here � is treated as a channel type for notational simplicity. We will also write τ �
σ to indicate that τ � σ is defined. Intuitively, the last two rules say that a server
should be unique, but an arbitrary number of clients can request interactions. The
first rule says that once we compose input-output linear channels, the channel
becomes uncomposable. Note that other compositions are undefined. For example,
!x(y).P |!x(z).Q is never typable because (τ )!�(τ )! is undefined. x |x .0 is typable
by x : �, but x | x | x .0 is not because ()↑ � ()↑ is undefined. This partial algebra
of channel types ensures directionality and quantitative properties of channels in
typable processes by controlling their composability.

3.3 Typing

3.3.1 Sequentiality and causality

The typing system proposed here is a Curry-style system (it is straightforward
to derive the corresponding Church-style system) and adds quantifiers rules to
the first-order system of [12, 46]. Here we introduce two key ideas, sequential-
ity and causality of communications for controlling qualitative aspects of process
behaviour.

In sequents �φ P � A the IO-mode φ is either I or O. The former, I, indicates
that P does not have an active output, i.e. an output that is not prefixed. The latter,
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O, guarantees the existence of exactly one active output in P . In effect this removes
concurrency from our typed calculus. This restriction can be lifted without affect-
ing genericity but to keep things simple, we only treat the sequential case here.
Formally we define the partial algebra:

I� I = I and I� O = O� I = O.

Note O� O is undefined, which achieves that we do not have more than one active
thread at the same time. For example, a | a and b.(a | c) are untypable by this
constraint. We write φ1 � φ2 if φ1 � φ2 is defined.

3.3.2 Action types and their composition

To ensure termination of process behaviour, we introduce the action type ranged
over by A, B, C . . ., which is a finite directed graph with nodes of the form x : τ ,
such that

– no name occurs twice; and
– edges are of the form x :τ → y :τ ′ such that either

(1) md(τ ) =↓ and md(τ ′) =↑ or (2) md(τ ) = ! and md(τ ′) = ?.

Edges denotes dependency between channels and are used to prevent vicious cy-
cles between names. Similarly, fn(A) denotes the set of names and modes in A
and we write A(x) for the channel type assigned to x in A. We compose two pro-
cesses typed by A and B when A(a)� B(a) is defined for all a ∈ fn(A) ∩ fn(B),
and composition creates no circularity between names. For example, composition
of x : τ1 → y : τ2 and y : τ2 → x : τ1 is undefined. We write A � B if A � B is
defined.

We write x → y if x :τ → y :τ ′ for some τ and τ ′, in a given action type. If x
occurs in A and for no y we have y → x then we say x is active in A. |A| denotes
the set of nodes in A. We often write x : τ ∈ A instead of x : τ ∈ |A|. We write
A � B iff:

– whenever x :τ ∈ A and x :τ ′ ∈ B, τ � τ ′ is defined; and
– whenever x1→ x2, x2→ x3, . . . , xn−1→ xn alternately in A and B (n ≥ 2),

we have x1 �= xn .

Then A � B, defined iff A � B, is the following action type.

– x : τ ∈ |A � B| iff either (1) x ∈ (fn(A)\ fn(B)) ∪ (fn(B)\ fn(A)) and x : τ
occurs in A or B; or (2) x :τ ′ ∈ A and x :τ ′′ ∈ B and τ = τ ′ � τ ′′.

– x → y in A � B iff x : τI, y : τO ∈ |A � B| and x = z1 → z2, z2 →
z3, . . . , zn−1→ zn = y (n ≥ 2) alternately in A and B.

The definition of � on action modes is as in the first order case [46]. As an
example of the typing discipline imposed using �, a.b | b.a becomes untypable
([46] lists more examples). We note that � on action types is a symmetric and as-
sociative partial operation with identity ∅, cf. [46]. Figure 1 shows two examples
of composition between action types using �. In the linear case, ordering from/to
node b disappears. On the other hand, in the replicated case, we keep the origi-
nal ordering because !b(ỹ).P remains persistent. Note how shared ?-channels are
duplicated in the syntactic representation.
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Fig. 1 Composition of Action Type (taken from [46])

3.3.3 Typing rules

The typing rules are given in Fig. 2. To simplify the presentation, we assume all
newly introduced types to be well-formed. Some notation: md(A) denotes the set
of modes, A/x̃ is the result of taking off nodes with names in x̃ from A. A, B is
the graph union of A and B with fn(A) ∩ fn(B) = ∅. x : τ → A is a result of
adding x : τ to A with an edge from x : τ to all of A’s active nodes; A-x is an A
such that x �∈ fn(A); and p̃ A indicates md(A) = { p̃}.

The (ZERO) rule types 0, assigning it the I-mode since there is no active out-
put. As 0 has no free names, it is not being given any channel types. In (PAR),
φ1 � φ2 ensures single threading because composition of two processes that are
both O-moded is prohibited. Similarly A � B guarantees the preservation of de-
terminism and strong normalisation, in addition to consistent channel usage like
linear inputs being only composed with linear outputs, etc. In (RES), we do not al-
low ↑, ? or ↓-channels to be restricted since they carry actions which expect their
dual actions to exist in the environment. (WEAK) weakens with � and ?-nodes
since these modes do not require further interaction. (IN↓) ensures that x occurs
precisely once (by A-x , B-x ) and no free input is suppressed under a prefix. In
addition, this rule introduces universal quantification. The side conditions prevent
capturing free type variables. This is in accord with the corresponding rules of the
second-order λ-calculus. (IN!) is the same as (IN↓) except that no free ↑-channels

Fig. 2 The polymorphic sequential typing rules
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are suppressed. This is because a ↑-channel under replication could be used more
than once. Finally in (OUT), we assume yi = y j implies τi = τ j in ỹ : τ̃ , where τ̃
means pointwise dualisation of τ̃ . This rule also adds existential quantification.

Simple examples of sequential polymorphic processes follow (expressions in
the first three examples are from Sect. 2).

Example 1 (linear polymorphic processes)

1. Let I
def= ∀X.(X

?
(X!)↑)! . Then, recalling id〈x〉 def=!x(yz).z〈y〉, we have:

�I id〈x〉 � x :I.

2. Recall B
def= t.(XX(X)↑)! , t〈y〉 def=!y(a1a2z).z〈a1〉, t〈y〉 def=!y(a1a2z).z〈a2〉, and

not〈cw〉 def=!c(a1a2z).w〈a2a1z〉. Then we have

�I t〈x〉 � x :B
�I f〈x〉 � x :B

�Inot〈xy〉 � x :B, y :B

3. We have �O x(yz)(t〈y〉|z(w).e(c)not〈cw〉) � x :(B(B)↓)?, e :(B)↑.
4. Let

if x then P1 else P2
def= x(b1b2z)(!b1(ṽa).P1|!b2(ṽa).P2|z(b).b〈ṽa〉).

Then we have:

if x then P1 else P2 | t〈x〉 →→ P1|t〈x〉|(ν b2)!b2(ṽa).P2 ≈ P1|t〈x〉
where ≈ is the standard untyped weak bisimilarity. Symmetrically for
if x then P1 else P2 | f〈x〉. Assume �O P1,2 � ṽ : τ̃ ?, a : τ↑. Then we can type:
�O if x then P1 else P2 � x :B, ṽ : τ̃ ?, a :τ↑.

5. With n ≥ 0, let

fwn+1
xy

def=!x(a1..anb).y〈a1..anb〉
which we call the forwarder of arity n + 1. Then

�I fwn+1
xy � x : ∀Ỹ.(τ 1...τ nσ)! → y : ∃Z̃.(τ1...τnσ)?

for arbitrary types τ̃ and σ , provided that md(τi ) = ! and md(σ ) =↓. The
vectors Ỹ and Z̃ are neither required to coincide in length nor depend on n. For
most applications we will choose Ỹ = Z̃ = ftv(τ̃ , σ ). Then we can check

�I (ν w)
(
fwn+1

xw

∣∣fwn+1
wy

)
� x : ∀Ỹ.(τ 1...τ nσ)! → y : ∃Z̃.(τ1...τnσ)?

that is the composed process has the same type as fwn+1
xy , while (ν w)(fwn+1

xw |
fwn+1

wx ) is untypable because (x : τ → w : τ) �� (w : τ → x : τ).
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6. The λ-calculus allows us to implement the booleans in various ways [7, 8, 33].
One of the standard representations is called the Polymorphic Booleans, given
as:

T = λt.λ f.t, F = λt.λ f. f, Not = λb.λt.λ f.(bf )t

In System F, the type of the two boolean values is Bλ = ∀X.X ⇒ (X ⇒ X).
These terms can be translated into processes as follows, using the uniform
encoding which we shall study in detail in Sect. 7.

[[T]]u = u(a)!a(y).y(c)!c(tm).m(d)!d( f n).n〈t〉
[[F]]u = u(a)!a(y).y(c)!c(tm).m(d)!d( f n).n〈 f 〉
[[Not]]u = u(a)!a(b).b(c)!c(eg).g(h)!h(tk).k(l)!l( f r).P
P = (ν s)(e〈 f s〉 | s(v).v〈tr〉)

In spite of indirections, the correspondence in behaviours between processes
and λ-terms should be clear. The System F boolean type is mapped to

B
◦
λ

def= ∀X.(((X
?
((X

?
(X)↑)!)↑)!)↑)! .

Then we can easily derive

�O [[T]]u � u : (B◦λ
)↑

, �O [[F]]u � u : (B◦λ
)↑

, and �O [[Not]]u � u : (B◦λ
)↑

.

Applying Not to T is also typable as:

�O (νt)([[T]]t | t (v).(νn)([[Not]]n | n(w).v〈wu〉)) � u : (B◦λ
)↑

We will later see that this last process is the translation of the System F
application (Not T), located at u. It is contextually indistinguishable from
[[F]]u .

7. The encoding of Bλ in the previous example can be generalised to

[n]λ def= ∀X.(X⇒ · · · ⇒ X︸ ︷︷ ︸
n

⇒ X).

This type will later be translated to

∀X.(((X
?
((X

?
(...(X

?
︸ ︷︷ ︸

n

((X
?
(X)↑)!)↑)! ...)↑)!)↑)!)↑)! .

The n selectors are the CBV translations of πn
i = 
X.λx1...xn.xi :

[[πn
i ]]u = a(a)!a(x1b1)...bn−1(an)!an(xnr)r〈xi 〉.

A simpler form of n-ary choice is [n] def= ∀X.(X...X︸ ︷︷ ︸
n

(X)↑)! with the selectors

being of the form x〈y1...ynr〉r〈yi 〉. Sometime we don’t want just a finite num-
ber of choices but rather infinitely many. The Church Numerals [7, 8, 33] are a
way of representing the natural numbers without recourse to base types in pure
calculi like System F: a number n is simply the n-fold application of a function
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f to some variable x . This is the unary representation of numbers. Polymor-
phism is needed to define the arithmetic operations. Church Numerals are of
the form:

CN(n) = 
X.λ f X⇒X.λx X. f... f︸ ︷︷ ︸
n

x

and their type is CN = ∀X.((X ⇒ X) ⇒ (X ⇒ X)). A translation into the
second-order π-calculus is given as:

CN
◦ = ∀X.((((X!(X

?
)↓)?((X

?
(X!)↑)!)↑)!)↑)!

We will later see that u(a)!a(b).b(c)!c( f e).e(g)!g(xh). f 〈xh〉 is the CBV
translation of CN(1), located at u.

Remark 1 We illustrate the key constraints the typing system enforces on pro-
cesses.

1. All processes must be well-sorted.
2. Each linear name is used exactly once for input and exactly once for output

(but one of these uses may be by the environment).
3. Each replicated name is used exactly once for input (the server) and an arbi-

trary number of times for output (by clients). Some of these uses may be by
the environment.

4. There is no circularity in name usage.
5. Inputs are always available when a corresponding output is made. By that we

mean that it can never happen that an output particle x〈ỹ〉 becomes active and
the corresponding input on x is available only later, after further interaction.

6. Processes always alternate between inputs and outputs, i.e. if a process does
an output, then the next visible action of its continuation will be an input and
vice versa.

7. Each typable process has at most one active thread (output).

These constraints come from the corresponding first-order typing system [46].
Different constraints play different roles: (1) is the basis of diverse notions of
types in the presence of polyadic name passing [28]. The next three, (2), (3) and
(4) are at the heart of the present typing system. They ensure strong normalisation
and linearity. The difference between the present typing system and [46] is that the
former extends these constraints to more processes by adding second-order quan-
tification. (5) and (6) make the calculus syntactically more tractable without losing
expressiveness. They curtail the shape of typable processes quite strongly so as to
make them more amenable to analysis. (7) emulates the behaviour of functions
and other similar entities such as procedures and objects. It is also required is for
sequentiality, allowing precise embedding of sequential polymorphic functions.
Finally, (4) is crucial for strong normalisability and full abstraction.

These constraints delineate a specific class of process behaviour, in this case
strongly normalising deterministic polymorphic processes. One can take off some
of these constraints to have different classes of behaviours, cf. [20, 21] (we believe
that the lack of sequentiality may not change the class of behaviours substantially,
cf. [46, §5.3], similarly for IO-alternation). We can also add behaviour repre-
sentable in untyped π-calculus, such as control-like behaviours or references. The
central aspect of these typed π-calculi is that, while delineating various classes
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of behaviour, the term formation rules, centring on parallel composition, restric-
tion, and prefixing, are common to all. Differences arise from different constraints
on what composition each system allows. This allows us to combine different
classes of behaviours uniformly, as experimented in [20]. It also gives a precise
understanding of differences among classes of behaviours, all represented in typed
name passing processes. Another important merit of representing behaviour as
processes is that general reasoning methods such as bisimilarity are uniformly ap-
plicable to different classes of behaviour. This leads to a uniform understanding
of these methods.

Regarding the linear polymorphic π-calculus per se, the class of behaviours
thus delineated owns the fundamental elements of name passing processes which
are nonexistent in functional analogues like System F. The obvious but never-
theless important point is that linear polymorphic processes are still based on an
algebra of name passing processes, whose fundamental operator is parallel com-
position. This is shared with all other typed π-calculi. All operations are now
name passing interactions, and the difference between generic and non-generic
computation arises as the difference in the way names are communicated (free or
bound), as we have seen in Sect. 2. The shape of the theory, in particular treatment
of quantifications, is completely symmetric, which has fundamental effects on
various elements of the theory, for example polymorphic bisimulations in Sect. 5.
The fine-grainedness of name-passing also enables precise embeddings of call-by-
name, call-by-value and call-by-need encodings of polymorphic functions by sim-
ply changing the translation of types (whose semantic difference becomes clear in
divergent computation). In summary, linear polymorphic processes offer a tool
for representing and analysing purely functional polymorphic behaviours as name
passing processes, where the key elements of polymorphism known for pure func-
tions, including types, terms’ behaviour, equalities and reasoning techniques, are
repositioned in the general realm of interacting processes, exposing their hidden
symmetry.

Remark 2 As in all known typed π-calculi, even if two untyped processes are
equated in (say) untyped bisimilarity, and if one is typable in the typing sys-
tem, this does not mean another is also typable. A simple example is (unty-
pable) (ν x)x .P , which is strongly bisimilar to (typable) 0. Another example is
x .(νy)(y|y) and (νy)x .(y|y). In fact, for an arbitrary processes P , P is always
weakly bisimilar to P|(ν x̃)Q for an arbitrary Q such that fn(Q) ⊆ {x̃}. Note
this means that in order to guarantee typability’s being closed under observational
equivalence in a compositional typing system, every process would have to be
typable.

Remark 3 Unlike Turner’s calculus [43], the present type discipline records ex-
istential and universal quantification as mutually dual quantifiers. This duality is
central to the semantic and syntactic results in later sections. The operational con-
tent of type instantiation in the explicitly typed counterpart of the present system
is essentially identical to Turner’s one.

Henceforth, we shall make extensive use of the standard variable convention,
which we often write VC from now on, which says that all occurring free names in
proof trees are different from all occurring bound names. The next lemma justifies
the VCs.
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Lemma 1

– Let σ be an injective renaming. Then, for any proof-tree T of �φ P � A, T σ is
a proof-tree for �φ Pσ � Aσ .

– Let σ be an injective renaming of type variables, respecting duality,
i.e. σ(X) = σ(X) as well as action modes. Then, for any proof-tree T of
�φ P � A, T σ is a proof-tree for �φ P � Aσ .

Proof By induction on the shape of T . ��
Proposition 1 If �φ P � A and P ≡ Q, then �φ Q � A.

Proof By induction on the derivation of P ≡ Q. See Proposition 26 in Appendix
Appendix A. ��
Lemma 2 If �φ P � A then �φ P � A{γ̃ /X̃}.
Proof By induction on the derivation of �φ P � A. See Lemma 28 in Appendix
Appendix A. ��
Lemma 3 Assume �φ P � A and A{x̃/ṽ} is defined. Then �φ P{x̃/ṽ} � A{x̃/ṽ}.
Proof We show A{x/v} defined implies �φ P{x/v} � A{x/v}, by rule induction.
See Lemma 30 in Appendix Appendix A. ��
Lemma 4 Let ṽ and ỹ be two tuples of names of the same length such that i �=
j, yi = y j implies τi = τ j . Assume furthermore that ṽ and w are all fresh and
distinct names.

1. Assume a type ↑A, ?B, ṽ : τ̃ ? Then (A, B, ṽ : τ̃ ){ỹ/ṽ} is defined and equals
A, (B � ỹ : τ̃ ).

2. Given the type ?A, ṽ : τ̃ ?, w : σ↑ Then (A, ṽ : τ̃ , w : σ){ỹz/ṽw} is defined
and equals (A � ỹ : τ̃ ), z : σ .

Proof By straightforward induction on the length of ṽ. ��
Lemma 5 (1) If ?A � ?B and x : τ ! � B then x : τ → A � B. (2) ?A � ?A; (3)
?A � C, ?B � C implies A � B � C.

Proof Immediate from the definitions. ��
Theorem 1 (subject reduction) If �φ P � A and P −→ Q, then �φ Q � A.

Proof By induction on the derivation of P −→ Q. There are two interesting
cases. The first one is x〈ỹ〉|x(ṽ).P −→ P{ỹ/ṽ}. We proceed by induction on the
derivation of the typing judgement. If the last applied typing rule was (WEAK),
the result follows immediately from the inner (IH), otherwise the inference was

σi = τi {γ̃ /X̃}, Xi /∈ ftv(σ̃ )
(OUT)

�Ox〈ỹ〉 � x : ∃X̃.(τ̃ )↑, ỹ : σ̃
�O P � ṽ : τ̃ ,↑A−x , ?B−x X̃ /∈ ftv(A, B)

(IN↓)
�Ix(ṽ).P � B, x : ∀X̃.(τ̃ )↓ → A

(PAR)
�Ox〈ỹ〉|x(ṽ).P � (x :�, A, B)� ỹ : σ̃ = x :�, A, (B � ỹ : σ̃ )
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where we assume

x : ∃X̃.(τ̃ )↑, ỹ : σ̃ � B, x : ∀X̃.(τ̃ )↓ → A

as a hypothesis for the application of (PAR). W.o.l.g. we can also assume (WEAK)
is not used between (IN↓) and (PAR) ((WEAK) ↘r (PAR) by Lemma 26 in Ap-
pendix Appendix A). By the (VC) we can assume that ṽ and ỹ are disjoint. Since
by (OUT) i �= j, yi = y j implies τ

?
i = τ

?
j , we apply Lemma 4 (1) to see that

(ṽ : τ̃ , A, B){ỹ/ṽ} is defined and equals (A, B)� ỹ : τ̃ which is A, (B � ỹ : τ̃ ).
Hence by Lemma 3, �O P{ỹ/ṽ} � A, (B� ỹ : τ̃ ). Now Lemma 2 ensures that also
�O P{ỹ/ṽ} � (A, (B � ỹ : τ̃ )){γ̃ /X̃}. But {X̃} ∩ ftv(A, B) = ∅, hence we have
(A, (B� ỹ : τ̃ )){γ̃ /X̃} = A, (B� ỹ : τ̃ {γ̃ /X̃}), so in fact �O P{ỹ/ṽ}� A, (B� ỹ :
σ̃ ). A final application of (WEAK) on x establishes the result.

The second interesting case is much as the first, but more complicated:
x〈z̃ y〉|!x(w̃v).P −→ P{z̃ y/w̃v}|!x(w̃v).P . We proceed by induction on the
derivation of �O x〈z̃ y〉|!x(w̃v).P � A. For usage of (WEAK), the result follows
immediately from the inner (IH), otherwise the inference was

σi = τi {γ̃ /X̃}, σy = τy{γ̃ /X̃} Xi /∈ ftv(σ̃ )
(OUT)

�Ox〈z̃ y〉 � x : ∃X̃.(τ̃ τy)
? , y : σ↑y , z̃ : σ̃ ?

�O P � v : τ y, w̃ : τ̃ , ?A−x

(IN! )
�I!x(w̃v).P � x : ∀X̃.(τ̃ τ y)

! → A
(PAR)

�Ox〈z̃ y〉|!x(w̃v).P � (x : ∀X̃.(τ̃ τy)
! → A)� (y : σ y, z̃ : σ̃ )

By the (VC) we can assume that {z̃, y} ∩ {w̃, v} = ∅. (OUT) guarantees that i �=
j, zi = z j implies τ

?
i = τ

?
j , which means we can apply Lemma 4 (2) to be ensured

of (v : τ y, w̃ : τ̃ , A){yz̃/vw̃}’s being defined and equal to y : τ y, (z̃ : τ̃ � A).
Hence by Lemma 3, Lemma 2 and X̃ /∈ ftv(A):

�O P{z̃ y/w̃v} � y : σy, (z̃ : τ̃ � A).

By assumptions, we have: z̃ : σ̃ � x : ∀X̃.(τ̃ τ y)
! → A. Hence in particular

z : σ̃ � A and we can form z̃ : σ̃ � A. By construction x /∈ fn(A) and, as we
don’t have recursive types, x /∈ {z̃}. But then by Lemma 5: (z̃ : τ̃ � A) � (x :
∀X̃.(τ̃ τ y)

! → A) is defined and equals (x : ∀X̃.(τ̃ τ y)
! → A)� z̃ : τ̃ . Adding the

linear output thus means that (y : σy, (z̃ : τ̃ � A))� (y : σy, (z̃ : τ̃ � A) is defined
and equal to (x : ∀X̃.(τ̃ τy)

! → A)� (y : σ y, z̃ : σ̃ ). Thus we may compose

�O P{z̃ y/w̃v}|!x(w̃v).P � (x : ∀X̃.(τy τ̃ )! → A)� (y : σ y, z̃ : σ̃ )

as required. The remaining cases are all derived from the outer (IH) and
Proposition 1. ��

4 Strong normalisability

Strong normalisability (SN) is a significant property of the second-order λ-
calculus, which is closely related to the parametric nature of its polymorphism
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[16]. This section shows that this property has a precise analogue in polymorphic
linear processes. The proof extends the SN proof for the linear π-calculus in [46]
(based on type-directed predicates combined with acyclicity of name usage) to the
second order case. The extension uses ideas due to Girard [17] and Abramsky [2],
constructing “reducibility candidates” [16] based on closure under double nega-
tion.

From the viewpoint of theories of types for processes, the following result and
its accompanying proofs are interesting as a demonstration of how a duality-based
type structure leads to a strong operational property of typed processes.

We first list basic properties of the reduction relation in typed processes. Below
and henceforth we use the following notations.

– P ⇓ Q
def⇔ P −→∗ Q �−→.

– P ⇓ def⇔ ∃Q.P ⇓ Q. Further, P ⇑ def⇔ ∀n ∈ N. P −→n .

– SN(P)
def⇔ ¬ P ⇑.

– CSN(P)
def⇔ SN(P) ∧ (P ⇓ Q1,2⇒ Q1 ≡ Q2).

Proposition 2 (determinacy) Let �φ P � A. (1) P −→ P ′ and SN(P ′) imply
SN(P). (2) P ⇓ Qi (i = 1, 2) imply Q1 ≡ Q2. (3) P ⇓ ⇔ SN(P) ⇔
CSN(P).

Proof We first note that if P −→ Qi (i = 1, 2), then either Q1 ≡ Q2 or there
exists R such that Qi −→ R (i = 1, 2). Then the rest is standard following
Proposition 2.2 in [46]. ��

Another important property follows. The proof is as in [46].

Proposition 3 (acyclicity of names) G(P) denotes a directed graph such that;
(1) nodes are fn(P); and (2) edges are given by: x � y iff P ≡ (ν z̃)(Q|R) such
that Q ≡ x(w̃).Q0 or Q ≡ !x(w̃).Q0 where y ∈ fn(Q0), x �∈ {z̃} and y �∈ {z̃w̃}.
A cycle in G(P) is a sequence of form x � y1... � yn � x (n ≥ 0) with yi �= x.
Then G(P) has no cycle.

The main theorem in this section follows.

Theorem 2 (strong normalisability) � P � A ⇒ CSN(P).

We prove the above result following three steps. First we define the extended re-
duction relation $→, which eliminates all cuts (mutually dual channels) in a typed
process: since $→ properly includes −→, the above theorem is an easy corollary
from the termination of $→. Next we define semantic types 〈〈A, φ〉〉 of type A and
φ, which are sets of typed terms that converge when composed with all comple-
mentary processes. This part is divided into two stages. In the first stage we define
a certain kind of “atomic” processes called connected, which cannot be decom-
posed into two other processes. In the second stage, we define the semantic types
based on the reducible candidates over the connected processes. Finally in the
main lemma, we prove that each typable connected process is in the correspond-
ing semantic type. Since there exists a translation from a typable process into con-
nected processes, termination of the former implies that of the latter, concluding
the proof of Theorem 2.
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4.1 Extended reduction

In this subsection, we introduce the extended reduction relation $→ and its key
properties. The idea of $→ is to capture known process-algebraic laws as one step
reductions. We define $→ as the typed compatible relations on typed processes
modulo ≡ which are generated by the following rules.

(E1) C[x〈ṽ〉]|x(ỹ).P $→ C[P{ṽ/ỹ}]
(E2) C[x〈ṽ〉]|!x(ỹ).P $→ C[P{ṽ/ỹ}] | !x(ỹ).P
(E3) (ν x)!x(ỹ).Q $→ 0

Here we assume that the term on the left-hand side in each rule is well-typed and
that x is not bound by C[·], where C[·] is an arbitrary context. $→ is called the
extended reduction relation. A process is in extended normal form if it does not
contain $→-redex. P ⇓e, SNe(P) and CSNe(P) are given following P ⇓, SN(P)
and CSN(P) except for using $→ instead of−→. A $→-redex is a pair of subterms
which form a redex for $→ in a given term.

As in Proposition 3.1 in [46], we can prove a subject reduction theorem w.r.t.
$→ and a CR property of $→.

Theorem 3 (subject reduction for $→) If �φ P�A and P $→ Q then also �φ Q�A.

Proof By induction on the derivation of P $→ Q with a nested induction on
the structure of C[·]. The two non-trivial cases follow from Subject Reduction
for −→. ��
Proposition 4 (determinacy) Let all processes be typed below. If P $→ P ′ and
SNe(P ′) then SNe(P). Thus P ⇓e iff SNe(P) iff CSNe(P).

Proof Like [2, Lemma 7.10].

We also list the key properties of the extended reduction which are used later.

Lemma 6 Let �φ P � A. In addition, for all statements below, apart from (3), we
assume P �$→.

1. If A = B, x :� then x /∈ fn(P) and �φ P � B.
2. If for some x, md(A(x)) =↓, then P ≡ Q|x(ṽ).R. If md(A(x)) = !, then

P ≡ Q|!x(ṽ).R.
3. If φ = I and for all x ∈ fn(A) md(A(x)) ∈ {↑, ?}, then P ≡ 0.
4. If φ = O and for all x ∈ fn(A): md(A(x)) ∈ {↑, ?}, then A is of the form

x : ∃X̃.(τ̃ )po, ỹ : σ̃ , B where σi = τi {γ̃ /X̃} and Xi /∈ ftv(σ̃ ). In addition,
P ≡ x〈ỹ〉 and all the names in B are introduced by weakening.

Proof By straightforward induction on the derivation of �φ P � A. ��
Lemma 7 Assume �φ P�A and P �$→. Let If φ = I and A = x : B, then P ≡ t〈x〉
or P ≡ f〈x〉.
Proof By rule induction on �φ P � A. Below the numbers (1..4) indicate those in
Lemma 6. Clearly, neither (ZERO) nor (OUT) not (IN↓) could have been applied
last. If (PAR) was used, it must have used �I Q � x : B and �I R � B as premises.
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By (3) then R ≡ 0, so we can just use the (IH). If the last inference used (RES)
to infer from �I Q � x : B, a : τ ! , we know by (2) that Q ≡ R|!a(ṽ).S. Now
a /∈ fn(R), for otherwise R|!a(ṽ).S −→, contradicting our assumptions. But then
Q ≡ R|(νa)!a(ṽ).S →→ R, also a contradiction. Hence we must have restricted
from �I Q � x : B, a : �. But (1) tells us that P ≡ Q|(νa)0. Now we apply
the (IH). If (WEAK) was applied, we use the (IH). This leaves (IN!), where �O
Q � t : X, f : X, f : (X)↑ was the premise, then (4) guarantees that Q ≡ r〈t〉 or
Q ≡ r〈 f 〉, completing the proof.

4.2 Connectedness

A basic syntactic notion in linear processes is connectedness, which is used exten-
sively in the subsequent proofs. In essence, connected processes are those which
cannot be separated into two non-trivial processes, characterised via types as fol-
lows.

Definition 1 Let A be an action type and φ either I or O. (A, φ) is connected if
one of the following holds.

– φ = I and either A contains a unique !-node and zero or more ?-nodes, or A
contains a unique ↓-node, a unique ↑-node and zero or more ?-nodes.

– φ = O and A contains a unique ↑-node and zero or more ?-nodes.

If (A, φ) is connected, the unique ↑/! node of A is its principal node. Types of
mode ↑/! are often called principal types. We call processes which have connected
types connected.

By typing system, any input, replication and output are connected. As examples,
(!a.b | !b.c) is not connected, but (ν b)(!a.b | !b.c) is. Similarly a.b | e.c is not, but
(ν be)(a.b | b.e | e.c) is.

Connectedness has both practical and theoretical significance. First, in many
practical examples including the embedding of programming languages, it is of-
ten enough to consider connected processes. Second, any process of an arbitrary
action type can always be decomposed canonically into connected processes, so
that results about connected processes easily extend to non-connected processes.

Lemma 8 If �φ P � A then P ≡ (ν x̃)�i∈I Pi such that �φ Pi � Ai and (Ai , φi )
is connected for all i . In addition, if x ∈ dom(Ai ) ∩ dom(A j ) and i �= j , then
md(A(x)) = ?.

Proof Straightforward by rule induction on�φ P�A. ��
By replacing (PAR)/(WEAK) by (PARc)/(WEAKc) below, and deleting (RES), we
can generate all and only connected processes up to ≡ as follows.

(PARc)
�φi Pi � Ai �i Ai �i φi

(�i Ai/ỹ, φ) connected
md(�i Ai (yi )) ∈ {!,�}
��i φi (ν ỹ)�i Pi � (�i Ai )/ỹ

(WEAKc)
�O P � A-x

md(τ ) = ?

�O P � A, x :τ
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where we use the following notations, assuming a family {Ai }i∈I (I =
{1, 2, . . . , n}).

�i Ai
def=

{∅ (I = ∅)
A1 � A2 � · · · � An (I �= ∅, if defined)

�iφi
def=

{
I (I = ∅)
φ1 � φ2 � · · · � φn (I �= ∅, if defined)

�i∈I Ai = (∀i ∈ I. � j∈I\{i} A j ) ∧ (∀i ∈ I. Ai � � j∈I\{i}A j )

�i∈I φi = ∧
i �= j (φi � φ j )

By definition, �i∈I Ai and �i∈I φi are always true when I is empty or a sin-
gleton. �i Pi is the standard n-ary parallel composition. Note in the conclusion of
(PARc), shared names are immediately hidden by the restriction, to make the type
connected.

Call the resulting system, connected typing system. We observe the following
result (cf. Proposition 3.2 in [46]).

Proposition 5 1. Let (A, φ) be connected. Then if �φ P � A is derivable by the
original typing system, then for some P ≡ P0, we have �φ P0 � A in the
connected typing system.

2. If each process of each connected type ⇓e-converges, then all typable pro-
cesses ⇓e-converge.

Proof (1) is mechanical by rule induction in Fig. 2 and the connected typing rules.
For (2), see Appendix Appendix B. ��

4.3 Candidates

A prime with type x : τ (with τ an input or output type, similarly hereafter) is a
typed process �φ P � A such that A(x) = τ and (A, φ) is connected. P ⇓e means
∃Q.P $→∗ Q �$→. P〈x :τ 〉 denotes a prime with type x :τ . For a set U of primes with
type x :τ , we define:

U⊥ def= {P〈x :τ 〉 | ∀Q ∈ U . (ν x)(P|Q) ⇓e }.
In P|Q above we assume fn(P) ∩ fn(Q) = {x} by appropriate renaming of other
names, similarly in the rest of this section.

Proposition 6 (1) U⊥⊥ ⊇ U . (2) U1 ⊆ U2 implies U⊥1 ⊇ U⊥2 . (3) U⊥⊥⊥ =
U⊥. Hence ( · )⊥⊥ is idempotent. (4)

⋂
i U⊥i = (

⋃
i Ui )

⊥. (5) (
⋂

i Ui )
⊥⊥ =

(
⋃

i U⊥i )⊥ =⋂
i U⊥⊥i .

Proof Standard. (3) and (4) use (1) and (2). (5) is by (4). ��
We are now ready to define a candidate. Below we write U ⇓e when P ⇓e for
each P ∈ U . Let τ be a closed type such that md(τ ) ∈ {!,↑}. Then a candidate of
type τ is a set U of primes with type x :τ such that U⊥⊥ = U and U ⇓e.
Candidates are defined only for modes {!,↑}, which is enough by duality. By
Proposition 6 (3), U⊥ is always a candidate for U �= ∅ of mode ? or ↓. We note:
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Proposition 7 For each closed type with mode !,↑, there is a non-empty candi-
date of that type.

Proof Clearly !x(ỹ).z〈ỹ〉 ∈ C is in the candidate with type ∀X̃.(τ̃ )! and x〈ỹ〉 is in
the candidate with type ∃X̃.(τ̃ )↑. ��
C, C′, . . . range over candidates. We write Cτ for a family of candidates {Cx }x∈N
with each Cx of type x : τ , which are closed under injective renaming (i.e. if
Cx , Cy ∈ Cτ then Cy = Cx

(xy
yx

)
where

(xy
yx

)
permutes x and y). We call such a family

an abstract candidate. Note that candidates may have more than one renaming
orbits.

4.4 Typed predicates for termination

A (typed) predicate of type τ (τ closed), written P : τ , is a family {Px }x∈N , of
which each Px is a set of primes with type x : τ , which are closed under injec-
tive renaming (as before). Note an abstract candidate is a special case of a typed
predicate. We now define maps on typed predicates as follows.

(p-!) (P1...Pn)
!
x

def= {P | Qi ∈ Pi,yi ⊃ P ◦ x〈y1...yn〉 ◦ Q1 ◦ .. ◦ Qn−1 ∈ Pn,yn }
(p-↑) (P1...Pn)

↑
x

def= {x〈y1...yn〉 ◦ Q1 ◦ ... ◦ Qn | Qi ∈ Pi,yi }⊥⊥
(p-∀) t.P[X]x def= {P | ∀P ′.P ∈ P[P ′]x }
(p-∃) ∃X.P[X]x def= {P | ∃P ′. P ∈ P[P ′]x }⊥⊥

We assume all mentioned processes, types and substitutions are well-typed. In
(p-!) and (p-↑), if Pi is a predicate with type X, then P◦Qi stands for P otherwise
(ν fn(P)∩fn(Q))(P|Q). P ′[P] is the result of applying a function P ′[·] over typed
predicates to P: here P ′[ ] should be typed as (say) X $→ τ so that if P is of type
ρ then P ′[P] is of type τ {ρ/X}. A brief illustration of these rules:

– In (P̃)! , we require any prime in the resulting predicate to become a “value”
(i.e. a process with ↑-type) when composed with “resources” (i.e. processes
with ?-type). In (P)↑, we construct a set of primes from components and close
it under double negation. Note that by Proposition 7, there always exists Qi
such that Qi ∈ Pi,yi , so that the relation is well-defined.

– In t.P[X], we ask for convergence under all ⊥⊥-closed predicates, i.e. candi-
dates. The use of candidates is necessary since component predicates do not
come from induction. Dually ∃X.P[X] requires convergence under some ⊥⊥-
closed predicate, and takes the⊥⊥-closure (cf. [38]) of the resulting processes.

Proposition 8 (1) If each Pi is a candidate then (P̃)p (p ∈ {!,↑}) is a candidate.
(2) If P ′[Cτ ] : τ ′{τ/X} is a candidate for each Cτ with md(τ ) = md(X), then both
t.P ′ and ∃X.P ′ are candidates.

Proof For (P̃P↑)! we observe:

P ∈ (P̃P)! ⇔ ∀S̃ ∈ P̃ỹ . P ◦ x〈ỹw〉 ◦ S̃ ∈ P = P⊥⊥

⇔ ∀S̃ ∈ P̃ỹ, T ∈ P⊥. P ◦ x〈ỹw〉 ◦ S̃ ◦ T ⇓e

⇔ P ∈ {x〈ỹw〉 ◦ S̃ ◦ T | S̃ ∈ P̃ỹ, T ∈ P⊥}⊥
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hence done (in the second equivalence we use P = P⊥⊥). For (p-∀), we use
Proposition 6(5) to derive

(∀X.P ′)⊥⊥x =
( ⋂

P
P ′[P⊥⊥]

)⊥⊥

x

=
( ⋂

P
P ′[P⊥⊥]⊥⊥

)

x

=
( ⋂

P
P ′[P⊥⊥]

)

x

= (∀X.P ′)x .

The remaining cases are immediate by definition. ��
Using these actions, we define predicates for termination at each (possibly open)
type. Below we let md(X) ∈ {!,↑}. ξ ranges over environments, which are func-
tions from type variables to abstract candidates respecting modes.

〈〈(τ ?
1 ..τ ?

n ρ↑)!〉〉ξ def= (〈〈τ1〉〉ξ ..〈〈τn〉〉ξ 〈〈ρ〉〉ξ )!
〈〈(τ1..τn)

↑〉〉ξ def= (〈〈τ1〉〉ξ ..〈〈τn〉〉ξ )↑
〈〈X〉〉ξ def= ξ(X)

〈〈∀X.τ 〉〉ξ def= ∀X.(λP.〈〈τ 〉〉ξ ·X $→P⊥⊥)

〈〈∃X.τ 〉〉ξ def= ∃X.(λP.〈〈τ 〉〉ξ ·X $→P⊥⊥)

Proposition 9 1. 〈〈τ 〉〉ξ is a candidate.
2. 〈〈τ {ρ/X}〉〉ξ = 〈〈τ 〉〉ξ ·X $→〈〈ρ〉〉ξ .
3. If X /∈ ftv(τ ), then 〈〈τ 〉〉ξ = 〈〈τ 〉〉ξ ·X $→C .

Proof All are proved by straightforward inductions on the structure of τ , using
Proposition 8 for (1). ��
As an illustration of how 〈〈τ 〉〉ξ works, let us verify id〈x〉 ∈ 〈〈I〉〉x . By (p-∀) we

have only to check id〈x〉 ∈ (C(C)↑)!x for each C. Take Q ∈ Cy . Then id〈x〉 ◦
x〈yw〉 ◦ Q $→2 w(y)Q. Since w(y)Q ∈ (C)↑ by (p-↑), we are done.

Finally we can interpret action types. By Proposition 5 (2), it is enough to
consider their connected subset. Let (A, ψ) be connected with principal node x :τ .
Further let ỹ

def= fn(A)\{x}. Then we define:

〈〈A, ψ〉〉 def= {�ψP � A | ∀ξ. (∀i. Qi ∈〈〈A(yi )〉〉ξ,yi ) ⊃ (ν ỹ)(P |�i Qi )∈〈〈τ 〉〉ξ,x }.
where fn(Qi ) ∩ fn(Q j ) = ∅ (i �= j) and fn(P) ∩ fn(Qi ) = {yi } for each i .
By definition we have:

Lemma 9 If P ∈ 〈〈A, φ〉〉 then P ⇓e.
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A key lemma follows. The proof is given in Sect. 4.5.

Lemma 10 (main lemma) �φ P � A with (A, φ) connected implies P ∈ 〈〈A, φ〉〉.
By Church-Rosser of $→, convergence implies strong normalisability. Now
Theorem 2 follows from Proposition 5 (2) and Lemmas 9 and 10.

4.5 Proof of the main lemma

To prove Lemma 10, we use the following properties. Below =e is the convert-
ibility relation from $→ (i.e. the symmetric and transitive closure of $→).

Proposition 10

1. If P $→ P ′ and P ′ ∈ C then P ∈ C.
2. If P|Q ⇓e then P ⇓e and Q ⇓e. Further if P and Q share only output subjects

then P|Q ⇓e iff P ⇓e and Q ⇓e. Similarly for (ν x)P, !a(x̃).R and a(x̃).R.
3. If P =e Q and P ⇓e then Q ⇓e.
4. Let �φ P � A and �I R � x : τ !→ B-y such that (1) A(x)= A(y)= τ and (2)

fn(A)/x ∩ fn(B) = ∅. Then (ν xy)(P|R|R{y/x}) =e (ν x)(P{x/y}|R).

Proof (1) and (3) are by Church-Rosser of $→. (2) and (4) are by definition. ��
We now prove Lemma 10 by induction on the size of connected processes. We di-
vide two cases: first we prove the cases of type (τ̃ )p, then prove the cases for ∀X.τ

and ∃X.τ . Throughout the following reasoning, we assume A = z1 : τ ?
1 , .., zn : τ ?

n

and set 〈〈A〉〉ξ def= {�i �=n Qi |Qi ∈ 〈〈τ 〉〉ξ,zi }, unless otherwise stated. (IH) stands
for induction hypothesis. Below we can safely ignore weakening since it does not
affect the convergence.

Case x(ỹ).P: Then by (IN↓), we have: �I x(ỹ).P � x : (τ̃ )↓ → z : ρ↑,? A. Fix
R ∈ 〈〈A〉〉ξ and let Q ∈ 〈〈(τ̃ )↓〉〉x . By the definition of 〈〈(τ̃ )↑〉〉ξ we know Q ⇓e

x(ỹ)Q′ ∈ 〈〈(τ̃ )↑〉〉ξ,x with Q′ ∈ 〈〈ỹ : τ̃ 〉〉. By (IH) (ν fn(A) ∪ {ỹ})(P | Q′ | R) ∈
〈〈ρ〉〉z , hence by Proposition 10 (1) we have (ν fn(A) ∪ {x})(x(ỹ).P | Q | R) ∈
〈〈ρ〉〉z , as required.
Case !x(ỹ).P: Let �I !x(ỹ).P � x : (τ1..τ

↑
n )!→ ? B, C is inferred by (IN!). Fix

A = B, C and Q ∈ 〈〈ỹ\yn : τ̃ \τ̃n〉〉ξ . Let R ∈ 〈〈A〉〉. Starting from the (IH):

(ν fn(A) ∪ {ỹ})(P|Q|R) ∈ 〈〈τn〉〉ξ,yn⇒ (ν fn(A) ∪ {x})(!x(ỹ).P|x〈y1..yn〉|Q|R) ∈ 〈〈τn〉〉ξ,yn Prop. 10 (1)
⇒ (ν fn(A))(!x(ỹ).P|R) ∈ 〈〈(τ̃ )!〉〉ξ,x Def of 〈〈(τ̃ )!〉〉ξ,x

as required.
Case x〈z̃〉 where type of x is (τ̃ )↑: Let �O x〈z̃〉 � A, x :(τ̃ )↑ be derived by (OUT).
Then:

Qi ∈ 〈〈τi 〉〉ξ,zi ⇒ (ν )̃(x〈z̃〉 |�i Qi ) ∈ 〈〈(τ̃ )↑〉〉ξ,x (Def of 〈〈(τ̃ )↑〉〉ξ,x )

as required.
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Case x〈ỹ〉 where type of x is (τ̃ )? . Since τi �= X, we assume �O
(ν ỹ)(x〈ỹ〉 |�Qi )� A, x :(τ̃ )? is derived by (OUT) and (PARc) with A = (�i Ai ),
�I Qi � yi : τi , Ai and x �∈ fn(Ai ). Fix τ̃ = τ1..τ

↓
n and A = z : ρ↑, ? B. Note

Qn has a principal name z by typing. Now fix R ∈ 〈〈B〉〉ξ and T ∈ 〈〈(τ̃ )!〉〉ξ,x . By
induction hypothesis we have:

(ν fn(A))(Qi |R) ∈ 〈〈τi 〉〉ξ,yi (i �= n) (5)

as well as, for any T0 ∈ 〈〈τn〉〉ξ,yn ,

(ν fn(A) ∪ {yn})(Qn|R|T0) ∈ 〈〈ρ〉〉ξ,z . (6)

By typing, we know T ⇓e!x(ỹ).T ′. Let Q′i ∈ 〈〈τi 〉〉ξ,yi (1 ≤ i ≤ n − 1). By the
definition of 〈〈(τ̃ )!〉〉ξ,x , we have:

(ν y1..yn−1)(T ′|�1≤i≤n−1 Q′i ) ∈ 〈〈τn〉〉ξ,yn (7)

We can now reason:

(ν fn(A) ∪ {x})(x(ỹ)�i Qi | T | R)
≡ (ν fn(A) ∪ {x})(x(ỹ)�i Qi | !x(ỹ).T ′ | R)
$→ (ν fn(A) ∪ {ỹ})(�i Qi | T ′ | !x(ỹ).T ′ | R)
≡ (ν fn(A) ∪ {ỹ})(�i Qi | T ′ | R)
=e (ν fn(A) ∪ {yn})(Qn | R | T1) (Prop.10 (4))
∈ 〈〈ρ〉〉ξ,z, (By (6))

where T1
def= (ν ỹ\yn)(T ′ |�i �=n(νfn(A))(Qi | R)), which is indeed in 〈〈τn〉〉ξ,yn by

(5) and (7).

Case for ∀: Assume �φ P � A[x : t.τ ]. We have two cases, either P is replication
or linear input.
Subcase md(τ ) = {!}. Let dom(A) = {x, ỹ} where A(yi ) = τi . By Proposition
9 (3) and X �∈ ftv(τ ′), clearly:

∀ξ.∀Qi ∈ 〈〈τi 〉〉ξ,yi .(ν ỹ)(P|�i Qi ) ∈ 〈〈τz〉〉ξ,z

⇔ ∀ξ.∀C.∀Qi ∈ 〈〈τi 〉〉ξ ·X $→C,yi .(ν ỹ)(P|�i Qi ) ∈ 〈〈τz〉〉ξ ·X $→C,z

⇔ ∀ξ.∀Qi ∈ 〈〈τi 〉〉ξ,yi .∀C.(ν ỹ)(P|�i Qi ) ∈ 〈〈τz〉〉ξ ·X $→C,z

⇔ ∀ξ.∀Qi ∈ 〈〈τi 〉〉ξ,yi .(ν ỹ)(P|�i Qi ) ∈ 〈〈∀X.τz〉〉ξ,z .

By (IH) we are done.

Subcase md(τ ) =↓. Let dom(A) = {x, y1...yn, z} such that A(z) = τ
↑
z and

A(yi ) = τi for each i . Fix ξ and Qi ∈ 〈〈τi 〉〉ξ,yi (1 ≤ i ≤ n). Starting from (IH),
and noting 〈〈τ 〉〉ξ is a candidate (by Proposition 9) as well as using the definition
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of ⊥, we obtain:

∀R ∈ 〈〈τ 〉〉ξ,x .(ν x ỹ)(P|�i Qi |R) ∈ 〈〈τz〉〉ξ,z

⇔ ∀R ∈ 〈〈τ 〉〉ξ,x .∀S ∈ 〈〈τz〉〉⊥ξ,z(ν x ỹz)(P|�i Qi |R|S) ⇓e

⇔ ∀S ∈ 〈〈τz〉〉⊥ξ,z .∀R ∈ 〈〈τ 〉〉ξ,x .(ν x ỹz)(P|�i Qi |R|S) ⇓e

⇔ ∀S ∈ 〈〈τz〉〉⊥ξ,z .∀R ∈
⋃
C
〈〈τ 〉〉ξ ·X $→C,x .(ν x ỹz)(P|�i Qi |R|S) ⇓e

⇒ ∀S ∈ 〈〈τz〉〉⊥ξ,z .(ν ỹz)(P|�i Qi |S) ∈
(⋃

C
〈〈τ 〉〉ξ ·X $→C,x

)⊥

⇔ ∀S ∈ 〈〈τz〉〉⊥ξ,z .∀R ∈
(⋃

C
〈〈τ 〉〉ξ ·X $→C,x

)⊥⊥
.(ν x ỹz)(P|�i Qi |R|S) ⇓e

⇔ ∀S ∈ 〈〈τz〉〉⊥ξ,z∀R ∈ 〈〈∃X.τ 〉〉ξ,x .(ν x ỹz)(P|�i Qi |R|S) ⇓e

⇔ ∀R ∈ 〈〈∃X.τ 〉〉ξ,x∀S ∈ 〈〈τz〉〉⊥ξ,z .(ν x ỹz)(P|�i Qi |R|S) ⇓e

⇔ ∀R ∈ 〈〈∃X.τ 〉〉ξ,x .(ν x ỹ)(P|�i Qi |R) ∈ 〈〈τz〉〉ξ,z .

Case for ∃: Assume �φ P�A[x :∃X.τ ] is derived from �φ P�A[x :τ [τ ′/X]]. First,
let md(τ ) ∈ {↑}, and dom(A) = {x, ỹ} where A(yi ) = τi . We also assume x is a
principal port. Starting from the (IH) and using Proposition 9(2) and X �∈ ftv(τ ′),
we calculate:

∀ξ.∀Qi ∈ 〈〈τi 〉〉ξ,yi .(ν ỹ)(P|�i Qi ) ∈ 〈〈τ {τ ′/X}〉〉ξ,y

⇔ ∀ξ.∀Qi ∈ 〈〈τi 〉〉ξ,yi .(ν ỹ)(P|�i Qi ) ∈ 〈〈τ 〉〉ξ ·X $→〈〈τ ′〉〉ξ ,y

⇒ ∀ξ.∀Qi ∈ 〈〈τi 〉〉ξ,yi .(ν ỹ)(P|�i Qi ) ∈ 〈〈∃X.τ 〉〉ξ,y

as required. The case when x :τ is not principal is an exact dual to the correspond-
ing ∀-case, hence is omitted.

Case (ν w̃)
∏

i Pi : This term is inferred from (PARc). There are four cases for x
principal:

(1) (ν w̃)(x〈ỹ〉 | R) where x’s mode is ↑
(2) (ν w̃)(y〈ỹx〉 | R) where y’s mode is ? and x’s mode is ↑
(3) (ν w̃)(!x(ỹ).Q | R) where x’s mode is ? and x’s mode is ↑
(4) (ν w̃)(b(ỹ).Q | R) where Q contains x and x’s mode is ↑

Cases (1) and (2) are the same as the cases of the linear and replicated outputs
above. Case (3) is also identical with the replication case above. For Case (4), we
use the same proof method as that of [46, Lemma 3.8], using the acyclicity of name
usage (Proposition 3), reflected on the acyclicity of causality chains. Finally, after
applying $→ following the strategy in [46, Lemma 3.8], it coincides with either
Case (1), (2) or (ν w̃)(b(ỹ).Q′ | R) where b �∈ {w̃} ∪ fn(R) and Q′ has a form of
either Case (1) or (2). Then we repeat the same routine.

We have now exhausted all cases. ��



Genericity and the π-calculus 109

5 Generic transitions

This section discusses generic labelled transitions and associated equivalences.
While our presentation focuses on the linear polymorphic π-calculus, the con-
struction applies to other classes of behaviour. The duality principle strongly
guides the construction. We begin with an informal sketch of basic ideas.

Setting up process semantics with a reduction relation is elegant but may not
lead to tractable reasoning because the definition of equality quantifies over all
contexts: to prove P and Q are equal, we must show that C[P] and C[Q] are
observationally indistinguishable for all contexts C[·]. While typing reduces the
number of contexts, there are still infinitely many to consider. This is where la-
belled transitions come to help. They can be considered as a finite representation
of the infinite set of contexts. But what are transitions for the second-order linear
π-calculus?

The key difference from untyped/first-order calculi is that we now have two
different forms of input transition (and, by duality, of output transition).

1. The import of a name y on a channel x , where the environment may partially
hide y’s type by existential quantification (which is universal abstraction for
the process). This restricts what we can do with y but does not constrain the
names we may get via x : we must be prepared to input infinitely many names
along x .

2. The re-import of a name x that we have exported earlier. Although the envi-
ronment was restricted by existential quantification in what it was allowed to
do with x , the process itself knows the concrete type of x . Since it is a re-
import, we can only have exported a finite number of possible names, so there
are only a finite (and in comparison with (1) small) number of names that can
be inputted.

To put it crudely, in (1) we must be ready to receive many names, but we know
very little about them and can consequently only use them in very restricted ways;
while in (2), we can only get a few names, but we know a lot about them and may
use them in complicated ways. Observe how the duality in type structures plays a
fundamental role.

For reasoning, receiving fewer names is better because it means fewer transi-
tions, which in turn means fewer cases to check. On the other hand, knowing a
name’s full type is advantageous, because we can convert free into bound outputs.
Bound outputs are easier to reason about because we can always assume that all
output names are distinct and not occurring in their recipients. The transition sys-
tem to be presented tries to take advantage of both phenomena: for doing so in full
generality, however, we need some preparation.

Suppose a process hides a name x by existential quantification. Then it
removes type-information which prevents x’s recipients to replace free out-
puts y〈x〉 by bound ones y(x ′)[x ′ → x] where [x ′ → x] is copy-cat agent
[12, 20, 23, 46, 47], which links two names between x ′ and x , for example
[x ′ → x] = x ′.x . There is simply not enough type information to know what
type [x ′ → x] should forward. The idea of the labelled transition below is to use
bound outputs as much as possible while having as few transitions as possible. To
achieve this, we ’instrument’ the typing system with additional information about
whether a process uses a name as described by (1) or by (2). The key problem is to
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track the “change of types” as an existentially abstracted name flows from its pro-
ducer to consumers and back. We do this by having two forms of type variables
X∃τ and X∀. If x has type X∀, then x was received and its sender has hidden the
true type by existential abstraction. Then we cannot use copycats to forward this
name. We must freely output x instead. If x has type X∃τ in a process P , then P is
its “producer”. P knows that the true type of x is τ , but to the outside P exports
x typed by a type variable, preventing all recipients from using x as a subject in
communication. But x can be emitted in bound form. In this way, we keep track of
which names have already been exported under existential quantification. In sum-
mary, type information is used to decide whether a name is output freely or not,
and to restrict the set of possible input subjects when re-importing existentially
abstracted names.

5.1 Types for generic transitions

Transitions use an extended typing system where type variables in action types are
annotated by quantification symbols (as X∀ and X∃, called universal type variable
and existential type variable, respectively). The original free type variables and
∀-quantified variables are naturally ∀-annotated, while ∃-quantified variables are
∃-annotated. Formally, types are now generated by the following grammar.

τ ::= τI | τO | � τI ::= X∀ | X∃τI | ∀X̃.τI τO ::= X∀ | X∃τO | ∃X̃.τO

We assume ∀X̃.τ only binds free ∀-annotated variable X∀i in τ . Dually for exists. In
X∃τ , τ is called its concrete type annotation. Concrete type annotations are only for
free existential type variables, and are not part of the type structure proper, in the
sense that (among others) they are always neglected in behavioural equivalences.
They are however useful for having a simpler definition of generic transition (the
way to induce the same transition relation without concrete type annotations is
outlined later). On the other hand, ∃ and ∀ annotations are the intrinsic part of the
type structure, and play a fundamental role in characterising generic behaviour.
In examples, we shall omit concrete type annotations unless they are absolutely
necessary.

We need to refine the definition of dualisation as follows.

X∀ = X
∀

X∃τ = X
∃
τ

∀X̃.τ = ∃X̃.τ {X̃∃/X̃
∀} ∃X̃.τ = ∀X̃.τ {X̃∀/X̃

∃}

For example ∀X.(X∀Y∀Z∃τ (X
∀
)↓)? = ∃X.(X

∃
Y
∀

Z
∃
τ (X∃)↑)! , assuming X �= Y, Z.

The definitions of � and � are unchanged, using the new dualisation. We also
extend ftv(·) and add a function ftv∃(·) that returns only existentially-annotated
type variables: ftv(X∀) = {X∀, X∀}, ftv(X∃τ ) = {X∃, X∃} ∪ ftv(τ ), ftv∃(X∀) = ∅,
ftv∃(X∃τ ) = {X∃, X∃} ∪ ftv∃(τ ). The non-base cases and the extension to general
action types are obvious. The typing rules is found in Fig. 3. Free ∃-type variables
are introduced by (∃-VAR); (∀-VAR) is its dual. From now on, expressions of the
form �φ P � A will always refer to this new typing systems, except where stated
otherwise.
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Fig. 3 Extended polymorphic sequential typing for generic transitions. The remaining rules
(ZERO), (PAR), (RES) and (WEAK) have been omitted as they are unchanged from Fig. 2

As an example of typing, we have, in the extended typing:

�O t〈y〉|z(w).e(c)not〈cw〉 � y :X∃, z :(X
∃
)↑, e :(B)↓,

which abstracts away the type which is both for the resource at y and for the value
of the input via z.

Proposition 11 If �φ P � A in the extended typing system and P −→ Q, then
�φ Q � A.

Proof Direct from the Substitution Lemma, see Appendix C.1. ��

5.2 Generic transitions

We first give the set of action labels (l, l ′, . . .) by the following grammar.

l ::= x〈(v ỹ)z̃〉 | x〈(v ỹ)z̃〉 | τ
In the first two labels, the vector ỹ is made up from pairwise distinct names and
forms a not necessarily consecutive subsequence of z̃. The subject x must not oc-
cur in ỹ. The names in z̃ are objects, while those in ỹ occur bound. Names not
being bound occur free. x(ỹ) and x〈ỹ〉 stand for x〈(v ỹ)ỹ〉 and x〈(vε)ỹ〉, respec-
tively, similarly for output actions.

As in various other typed transition relations for the π-calculus, the essence of
generic transitions is in the reduction of possible transitions to the bare minimum
ones for faithfully representing typed behaviour (or, more simply put, interactions
between typed processes). For this purpose the following predicates decide the
shape of action labels conforming to a given action type. Among others, the pred-
icate dictates that a free output (resp. input) corresponds to a name typed by a uni-
versal type variable (resp. existential type variables), following the idea sketched
at the outset of this section. Formally the typed action predicate A � l is given by
the following three rules.

– A � τ always.
– A � x〈(vz̃)w̃〉 when {z̃} ∩ fn(A) = ∅ and A(x) = ∀X̃.(τ̃ )pI s.t. wi �∈ {z̃} iff

A(wi ) = τi where τi is an existential type variable.
– A � x〈(vz̃)w̃〉 when {z̃} ∩ fn(A) = ∅ and A(x) = ∃X̃.(τ̃ )po s.t. wi �∈ {z̃} iff

A(wi ) = τi where τi is a universal type variable.

Let A be an action type and l a label. We say A allows l (cf. [12, 46]) when:
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– bn(l) ∩ fn(A) = ∅; and
– at least one of the following is true.

– l is an output with subject x and md(A(x)) = ?;
– l = τ ; or
– l is a visible action such that sbj(l) /∈ fn(A).

This definition means that we do not allow a linear input action and an output
action when there is a complementary channel in the process. For example, if a
process has x : � (resp. x : (τ̃ )!) in its action type, then both input and output
actions (resp. output) at x should be excluded since such actions can never be
observed in a typed context [46].

5.2.1 Preview of the generic transition system

We are now ready to introduce the transition rules. To simplify things we start
by giving just dealing with the monadic case at first. We start from the standard
bound input rule.

(BIN↓) �I x(y).P � A
x(y)−→ �O P � A/x, y :τ (A � x(y))

This may introduce output-moded ∀-type variables, which are used as follows.

(FOUT↑) �O x〈y〉 � A
x〈y〉−→ �I 0 � A/x (A � x〈y〉)

We can now infer, using the replicated variant of the input rule,

�I id〈x〉 � x :I x(yz)−→ z〈y〉−→ �I id〈x〉 � x :I | 0.

Next we consider the dual situation of the above, starting from bound output.

(BOUT↑) �O x〈w〉 � A
x(z)−→ �I [z → w]σ � z̃ : σ → w : σ

with A � x(zσ ). Here [z → w]τ is copy-cat agent [12, 20, 47, 46, 23], which
links two names between z and w. For example, [z → w]τ = !z(x).w(y)y.x with
τ = (()↑)! (the [z → w]τ agent is formally defined below). This rule is best seen
in view of the following semantic equality between free and bound name passing.

x〈y〉 ∼=∀∃ x(z)[z → y]τ .
where∼=∀∃ is the contextual equality defined in §.5.3 (cf. Lemma 11 for the formal
statement). Thus, by replacing a free output with a more abstract bound output
combined with copy-cats, we precisely obtain the effect of the above transition.

(BOUT↑) may introduce input-moded ∃-type variables, which are used by:

(FIN↓) �I x(y).P � A
x〈z〉−→�O P{z/y} � A/x � z :X (A � z :X � x〈z〉)

In the side condition above, we pre-compose z :X (assuming A � z :X by the side
condition), which are types for opaque resources, and which are to be composed
later (for illustration of this point see the example below). This rule says that an
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input may receive channels for opaque resources which have been exported and
which, therefore, are free.

The pre-composition of resource types in the above rule deserves illustration.
The following is the example of inference using the replicated variant of (BOUT↑)
and (FIN↓) (note the following term corresponds to the examples in Sect. 2).

�O x(yz)(t〈y〉|z(w).R) � x :I, e :(B)↑
x(yz)−→ �O t〈y〉|z(w).e(c)not〈cw〉 � y :X∃, z :(X

∃
)↑, e :(B)↓

z〈y〉−→ �O t〈y〉|e(c)not〈cy〉 � y :X∃, e :(B)↑.

In the second action, the base case of the derivation is:

�I z(w).e(c)not〈cw〉 � z :(X
∃
)↑, e :(B)↓ z〈y〉−→�O e(c)not〈cy〉 � y :X∃, e :(B)↑

Note that the term does (and can) not own the input type at y at the time of this
derivation. To derive the action, we need to pre-compose y :X∃ to the base, so that
we have the following action predicate valid:

z :(X
∃
)↑, e :(B)↓, y :X∃ � z〈y〉

which allows us to have the transition. In the final configuration, we find t〈y〉 of
type y : X∃ gets composed, just as predicted by the pre-composition. This illus-
trates the need of pre-composition of resource types in (FIN↓). Before the formal
definition, we define the copy-cat agent, which is also used in Sect. 7.

It is well-known [46] that one can often replace free outputs by bound outputs
through the use of forwarding (equivalently copycats): x〈y〉 is then observationally
indistinguishable from x(z)[z → y]. In the present calculus, we can always do this
as long as the carried name is not typed by a universally annotated type variable.
The reason is that in order to define appropriate forwarders, we need to know what
types of data a name is intended to carry. If the only information about a name is
that it is typed by X∀ then we’re not sure how to forward. In this case, it must
remain a free output. As bound outputs are mathematically easier to deal with
than free ones (because we can always assume that all the names we receive will
be fresh from the point of view of the receiving process), we will often restrict our
attention to processes that have as few free outputs as possible. We now provide
tools that make this idea formal. Let σ be an input-moded type that is not a type
variable. Then [x → y]σ is defined inductively:

[x → y]∀X̃.(τ̃ )↓ def= x(ṽ).y〈〈ṽ〉〉̃τ [x → y]∀X̃.(τ̃ )! def= !x(ṽ).y〈〈ṽ〉〉̃τ

where w.l.o.g. the τ0, ..., τi−1 are all universally quantified type variables, while
none of τi , ..., τn−1 is. Here

y〈〈ṽ〉〉̃τ def= (νwi ...wn−1)(y〈v0...vi−1wi ...wn−1〉 | �n−1
j=i [w j → v j ]con(τ j )).

The function con(·) is defined below. If �φ P � A, then 〈〈P〉〉φ,A is obtained from
P by replacing every output x〈ỹ〉 in P with x〈〈ỹ〉〉̃τ . We omit further details of the
definition. P is maximally copycatted if P = 〈〈P〉〉φ,A.
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Fig. 4 Generic transition rules

Lemma 11 1. If �O x〈ỹ〉 � x : ∃X̃.(τ̃ )pO, E then x〈ỹ〉 ∼=∀∃ x〈〈ỹ〉〉̃τ .
2. If �φ P � A, then �φ 〈〈P〉〉φ,A � A, �φ P ∼=∀∃ 〈〈P〉〉φ,A � A and 〈〈P〉〉φ,A is

maximally copycatted.

Proof Straightforward. ��

The generic transition relation
l−→ is formally defined in Fig. 4. It is built

on top of pretransitions
l−�, also defined there. Since a type may carry both type

variable(s) and concrete type(s), these rules combine free actions and bound ac-
tions (so (IN↓), resp. (OUT↑), combines (BIN↓) and (FIN↓), resp. (BOUT↑) and
(FOUT↑)). In (OUT), we use the following function, con(·), when the object name
is an existential variable: con(X∃τ ) = τ , and con(τ ) = τ with τ �= X∃. (FULL) is
necessary to preserve compositionality of free linear name passing. A simpler, but
less compositional alternative transition system can be found in Appendix C.3.

For the generated transition relation, we can check the following result. Below
and henceforth the typability is taken under the extended typing.

Proposition 12 (subject transition) Let �φ P � A. If �φ P � A
l−��ψ Q � B, then

�ψ Q � B. Similarly if �φ P � A
l−→ �ψ Q � B, then �ψ Q � B.

Proof See Appendix C.2. ��
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Remark 4 (transitions without concrete type annotations) Given a typed process,
we can turn all its occurring non-generic free outputs into bound outputs aug-
mented with copycats. Once we do this transformation, the syntactic transforma-
tion in (OUT) becomes unnecessary. Since (OUT) is the sole place where we need
concrete type annotations associated with existentially annotated type variables,
this preprocessing allows us to dispense with these annotations. The presented
transition however has the merit that it can induce the generic transition relation
from arbitrary typed terms, not only preprocessed ones.

5.3 Generic bisimilarity

We are now going to define a typed bisimulation. Since concrete type annota-
tions on free existential variables are not part of the type structure (cf. §5.1), we
should consider typed relations neglecting the annotations from the types of pro-
cesses. We write |A| for the result of taking off concrete type annotations from
A. A,B, . . . range over action types without concrete type annotations. To avoid
notational clutter, we shall henceforth often confuse action types with concrete
type annotations and those which are the result of taking them off, except for the
following formal definition.

A typed relation R is a collection of (Rφ,A) of binary relations on processes
such that P1Rφ,AP2 implies �φ Pi�Ai with |Ai | = Ai for i = 1, 2. We often write
�φ P R Q �A instead of P Rφ,A Q. R is a typed equivalence if it is reflexive (on
typed processes), symmetric and transitive. R is a typed congruence if it is a typed
equivalence and closed under the typing rules. This means for example that �O
PRQ � ỹ : τ̃ ,↑A-x , ?B-x implies �I x(ṽ).P R x(ṽ).Q � x : ∀X̃.(τ̃ )↓,↑A-x , ?B-x ,
provided that {X̃} ∩ ftv(A, B) = ∅.

A relation R between typed processes of the same action type and mode in the
extended typing is a generic weak bisimulation (alternatively polymorphic weak
bisimulation (cf. [36]) or simply a weak bisimulation) if whenever �φ P1RP2 �A
with |A1| = |A2| = A, the following and the symmetric case hold:�φ P1�A1

l−→
�φ P ′1 � A′1 implies �φ P2 � A2

l̂=⇒�φ P ′1 � A′2 such that �φ′ P ′1RP ′2 � A′ again
with A′ = |A1| = |A2|. The largest weak bisimulation exists, which we call weak
bisimilarity and denote by≈∀∃. We write �φ P ≈∀∃ Q �A or P ≈A,φ

∀∃ Q if P and
Q are bisimilar under A, φ. From now on we confuse A and its concrete instances,
simply writing �φ P ≈∀∃ Q � A and P ≈A,φ

∀∃ Q

Proposition 13 ≈∀∃ is a typed congruence.

Proof For example, the closure under parallel composition is proved by defin-
ing R by the following rule: if �φ P1 ≈∀∃ P2 � A and �ψ R � B such that
�φ�ψ (ν ỹ)(Pi |R) � (A � B)/z̃ is well-typed, then (ν ỹ)(P1|R)R(ν ỹ)(P2|R).
Then we can easily check R to be a bisimulation. The reasoning is standard and is
omitted. ��
Lemma 12 ≡, $→ and $→→ are all weak bisimulations.

Proof We show that typable processes related by ≡ have the same transitions up
to ≡ by induction on the derivation of ≡ with a nested induction on the derivation
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of transitions. To see that $→→ is a weak bisimulation, we induce on the generation
of $→→with a nested induction on the structure of the used contexts. Congruency of
≈∀∃ (Proposition 13) is used, too. ��

The following lemma says that reductions and τ -transitions coincide up to ≡.

Lemma 13 Let �φ P � A, then P −→ Q iff �φ P � A
τ−→�φ Q′ � A for some

Q′ ≡ Q.

Proof By straightforward inductions on the derivation of the transitions and re-
ductions with nested inductions on the typing judgement. ��

We now define the contextual congruence. Let �I P � x : B. We write P ⇓f〈x〉
iff P $→→ f〈x〉, and P ⇓t〈x〉 iff P $→→ t〈x〉. Now ∼=∀∃ is the largest consistent,
reduction-closed, typed congruence that preserves ⇓t〈x〉 and ⇓f〈x〉.

Proposition 14 (soundness) �φ P ≈∀∃ Q � A implies �φ P ∼=∀∃ Q � A.

Proof As clearly x〈ỹ〉 �≈∀∃ 0, ≈∀∃ is consistent. By Proposition 13 it is a congru-
ence. For reduction-closure, let �φ P � A, P ≈∀∃ Q and P −→ P ′. By Lemma

13 then �φ P � A
τ−→�φ P ′′ � A for some P ′ ≡ P ′′. Then there’s a transi-

tion sequence Q
τ−→ · · · τ−→ Q′ ≈∀∃ P ′′ ≡ P ′. The result follows because

≡,≈∀∃ ◦ ≈∀∃⊆≈∀∃ (Lemma 12).
It reminds to show preservation of barbs. Let �φ P ≈∀∃ Q � x : B and P $→

→ t〈x〉. Then Q ≈∀∃ P ≈∀∃ t〈x〉 (Lemma 12). Since $→ is SN (Theorem 2), we
can find Q′ such that t〈x〉 ≈∀∃ Q $→→ Q′ �$→. Applying Lemma 6 ensures that
Q′ ≡ t〈x〉 or Q′ ≡ f〈x〉. But a quick look at the transitions shows that we cannot
have f〈x〉 ≈∀∃ t〈x〉, so we cannot have Q′ ≡ f〈x〉. ��

5.4 Legal traces

Generic transition sequences of polymorphic affine processes enjoy an ordered
structure which extends that of their first-order subset [12]. This leads to
the characterisation of behaviour of generic processes by a function of some
kind.

Let s = l0...ln−1. We write �φ P � A
s=⇒�ψ Q � B if

�φ P � A
τ−→∗ l0−→ τ−→∗ · · · τ−→∗ ln−1−→ τ−→∗ �ψ Q � B

We first define a subset of typed transition sequences, which we call legal. We
recall some ideas from [12], which originally comes from game semantics. Below
we assume l, .. do not include τ -action. We write l �s l ′ (resp. l �o l ′) if
the binder of l binds the subject (resp. a free object) of l ′ (the object binding
is new in generic transition, when compared with the definition in [12]). Typing
guarantees that we cannot have l �s l ′ and l �o l ′ at the same time. We then set
�=�s ∪ �o. These three relations are extended to strings in the obvious way,
e.g. s �s l iff s = s1l ′s2 and l ′ �s l. These binding relations essentially preserve
the available prefixing information, that would otherwise be lost when we abstract
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from P
l−→ . . .

l ′−→ P ′ to sequences l, . . . , l ′. The Output-view of a sequence
�l1 . . . ln�O is defined as follows, with s, t, . . . ranging over sequences of labels.

�ε�O = ∅
�s · ln�O = {n} ∪ �s�O ln output
�s · ln�O = {n} ln input,∀i.li ��s ln
�s1 · li · s2 · ln�O = {i, n} ∪ �s1�O ln input, li �s ln

The Input-view, denoted �s�I, is defined dually

�ε�I = ∅
�s · ln�I = {n} ∪ �s�I ln input
�s · ln�I = {n} ln output,∀i.li ��s ln
�s1 · li · s2 · ln�I = {i, n} ∪ �s1�I ln output, li �s ln

We often confuse �s�O and �s�I with the corresponding sequences.
Let �φ P � A

s=⇒�ψ Q � B. Then s = l1 · · · ln is input-visible if whenever
li is input such that l j � li , we have j ∈ �l1 · · · li�I. Dually we define output-

visibility. We say �φ P � A is visible if whenever �φ P � A
s=⇒ and s is input-

visible then it is output-visible.

Proposition 15 �φ P � A is always visible.

The proof follows [11, F15] using the switching condition, with the extra case for
�o (the reasoning which establishes an object biding is is visible precisely follows
the output case of [11, F15]). Next, well-bracketing [4, 19, 23] says that later
questions are always answered first, i.e. nesting of bracketing is always properly
matched. Below, we call actions of mode ! and ? questions while actions of mode
↓ and ↑ are answers.

Let �φ P � A
s=⇒�ψ Q � B be input-visible. Then s is well-bracketing if,

whenever s′ · l · t · l ′ is a prefix of s and

– l is a question and
– l ′ is an answer, but t ��s l ′,

then we have li �s l j .

Let us say �φ P � A is well-bracketing if whenever �φ P � A
sl=⇒ is input visible,

s is well-bracketing and l is output, then sl is well-bracketing. The proof of the
following result again follows [12].

Proposition 16 �φ P � A is always well-bracketing.

Below a trace is well-knit if its only free subject (if any) is the in initial one. Let
�φ P � A

s=⇒. Then s is legal if it is well-knit, input-visible and well-bracketing.
Define trace(�φ P � A) be the set of legal traces of �φ P � A. We then define

≈seq∀∃ by �φ P ≈seq∀∃ Q � A
def⇔ trace(�φ P � A) = trace(�φ Q � A). The proof

of the following uses composite transitions in a manner similar to [12].

Proposition 17 ≈seq∀∃ is a typed congruence and ≈seq∀∃⊆∼=∀∃.
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Next we introduce a useful characterisation of ≈seq∀∃. Let us say a legal sequence
l1 · · · ln matches φ if either n = 0 or, if not, ln is output (resp. input) iff φ = O

(resp. φ = I).
A family of typed relations {Rs j } j is a sequential bisimulation if, whenever

A �φ P Rs Q, s matches l, and the following and its symmetric case hold: if

A �φ P
l−→ B �ψ P ′ with s · l̂ legal, then A �φ Q

l̂=⇒ B �ψ Q′ such that

B �ψ P ′Rs·l̂ Q′. If A �φ P Rs Q for some sequential bisimulation R, we write
A �φ P ≈s

seq∀∃ Q.
It should be noted that in addition to being defined coinductively, the chief

difference between sequential bisimulations and traces is that the former need to
compare fewer transitions to establish equality of processes.

Proposition 18 ≈ε
seq∀∃=≈seq∀∃

Proof ≈ε
seq∀∃⊆≈seq∀∃ is immediate. For the converse, we construct a family of typed

relations {Rs} as follows, starting from Rε =≈seq∀∃.

�φ P1Rs·l̂
n+1 P2 � A

⇔ ∃Q1, Q2. �ψ Q1Rs
n Q2 � B �ψ Qi � B

l̂=⇒�φ Pi � A

Here (i = 1, 2). It is easy to see that �φ P1 Rs
n P2 � A implies that P1 and P2

have the same trace as far as legal sequences with the prefix s are concerned (by
determinacy). We now show {Rs} is a bisimulation. Suppose �φ P1Rs

n P2 � A

and �φ P1 � A
l−→�ψ P ′1 � B such that s · l is legal. If l = τ we simulate this

by the non-transition of �φ P2 � A and the result is in Rs again. Otherwise this

is simulated by �φ P2�A
l=⇒�ψ P ′2�B and the result is in Rsl by definition, hence

R0 ⊆≈ε
seq∀∃. ��

Proposition 19 If �φ P1 ≈s
seq∀∃ P2 � A and �φ Pi � A

l−→�ψ P ′i � B (i = 1, 2)
such that s · l is legal, then �ψ P ′1 ≈sl

seq∀∃ P ′2 � B.

5.5 Innocence

We can now introduces innocence, the fundamental property of generic transition
of polymorphic affine processes. Let �φ P � A with t legal. The proof of the
following result precisely follows [12].

Lemma 14 (permutation) Let �I P � A
l1·l2·l3·l4=⇒ �I Q � B such that l1 �� l4 and

l2 �� l3. Then �I P � A
l3·l4·l1·l2=⇒ �I Q � B.

By the above lemma and visibility, we can transform any transition of form �φ

P � A
sl=⇒, with l output, to �φ P � A

tl=⇒ where t = �s�O. Since an output is
always unique, we can conclude:
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Proposition 20 (innocence) Let �ψ P � A
s1l1=⇒ and �ψ P � A

s2=⇒ such that: (1)
both s1 and s2 are legal; (2) l1 is an output; and (3) �s1�O ≡α �s2�O. Then we

have �ψ P � A
s2l2=⇒ such that �s1�O · l1 ≡α �s2�O · l2.

Remark 5 The equalities �s1�O · l1 ≡α �s2�O · l2 and �s1�O ≡α �s2�O include
information about bindings of free objects, which differs from the first-order case
[12].

It should be noted that legality is imposed for environments. If the environment
doesn’t behave legally, a process itself may not act legally. However, if the envi-
ronment is legal, then a processes legality (and innocence) is a derivable property
of its traces.

By Proposition 20, the behaviour of a process can be regarded as an innocent
function. The innocent function of P , inn(P) is the total function from P’s input
views to its output views, both taken up to ≡α , such that inn(P)(s) = s′ implies:
s′ ≡α sl and P

sl=⇒. By �� we denote the size of the innocent function �, that
is the cardinality of � as a set. An innocent function � is finite if �� = n for
some integer n. If �φ P � A, then inn(�φ P � A) is the finite innocent function
induced by P . P is finite if inn(P) is finite innocent. Innocent functions of linear
polymorphic processes are total (but not necessarily finite) in the sense that a legal
input is always followed by an output. An innocent function is of type (φ, A) if it
coincides with inn(�φ P � A) for some �φ P � A.

Polymorphic linear processes also enjoy finite representability, i.e. finite
generic innocent functions are always representable by typed processes. Follow-
ing [12], we only consider well-knit traces under a typing which is well-formed
in the sense that: (1) it is the result of composing several connected types, and (2)
it does not contain more than one free linear type. We hereafter identify a set of
well-knit traces which define a generic innocent function, with the innocent func-
tion itself. By the construction it suffices to consider only those well-knit traces
which are output views.

In the next section we will need to know that replacing a process by its maxi-
mally copycatted counterpart does not affect the induced innocent function.

Lemma 15 For every �φ P � A, there’s a maximally copycatted Q such that
inn(�φ P � A) = inn(�φ Q � A).

Proof Straightforward. ��

6 Reasoning examples

This section demonstrates that equational reasoning based on combining $→ and
l−→ gives powerful reasoning tools for generic processes.

6.1 Reasoning by generic transitions

We have already seen the behaviour of S
def= x(yz)(t〈y〉|z(b′).e(b)not〈bb′〉) under

the typing x :∃X.(X(X)↓)? · e : (B)↑ in Sect. 2. If x is typed (B(B)↓)? we have the
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following transitions, assuming B
def= x :(B(B)↓)? · e :(B)↑,

�O S � B
x(yz)−→ �I t〈y〉|z(b′).e(b)not〈bb′〉 � B · y :B · z :(B)↓
z(b′)−→ �O t〈y〉|e(b)not〈bb′〉 � B · y :B · b′ :B

Note we can only use a bound input at the second transition. Note also that y is
typed with a non-opaque type, so that an action at y is possible.

Next we look at a transition sequence of id〈x〉, first with universal abstraction.

�I id〈x〉 � x :I x(yz)−→ �O id〈x〉|z〈y〉 � x :I · y :X∀ · z :(X∀)↑
z〈y〉−→ �I id〈x〉|0 � x :I · y :X∀

Now consider an instance of the monomorphic identity which is the same untyped
process id〈x〉 under a different typing, x :(B(B)↑)! . The process has the following
initial transitions.

�I id〈x〉 � x :(B(B)↑)! x(yz)−→ �O id〈x〉|z〈y〉 � x :(B(B)↑)! · y :B · z :(B)↑
z(y′)−→ �O id〈x〉|[y′ → y]B � x :(B(B)↑)! · y :B · y′ :B

Here we do not allow free output via z, since there is no generically typed name.
As a result, a copy-cat remains in the configuration.

6.2 Inhabitation results

We now show how easy inhabitation results are to come by with generic transi-
tions. Inhabitation seeks to characterise the processes typable by a particular type.
We prove:

Lemma 16 (inhabitation of I) �I P � x :I implies P ≈∀∃ id〈x〉.
Proof Let �I P � x :I. Then we have

�I P � x :I x(yz)−→ �O P ′ � x :I, y :X∀, z :(X∀)↑

By inspecting the action type, if P ′ ever has an output, it can only be z〈y〉, in
which case P ≈∀∃ id〈x〉. ��
Note Lemma 16 shows id〈x〉 is the only inhabitant of I up to ≈∀∃. Similarly we
can check x : B is inhabited by t〈x〉 and f〈x〉 alone using the transition, instead of
$→ as in Lemma 7.

We can also use this lemma to reason about more complex terms by combining

$→ and
l−→. In Sect. 2, we have seen the behaviour of the process

S
def= x(yz)(t〈y〉|z(w).e(b)not〈bw〉) under x :I, e :(B)↑.

We show S and S′ def= e(b)f〈b〉 are contextually congruent. Since S and S′ have
different visible traces, the use of some extensionality principle is essential. Here
it suffices to show (ν x)(S|P) ∼=∀∃ (ν x)(S′|P) for each �I P � x : I. But if
�I P � x :I then P ∼=∀∃ id〈x〉 by the above inhabitation result. Using extended re-
duction we can check (ν x)(S|P) ∼=∀∃ (ν x)(S|id〈x〉) $→+ S′ and (ν x)(S′|P) ∼=∀∃
(ν x)(S′|id〈x〉) $→+ S′. Since $→+⊆∼=∀∃, we have (ν x)(S|P) ∼=∀∃ S′ ∼=∀∃
(ν x)(S′|P), hence done.
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6.3 Boolean ADTs

Next is simple use of transition relations for reasoning about abstract data types
of opaque booleans (similar to those discussed in [36, 38]). The data type should
export “flip”, or negation and a read operation (the latter turns an opaque boolean
to a concrete boolean). Two simple implementations in the λ-calculus with records
are:

M
def= pack bool



bit = T,
flip = λx :bool.¬x,
read = λx :bool.x


 as bool

M ′ def= pack bool



bit = F,
flip = λx :bool.¬x,
read = λx :bool.¬x


as bool

where bool
def= ∃X.{bit : X, flip : X → X,read : X → bool}. M and M ′

can be encoded as (using a CBV translation of products, cf. [46]):

bool〈u〉 def= u(m1m2m3)(Q1|Q2|Q3)

bool′〈u〉 def= u(m1m2m3)(Q′1|Q′2|Q′3)
where

Q1
def= t〈m1〉 Q2

def=!m2(bz).z(b′)not〈b′b〉
Q3

def=!m3(bz).z〈b〉 Q′1
def= f〈m1〉

Q′2 ≡ Q2 Q′3
def=!m3(bz).z(b′)not〈b′b〉

We can easily check that these processes are typable under u : ∃X.B[X], where
B[X] def= (X(X(X)↑)!(X(B)↑)!)↑.

We now show �I bool〈u〉 ≈∀∃ bool′〈u〉 � x : ∃X.B[X]. For a proof, we
show these agents are in a trace equivalence up to $→, then use Proposition 17.
First we analyse the transition relations from bool〈u〉. Let R = Q1 | Q2 | Q3
and R′ = Q′1 | Q′2 | Q′3. Then after output transition u〈(ν m2m3)m1m2m3〉, we
have:

�I (ν m′2m′3)(R{m′2/m2}{m′3/m3} | [m2 → m′2] | [m3 → m′3]) = R1

� m1 :X, m2 :(X(X)↑)!, m3 :(X(B)↑)!

Similarly for R′. Since X is an existential type variable, via m2, R1 can only in-
put m1 as the first argument. Similarly, by analysing types, R1 has the following
sequential trace:

R1
m2〈(νc)m1c〉=⇒ R2

c(b)=⇒ R3
m3〈(νe)be〉=⇒ R4

Note c in R2 has type c : (X)↑. Hence when R2 exports bound name b via c, the
same name b should be returned via m3 as the first argument [because b has type
X, while m3 has type (X(B)↑)! in R3]. We now have:

R4 $→∗ e(b)not〈bm1〉 | t〈m1〉 | Q2 | Q3

$→∗ e(b)f〈b〉 | t〈m1〉 | Q2 | Q3
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By the exactly same trace from R′, we can obtain:

R′4 $→∗ (νb′)(e(b)not〈bb′〉 | not〈b′m1〉 | f〈m1〉) | Q′2 | Q′3
$→∗ e(b)f〈b〉 | f〈m1〉 | Q′2 | Q′3

We have essentially the same reasoning when R or R′ starts from the input action
at m3: they again reduces into the same normal forms as the above. Thus we
conclude bool〈u〉 ≈∀∃ bool′〈u〉.

7 Full abstraction of system F

This section embeds System F fully abstractly with respect to Moggi-Statman’s
maximal consistent theory (which is the standard maximum contextual congru-
ence for the formalism). There are two main interests. First it shows that duality-
based typing can precisely embed existing functional formalisms, connecting the
world of typed functions with the world of typed processes as well as open-
ing the potential to use the generic π-calculus as a meta-language. Second the
proof highlights one of the deep aspects of generic behaviour, information hid-
ing by existential types (equivalently by contravariant universal types). The en-
coding and the result smoothly extend to inclusion of standard data types or
nontermination.

We briefly summarise the syntax of λ∀ with types (α, β, . . .) and preterms (M ,
N , . . .) given by the following grammar.

α ::= X | α⇒β | ∀X.α

V ::= x | λxα.M | 
X.M M ::= V | M N | Mβ.

We often omit type annotation on bound names. We use the standard CBV
reduction which gives a simpler encoding. The reduction is generated from
(λxα.M)V −→ M{V/x} (which we call βv-reduction) and (
X.M)β −→
M{β/X} (which we call type instantiation), as well as by compatible closure.
M ⇓ N is defined as: M −→∗ N �−→.

We list the typing rules for reference (we use bases with type vari-
able declarations for clarity). We use the judgement E � α which is true
iff all type variables in α are declared in E . Well-formedness of E is as-
sumed, i.e. a type variable is declared in E before it is assigned to a
variable.

−
E, x : α � x : α

E, x : α � M : β
E � λx :α.M : α⇒β

E � M : α⇒β E � N : α
E � M N : β

E,� M : α X /∈ ftv(E)
E � 
X.M : ∀X.α

E � M : ∀X.α E � β
E � Mβ : α{β/X}

Let Bλ
def= ∀X.X ⇒ (X ⇒ X), T = 
X.λx X.λyX.x and F = 
X.λx X.λyX.y.

Then the relation ∼=∀ [33] is the largest congruence satisfying: ∀M1,2 :Bλ. M1 ∼=∀
M2 ⇔ (M1 ⇓ T ⇔ M2 ⇓ T). It can be shown that T and F are essentially the
only inhabitants of Bλ.

Proposition 21 Let � M : Bλ and M �−→. Then M ≡α T or M ≡α F.
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7.1 Encoding and adequacy

Because it simplifies the definability argument, we use Milner’s untyped call-by-
value encoding (CBV) [27], which only differs from Turner’s translation [43] in
the treatment of quantification. The target calculus is that of Sect. 3, but for reason-
ing with labelled transitions, we use the extension with annotated type variables
of Sect. 5 (cf. [19]). It is easy to see that any encoding induces an infinite number
of other encodings by simply adding more and more layers of indirection. In the
present investigation, we use the CBV version of System F: this induces the same
contextual congruence on terms as the CBN version. As we shall sketch later, call-
by-name (CBN) or other similar encodings (for example those presented in [12])
would result in full abstraction. An interesting open problem is to investigate other
equivalences on the source calculus such as βη-equality.

The mappings α• (for types) and [[M]]u (for terms) are as follows, assuming
newly introduced names are chosen fresh.

α• def= (α◦)↑ X◦ def= X! (α ⇒ β)◦ def= (α◦β•)! (∀X.α)◦ def= t.(α•)!
[[xα]]u def= u〈〈x〉〉α◦ [[λxα.M]]u def= u(m)!m(xz).[[M]]z
[[M N ]]u def= (ν m)([[M]]m |m(a).(ν n)([[N ]]n | n(b).a〈bu〉))
[[
X.M]]u def= u(a)!a(m).[[M]]m [[Mβ]]u def= (νm)([[M]]m |m(v).vu)

Ignoring type variable declarations, a base is encoded as: ∅◦ = ∅ and (E · y :α)◦ =
E◦, y :α◦. The function (·)• takes a System F type α and turns it into a π-type α•
that the translation [[M]]u has at u, provided M has α under �. Of course System
F terms often have free variables: for example, if E, x : β � M : α, then [[M]]u
will have x as a free name, too, and the type of x in the translation will be β◦. In
other words, (·)◦ describes how a the translation of a System F process uses those
free names not introduced by the translation to interact with its environment.

An alternative, more efficient encoding for universal abstraction would be to
have (t.α)◦ = t.α◦. Unfortunately t.X is not a well-defined type in our system, so
such an encoding is not typable. It is fairly straightforward to adapt our calculus
to make t.X an admissible type, at the cost at introducing an additional construct,
generic wire (corresponding to axiom link in proof nets [17]), but for simplicity
we have opted to stay with the present straightforward formalism.

Proposition 22 E � M : α implies �O [[M]]u � u :α•, E◦.

Proof By straightforward induction on the derivation of the source term. ��
Lemma 17 Let x, y �= u and E � M : α. Then [[M]]u{x/y} = [[M{x/y}]]u.

Proof By an easy induction on E � M : α. ��
Lemma 18 Let E � M : α. Then

(νb)([[M]]u | !b(yn).[[N ]]n) $→ [[M{λy.N/b}]]u .

Proof The straightforward proof by induction on the derivation of E � M : α
follows [46, Lemma D.1].

Proposition 23 Let E � M : α and M −→ N. Then [[M]]u $→+ [[N ]]u.
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Proof Straightforward by induction on the derivation of E � M : α. As an exam-
ple, we calculate β-reduction, i.e. [[(λx .M)V ]]u . We start with V = y.

[[(λx .M)y]]u ≡ (νl)(l(a)!a(xm).[[M]]m | l(a).(ν v)([[y]]v | v(x).a〈xu〉))
$→ (νa)(!a(xm).[[M]]m | (ν v)([[y]]v | v(x).a〈xu〉))
$→ (νa)(!a(xm).[[M]]m) | (ν v)([[y]]v | v(x).[[M]]u)

$→ (ν v)([[y]]v | v(x).[[M]]u)

≡ (ν v)(vy | v(x).[[M]]u)

$→ [[M{y/x}]]u
There is another possibility, V = (λy.N ). Let M ′ def=!a(xm).[[M]]m .

[[(λx .M)V ]]u ≡ (νl)(l(a)M ′ | l(a).(ν v)([[V ]]v | v(x).a〈xu〉))
$→ (νa)(M ′ | (ν v)([[V ]]v | v(x).a〈xu〉))
≡ (νa)(M ′ | (ν v)(v(b)!b(yn).[[N ]]n | v(x).a〈xu〉))
$→ (νa)(M ′ | (νb)(!b(yn).[[N ]]n | a〈bu〉))
$→ (νab)(M ′ | [[M{b/x}]]u | !b(yn).[[N ]]n | a〈bu〉))
$→ (νb)([[M{b/x}]]u | !b(yn).[[N ]]n)

The missing step is that

(νb)([[M{b/x}]]u | !b(yn).[[N ]]n) $→→ [[M{V/x}]]u,

which follows from Lemma 18 and

(νb)([[M{b/x}]]u | !b(yn).[[N ]]n) ≡ (νx)([[M]]u | !x(yn).[[N ]]n)
which is by Lemma 17. ��
Since any infinite reduction path in CBV System F contains infinitely many βv-
reductions, this gives its strong normalisability (hence that of call-by-name reduc-
tion). By noting [[T]]u ∈ NFe, we obtain:

Proposition 24 (computational adequacy) Let � M :Bλ. Then M ⇓ T if and only
if [[M :Bλ]]u ⇓e [[T]]u.

Proof From Proposition 23 (⇒) follows immediately. For the reverse implication,
let [[M :Bλ]]u ⇓e [[T]]u and M ⇓ N . By Proposition 21 either N ≡ T or N ≡ F.
By Proposition 23 also [[M]]u ⇓ [[N ]]u . Then [[N ]]u ≡ [[T]]u by Lemma 10. This
is clearly only possible if N ≡ T. ��
Corollary 1 (equational soundness) Assume � M1,2 : α. Then �I [[M1]]u ∼=∀∃
[[M2]]u � u :α• implies M1 ∼=∀ M2 : α.

Proof The proof is straightforward. Let M R N iff �I [[M]]u ∼=∀∃ [[N ]]u � u :α◦.
We show that R is a sound Moggi-Statman Theory. Consistency and congru-
ency of R follows from that of ∼=∀∃. For reduction closure, let M −→ M ′ and
[[M]]u ∼=∀∃ [[N ]]u . Then [[M]]u $→→ [[M ′]]u (Proposition 23). But then [[M ′]]u ∼=∀∃
[[N ]]u by determinacy of ⇓e. Finally, preservation of barbs is immediately by
Proposition 24. ��
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7.2 Definability

We shall now complete the proof of full abstraction. We begin by explaining why
the key step, definability, is tricky.

7.2.1 Why is definability difficult to establish?

Definability means that for every process �O P � u : α•, E◦ of translated System
F type, we can find a term E � M : α such that P ∼=∀∃ [[M]]u . In the first-order
case, we can prove the corresponding theorem by induction on the derivation of
P’s typing judgement [46]. Let’s see what happens if we try to do this naively in
the current setting. Consider a process �O x(a)a(b).P � u : α•, x : (∀X.β)◦, E◦
where �O P � u : α•, b : β◦{X∃/X∀}, x : (∀X.β)◦, E◦. If β freely contains X
we have a problem: P may not be typable by the translation of System F types.
Consider for example β = (X⇒ X). In this case

P ≡ b(cd)(!c(ṽ).Q | d(v).S), �O Q � ṽ : τ̃ , F◦, �O R � v : (τ̃ )↓, F◦

where τ̃ is a vector of arbitrary length, precluding decompilation into System F
types. Now how do we apply the inductive hypothesis? On top of this, it is also
far from obvious how to order typing judgements to ensure things like u : α•, b :
β◦{X∃/X∀}, x : (∀X.β)◦, E◦ being ‘smaller’ than u : α•, x : (∀X.β)◦, E◦. But
that would be necessary for a well-founded induction.

We overcome these problems by abandoning induction on typing derivations
for induction on the size of the corresponding innocent functions, cf. [12, 23,
4]. While this itself is a standard idea for definability of affine (nonterminating)
pure functions, the corresponding proof technique in the present setting involves
another twist, since we should deal with free inputs, which do not exist in the
standard first-order setting, either linear or affine. The proof technique to deal
with free inputs indeed visibly reflects the information hiding in the behaviour of
generic processes induced by typing, using the fact that the environment can only
pass-on or drop X∃-typed names. That is, if we replace X∃ with any other type,
the environment wouldn’t notice. So we have to find a “representative” τ for X∃
to apply the inductive hypothesis such that substituting τ for X∃ does not change
observable behaviour. We can then use (∃-VAR) to reconstruct the original type.
To see how one could find such a type, let’s have a look at the following example:

�I !y(uvw).Q | !z(uvw).Q | r(v).v(abc)R � y : X∃, z : X∃, r : (X∃)↓, ...

where y as well as z had already been exported to the environment. Call this pro-
cess P ′. It arises, up to contextual congruence, as a

l−→-descendant of processes
like P above. This process has two transitions:

P ′ r〈y〉−→ !y(uvw).Q | !z(uvw).Q | y(abc)R

P ′ r〈z〉−→ !y(uvw).Q | !z(uvw).Q | z(abc)R

This suggest that the output of a X∃-typed name and its subsequent re-import al-
lows the environment to choose between different alternatives presented by the
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process. Of course System F can also implement choices, for example by using
[n]λ which was defined to be ∀X.(X⇒ · · · X︸ ︷︷ ︸

n

⇒ X). Could the following transfor-

mation solve the problem of inappropriate X∃-typed names in the induction?

– Replace X∃ by [n]λ, where n is the number of X∃-typed free names in the
environment before re-import.

– Transform processes P
def= C[ !yi (ṽ.Pi ) ]mi=1[ z j 〈ã j 〉 ]nj=1, where the yi and z j

exhaust all the X∃-typed names, to

trans(P)
def= C[ 〈〈λx1...xm .xi 〉〉yi ]mi=1[ Q | R ]ni=1.

Here Q
def= z j (a1r1)r1(s)...rm(s).(s〈ã j 〉, R

def= �m
i=1!ai (ṽ).Pi ) and

[[λx1...xn.xi ]]u = y(a)〈〈λx1...xn.xi 〉〉a .

Clearly, if �φ P � A is typable using X∃-typed names, �φ trans(P) � A{[n]◦λ/X∃}.
What this transformation does is take away the environment’s ability to choose
one of P’s servers directly. Instead we let it decide among alternative choosers of
translated System F type. It can be shown that this does not change the processes
visible transitions, assuming well-typed observers.

For finding a concrete type corresponding to an existential type variable, we
need to know out of how many alternatives the environment can choose. Since
we are going to work solely on finite innocent functions, the number of exported
names of that type is always finite. We may approximate that number from above
and add redundant choices which would not have occurred in the original innocent
function, but that is semantically harmless.

Before going into the technical development, we show another example where
existential typed names are exported to be used for a re-import on later occasions.
The example is essentially Church Numerals, which are typed as ∀X.((X⇒ X)⇒
(X⇒ X)). If �O P � u : α•, x : CN

◦, E◦, then

P ≡ x(a)a(b)b(cr)( !c(vm).Q | r(d).d(es)(!e(vn).R | s(t).S) ).

Omitting details, P has the following transition sequence.

P
x(a)−→ a(b)−→b(cr)−→ r(d)−→d(ew)−→ C[ !c(vm).Q | !e(vn).R | s(t).S ]

At this point, the environment has c and e as free names and may feed the latter as
an argument to the former:

C[ !c(vm).Q | !e(vn).R | s(t).S ]
c〈(ν f )e f 〉−→ C[ !c(vm).Q | !e(vn).R | s(t).S | Q{ f e/vm} ].

In this case it is possible to have an unbounded number of existentially typed
names if we consider possibly non-finite innocent functions (processes corre-
sponding to polymorphic Church Numerals are basic examples which may have
non-finite innocent functions: for example, a successor is such).
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7.2.2 Proving definability

We are now ready to tackle definability and begin with some helpful facts.

Lemma 19 If �O P � A then �O P � A
l=⇒ · · · for some visible output l.

Lemma 20 Let �O P �A
x〈(ν ỹ)z̃〉=⇒ �I Q�B where ỹ is a non-empty vector of names.

Then �I Q � B
l−→ · · · for some visible input l.

Lemma 21 Let P �$→ and �O P � x : (X∀)↑, ? A. Then P ≡ x〈ỹ〉 for some
{ỹ} ⊆ fn(A).

Lemma 22 P $→→ Q ⇒ inn(P) = inn(Q).

The proofs of these 4 statements are straightforward. The next lemma is useful
because it constraints the syntax of processes of translated extended System F
type. This is handy in the definability proof. By translated extended System F type
we mean types of the form α◦{X̃∃τ /X̃} or α•{X̃∃τ /X̃} for some System F type α.

Lemma 23 (syntactic shape) Let P be typable by a translated extended System F
type, maximally copycatted and P �$→. Then the following lists all possibilities for
typings that allow P to have an output as initial action.

1. P ≡ u〈x〉 and �O P � u : (X)↑, x : X, E◦.
2. P ≡ u(x)!x(ṽ).Q, �O P � u : (X∃

(τ̃ )! )
↑, E◦ and

�O Q � ṽ : τ̃ , E◦ −x
.

3. P ≡ u(x)!x(v).Q, �O P � u : (∀X∀.β)•, E◦ and

�O Q � v : β•, E◦,

where X∀ /∈ ftv(E).
4. P ≡ u(x)!x(vr).Q, �O P � u : (α ⇒ β)•, E◦ and

�O Q � v : α◦, r : β•, E◦.

5. P ≡ x(y)y(v).Q, �O P � u : α•, x : (∀X∀.β)◦, E◦ and

�O Q � u : α•, v : β◦{X∃/X∀}, x : (∀X∀.β)◦, E◦

Here X∀ /∈ ftv(E, α).
6. P ≡ x(yr)(!y(v).Q | r(v).R) and typable as �O P � u : α•, x :

((∀X∀.β)⇒ γ )◦, E◦ and

�O Q � v : β•, F◦, �O R � u : α•, v : γ ◦, G◦,

where F◦ � G◦, F◦ � G◦ = x : ((∀X∀.β)⇒ γ )◦, E◦.
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7. P ≡ x(yr)(!y(vw).Q | z(v).R), typable as �O P � u : α•, x :
((β ⇒ γ )⇒ δ)◦, E◦ and

�O Q � v : β◦, w : γ •, F◦, �O R � u : α•, v : δ◦, G◦,

where F◦ � G◦, F◦ � G◦ = x : ((β ⇒ γ )⇒ δ)◦, E◦.
8. P ≡ (νz)(x〈yz〉 | z(v).Q) and �O P � u : α•, x : (Y⇒ β)◦, E◦, E(y) = Y,

�O Q � u : α•, v : β◦, E◦.

9. P ≡ x(yr)(!y(ṽ).Q | r(v).R), �O P � u : α•, x : (Y∃ ⇒ β)◦, E◦ and

�O Q � ṽ : τ̃ , F◦, �O R � u : α•, v : β◦, G◦.

where F◦ � G◦, F◦ � G◦ = x : (Y∃ ⇒ β)◦, E◦.

Proof By induction on the derivation of typing judgements. We start by consid-
ering the initial linear output at u and the carried name being typed with a type
variable. Clearly the process given by (1) works. We show there be no others up
to ≡. Assume u〈x〉|Q, where �I Q � F for some suitable F . As u〈x〉|Q �$→, we
can apply Lemma 6.3 and conclude that Q ≡ 0. It is also impossible to have u〈x〉
where x is typed by an existentially annotated type variable because otherwise
P would not be maximally copycatted. That leaves (ν z̃)(u〈x〉|Q) where u is not
restricted. If x is also free, we can immediately reduce to the previous case. Next
assume the initial output at u is typed by the translation of a universal abstraction.
Then u〈x〉 is impossible because we are dealing only with maximally copycatted
processes. Hence we must have (ν z̃)(R | u(x)!x(v).Q) where u is free. As in the
previous case, we show that R ≡ 0, which leaves just (3). When the initial output
at u is the translation of a function type, we proceed similarly.

Now we assume the initial output at x is replicated. We cannot have
(ν z̃)(x〈y〉 | Q), with x and y being free, because P is maximally copycatted.
Hence the process must be of the form R | x(y)Q. As before, we show that
R ≡ 0. Since we can only restrict y is there’s matching input, our process must in
fact be x(y)y(v).Q, as stated by (5). The remaining cases are similar. ��

We need to manipulate innocent functions. That requires a bit of convenient
notation. Let � be an innocent function. Assuming typability, x(ỹ)� is the inno-
cent function obtained from � by prefixing any �-trace with x(ỹ) and then taking
prefix-closure; x(ỹ)� and !x(ỹ).� are defined similarly. Clearly x(ỹ)inn(P) =
inn(x(ỹ).P) etc.

Lemma 24 Let � be finite innocent. Then �(�) < �(x(ỹ)�) assuming typability.

Let σ be a function from existentially annotated type variables to types of the form
[n]λ where n > 0. Assume � is an innocent function. We say σ offers enough
choice for � if whenever a �-node �I P � A can do k inputs

�I P � A
x〈(νãi )b̃i 〉−→ · · · (i = 1, · · · , k)

then for each bi j from b̃i that is not in ãi :

A(bi j ) = X∃τ implies (σ (X∃τ ) = [m]λ ⇒ k ≤ m).
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A concretiser for � is a mapping like σ above, provided it offers enough choice
for � and has a finite domain containing all of �’s free, existentially annotated
type variables. Clearly, if � is finite innocent, we can always find corresponding
concretisers. As a matter of notation, we assume concretisers are postfix operators.
We apply them to types, terms and type-environments alike, where they substitute
all free existentially annotated type variables.

Proposition 25 (definability) Let � be a finite innocent function of translated
extended System F type u : α•, E◦. Assume σ is a concretiser for �. Then there is
a System F term E � M : α such that inn(Eσ � Mσ : ασ) = �.

Proof We proceed by induction on the size of �. Clearly �(�) = 0 is impossible
by Lemma 19. So the base case is �(�) = 1.

Let �O P � u : α•, E◦ with inn(P) = � and P �$→. Restricting P to be with-
out $→-redexes is possible because each typable process has a $→-normal form
(Lemma 10) and processes equated by $→→ induce the same innocent functions
(Lemma 22). In addition we assume P to be maximally copycatted. Lemmas 11
and 15 guarantee that this is always possible and does not affect innocent func-
tions.

Now Lemma 20 together with �(�) = 1 prevents any names being bound
by the initial (and only) visible action. Clearly we can also not have an action

�O P � u : α•, E◦ x〈y〉−→ · · · where x ∈ fn(E◦). This is because otherwise we’d
have to have E◦(x) = β◦ = (Y∀)p, p ∈ {↑, ?}. But this is impossible as a quick
induction on the structure of β shows. Hence our unique visible action must be

�O P � u : α•, E◦ u〈x〉−→�I Q � E◦.

where α = Y. By Lemma 21 this means P ≡ u〈x〉 and E◦ = y : Y∀, F◦. The
corresponding System F term is simply Eσ � x : Y, as [[Eσ � x : Y]]u = u〈x〉.
This concludes the base case.

The inductive step is more involved. We begin by distinguishing two cases:
the initial visible action happens at u or it does not. Let’s start with the former. By
Lemma 23 we have 2 cases.

– P ≡ u〈x〉, E(x) = X∀. This is in fact the base case.
– P ≡ u(c)Q. Now we have 2 subcases.

– α = (β ⇒ γ ), i.e. α◦ = (β◦γ •)! Then by Lemma 23: P ≡ u(c)!c(xm).Q
where �O Q � x : β◦, m : γ •, E◦ and inn(Q) is strictly shorter than inn(P)
(Lemma 24). By (IH) we can hence find M such that inn(Q) = inn([[Eσ �
Mσ : ασ ]]m). Now

inn([[λx .M]]u) = inn(u(c)!c(xm).Q) = �.

– α = ∀X.β, i.e. ∀X.(β•)! . Using Lemma 23 again, we get P ≡ u(c)!c(m).Q
and as in the previous case the (IH) yields a System F term M such that

inn([[
X.M]]u) = inn(u(c)!c(m).Q) = �.

This exhausts initial outputs at u. We must now tackle the more complicated case
of the initial output happening at a free name in E◦. We have the following cases
(Lemma 23).
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– �O P � u : α•, x : ∀X.(β◦), E◦. Abbreviating the type of P to A, we can do
the following transitions.

�O P � A
x(a)−→ a(b)−→�O Q � A, b : β◦{X∃τ /X∀}

By the (VC), X∃τ is not in the domain on σ . We must hence construct an appro-
priate σ ′ such that ftv∃(A, b : β◦{X∃τ /X∀}) ⊆ dom(σ ′). For this purpose, let
�Q = inn(Q). A �Q-node �I R � B is a free branch if it has a transition of

the form �I R � B
a〈b〉−→ · · · or �I R � B

a〈(νb)bc〉−→ · · · . Using Subject Transition
(Proposition 12) together with that fact that P is of translated extended Sys-
tem F type, one sees immediately that B is also made from translated extended
System F types. Hence all free inputs in �Q must be by free branches. Call
a free branch R initial if there are no other free branches on the path along
the transitions from Q to R. Let the initial free branches be R1, ..., Rm for
some m ≥ 0. It is possible for m to be 0 or greater than 1. Each Ri is typed
�I Ri � Ai . By the (VC) we can assume that if Ai (c) = X∃ and A j (c) = Y∃
then X = Y. Let

{
b1

i , · · · , bki
i

}
= {c | ∃X.Ai (c) = X∃}

Clearly ki is always greater than 0. Otherwise Ri would not be a free branch.
Set n = k1 + · · · + km . Now define

σ ′
(

Y∃γ
) =

{
σ(Y∃γ ) X �= Y,

[n]λ X = Y.

By its construction, σ ′ has sufficient choice for �Q . Hence we can apply the
(IH) to get a term (E, x : ∀Xβ, b : β)σ ′ � Mσ ′ : ασ ′ such that

inn((E, x : ∀Xβ, b : β)σ ′ � Mσ ′ : ασ ′) = �Q .

Noting now that [[(λb.M)(x[n]λ)]]u $→→ x(a)a(b).[[M]]u and using Lemma 22
we get

inn([[(λb.M)(x[n]λ)]]u) = inn(x(a)a(b).[[M]]u)

= x(a)a(b).inn([[M]]u)

= x(a)a(b).�q

= �

as required.
– P ≡ x(yr)(!y(v).Q | r(v).R), �O P � u : α•, x : ((∀X∀.β)⇒ γ )◦, E◦ where
�O Q � v : β•, F◦, �O R � u : α•, v : γ ◦, G◦. Clearly, Q and R have finite
innocent functions smaller that �, so by (IH), we can find System F terms
Fσ � Mσ : βσ and Gσ, v : γ σ � Nσ : ασ such that (omitting types for
readability) inn(Q) = inn([[M]]v) and inn(R) = inn([[N ]]u). Then clearly

� = inn([[(λv.N )(x(
X.M))]]u).



Genericity and the π-calculus 131

– P ≡ x(yr)(!y(vw).Q | z(v).R), �O P � u : α•, x : ((β ⇒ γ )⇒ δ)◦, E◦
and �O Q � v : β◦, w : γ •, F◦, �O R � u : α•, v : δ◦, G◦. By (IH) we find
System F terms Fσ, v : βσ � Mσ : γ σ and Gσ, v : δσ � Nσ : ασ such that
inn(Q) = inn([[M]]v) and inn(R) = inn([[N ]]u). Then

� = inn([[(λv.N )(x(λv.M))]]u).

– P ≡ (νz)(x〈yz〉 | z(v).Q) and �O P � u : α•, x : ((Y⇒ β)◦, E◦, E(y) = Y,
�O Q � u : α•, v : β◦, E◦. By (IH) there’s Eσ, v : βσ � Mσ : ασ such that
inn(Q) = inn([[M]]v). Thus clearly

� = inn([[(λv.M)(xy)]]u).

– P ≡ x(yr)(!y(ṽ).Q | r(v).R), �O P � u : α•, x : (Y∃γ ⇒ β)◦, E◦ and �O
Q � ṽ : τ̃ , F◦, �O R � u : α•, v : β◦, G◦. Let A be the above type for P and
assume that σ(Y∃γ ) = [m]λ. We have 2 subcases.

– β = X∃δ and σ(X∃δ ) = [n]λ. In this case we have:

P
x(yr)−→ �I !y(ṽ).Q | r(v).R � y : Y∃γ , r : (X∃δ )↓

Now let k ≤ n be the number distinct entries zi : X∃δ in E◦. Then there are
k distinct transitions

�I !y(ṽ).Q | r(v).R � y : Y∃γ , r : (X∃δ )↓
r〈zi 〉−→�O Qi � A

By (IH) we get corresponding M1, . . . , Mk such that

inn([[E, x : [m]λ ⇒ [n]λ � Mi : ασ ]]) = inn(Qi )

Now define
Ni

def=
{

Mi 1 ≤ i ≤ k
M1 k < i ≤ n.

We can do this because σ has enough choice, so k ≤ n. That k > 0 is
because we are in the inductive step: so by the inductive assumption �’s
cardinality exceeds 1. But then P must be able to do at least two consec-
utive visible transitions, which would not be possible if k = 0. We are
almost there. The target term, corresponding to � is (x M α N1...Nn)σ ,
where M is typable as Eσ � Mσ : [n]λ. Now we consider what transitions
the translation of M has in �: There are two possibilities: either there are
no such transitions, i.e. the environment working at x ignores the transla-
tion of M . Then we set M

def= πm
1 . Alternatively, the environment invokes

the translation of M . By innocence, all invocations give the same result,
say choosing the i-th possibility out of n. Then we set M

def= πm
i . Then

inn([[Eσ, x : [m]λ ⇒ [n]λ � (x M α N1 · · · Nn)σ : ασ ]]u) = �.

– β is not an existentially annotated type variable. This case is essentially
like the last, except that n = 1.

This exhaust all cases. ��
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Finally we note the following. Below we say P is finite if its innocent function is
finite.

Lemma 25 Let �O P1,2 � y : τ↑ and �I R � y : τ , x : B. Then P1|R ⇓t〈x〉 and
P2|R ⇓f〈x〉 imply for some finite �I R′ � y : τ , x : B we have P1|R′ ⇓t〈x〉 and
P2|R′ ⇓t〈x〉.

Proof (outline) We take inn(R), and mark just those parts which are used to de-
rive P1|R ⇓t〈x〉 and P2|R ⇓f〈x〉. These parts are obviously finite. Unmarked parts
can be infinite, but they do not concern the extended reductions involved in the
above convergences. Thus it suffices to replace each of these unmarked parts with
a finite behaviour of the same type, since, if we can do so, we can reconstruct a
process defining this finite behaviour in the same way we did in the definability
lemma. For replacing each such part, it suffices to show there is always at least
one finite process for each well-formed action type. Such a process is easily con-
structed by induction on (extended) action types, following the term constructor
corresponding to positive types (↑ and !) and a linear input as needed, without
using ?-actions (note the resulting behaviour is what corresponds to a constant
function, which is immediately finite). ��
Theorem 4 (full abstraction) Let � M : α. Then M ∼=∀ N iff [[M]]u ∼=∀∃ [[N ]]u.

Proof In the light of Corollary 1 we need only show completeness. The argument
is standard [12, 46]. Assume [[M]]u �∼=∀∃ [[N ]]u . Then we can find a finite R such
that (ν x̃u)([[M]]u | R) ⇓e [[T]]y but (ν x̃u)([[M]]u | R) ⇓e [[F]]y By Lemma 25 it
suffices to consider finite Rs. By definability, we can find L such that [[L]]y ∼=∀∃ R.
Hence (ν x̃u)([[M]]u | [[L]]y) �∼=∀∃ (ν x̃u)([[N ]]u | [[L]]y), a contradiction. ��

7.3 Call-by-name and type isomorphisms

The encoding of System F we have explored was CBV. We close this paper with
some suggestions on how to use that result to obtain an easy full abstraction result
for CBN. We start with the encoding. For types, we set:

α� def= (α,)! X, def= X↑ (α ⇒ β), def= (α,β�)! (∀X.α), def= t.(α�)!

For terms, we use the standard call-by-name encoding.

〈〈x〉〉u def= [u → x]α� 〈〈Mβ〉〉u def= !u(r).(νm)(〈〈M〉〉m |m〈r〉)
〈〈M N 〉〉u def= !u(xy).(ν m)(〈〈M〉〉m |m(nr)(〈〈N 〉〉n | r(w).w〈xy〉))
〈〈
X.M〉〉u def= !u(a).a(m)〈〈M〉〉m 〈〈λxα.M〉〉u def= !u(xz).z(m)〈〈M〉〉z

We strongly believe the following holds.

Conjecture 1 (full abstraction for CBN) � M ∼=∀ N : α iff �I 〈〈M〉〉u ∼=∀∃ 〈〈N 〉〉u�
u : α�,

The conjecture may be proved by carrying out the entire development of this
section for CBN types. Another method may use type isomorphisms, where the
isomorphism between CBV and CBN-encodings of System F types leads to full
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abstraction for the CBN encoding, using through Theorem 4. Behaviourally, type
isomorphisms are easy to describe. Let C[·]B,ψ

A,φ indicates a typed context where the
hole has type A, φ and the result B, ψ . First order types A, φ and B, ψ are ∼=∀∃-
isomorphic if for some C1[·]B,ψ

A,φ and C2[·]A,φ
B,ψ , we have P ∼=∀∃ C2[C1[P]B,ψ

A,φ ]A,φ
B,ψ

for each �φ P � A and vice versa. In particular we write τ1 ∼=∀∃ τ2 if x1 : τ1 and
x2 : τ2 are ∼=∀∃-isomorphic (the omission of names loses no precision since the
isomorphism does not depend on the particular choice of names). Contexts can
often be defined by parallel composition with hiding.

As a simple example, we can easily show that τ ! and (τ )↑ are always
isomorphic. In the first-order case, the above definition is enough to prove the
type isomorphism between the CBN-encoding and the CBV-encoding of function
types by induction on function types. For the second-order case, however, this is
not straightforward, since we cannot rely on induction. We believe that arguments
close to those using candidates in Sect. 3 would work, though details are to be
seen. It should be noted that the type isomorphism between CBN and CBV in
linear polymorphic processes, where it holds, crucially relies on strong normalis-
ability hence similar proof techniques may not be usable for affine processes. The
study of type isomorphism in processes offer insights on the relationship between
types and their inhabiting processes.
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Appendix A Proof of Subject Reduction

We first define permutability of rules, which is crucial in many results that follow. Let R and
S be two rules which have one premise each. We write R ↘ S if, whenever there exists a
derivation �φ P � A

R
�φ1 P1 � A1

S
�φ2 P2 � A2

then we have another deviation

�φ P � A
S

�φ3 P3 � A3
R

�φ2 P2 � A2

If R has two premises and S has one we write R ↘l S if, whenever there exists a derivation

�φ P � A �φ1 P1 � A1
R

�φ2 P2 � A2
S

�φ3 P3 � A3

then there is another one
�φ P � A

S
�φ4 P4 � A4 �φ1 P1 � A1

R
�φ3 P3 � A3
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The predicate R ↘r S is similarly defined.

Lemma 26 – For any rule R with one premise other than (IN! ) and (IN↓), we have R ↘
(WEAK).

– (WEAK)↘ (IN↓) if (WEAK) does not weaken bound name yi in !x(ỹ).P of the conclusion
of (IN↓). Similarly for (IN! ).

– Let ψ ∈ {l, r}, then (WEAK) ↘ψ (PAR), (PAR) ↘ψ (WEAK)

Proof All straightforward from the typing rule schemes. ��

Proposition 26 If �φ P � A and P ≡ Q, then �φ Q � A.

Proof By induction on the derivation of P ≡ Q.

P|0 ≡ P: Now we use induction on the derivation of �φ P � A. There are two cases: if the last
rule used was (WEAK), we use the inner induction hypothesis (IH). Otherwise we have a
derivation

�φ P � A

(ZERO)
�I0 � ∅

(WEAK)
.
.
.

(WEAK)
�I0 � B A � B

(PAR)
�φ P|0 � A � B

If the number of applications of (WEAK) in this derivation is 0, the result is immediate,
otherwise we use (WEAK)↘r (PAR). To push all weakenings below (PAR) in the proof tree
and reduce the problem to one already dealt with in the outermost first case. The converse
direction is straightforward.

(νx)(P|Q) ≡ P|(νx)Q, if x /∈ fn(P): We proceed by induction on the derivation of the rele-
vant typing judgement. Using the inner (IH) as above and (WEAK) ↘ (RES), we can see
that there are two interesting cases.

�φ P � A �ψ Q � B . . .
(PAR)

�φ�ψ P|Q � A � B = C, x : τ md(τ ) ∈ {�, !}
(RES)

�φ�ψ (νx)(P|Q) � C

and
�φ P � A �ψ Q � B . . .

(PAR)
�φ�ψ P|Q � A−x � B−x md(τ ) ∈ {�, !}

(WEAK)
�φ�ψ P|Q � C, x : τ

(RES)
�φ�ψ (νx)(P|Q) � C

In the former case we know from the assumptions that x /∈ fn(A), B = B ′, x : τ and
C = A � B ′. Hence we derive as follows.

�φ P � A

�ψ Q � B ′, x : τ
(RES)

�ψ (νx)Q � B ′
(PAR)

�φ�ψ P|(νx)Q � A � B ′ = C

To reduce the latter case to the former, we use (PAR)↘r (WEAK).



Genericity and the π-calculus 135

For the reverse direction, we also induce on the derivation of the typing judgement. Using
the inner (IH) and permutations of weakening with parallel composition as above, we find
essentially one interesting case.

�φ P � A

�ψ Q � B, x : τ md(τ ) ∈ {�, !}
(RES)

�ψ (νx)Q � B
(PAR)

�φ�ψ P|(νx)Q � A � B

By the (VC) we can assume x /∈ fn(A). Hence we can construct:

�φ P � A �ψ Q � B, x : τ
(PAR)

�φ�ψ P|Q � A � (B, x : τ) = (A � B), x : τ md(τ ) ∈ {�, !}
(RES)

�φ�ψ (νx)(P|Q) � A � B

as required.
All other cases: Similar, but simpler. ��

Lemma 27 1. τ {γ̃ /X̃} = τ {γ̃ /X̃}.
2. If τ1 � τ2 is defined, then so is τ1{γ̃ /X̃} � τ2{γ̃ /X̃}.
3. If A � B then also A{γ̃ /X̃} � B{γ̃ /X̃} and (A � B){γ̃ /X̃} = (A{γ̃ /X̃})� (B{γ̃ /X̃}).
4. If Ỹ ∩ Ỹ = ∅ and X̃ ∩ ftv(δ̃) = ∅, then {γ̃ /X̃}{δ̃/Ỹ} = {δ̃/Ỹ}{γ̃ {δ̃/Ỹ}/X̃}.

Proof Straightforward. ��
Lemma 28 If �φ P � A then �φ P � A{γ̃ /X̃}.
Proof By induction on the derivation of �φ P � A.

(OUT): Assuming Zi /∈ ftv(τ̃ {ξ̃ /Z̃}), we can not only infer

�Ox〈ỹ〉 � x : ∃Z̃.(τ̃ )pO , ỹ : τ̃ {ξ̃ /Z̃},
but also

�Ox〈ỹ〉 � x : ∃Z̃.(τ̃ {γ̃ /X̃})pO , ỹ : τ̃ {γ̃ /X̃}{ξ̃{γ̃ /X̃}/Z̃},
where Xi /∈ ftv(τ̃ {γ̃ /X̃}) and {Z̃} ∩ {ftv(γ̃ ), Ỹ} = ∅. But clearly ∃Z̃.(τ̃ {γ̃ /X̃})pO =
(∃Z̃.(τ̃ )pO ){γ̃ /X̃}. Furthermore

τ̃ {γ̃ /X̃}{ξ̃{γ̃ /X̃}/Z̃} = τ̃ {γ̃ /X̃}{ξ̃{γ̃ /X̃}/Z̃} = τ̃ {ξ̃ /Z̃}{γ̃ /X̃}.
and {Z̃} ∩ ftv(τ̃ {γ̃ /X̃}{ξ̃{γ̃ /X̃}/Z̃}) = ∅, using Lemma 27. Hence in fact:

�Ox〈ỹ〉 � (x : ∃Z̃.(τ̃ )pO , ỹ : τ̃ {ξ̃ /Z̃}){γ̃ /X̃}.
(PAR): Assuming �φi Pi � Ai , φ1 � φ2 and A1 � A2, we get A1{γ̃ /X̃} � A2{γ̃ /X̃} and

A1{γ̃ /X̃} � A2{γ̃ /X̃} defined and equal to (A1 � A2){γ̃ /X̃} by Lemma 27. Hence �φ1�φ2

P1|P2 � (A1 � A2){γ̃ /X̃}.
The remaining cases are simpler and mostly follow directly by the (IH). ��
Next we formally define name substitution in action types: assuming that {ṽ} ∩ {x̃} = ∅, then
(·){x̃/ṽ} is the least partial operation such that

– A{ε/ε} = A,
– A{x/v} = A, if v /∈ fn(A),
– (A, v : τ){x/v} = A � x : τ ,
– (A, v : τ → w : σ){x/v} = A � x : τ → w : σ , if A � x : τ → w : σ and w �= x ;
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– (A, w : τ → v : σ){x/v} = A � w : τ → x : σ , if A � w : τ → x : σ and w �= x ;
We extend the above definition to A{x̃/ṽ} = (..(A{x1/v1})..){xn/vn}.
Lemma 29 1. If (A�B){x/v} is defined, then A{x/v} and B{x/v} are defined and A{x/v} �

B{x/v}, as well as A{x/v} � B{x/v} = (A � B){x/v} hold.
2. If A{x/v} is defined and a is fresh, then (A, a : τ){x/v} is also defined and equal to

A{x/v}, a : τ .

Proof By straightforward induction on the derivation of (A � B){x/v} we establish (1). (2) is
straightforward. ��
Lemma 30 Let �φ P � A and assume A{x̃/ṽ} is defined. Then �φ P{x̃/ṽ} � A{x̃/ṽ}.
Proof We shall establish if A{x/v} is defined, then �φ P{x/v} � A{x/v} by induction on the
derivation of �φ P � A.

(PAR): Let �φi Pi � Ai , φ1 � φ2 and A1 � A2. As by assumption (A1 � A2){x/v} is defined,
we can use Lemma 29 (1) and the (IH) to get to �φ1�φ2 (P1|P2){x/v} � A1 � A2{x/v}.

(RES): Immediate from Lemma 29 (2) and the (IH).
(WEAK): Assume �φ P � A, y : τ follows from �φ P � A−y and md(τ ) ∈ {�, ?}. Let (A, y :

τ){x/v} = A � x : τ be defined. If y = v we have two subcases: (1) x ∈ fn(A), then, by
modes, A � x : τ = A so we just use the (IH); otherwise (2) A � x : τ = A, x : τ and we
use the (IH) with a subsequent application of (WEAK). If x = y �= v, we proceed as in (1).
The remaining case, y �= v, x �= y is like (2).

(IN↓): Assume we derive �I x(ṽ).P � x : ∀X̃.(τ̃ )↓ → A, B from �O P � ṽ : τ̃ , A, B, with
the usual restrictions on A and B. From the (IH) and the (VC) we get �O P{y/w} � ṽ :
τ̃ , (A, B){y/w}. The interesting case is where w does occur in A, B. If w is a name in A,
it cannot be x , but also y �= x for otherwise the substitution would not be defined. So we
apply (IN↓). Similarly, if w is a name in B.

The remaining rules are similar to the previous cases. ��

Appendix B Proof of Proposition 5 (2)

We use acyclicity of names, cf. Proposition 3. Base cases b〈ỹ〉 is obvious. b(ỹ).P , !b(ỹ).P
and (ν x)P , are straightforward by induction on P (note that inputs and outputs always have
connected types). We write P〈x :τ 〉 for a connected processes with type τ . Assume by induction
that a typable term P ′ is translated into a bigger connected term, P〈x :τ 〉. We show how a
parallel composition Q | P〈x :τ 〉 with non-connected type is translated into a bigger connected
term.
Case (1) Q ≡ z〈ỹ〉 and md(τ ) = !. Then (ν x)(Q | P) is connected.
Case (2) Q ≡ z〈ỹ〉 where z’s mode is ? and md(τ ) =↓ and yn = x . Then (ν x)(Q | P) is
connected.
Case (3) Q ≡ z〈ỹ〉 where z’s mode is ? and md(τ ) =↓ and yn �= x . Assume P’s linear output
is c. Then (ν yn x)(Q | yn(w̃).x〈ṽ〉 | P) is connected.
Case (4) Q ≡ z〈ỹ〉 where z’s mode is ↑ and md(τ ) =↓ and z = x . Same as Case (2).
Case (5) Q ≡ z〈ỹ〉 where z’s mode is ↑ and md(τ ) =↓ and z �= x . Same as Case (3).
Case (6) Q ≡!a(ỹ).R and md(τ ) = !. Then by acyclicity of names, we know either (a)
a ∈ fn(P) or (b) x ∈ fn(R) or (c)a, x �∈ fn(P) ∪ fn(R). Assume (a). Then (ν a)(Q | P) is
connected. The case (b) is symmetric to (a). For the case (c), both (ν a)(Q | P) and (ν x)(Q | P)
are connected.
Case (7) Q ≡ a(ỹ).R and md(τ ) = !. Then (ν x)(Q | P) is connected.
Case (8) Q ≡!a(ỹ).R and md(τ ) =↓. Then (ν a)(Q | P) is connected.
Case (9) Q ≡ a(ỹ).R and md(τ ) =↓. Then the case (a) a ∈ fn(P) is the same as
(a) in Case (7), while the case (b) x ∈ fn(R) is as the same as (b) in Case (7). For the case
(c) a, x �∈ fn(P)∪fn(R), assume c′ is a linear name in fn(R). Then (ν c′x)(Q | c′(w̃).x〈ṽ〉 | P) is
connected. ��
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Appendix C Proofs and Additional Material for Section 5

C.1 Proof of Subject Reduction (Proposition 11)

We first prove the Subject Reduction Theorem (Proposition 11) for the typing system in Fig. 3.

Lemma 31 1. If A � B then A{τ/X∃τ } � B{τ/X∃τ } and A{τ/X∃τ } � B{τ/X∃τ } = (A �
B){τ/X∃τ }. The corresponding result holds for universally annotated type variables.

2. Assume �φ P � A. Then �φ P � A{τ/X∃τ } for some τ such that ftv∃(τ ) = ∅.
3. If �φ P � A and ftv(A) = {X̃∀}, then �φ P � A{X̃/X̃

∀} is derivable in the system of Fig. 2.

4. If �φ P � A is derivable in the system of Fig. 2, then �φ P � A{X̃∀/X̃}
5. If �φ P � A and P ≡ Q, then also If �φ Q � A.
6. If �φ P � A is derivable, then it is also derivable without using (∀-VAR).

Proof For (6) we also proceed by induction on the number of applications of (∀-VAR). The key
insight is that for (∀-VAR) to have an effect, it needs universally annotated type variables. They
can only have been introduced in (WEAK) or (OUT). But every time we use such a type variable
in these rules, we use the appropriate concrete type τ instead. ��

By the above lemma, we can prove the same substitution lemma as in Lemma 3. Then we
use Lemma 31 (1) to remove all existential variables and Lemma 31 (2) to convert universally
annotated variables. Then we can type something like �φ P � A{τ̃ /X̃

∃
τ }{X̃/X̃

∀} in the system

of Figure 2. Using the Subject Reduction Theorem 1, we have �φ Q � A{τ̃ /X̃
∃
τ }{X̃/X̃

∀} in the

system of Figure 2. Then we apply (4) to obtain �φ Q � A{τ̃ /X̃
∃
τ }. Using (∃-VAR) we finally get

�φ Q � A as required. ��

C.2 Proofs for Subject Transition (Proposition 12)

In this subsection, we prove Proposition 12. We start with a small lemma.

Lemma 32 Let �φ P � A. Let A′ = A, provided md(A(x)) = ?, else A′ = A \ x,

1. If �O P � A
x〈(ν ỹ)z̃〉−� �I Q � B, then B = � j∈J (y j : σ j → a j : σ j ) �k∈K yk : σ k , where

{ã} ⊆ fn(A), ỹ = 〈y0...yn−1〉, J and K partition {0, ..., n − 1} and σi = con(A(zi )) =
con(A(yi )).

2. If �I P � A
x〈(ν ỹ)z̃〉−� �OQ � B, then B = A′ � z̃ : τ̃ .

Now we prove Proposition 12. Clearly we only need to establish this for pretransitions.
By induction on the derivation of the transition. We begin with (COM). Now we induce on
the derivation of the two premises. Nested into these inner inductions, we do induction on the
derivation of the typing judgements of the sources of the premise transitions.

Assume τ̃ is a vector of concrete types, i.e. no type variables. Set τ̃ ′ = τ̃ {X̃∀/X̃
∃}. Let

A1 = x : ∃X̃.(τ̃ Ỹ
∀
)↑, ỹ : σ̃ , z̃ : Ỹ

∀

A2 = x : B, ∀X̃.(τ̃
′
Ỹ
∀
)↓ → A

A′2 = ṽ : τ̃ ′, w̃ : Ỹ
∀
,↑A−x , ? B−x

Assume that A1 � A2, let ρ̃ be another vector of concrete types and let Ỹ
∀ be a vector of of

matching length. Then

A1{ρ̃/Ỹ
∀} = x : ∃X̃.(τ̃ ρ̃)↑, ỹ : σ̃ , z̃ : ρ̃

A2{ρ̃/Ỹ
∀} = x : B{ρ̃/Ỹ

∀}, ∀X̃.(τ̃
′
ρ̃
∀
)↓ → A.
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We don’t need to apply {ρ̃/Ỹ
∀} to A because {ρ̃/Ỹ

∀} does not affect linear channels. Now
assume that neither A1{ρ̃/Ỹ} nor A2{ρ̃/Ỹ} have any free type variables. This means we can

derive

σi = τi {γ̃ /X̃∃} ftv∃(σ̃ , ρ̃) = ∅ Xi /∈ ftv(σ̃ )

�Ox〈ỹ z̃〉 � A1{ρ̃/Ỹ
∀} D = ã : σ̃ → ỹ : σ̃ , E = b̃ : ρ̃ → z̃ : ρ̃

�Ox〈ỹ z̃〉 � A1{ρ̃/Ỹ
∀} x〈(νãb̃)ãb̃〉−� �I�[ai → yi ]σi | �[bi → zi ]ρi � D, E

Similarly, one derives

�O P � A′2{ρ̃/Ỹ
∀} X∀i /∈ ftv(A, B)

�Ix(ṽw̃).P � A2{ρ̃/Ỹ
∀} A2{ρ̃/Ỹ

∀} � (ã : τ̃ ′, b̃ : ρ̃) � x〈(νãb̃)ãb̃〉

�Ix(ṽw̃).P � A2{ρ̃/Ỹ
∀} x〈(νãb̃)ãb̃〉−� �O P{ãb̃/ṽw̃} � A, (B � ã : τ̃ ′, b̃ : ρ̃)

Hence we can apply (COM) to obtain

�Ox〈ỹ z̃〉 � A1{ρ̃/Ỹ
∀} x〈(νãb̃)ãb̃〉−� �I�[ai → yi ]σi | �[bi → zi ]ρi � D, E

�Ix(ṽw̃).P � A2{ρ̃/Ỹ
∀} x〈(νãb̃)ãb̃〉−� �O P{ãb̃/ṽw̃} � A, (B � ã : τ̃ ′, b̃ : ρ̃)

�Ox〈ỹ z̃〉 | x(ṽw̃).P � A1 � A2
τ−�

�O(νãb̃)(�[ai → yi ]σi | �[bi → zi ]ρi | P{ãb̃/ṽw̃}) � A1 � A2

We have B � ã : τ̃
′
, b̃ : ρ̃ and A2{ρ̃/Ỹ

∀} � (ã : τ̃ ′, b̃ : ρ̃) because all the names in ã and
b̃ are fresh. Using the outermost (IH), we know that �I�[ai → yi ]σi | �[bi → zi ]ρi � D, E

and �O P{ãb̃/ṽw̃} � A, (B � ã : τ̃
′
, b̃ : ρ̃). Now A1 � A2 implies A1{ρ̃/Ỹ

∀} � A2{ρ̃/Ỹ
∀}

by Lemma 31 (1) . This in turn implies D, E � A, (B � ã : τ̃
′
, b̃ : ρ̃). Let Q = �[ai →

yi ]σi | �[bi → zi ]ρi . Then we can form
�IQ � D, E �O P{ãb̃/ṽw̃} � A, (B � ã : τ̃ ′, b̃ : ρ̃)

(PAR)
�OQ | P{ãb̃/ṽw̃} � (D, E)� (A, (B � ã : τ̃ ′, b̃ : ρ̃))

(RES)
�O(νãb̃)(Q | P{ãb̃/ṽw̃}) � (ỹ : σ̃ , z̃ : ρ̃)� (A, (B � ã : τ̃ ′, b̃ : ρ̃))

(WEAK)
�O(νãb̃)(Q | P{ãb̃/ṽw̃}) � A1 � A2

as required. If (RES), (WEAK) has been used to type the source of one of the premise transitions,
we proceed straightforwardly by one of the (IHs). This leaves (∃-VAR). It impossible that we
introduce an existential type variable that affects the types of any free name occurring in the
transitions under induction. But then we can simply proceed by (IH).

The base case for replicated input is similar and the remaining cases of the innermost induc-
tions (RES), (PAR), (WEAK) and (∃-VAR) are straightforward from the (IH). ��

C.3 An alternative generic transition system

Figure 5 gives an alternative account of generic labelled transitions. It is easier to define than
that of Sect. 5 as it doesn’t require pretransitions or action predicates. But there’s a price to be
paid for simplicity: the inference system is not entirely compositional. Certain inputs can only
be derived from non-trivial configurations.

Proposition 27 Up to ≡, transitions derivable using the system in Fig. 4 coincide with those
derivable using the system in Fig. 5.

Proof By straightforward, yet tedious inductions on the derivations of transitions. ��
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Fig. 5 An alternative inference system for generic labelled transitions
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