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Abstract Integrating heterogeneous database schemata is a major task in feder-
ated database design where preexisting and heterogeneous database systems need
to be integrated virtually by providing a homogenization database interface. Most
proposed schema integration methods suffer from very complex result schemata
and insufficient handling of extensional relations, i.e. in the way how redundant
data of the input systems are dealt with. Redundancy among the input systems
may thus remain undetected and, hence, remains uncontrolled.

Our GIM (Generic Integration Model) method is based on the elegant and
mathematically founded theory of formal concept analysis (FCA). The main idea
is to integrate schemata into one formal context which is a binary relation between
a set of attributes and a set of base extensions (set of potential objects). From
that context we apply an FCA-algorithm to semi-automatically derive a concept
lattice which we interpret as an inheritance hierarchy of classes for a homoge-
nized schema. Thus, the integration task following our method can be supported
by tools.

1 Introduction

Assume two database systems are given and a global application needs data
from both databases. The database systems are usually heterogeneous w.r.t.
to the database management system, the database model, and the database
schema requiring an elaborate homogenization for global accesses. Instead of
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performing an individual homogenization for every global application, it is of-
ten better to integrate the database systems only once, physically or virtually. In
this case, we need a schema integration method which homogenizes and integrates
two database schemata into one database schema.

The starting point of a schema integration process are therefore two preexist-
ing, possibly heterogeneous database systems with their schemata. Additionally,
the designer has knowledge about the semantics of the underlying databases, that
is, he has an understanding of the semantical links of schema elements to concepts
of the real world.

The main goal of the integration process is to construct an integrated
schema for the databases to be integrated. Similar to database views in tradi-
tional database systems, the derivation of several external schemata and their
adaption to application-specific needs must be supported. Schema integration
works as a template for the integration of the underlying databases. There-
fore, we need processable information about the mappings of the external
schemata to the preexisting schemata as result from the schema integration pro-
cess. Figure 1 depicts the integration process as black box with its inputs and
outputs.

Database schema integration has been a major topic of database engineer-
ing since the early days of database management systems. Problems of database
schema integration occur in several scenarios, e.g. during view integration within
database design, integration of databases in data warehouses, designing federated
databases, and database schema extension during schema evolution.

In this paper, we concentrate on database schema integration as part of con-
structing a federated database [73]. A federated database system (FDBS) estab-
lishes a virtual global database interface on preexisting database systems while
keeping the participating systems autonomous. Problems of federated database
systems have been discussed since the eighties of the last century and are relevant
in many database projects where databases need to be integrated, e.g. also in data
warehousing projects.

From the view of database schema integration, designing an FDBS is a com-
plex challenge. In addition to schema information we have to deal with database
states manipulated autonomously by local applications. We have to solve intrinsic
data heterogeneity of databases populated by different companies and organiza-
tions. Since the integration is virtual, we have to define database schema map-
pings processable by an FDBMS. Last but not least, some scenarios even require

Fig. 1 Input and output of the schema integration.
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global updates which require additionally an inverse mapping of database states
and updates.

Besides the problem of homogenization, we have to face the problem of re-
dundancy arising from independently developed and populated databases. Parts
of information may be stored redundantly in several databases. Such kind of re-
dundancy has to be considered for a correct integration.

We present the Generic Integration Model (GIM) method as a new approach to
schema integration. Following our approach, in contrast to many other approaches,
preexisting database schemata are not directly mapped onto one homogenized re-
sult schema. Instead, they are together mapped firstly into one intermediate rep-
resentation being an instance of the Generic Integration Model (GIM). From this
representation, which is regarded as a formal context [23], we apply secondly an
algorithm to semi-automatically derive the final integrated database schema. With
respect to the notion of information capacity, see for example in [32], there is no
unwanted data loss caused by mapping the preexisting database schemata onto
a GIM representation. However, information of how the data behind the input
schemata are presented gets lost. In order to reconstruct an appropriate overall
presentation we apply an algorithm producing a concept lattice. We interpret ev-
ery concept as a class of the homogenized result schema and the underlying partial
order of the lattice as specialization relationship between classes. The algorithm
is optimized to find a minimal number of classes. The designer can manipulate
the derivation process to tailor the result schema to specific design goals. Further-
more, besides schema mappings, our GIM method produces corresponding data
mappings.

The GIM integration method covers the whole integration process required for
an FDBS design. Main steps are formalized and can therefore be supported by
design tools which themselves can produce processable transformation rules for
data conversion, queries and updates. For comparison with other integration meth-
ods, we exemplarily relate our schema transformations to SIG-transformations as
published in [47,48].

For the following presentation, we restrict our consideration to the integration
of two preexisting databases. For its generalization to an n-ary case we refer to [2].
We concentrate furthermore on structural (i.e. static) aspects and will not discuss
dynamic aspects of database integration such as behavior integration [53]. Due
to space limitations we focus on explaining and defining key steps of the GIM
approach. For a more detailed discussion we refer to [68].

Before starting the technical part of our approach, we provide some definitions
of terms frequently used in subsequent sections:

– Redundancy between two databases is expressed by establishing a binary SAME
relation on two sets of database objects. The SAME relation is an equivalence
relation. For example, data about the same person can be stored in different
databases. The corresponding database entries are interrelated by the SAME re-
lation. Figure 2 depicts the case where two different database entries model the
same real world entity.

– Database objects are grouped into classes. We will use the term intension inter-
changeably for the type of a class, that is, for the set of its typed attributes.

– The extension of a class c, denoted as Extc, is defined as the set of instances
(objects) of c at a certain instant of time.
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Fig. 2 SAME relation.

– Extensional analysis is the non-trivial process of inspecting class extensions,
application programs and developer knowledge to detect extensional relation-
ships between different classes without explicitly knowing all possible database
states in future. An example of an extensional relationship is the information
that for every possible object of a database class there exists exactly one ob-
ject of another database class which is semantically related by the SAME rela-
tion. Such extensional relationships must be valid independently from specific
database states, i.e. from certain instants of time. They may be specified by ex-
tensional assertions like inclusion, disjointness, and overlap of the correspond-
ing class extensions. An inclusion assertion, for example, may state, that every
person stored in one database is always simultaneously stored in another one.
The classical approach to extensional analysis is to state extensional assertions
binarily only, for example stating that the classes Man and Woman are always
disjoint. Later on, we will discuss the deficiencies of being restricted to binary
extensional assertions.

This paper is organized as follows. Section 2 discusses the overall requirements
for schema integration and the quality criteria for the result schemata and their
mappings. Section 3 presents an example to be used in the remaining sections.
Additionally, the specific problems arising in the example scenario are discussed.
Section 4 describes the main ideas and concepts, including the generic integration
model, behind our integration method. The translation of the input schemata into
GIM is described in Sect. 5. The GIM representations need to be compared in
order to find conflicting schema elements. Section 6 shows how to resolve such
conflicts by transforming schemata. After this step the resulting two GIM repre-
sentations are merged into one representation in Sect. 7. To obtain an integrated
view in a database model, Sect. 8 discusses ways of deriving external schemata
from the integrated GIM representation. An external schema can be adapted to a
certain application view. After discussing related work in Sect. 9 we conclude and
summarize our work in Sect. 10.

2 Requirements for schema integration and schema levels

Our integration scenario implies some intrinsic problems that have to be resolved
by an appropriate integration method:

1. The two input database schemata may be formulated in different database mod-
els. This database model heterogeneity is resolved by translating them into a
common data representation during the integration process.

2. Parts of the translated schemata may be semantically interrelated. That is, they
can refer to same real world concepts and are in this sense redundant, e.g. a
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class Employee can occur in different schemata. On data level, such redun-
dant schema parts often cause their underlying database objects being seman-
tically related by the SAME relation.

3. The problem of schema heterogeneity arises because redundant schema parts
may be modelled differently.

4. The designer knowledge about the semantics of the preexisting databases is
often neither explicitly available, exact, consistent, nor complete. Finding re-
dundant schema parts is therefore not a trivial task.

These problems lead to some (partly formalized) requirements for the result of the
integration process. They were published in [2] and include:

1. completeness and correctness: The integrated schema must contain all con-
cepts present in any input schema correctly. The integrated schema must be
a representation of the union of the application domains associated with the
schemata.

2. minimality: Although the same concept may be represented in more than one
input schema, it must be represented only once in the integrated schema.

3. understandability: The integrated schema should be easy to understand for the
designer and the end user. This implies that among the several possible rep-
resentations of results of integration allowed by a data model, the one that is
(qualitatively) the most understandable should be chosen.

These requirements will be discussed in the following sections in more detail.
Before doing this, we give some details of the integration process and identify
some intermediate schema representations.

2.1 Schema levels

We introduce different schema levels for the integration process and start with the
two input schemata S1 and S2 at the lowest level. Final result of the integration pro-
cess are one integrated representation SI and possibly several external schemata
SE as schemata at the highest level. We propose to use additional schema repre-
sentations at intermediate levels:

1. The two input schemata S1 and S2 are translated into a common data represen-
tation used for the integration. This step overcomes data model heterogeneity
and produces the component schemata SC

1 and SC
2 .

2. In order to overcome schema heterogeneity the schemata SC
1 and SC

2 are ho-
mogenized resulting in the two homogenized schemata SH

1 and SH
2 .

3. The homogenized schemata SH
1 and SH

2 are merged into one integrated schema
SI .

4. Several external schemata SE
1 , . . . SE

i are derived from SI in order to reflect
different application-specific needs and restrictions.

The five-level schema architecture from Sheth and Larson [73] is usually accepted
as a reference model for a database federation. Figure 3 relates our schema levels
(right) to those of [73] (left).

As a difference, we do not utilize export schemata but homogenized schemata
SH . Furthermore, our first merged schema SI is expressed in the Generic Integra-
tion Model und, thus, is no database schema for an end-user.
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Fig. 3 Schema architecture.

Table 1 Requirements for schemata at different levels

Schema Understandability Minimality

SE required required
SI not required required
SH

1 , SH
2 not required not required

SC
1 , SC

2 not required not required

Table 1 relates the requirements for understandability and minimality to our
different schema levels. These requirements are subjective and can, therefore,
hardly be formalized.

In order to characterize completeness and correctness more precisely we need
to consider mappings between schema instances (database states). Let S be a
schema, I (S) the set of all possible instances of a schema S, and Sym(i) the
set of all symbols, i.e. all attribute values of an instance i ∈ I (S). Furthermore,
we define for j ∈ {1, 2} the database mappings ϕC

j from I (S j ) to I (SC
j ), ϕH

j

from I (SC
j ) to I (SH

j ), ϕ I from (I (SH
1 ) × I (SH

2 )) to I (SI ), and ϕE from I (SI ) to

I (SE ).
In the database theory, there is the concept of schema equivalence , c.f. [32,

48]: A database mapping ϕ between instances of S1 and S2 is said to be Z-internal
for a given value set Z ⊆ DO M , if ϕ is functional, injective, total, and ∀i ∈
I (S1) : Sym(ϕ(i)) ⊆ Sym(i) ∪ Z holds. The schemata S1 and S2 are defined
to be Z-internal equivalent, if a finite set Z ⊆ DO M and a mapping ϕ between
I (S1) and I (S2) exists which is Z -internal and bijective. This kind of equivalence
implies that all new values introduced by a bijectively mapped database instance
must be elements of the finite set Z .

For completeness and correctness we require Z -internal equivalence among
S j , SC

j , and SH
j . We require furthermore Z -internal equivalence except injectiv-

ity between the combined schemata (SH
1 , SH

2 ) and SI as well as between SI and
SE . Injectivity is dropped in order to overcome redundancy by merging instances
from SH

1 and SH
2 . For example, the address of the same employee may be stored
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simultaneously in two different databases. These address values should be equal
but due to possibly different degrees of data quality they may be different. Merg-
ing the corresponding database states means to map the two address values onto
one value. Since one value gets lost injectivity of the mapping cannot be fulfilled.
Therefore, we require injectivity to be abandoned in order to overcome data con-
flicts among redundant data.

Since an external schema should reflect a user-specific part of the database
injectivity is abandoned in this case, too.

2.2 Deficiencies of existing integration methods

Schema integration is one bottleneck of building database federations [50]. One
reason can be found in common deficiencies of most existing integration meth-
ods1: (i) Most approaches consider only some steps of the integration process and
do not present a method covering all steps from heterogeneous input databases
up to the external schema derivation. (ii) In general, integrating heterogeneous
schemata is a complex task. Unfortunately, most integration approaches do not
provide design algorithms to support this task. (iii) Most approaches suffer from
insufficient dealing with extensional conflicts. Extensional conflicts express po-
tential redundancy among classes. That means, data about one real-world object
can be stored in more than one class simultaneously. To meet the requirements
for minimality and correctness we have to know how class extensions are seman-
tically related to each other. Most approaches enable the specification of binary
extensional assertions comparing the extensions of two classes only. As shown in
[66] binary assertions are not powerful enough to express all possible extensional
relations among classes. Therefore, some SAME objects may remain undetected
or some global class extensions may be always empty, and thus superfluous.

Some approaches, e.g. [28,56,57], do not any analyze extensional relations.
They merge semantically-related classes simply into one global class. The set of
attributes of the global class equals the union of the local class attributes. Without
extensional analysis the designer does not know for which potential global object
there is a value for an attribute. Therefore, many null values occur. Managing null
values usually requires a special treatment and should, therefore, be avoided.

Our approach aims to overcome these problems. It covers the whole integra-
tion process and provides: (i) a complete and correct handling of extensional ana-
lysis (presented in Sect. 6.2); (ii) an elegant algorithm to support the derivation
of external schemata (Sect. 8). (iii) mechanisms to manipulate the derivation pro-
cess in order to derive an external schema which is tailored to application-specific
needs.

3 An integration example

For demonstration purposes we utilize a running example while explaining our
integration method. Figure 4 depicts two database schemata in an UML-like no-
tation. The first database stores information about people working in a company.

1 A detailed discussion of related work is given in Sect. 9.
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Table 2 Integrity constraints

Local Class Integrity Constraint

Manager1 salary ≥ 3500
Employee2 salary ≥ 3000

Fig. 4 Schema 1: company schema and schema 2: department schema.

Every person is either an employee or a trainee. Furthermore, every manager is
an employee. The second database contains data about persons relevant for a
department of this company. Every person contained in People of the depart-
ment database is a customer, or an employee, or both of them (contained in class
Cust-Emp). We will distinguish classes from both databases using subscripts
following their names.

Table 2 lists specified integrity constraints.
The example includes an attribute conflict w.r.t. the attribute name. Attribute

name1 contains last names whereas name2 shall contain full names.
For our small example, we assume that the following extensional rela-

tions2 hold: (1) Every employee from class Employee2 is simultaneously con-
tained in class Employee1. (2) Every person entry simultaneously contained in
Employee1 and Customer2 is also an instance of class Employee2 (and thus
contained in class Cust-Emp2).

Besides for demonstration purposes, we will use this small example to dis-
cuss the problems if only binary extensional assertions are utilized for the ex-
tensional analysis. As a first observation, we realize that both assertions involve
certain overlaps between the extensions of the classes Employee1, Employee2
and Customer2. These overlaps are graphically depicted in Fig. 5 (using an
Euler/Venn diagram notation).

On the right hand side of Fig. 5, we give an equivalent notation for ex-
pressing extensional overlaps which does not have the intrinsic restrictions of a
diagrammatic notation. Such an extension diagram splits all extensions into dis-
joint base extensions (labelled with numbers) and specifies the relation between
class extensions and base extensions as a Boolean matrix.

Obviously, the second assertion cannot be exactly stated by binary assertions.
If we are forced to binary ones we can just state that Employee1 can overlap

2 In addition to those which are already stated by the given specialization among classes.
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Fig. 5 Exact extensional relationships among Employee1, Employee2, and Customer2.

Fig. 6 Extensional relationships among Employee1, Employee2, and Customer2 due to
binary assertions.

Customer2 and Employee2 can overlap Customer2. The result is depicted in
Fig. 6. It introduces an additional base extension (5), which is always empty and,
therefore, superfluous. That wrong base extension is a direct consequence of using
exclusively binary assertions as proposed by many integration methods. Besides
the GIM approach, only a few other approaches, e.g. [8,17], allow for extensional
assertions of higher arity than binary.

4 The GIM method

This section presents the core ideas and concepts behind our integration method.
As stated earlier, the main problem of database schema integration is the difficulty
of resolving schema heterogeneity. Schema conflicts occur when redundant parts
of various schemata are modelled differently. Such conflicts occur very often since
a database model offers a database designer typically a certain freedom to model
one real world concept in different ways. Obviously, the more modelling concepts
are available the more probable do schema conflicts occur and, thus, the more dif-
ficult is the task to overcome them. Therefore, using a semantically rich database
model with many modelling concepts requires often an expensive homogeniza-
tion.

For expressing the integrated schema, one particular database model must be
chosen to which the input schemata need to be translated. In order to avoid a loss
of any schema information, most integration methods have chosen a semantically
rich database model. Such a model provides enough modelling concepts to be
the appropriate target database model for translating schemata of, hopefully, any
possible database model.

Summarizing this discussion, we are confronted with two conflicting goals
when we have to choose an appropriate database model as integration model. At
the one hand, it should be as semantically rich as possible in order to avoid loss
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of schema information. At the other hand, many modelling concepts make the
homogenization process very complex and, furthermore, result in very complex
and unhandy integrated schemata.

Most integration methods ignore the deficiencies of choosing a semantically
rich database model and choose, therefore, an object-oriented or object-relational
database model as integration model.

Our integration method, however, respects both goals. The conflict is resolved
by introducing a special data model for the intermediate schemata SC , SH , and SI

(see Fig. 3 on p. 480). This database model is intended to serve as an integration
model but not as an end user database model. We have chosen the generic inte-
gration model (GIM) as integration model. In order to make the homogenization
as easy as possible, GIM offers only a relatively small set of modelling concepts.
GIM is a class-based data model supporting disjoint extensions, i.e., GIM is not
intended to support a specialization of classes.

That decision provokes the question about the potential loss of schema infor-
mation when an input schema expressed in a semantically rich database model
needs to be translated into GIM. In order to answer that question, we distinguish
between two kinds of schema information loss:

1. data loss: Transforming a database state in accordance to a schema translation
can produce a loss of data if the corresponding schemata are not Z-internal
equivalent.3

2. loss of presentation data: Presentation data of a schema define the way how an
underlying database is presented to the end user.

Our integration model GIM is designed to avoid loss of data, but presentation data
can get lost. The rationale behind neglecting loss of presentation data is twofold:
(1) If, in general, a schema conflict needs to be resolved then obviously at least
one way of presentation must be abandoned anyway. Therefore, in principle, loss
of presentation data cannot be avoided completely. (2) Our integration method
provides an FCA-algorithm to semi-automatically construct new presentation data
for an external schema on top of a integrated GIM schema.

Our integration method, therefore, performs in a first phase a data lossless
schema translation, homogenization, and integration involving GIM. The second
phase, however, comprises a semi-automatically construction of appropriate pre-
sentation information for an external schema from the integrated GIM schema.
Our experiences with that construction of presentation information have shown
that our algorithm produces relatively easy and understandable external schemata.
Additionally, the designer can manipulate the derivation algorithm in order to
tailor an external schema to application-specific needs. This includes even the
case when the designer wants to recover lost presentation information as much as
possible.

Besides our running example, the following very small example sketches
our integration method. Figure 7 depicts two schemata to be integrated. The
first one contains the class Student and the second one the classes Person
and Employee. Due to an extensional analysis we may know that the exten-
sion of Person can be partitioned into a student and an employee extension.

3 For the definition of Z-internal equivalence see Sect. 2.
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Fig. 7 Mapping of two input schemata into one integrated GIM schema.

Fig. 8 Deriving an external schema from an integrated GIM schema.

Furthermore, we assume4 attributes with same names share same semantics. Using
this information, the input schemata are mapped into one integrated GIM schema.
There, a row represents an attribute and a column refers to a base extension. A cell
at a certain row and a certain column is set if for that kind of objects a value for
the corresponding attribute would exist. The classes of the input schemata can be
represented by rectangles.

From the integrated GIM schema we are now able to derive an external end
user schema by looking for maximal rectangles filled with crosses. In our small
example, see Fig. 8, we obtain the classes Person and Student. Their over-
lapping determines the class Student to be a subclass of Person. The output
class Person subsumes the input classes Person and Employee.

4.1 Formal definition of GIM

GIM is a class-based data model for modelling classes with disjoint extensions.
Attributes have atomic data types. Integrity constraints like uniqueness, cardinal-
ity, and domain constraints can be specified. GIM supports bidirectional reference
attributes, i.e. reference attributes occur pairwisely. In this way, during the deriva-
tion of an external schema one can freely choose a certain reference direction (as
specific presentation detail) by dropping the inverse reference attribute.

4 This assumption holds only for this little example.
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We assume that the set Dat and the set function Domain are given. Dat
contains names of data types and reference data types. The set-valued function
Domain is a function over Dat . Domain assigns a set of values to each data type
name. A value of a reference data type is defined to be a set of object identifiers.5

The constituents of GIM are defined as follows:

– Class C
def= (Cname, Att, I C): Cname is the name of the class and Att is a

function from a set of attribute names into Dat defining the intension (type) of
a class. Each class includes an attribute Id which represents the object identi-
fiers. Att can also contain reference attributes. Every reference attribute defines
a set of referred class and must correspond to an inverse reference attribute.
Additionally, I C contains local uniqueness constraints, domain constraints and
cardinality constraints.

– Schema S
def= (Sname, C, Unique): Sname is the name of the schema and C is a

set of classes {C1, C2, . . . , Cn}. Unique is a set of global uniqueness constraints
ranging over several classes.

– Extension ExtC of a class C : ExtC is defined as a set of functions. Each function
represents an object and defines the attribute values for the given attributes:

∀ f ∈ ExtC : f is a function over dom(C.Att) ∧
∀x ∈ dom( f ) : f (x) ∈ (Domain(C.Att (x)) ∪ {NU L L}).

The object identifiers have to be unique:

∀ f1, f2 ∈ ExtC : f1(I d) = f2(I d) ⇒ f1 = f2.

– The extension ExtI d,C contains the identifiers of the extension of class C :

ExtI d,C
def= { f (I d) | f ∈ ExtC }

Extt
I d,C denotes the extension at time t .

– A database state StateS is a set-valued function over the classes C of schema
S. 6 A state assigns to each class of the schema a class extension:

∀C ∈ S.C : StateS(C) = ExtC

Additionally, we require extensional disjointness:

∀C1, C2 ∈ S.C : C1 	= C2 ⇒ Extt
I d,C1

∩ Extt
I d,C2

= ∅
– For a pair of inverse reference attributes r1 and r2 of classes C1 and C2, respec-

tively, we require:

∀o1 ∈ StateS(C1) : ∀oid ∈ o1(r1) ⇒
∃o2 ∈ StateS(C2) : o2(I d) = oid ∧ o1(I d) ∈ o2(r2).

– Additionally, all constraints have to be satisfied by a database state.

5 A reference can be restricted to a set containing at most one object identifier by a specific
cardinality constraint.

6 In Sect. 2 we used I (S) to denote the state.
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The data model GIM is designed to enable data lossless schema translations from
typical database models, e.g. the relational model as well as object-oriented ones.

4.2 Graphical representation of a GIM schema

For illustrating GIM schemata, we use a simple 2-dimensional graphical rep-
resentation. The vertical dimension is defined by the intension, i.e. the (typed)
attributes including reference attributes. Formally, this dimension is given by⋃

C∈S.C dom(C.Att). The type of a reference to extension n is denoted with ‘En’.
The horizontal dimension is defined by the set of GIM classes, which are called

base extensions. These extensions are mutually disjoint and are used as placehold-
ers for concrete objects. For simplicity, base extensions are often identified by
numbers.

Figure 9 shows the two-dimensional diagram defining a GIM schema. The
GIM schema of our example schema 1 is depicted in Fig. 10 on page 487. Ref-
erences are denoted by a line between the two paired inverse reference attributes.
A class is represented by a rectangle grouping attributes for one base extension.
The figure shows additionally the representation of local constraints and global

Fig. 9 Graphical representation of a GIM schema.

Fig. 10 Graphical GIM-representation of schema 1.
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uniqueness constraints. In Fig. 9 there is a global uniqueness constraint on a2
ranging base extensions 1 and 3.

Later on we will use tables as a further simplified notation. Such a table con-
sists of attribute names, numbered base extensions, ‘�’-entries for the attribute-
extension relation, and shadowed areas for integrity constraints.

The goal of the graphical representation is to demonstrate single integration
steps. Of course, only in small schemata every class can group its attributes with-
out gaps by means of rectangles. Large GIM schemata should be better repre-
sented using the table notation.

5 Schema translation into GIM

After defining the Generic Integration Model, we will discuss the translation of
local schemata into GIM. A data lossless translation is feasible for schemata
of various source database models. Of course, the precise translations steps de-
pend on the source database model. Due to space limitations, we cannot give a
formal description of the translation steps for every possible source database
model. Instead, we describe the translation w.r.t the following aspects informally:

1. object identifiers,
2. bidirectional references,
3. atomic data values,
4. integrity constraints, and
5. disjoint class extensions and consequences.

Object identifiers: Since the Generic Integration Model supports the idea of ob-
jects, new object identifiers must be assigned to tuples (objects). In order to guar-
antee a bijective database mapping, the mapping between original objects and
assigned object identifiers must be stored and maintained by the FDBS.
Bidirectional references: A reference value in GIM contains the object identi-
fiers of the referenced objects. Referential integrity is guaranteed by GIM. If the
source data model is the relational model then foreign key attributes pointing to
primary key attributes are converted into reference attributes. Since GIM requires
bidirectional reference attributes, corresponding inverse reference attributes must
be created, if necessary, for every class a given reference attribute refers to. On
data level, for each reference value from one object to another object an inverse
reference value is created and assigned to the corresponding reference attribute.
The consistency of this kind of redundancy is enforced by the Generic Integration
Model. In our example the attribute job of the class People2 is a unidirectional
reference attribute pointing to the class Position2. The new reference attribute
is the attribute people of the class Position2 pointing to class People2.

Please note, that creating object identifiers together with a bijective mapping as
well as creating inverse reference attribute values bijectively to original reference
attribute values obeys the requirement for schema equivalence. These operations
are comparable with the node creation ς -transformation in [48].
Atomic data values: GIM requires the 1NF-attributes. If an input schema is not
in 1NF then the relational normalization theory [81] gives us a formal framework
to transform it into a normalized schema. Our example schemata are already nor-
malized and need not to be transformed.
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Table 3 S1 and S2: extensional mapping

local class base extension

Person1 1,2,3
Employee1 1,2
Trainee1 3
Manager1 1

local class base extension

Position2 1
People2 2,3,4
Customer2 2,3
Employee2 3,4
Cust-Emp2 3

Integrity constraints: In order to guarantee schema equivalence, integrity con-
straints of a source schema are mapped to GIM constraints. Since GIM supports
uniqueness constraints and domain constraints, no semantics gets lost if the source
data model is the relational model. In contrast to atomic reference attributes in the
relational model, an object model can allow a set of object references for one refer-
ence attribute. Therefore, GIM supports the set semantics together with cardinality
constraints capable of restricting such sets. In this way, schema equivalence can
be reached for translating schemata from the relational model as well as from an
object model.

Disjoint class extensions and consequences: Class extensions of a GIM schema
are always mutually disjoint. This property is usually not fulfilled in other data
models. Specializations in object-oriented database models, for example, define
subset relations between class extensions. Specialization can also exist in rela-
tional schemata specified by using primary and foreign keys. A decomposition of
class extensions may be necessary to generate disjoint extensions. For subset re-
lationships in specialization hierarchies, it is sufficient to compute shallow class
extensions. A shallow extension of a class consists of those instances which are not
instances of any of its subclasses. Since reunifying the disjoint extension would
reconstruct the original extension, the decomposition obeys the requirement for
data lossless schema equivalence.

In a source schema a reference attribute can point to a class which has to
be decomposed due to the requirement for disjoint class extensions. Thus, after
decomposition this attribute has to refer to more than one class. This is the reason
why GIM allows a reference attribute referring to more than one class.

Class decomposition must be in accordance to specified integrity constraints.
Domain constraints are directly adopted to the resulting classes. Intra-class
uniqueness constraints, however, become inter-class constraints.

The translation of our example schemata provides the GIM schemata pre-
sented in Fig. 10 and 11.7 These GIM schemata in the table notation are shown in
Table 4. The mappings between the original classes and the GIM classes are pre-
sented in Table 3. Some GIM extensions are expressed by set differences between
local class extensions.

7 Since Employee1 ∪ Trainee1 = Person1 and Employee2 ∪ Customer2 =
People2 hold (see Sect. 3) the shallow extensions of Person1 and People2 are always
empty.
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Table 4 S1 and S2 as GIM tables

local class 1 2 3

start-date �
name � � �
salary � �
position � �
address � �
telephone �

local class 1 2 3 4

address � �
name � � �
job � � �
salary � �
description �
qualification �
people �

Fig. 11 Graphical GIM-representation of schema 2.

6 Schema homogenization

This section describes how to homogenize the component schemata SC
1 and SC

2
informally. Homogenizing these schemata produces the GIM schemata SH

1 and
SH

2 . Different classes of conflicts must be considered. A good integration method
guides the designer to resolve conflict classes in a particular sequence avoiding
redundant integration steps. The GIM method resolves the main conflict classes
in the following sequence: (i) Structure conflicts: correspondences between at-
tributes and classes due to correspondences between attribute values and objects;
(ii) Attribute conflicts: correspondences between attributes due to correspondences
between their attribute values; and (iii) Extensional conflicts: correspondences
among classes due to potential redundancy among their extensions.

The list does not explicitly include name conflicts between attributes and
classes, respectively, e.g. synonyms and homonyms. Resolving attribute-name
conflicts is implied by the resolution of attribute conflicts, and resolving class-
names conflicts is implied by the resolution of extensional conflicts.

6.1 Homogenization: intensional aspects

As introduced earlier, the intension of a class denotes its defined attributes. Inten-
sional conflicts are, therefore, conflicts which involve attributes. This subsection
describes how to deal with structure and attribute conflicts.
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Fig. 12 Structure conflict between the example schemata.

6.1.1 Structure conflicts

A structure conflict exists if one or more attributes of a schema have a semantic
correspondence to a class of another schema. In other words, an attribute value
would appear as an object in the other database. In our example a structure con-
flict exists between the attribute position of the classes 11 (Manager1), 21
(Employee1\Manager1) and the class 12 (Position2) (cf. Fig. 12).

To find all structure conflicts the designer has to compare attributes with
classes. Attribute and class names are often giving hints to detect structure con-
flicts. Therefore, a tool which computes the affinity of names can help to detect
structure conflicts (see for example [5]).

Due to the demand for minimality and understandability, each concept should
exist in only one representation. In general, there are two ways of resolving a
structure conflict: the transformation of the attribute into a class or vice versa.
The transformation of a class into an attribute is often not feasible because not
every class can be transformed to single attributes without data loss. For example,
the existence of the attribute qualification2 makes the transformation of the
class Position2 into an 1NF-attribute impossible. Therefore, the GIM method
resolves the structure conflict by transforming attributes into classes.

Schema transformation: Here we assume the attibutes A1 . . .An of the classes

C1 . . . Cn of the first schema with Dom
SC

1
C1

(A1) = · · · = Dom
SC

1
Cn

(An) are in con-
flict with the class C of the second schema. For resolving the structure conflict a
new class Cnew for the first schema has to be created. The name of the new class is
adopted from the class C. The class Cnew has exactly one non-reference attribute
Anew with the name of the corresponding, identifying attribute of class C. The data
type is adopted from the attributes A1 . . .An . An additional attribute is a reference
attribute AR pointing to the classes C1 . . .Cn . The original attributes A1 . . .An are
now transformed to reference attributes inverse to AR referring to the class Cnew.

In order to guarantee a surjective database mapping integrity constraints have
to be considered. Since the semantics of the original attributes is now shifted to
attribute Anew, corresponding integrity constraints are copied to the new class Cnew.
Additionally, a uniqueness constraint on attribute Anew guarantees that each value
of the original attributes corresponds to at most one object of the new class. A null
value of the original attributes A1 . . .An is replaced by a null reference. Therefore,
the attribute Anew must be a not-null-attribute. Furthermore, the class Cnew can
contain only such objects for which corresponding values of the original attributes
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Fig. 13 Resolution of a structure conflict.

exist. Therefore, each object of the class Cnew has to have at least one reference,
i.e. a not null and a cardinality constraint are defined on the reference attribute.

The resolved structure conflict of our example is depicted in Fig. 13.

Mapping database states: For each occurring value of an attribute being in-
volved in a structure conflict a new object must be created and inserted into
the corresponding new class. To guarantee schema equivalence the mapping be-
tween the object identifier for the created objects and the related attribute val-
ues must be bijective. A stored mapping table relates attribute values to object
identifiers. Furthermore, the reference attributes must be set to the correct object
identifiers.

6.1.2 Attribute conflicts

An attribute conflict between two attributes exists if they represent the same prop-
erty of objects in different ways. The attributes are semantically related by their
related values.

For example, the two attributes price and cost constitute an attribute con-
flict. Although the attribute names are different, they denote the same semantics.
The conflict can also be on data level, if the price is given USD and the cost in
EURO.

Our introduced example contains an attribute conflict between the attributes
name1 and name2. Both attributes denote names of persons. The attribute name1,
however, contains the last name whereas name2 contains the first and the last
name of a person.

In general, the designer has to use background knowledge to detect attribute
conflicts. Investigating design documents and current database states can often aid
the designer to determine the semantics of attributes. Furthermore, similar to the
structure conflict, computing the affinity of attribute names by using a synonym
dictionary can give hints for attribute conflicts (cf. [5]). Due to the demand for
minimality and understandability the problem of different representations of one
property must be resolved.

In this work we only sketch the idea of attribute conflict resolution. For a
deeper discussion we refer to [68].

We distinguish between two types of attribute conflicts. In conflicts of type (1),
attributes have different precisions. For example, the attribute name containing
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Fig. 14 Resolution of an attribute conflict in schema 2.

the full name is more precise than just the last name. Another example: one integer
attribute specifies the length in meter and the other one in centimeter resulting in
non-injective mappings between corresponding values. In order to resolve this
type of conflict we split the attribute with higher precision into two attributes.
name is split into attributes containing first names and last names, respectively.

A bijective mapping between the high-precision attribute values and the value
combination of the new attributes must be established in order to guarantee
schema equivalence.

Attribute conflicts of type (2) are characterized by different attribute values.
Two attributes can, for example, contain names of colors and the first one uses
color values in English and the other one in German. Such a conflict is resolved
by applying tables which relate corresponding attribute values. For schema equiva-
lence the table must establish a bijective mapping. Appropriate domain constraints
must guarantee functionality and surjectivity of the value mapping.

If we regard attributes as nodes in the SIG-formalism of [48] then our proposed
schema transformation corresponds to a node creation ς -transformation followed
by a node deletion ς -transformation.

In our example, we have an attribute conflict type (1) between name2 and
name1. We split the attribute name2 into attribute name2 and first-name2
which contain last and first names, respectively. Figure 14 depicts the modified
schema.

6.2 Homogenization: extensional aspects

The Generic Integration Model requires disjoint class extensions. Whereas class
extensions within one component database already meet this requirement8 this is
not always the case if we compare class extensions from different databases. This
aspect is the topic of this subsection.

The goal is to have identical or disjoint class extensions w.r.t. the schemata
SC

1 and SC
2 only. As a prerequisite we need correct information about set re-

lations among class extensions. Extensional relations can be regarded as global
integrity constraints hidden in application semantics. Specifying extensional rela-
tions is usually very hard for a designer but inevitable for a correct handling of

8 Disjoint class extensions result from the translation step described in Sect. 5.
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redundancy. Such relations can be expressed by an Euler/Venn-diagram or by an
extension diagram (cf. Sect. 3). Different sources of information about extensional
relations are:

1. Information from the given schema and data model: From the specification of
an object-oriented schema we have the information which class is a subclass
of another class. Such a specialization means a subset relation between their
extensions. Furthermore, additional constraints can state exclusive or total spe-
cializations.

2. Database states: The designer often has access to the states of the databases to
be integrated. Comparing available database states helps to detect redundancy.
Detected redundancy between two classes excludes disjointness and can give
hints for a set equivalence or a subset relation.

3. Integrity constraints: Comparing integrity constraints can help to detect exten-
sional relations among classes from different schemata. If no database state can
simultaneously fulfill the conjunctively combined integrity constraints of dif-
ferent classes, then a disjoint extensional relation can be concluded. For more
details see [55,79,80].

4. Background knowledge of the designer: In practical scenarios, information
originating from the previous three sources is often not sufficient for a complete
extensional analysis. The designer usually has to use his background knowl-
edge in order to specify complete information about extensional relations.

5. default: If no information about the extensional relation between classes from
different databases is known then we assume per default an overlapping rela-
tion.

A prerequisite for resolving extensional conflicts is the existence of an extension
diagram. It is often very hard for a designer to specify such a diagram because
it relates the extensions of all classes simultaneously. Instead of an extension di-
agram, the designer usually wants to specify the extensional relation among a
restricted set of classes. Most publications about schema integration, e.g. [75],
propose extensional assertions.

An extensional assertion specifies an extensional relation between two exten-
sions. It refers to a stable set relation between database states at any instant of time
including the future.

The symbols ∅, ⊆, ≡, and � denote four different extensional relations be-
tween two extensions. The following formalization uses the predicate SAME as
introduced in Sect. 1. Between two classes C1 and C2 the following extensional
assertions can be formulated:

disjointness: C1 ∅ C2 :⇔ ∀t : ∀id1 ∈ Extt
I d,C1

:
∀id2 ∈ Extt

I d,C2
: ¬SAME(id1, id2)

containment: C1 ⊆ C2 :⇔ ∀t : ∀id1 ∈ Extt
I d,C1

:
∃id2 ∈ Extt

I d,C2
: SAME(id1, id2)

equivalence: C1 ≡ C2 :⇔ (C1 ⊆ C2) ∧ (C2 ⊆ C1)

overlap: C1 � C2 :⇔ ¬(C1∅C2) ∧ ¬(C1 ⊆ C2) ∧ ¬(C2 ⊆ C1)

Two classes are extensionally disjoint, if there are no SAME objects in the exten-
sions of these classes at any instant of time. One class is extensionally contained
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in another class if the extension of the first class is a subset of the extension of the
other class at any instant of time. Equivalent classes have same extensions at any
instant of time. Finally, an overlap is the remaining case.

In Sect. 3, we motivated the need for extensional assertions among more than
two classes. Therefore, we enhance extensional assertions to allow comparisons
between set expressions on class extensions using the set operations union, differ-
ence and intersection (cf. [69]).

The extensional relations for our example are informally given in Sect. 3. The
following list contains the explicit extensional assertions:

Employee1 ⊆ Person1, Manager1 ⊆ Employee1,

Trainee1 ⊆ Person1,

Customer2 ⊆ People2, Employee2 ⊆ People2,

Cust-Emp2 ⊆ Customer2,

Cust-Emp2 ⊆ Employee2,

Person1 ≡ (Employee1 ∪ Trainee1), Employee1 ∅ Trainee1,

People2 ≡ (Customer2 ∪ Employee2), Cust-Emp2

≡ (Customer2 ∩ Employee2),

Employee2 ⊆ Employee1,

(Employee1 ∩ Customer2) ⊆ Employee2,

Position2 ∅ Person1, Position2 ∅ People2,

The assertions above are defined on local classes but not on current GIM schemata.
Table 3 on P. 489 contains information how the local classes are mapped to GIM
classes. Considering these mappings we obtain the following extensional asser-
tions by substitutions:

11 ∪ 21 ⊆ 11 ∪ 21 ∪ 31 (1)

11 ⊆ 11 ∪ 21 (2)

31 ⊆ 11 ∪ 21 ∪ 31 (3)

22 ∪ 32 ⊆ 22 ∪ 32 ∪ 42 (4)

32 ∪ 42 ⊆ 22 ∪ 32 ∪ 42 (5)

32 ⊆ 22 ∪ 32 (6)

32 ⊆ 32 ∪ 42 (7)

11 ∪ 21 ∪ 31 ≡ 11 ∪ 21 ∪ 31 (8)

11 ∪ 21 ∅ 31 (9)

22 ∪ 32 ∪ 42 ≡ 22 ∪ 32 ∪ 32 ∪ 42 (10)

32 ≡ (22 ∪ 32) ∩ (32 ∪ 42) (11)

32 ∪ 42 ⊆ 11 ∪ 21 (12)

(11 ∪ 21) ∩ (22 ∪ 32) ⊆ 32 ∪ 42 (13)

12 ∅ 11 ∪ 21 ∪ 31 (14)

12 ∅ 22 ∪ 32 ∪ 42 (15)
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Table 5 Extension diagram for SC
1 and SC

2

SC 1 2 3 4 5 6 7 8 9 10 11

11 � � �
21 � � �
31 � �
41 � �
12 �
22 � �
32 � �
42 � �

Resolving structure and attribute conflicts typically changes the involved
schemata. In our example a new class Position1 (41) was created. It must be
compared with other classes:

Position1 ∅ Person1 : 41∅11 ∪ 21 ∪ 31 (16)

Position1 ∅ People2 : 41∅22 ∪ 32 ∪ 42 (17)

Position2 ⊆ Position1 : 12 ⊆ 41 (18)

Since schema translation already performed an extensional decomposition asser-
tions from (1) to (8) and (10) are meaningless. All classes within one GIM schema
are per definition mutually disjoint. Therefore, assertions (9), (11), (15), and (16)
are dropped.

The next step is the derivation of an extension diagram from a set of exten-
sional assertions. [69] describes an appropriate algorithm for that problem. The
algorithm computes an extension diagram with a minimal number of base ex-
tensions by exploiting simplification rules of propositional logic. The idea is to
transform assertions into boolean expressions, to combine them conjunctively, to
transform the result into the disjunctive normal form, and to minimize the number
of min-terms. Table 5 shows the computed extension diagram for our example.

Schema transformation: An extension diagram defines a set of base extensions.
Each component class extension is expressed by the union of corresponding
base extensions. Resolving extensional conflicts means extensionally decompos-
ing classes into smaller classes. In case of redundancy a base extension causes
the generation of two new classes for both schemata. These classes have the same
extension. The name of a new class is set to the number of the corresponding base
extension. After splitting we obtain a new set of GIM classes for two schemata.
Classes from different schemata with same names always have the same exten-
sion, otherwise, their extensions are always disjoint.

As result we obtain the homogenized schemata SH
1 and SH

2 . The homogenized
schemata of our example are presented in Table 6 and 7. The shaded areas indicate
the existence of integrity constraints (cf. Table 8).

Mapping database states: Mapping database states for resolving extensional con-
flicts is similar to the mapping for schema translation. In contrast to the trans-
lation, however, splitting classes in smaller classes requires comparisons among
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Table 6 Example: SH
1

Local class 1 2 3 4 5 6 7 8 10 11

description � �
employee � �
start-date � �
name � � � � � � � �
salary � � � � � �
position � � � � � �
address � � � � � �
telephone � � �

Table 7 Example: SH
2

Local class 2 3 4 5 7 9 11

address � � � �
first-name � � � � � �
name � � � � � �
job � � � � � �
salary � � � �
description �
qualification �
people �

Table 8 Integrity constraints

GIM class Integrity constraint

1,2,3 salary ≥ 3500
2,3,4,5 salary ≥ 3000
10,11 description is not null
10,11 card (employee) > 0
10∪11 unique (description)

extensions from different databases. For example, base extension 2 contains all
manager objects of the first database which are simultaneously employee but not
customer objects of the second database.

The relation SAME relates objects from different databases. This relation is an
essential element for splitting class extensions. Here, we assume the existence of
such a relation. For producing and managing such a relation we refer to [9,44,54,
64,88].

Splitting a class extension into disjoint class extensions respects schema equiv-
alence. A simple union on the generated classes creates the original class extension
without loss of data.

7 Schema merging

This design step merges the homogenized schemata SH
1 and SH

2 into the inte-
grated schema SI . In schema SI , class names should be unique. Between the
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Table 9 Example – integrated schema

Local Class 1 2 3 4 5 6 7 8 9 10 11

first-name � � � � � �
name � � � � � � � � �
salary � � � � � �
position � � � � � �
address � � � � � � � �
telephone � � �
start-date � �
job � � � � � �
description � �
employee � �
qualification �
people �

homogenized schemata equal class names indicate equal extensions. Classes with-
out an equivalent9 class in the other schema are adopted into the integrated
schema. Pairs of equivalent classes, however, are merged into one class, respec-
tively. A class C1 ∈ SH

1 .C and a class C2 ∈ SH
2 .C with C1.Cname = C2.Cname

are merged into C ∈ SI .C with C.Cname = C1.Cname and C.Att = C1.Att ∪
C2.Att .

An interesting question is how to merge integrity constraints. Different sets of
integrity constraints can restrict equivalent classes even on same attributes. Rea-
sons for differences are usually: (i) Incomplete design: The specified constraints
are too weak in one schema or some constraints have been simply forgotten; and
(ii) Wrong homogenization: Conflicting integrity constraints can indicate a wrong
homogenization. For example, wrong attributes are related to each other or some
class extensions are specified to overlap although they are disjoint.

Following [3,14,20,21], the detection of conflicting integrity constraints is in
general an undecidable problem. Restricting the expressiveness power of integrity
constraints, however, makes the problem decidable (cf. [80]). In a GIM schema,
only basic integrity constraints are supported. We assume the designer is able to
detect conflicting integrity constraints and to find the reasons for them. A wrong
homogenization forces a redo of the homogenization. If, however, conflicts are
caused by incomplete designs then the different sets of integrity constraints are
conjunctively combined for the integrated class. The combination is a conjunction
since each instance of one class has always a SAME object in the corresponding
class. If the object states are correct then they must fulfill the integrity constraints
of both classes simultaneously:

C.I C = C1.I C ∪ C2.I C

S.Unique = SH
1 .Unique ∪ SH

2 .Unique

Merging the homogenized schemata of our example produces an integrated
schema presented in Table 9.

9 Two classes are equivalent if they have the same name and thereby the same extension.
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Mapping database states: A mapping problem occurs due to semantic redun-
dancy: The redundant values of SAME objects should always be equal but in prac-
tice they often differ. Various reasons can cause different values: (i) Timeliness:
Applications update values with different delays after a real-world object has been
changed. In other words, different values reflect real-world values at different in-
stants of time. (ii) Wrong data: Often, a value does not correctly reflect an attribute
value of a real-world object. Reasons are, for example, misspellings, imprecise
measurements, and badly chosen attribute domains. (iii) Wrong homogenization:
Different values can be caused by wrong resolutions of attribute or extensional
conflicts.

Mapping database states with respect to redundant data means mapping a pair
of attribute values to exactly one value for the integrated schema. Such a mapping,
in general, depends on the semantics of the corresponding attributes and their
applications. Therefore, there is no standard solution to how to find out the correct
value. For each attribute A occurring in equally named classes the designer has to
define a function γA:

γA ⊆
(

Dom
SH

1
C (A) × Dom

SH
2

C (A)
)

× DomSI

C (A)

Depending on the quality of data, cf. [29], the function has to assign values to pairs
of given values. The following list shows some possible ways of computation: (i)
First (or second) value: The function takes always the first (or second) value since
the designer knows that the first (second) database contains more correct values.
(ii) Average value: Under some circumstances the average value should be pre-
sented in the integrated schema. (iii) Maximum (minimum) value: Sometimes the
designer knows, that the maximum (minimum) of both values should be chosen.
(iv) Dependency: The decision on the right value can depend on other attributes.
If, for example, a time attribute carries a time stamp of the last update, then both
time stamps need to be compared to find the most recent value. If the input values
of γ are equal, then the output value should be that value.

In general, the function γ is not injective and causes therefore a data loss. If
the designer does not want a loss of data then she/he must adopt both attributes as
being unrelated.

For a non-injective function, no inverse function can exist. In order to map an
inserted global value to the underlying databases, however, an inverse function is
required. The commonly used function is the identity function. More precisely,
every value ‘x’ is mapped to the pair ‘(x, x)’. That is, the global value is inserted
into the underlying databases.

Besides mapping attribute values, object identifiers have to be mapped, too.
The local object identifier cannot be used directly on the global level. Following
the approach in [64] a bijective mapping between local and global mapping is
required.

The mapping function is a total and surjective function. Due to the missing
injectivity of the functions γ the mapping is not injective, too. However, with re-
spect to non-redundant data the mapping guarantees schema equivalence. Merging
equivalent class extensions with different attributes and a bijective SAME relation
mapping between them corresponds in the SIG-formalism to moving edges to one
side of bijectivley related nodes (o-transformation) followed by removing a node
(node deletion ς -transformation).
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8 External schemata derivation

An integrated GIM schema SI is not an appropriate schema for applications due
to the GIM modelling restrictions. Instead of being a schema for applications, it
allows a very elegant derivation of external schemata. If we look at an integrated
GIM schema, e.g. Table 9, we can make some interesting observations on which
the derivation algorithm of external schemata bases:

– Rectangles represent classes: In the schema you can find rectangles completely
filled with checkmarks. A rectangle means here that for a certain set of base
extensions all values for a subset of attributes are available. The form of a rect-
angle is dependent on the given order of columns and rows. These orders, how-
ever, are not meaningful. Therefore, we speak of a rectangle if there is a rectan-
gle in at least one attribute and base extension order. Rectangles can be regarded
as classes. We can find even local classes as rectangles. For instance the local
class People2 is represented by the rectangle with the base extensions 2–5, 7,
and 9 and the attributes first-name, name, and job.

– There are maximal rectangles: Some rectangles can be augmented by some
base extensions or attributes. Rectangles which cannot be augmented are called
maximal rectangles. The local class People2, for example, can be augmented
by the attribute address and is therefore not a maximal rectangle.
Deriving external schemata means finding all maximal rectangles. Due to the
demand for completeness each checkmark in the table must be contained in at
least one rectangle.

– Maximal rectangles can overlap: Fig. 15 shows an overlap of two maximal
rectangles. Thereby, if the extension of a class (rectangle) is a subset of the
extension of another class then their attribute sets are always in a superset rela-
tionship, a so-called Galois connection:

Ext (C1) ⊆ Ext (C2) ⇔ I nt (C2) ⊆ I nt (C1).

Due to this observation, we can consider an overlap as a specialization between
classes. The class with the smaller extension is the subclass.

We will exploit this observation in the next two subsections. The first subsection
shows how to derive a first external schema from an integrated schema. The second
subsection explains the adaption of an external schema to a certain application
view.

Fig. 15 Overlapping maximal rectangles.
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8.1 Automatic derivation of a first external schema

Finding manually all maximal rectangles is very hard for a designer. For automa-
tion we propose to apply mechanisms from the theory of formal concept analysis.

8.1.1 Formal concept analysis

The theory of formal concept analysis was developed by mathematicians working
in the area of lattice theory. We recommend the book [23] for more information
about this theory.

The theory of concept analysis is based on the following formalization [19]:
A context (G, M, I ) is given where G is a set of objects, M is a set of attributes
(intension), and I ⊆ G × M is a binary relation between these (finite) sets. The bi-
nary relation I expresses that the object g ∈ G has the attribute m ∈ M whenever
(g, m) ∈ I holds.

The intent of any object subset A ⊆ G is defined by:

intent (A) := {m ∈ M | ∀g ∈ A : (g, m) ∈ I }

and dually the extent of any set of attributes B ⊆ M is defined by:

extent (B) := {g ∈ G | ∀m ∈ B : (g, m) ∈ I }

A concept in (G, M, I ) is a pair (A, B) ∈ P(G) × P(M), P denotes a power
set, for which A = extent (B) and B = intent (A). It represents a maximal rect-
angle in the binary relation I . Let

L := {(A, B) ∈ P(G) × P(M) | A = extent(B) ∧ B = intent(A)}

be the set of all concepts (maximal rectangles) of (G, M, I ), and let ≤ be a partial
order relation on L defined by:

(A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2

As result, we obtain a lattice denoted by:

L := (L ,≤, ∧, ∨, (extent(M), M), (G, intent(G)))

The lattice operations are given by the following definitions:

(A1, B1) ∧ (A2, B2) = (A1 ∩ A2, intent (A1 ∩ A2))

and

(A1, B1) ∨ (A2, B2) = (extent(B1 ∩ B2), B1 ∩ B2).

The lattice built from concepts is called concept lattice where (extent(M), M) is
the infimum and (G, intent(G)) is the supremum of all concepts.
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8.1.2 Concept analysis for deriving external schemata

The theory of concept analysis can be adapted to solve the problem of deriving
external schemata. A GIM-schema assigning attributes to base extensions, e.g.
expressed by Table 9, can be interpreted as a binary relation I , i.e. it represents a
context.

G := {C.Cname|C ∈ SI .C}
M :=

⋃

C∈SI .C
dom(C.Att) \ {I d}

I := {(g, m) ∈ G × M|∃C ∈ SI .C : C.Cname = g ∧ m ∈ dom(C.Att)},
where g corresponds to a base extension and m is an attribute. A concept lattice
derived from such a GIM-schema can be regarded as an external schema as fol-
lows: (i) a concept (A, B) ∈ L is a class with extension A and its attributes B; (ii)
≤ is the specialization relationship between two classes; (iii) ∧ is the specializa-
tion operation (intersection of extensions) of two classes; (iv) ∨ is the generaliza-
tion operation (intersection of attribute sets) of two classes; (v) (extent (M), M)
is the bottommost class of the specialization hierarchy (attribute set contains all
attributes; extension may be empty); (vi) (G, intent (G)) is the topmost class of
the hierarchy (extension is the union of all base extensions; attribute set may be
empty).

Now we can transform the problem of finding maximal rectangles into the
theory of concept analysis. Each GIM schema can be regarded as a context. The
concept lattice computed from the context can then directly be interpreted as the
specialization hierarchy of an external schema. Due to the fact, that each concept
represents a maximal rectangle, the classes cannot be further extended by any base
extension or attribute.

Computational complexity: Unfortunately, this approach has two shortages: a
context with m := |G| and n := |M| can contain at most 2min(m,n) concepts.
Each algorithm for constructing concept lattices from a given context is therefore
in the worst case inherently of exponential complexity. Exponential complexity,
however, is unacceptable for real-sized problems of schema integration.

Unnecessary classes: The approach suffers from a further shortage. It produces
some concepts representing unnecessary classes. Consider the example context
depicted in Table 10.

The Hasse-diagrams of the resulting concept lattice are depicted in Fig. 16.

Table 10 Context producing unnecessary classes

M/G 1 2 3 4

a
√

b
√ √ √

c
√ √ √

d
√
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Fig. 16 Resulting and reduced concept lattice.

The left diagram shows the concepts with the extensional elements and at-
tributes, respectively. Due to the subset relationships between the attribute sets and
the extensions, respectively, the left diagram can be reduced to the right diagram
without loss of information. The reduced diagram is only another representation
of the lattice. Attributes are inherited downwards and extensions are ‘inherited’ in
the opposite direction. The reduced diagram contains three concepts with empty
attribute sets and empty extensions. If we regard these concepts as classes then
they do not introduce new attributes nor have extensions of their own. In other
words, for these classes all attributes are inherited and the extensions are given by
the union of their subclass extensions. Such classes are unnecessary classes for a
database schema and should be omitted.

We will refer to concepts (classes) having an extension or/and attribute of their
own as valid concepts (classes) otherwise as unnecessary concepts (classes).

That is, given a lattice L = (L ,≤, ∧, ∨, I n f, Sup) and a concept (A, B) ∈ L
then let A = {a ∈ Ai |(Ai , Bi ) ∈ L ∧ A 	= Ai ∧ (Ai , Bi ) ≤ (A, B)} and B = {b ∈
Bi |(Ai , Bi ) ∈ L ∧ B 	= Bi ∧ (A, B) ≤ (Ai , Bi )}. If A = A ∧ B = B holds then
we call the concept (A, B) an unnecessary concept, otherwise a valid concept.

From a reduced concept lattice we can easily see that at most m + n valid
concepts can exist. In that case each concept (class) contains exactly either one
object (base extension) or one attribute.

From the discussion above follows an interesting question: Is there an algo-
rithm to generate all valid concepts (classes) in acceptable time?

8.1.3 The GIM algorithm

In this subsection we present an algorithm which generates valid classes only. The
algorithm computes a concept hierarchy instead of a concept lattice. The algo-
rithm has the computational complexity of O(n3). For each step of the following



504 I. Schmitt, G. Saake

algorithm the complexity is given. The input value for the complexity measure-
ment is n = max(|G|, |M|). G is the set of base extensions and M is the set of
attributes.

The input for the algorithm is a context (G, M, I ). We use the functions intent
and extent introduced in the previous section to find the sets I nt and Ext . The
sets I nt and Ext contain the intents for every single base extension (g ∈ G) and
the extents for every single attribute (m ∈ M), respectively:

I nt := {intent ({g}) | g ∈ G}
Ext := {extent ({m}) | m ∈ M}

The complexity to compute both sets is O(n2).
From I nt and Ext the two sets ConI and ConE containing concepts are de-

rived:

ConI := {(extent (I ), I ) | I ∈ I nt}
ConE := {(E, intent (E)) | E ∈ Ext}

The complexity to compute ConI is O(n3). The set I nt contains at most n el-
ements. Each element of I nt must be compared with each column (at most n
columns) of the matrix. For each comparison at most n attributes have to be ex-
amined. The complexity computing ConE is analogous to ConI .

We obtain a set of concepts by uniting both sets of concepts:

Con := ConI ∪ ConE

Theorem 1 The class set Con equals the set of valid concepts of the correspond-
ing concept lattice.

Proof Let us assume, that the context (G, M, I ) with |G| = m and |M| = n is
given.

We proof this proposition by examining the two implications between both
sets. The proof refers only to valid concepts with attributes of their own ((A, B) ∈
L with B 	= B) and to ConE because any proposition attributed to M holds for G,
too.

1. Each valid concept with own attributes corresponds to a class in ConE :
A valid concept encompasses one or many attributes. If a concept has exactly
one attribute (corresponding to a single row) then the corresponding class will
be found by computing Ext and ConE .
Suppose a valid concept c has the the extension {gc

1, . . . , gc
a} and the attributes

{mc
1, . . . , mc

b}. If a concept encompasses more than one attribute then two dif-
ferent cases are possible:
(a) ∃mc

i ∈ [mc
1, . . . , mc

b] : ∀g ∈ G :
g /∈ [gc

1, . . . , gc
a] =⇒ (g, mc

i ) /∈ I
The corresponding class is found by computing
(extent ({mc

i }), intent (extent ({mc
i }))) within Ext and ConE .

(b) ∀mc
i ∈ [mc

1, . . . , mc
b] : ∃g ∈ G :

g /∈ [gc
1, . . . , gc

a] ∧ (g, mc
i ) ∈ I
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Fig. 17 Algorithm to compute Con.

Each row mc
i results in a concept (extent ({mc

i }), intent (extent ({mc
i })))

within Ext and ConE . The concepts resulting from each attribute mc
i have

more objects (base extensions) than concept c and are, therefore, super-
concepts (superclasses) of concept c with the corresponding attribute mc

i
of their own. The attributes {mc

1, . . . , mc
b} of concept c are inherited from

its superconcepts. Hence, concept c has no own attributes. That case, how-
ever, cannot occur for a valid concept with own attributes.

2 Each class of ConE corresponds to a concept with own attributes:
Suppose the class c of ConE is derived from the single attribute mi . Class c
has this attribute of its own if it is not inherited from one of its superclasses.
This is always true because each superclass must have more base extensions
than class c. Due to the computation of intent (extent ({m})) no superclass can
encompass attribute mi .

From both implications follows the proposition. �

Figure 17 gives the algorithm to compute Con. The input context is a two-
dimensional, Boolean array.

The set Con is interpreted as the set of external classes. For a specialization
hierarchy we have to compute the inheritance relationships. We build a square ma-
trix Mat representing the irreflexive binary relation ‘<’ defined on the generated
classes of Con.

C1 = (A1, B1) ∈ Con : C2 = (A2, B2) ∈ Con : C1 < C2 ⇔ A1 ⊂ A2
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Fig. 18 Resulting concept hierarchy.

A value ‘1’ in Mat on row i and column j means that class Ci is a subclass of class
C j (Ci < C j ). If no subset relation between class Ci and class C j exists (Ci 	< C j )
then we write the value ‘0’ into the corresponding matrix field. Complexity to
construct this matrix is again O(n3). Computing the matrix needs comparisons
among at most 2 ∗ n classes. For each comparison at most n base extensions have
to be examined.

The computation MatN = Mat − (Mat × Mat) removes transitive special-
izations. Each value ‘1’ represents a non-transitive sub/super-class relation. Com-
plexity to multiply matrices is O(n3). The set Con in combination with the matrix
MatN gives the external classes with their specializations. Since the computational
complexity for every step is not higher than O(n3) and every step is performed
only once the overall complexity is O(n3).

The algorithm generates a concept hierarchy (cf. Fig. 18) from the context
depicted in Table 10.

Example: The integrated schema of our example presented in Table 9 on P. 498
is regarded as a context. The GIM algorithm computes the class set Con =
{C1, . . . ,C11}. The extensions and attributes of these classes are presented in
Table 11.

8.1.4 Schema derivation

From the class set Con and matrix MatN we have information about classes with
their extensions and attributes, and about specialization relations among them.
However, that is not enough to produce an object-oriented, external schema. The
designer has to assign comprehensible names to the classes. A tool can assist this
process. When the extension of a new class is the same as the extension of a local
class then the name can often be reused.

The derivation algorithm helps us to compute an external schema as an object-
oriented one. Of course, in some circumstances the designer wants to derive an
external schema in some other data model. In such cases, the set Con and the
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Table 11 Example – global classes

Class Extension Attributes

C1 1-9 name
C2 7,8 name, start-date
C3 1-7,9 name, address
C4 2-5,7,9 first-name, name, address, job
C5 1-6 name, address, salary, position
C6 7 first-name, name, start-date, address, job
C7 2-5 first-name, name, address, job, salary, position
C8 1-3 name, address, salary, position, telephone
C9 2,3 first-name, name, address, job, salary, position,

telephone
C10 10,11 description, employee
C11 11 description, employee, qualification, people

table MatN are very helpful, too. In the following we will concentrate on object-
oriented, external schemata only.

There is a special case where the algorithm produces a loss of data. Therefore,
we introduce the idea of a discriminant attribute, which is described in the next
paragraph.

Discriminant: Sometimes, the proposed algorithm joins together base extensions
to external classes in such a way that from an external object we cannot determine
its origin, i.e. its base extension. From this situation, a problem arises if this in-
formation carries semantics. If, for example, we have the local classes Man and
Woman with the same set of attributes then the algorithm joins the local classes
together to one external class. An object of this external class does not have the
information about the gender.

In order to avoid this kind of data loss we require that for each object on
the external level we are able to determine its base extension from its state and
class membership. This property is violated if the algorithm cannot distinguish
between base extensions, i.e. if the integrated schema contains base extensions
sharing the same attributes. Therefore, we introduce an artificial attribute called
the discriminant for all base extensions g ∈ G for which at least one other base
extension with same attributes exists:

∃g′ ∈ G : g 	= g′ : ∀m ∈ M : (g, m) ∈ I ⇔ (g′, m) ∈ I

The idea of the discriminant in the area of schema integration was proposed in
[26]. We have adapted this idea to our approach.

The value of the discriminant is the number of the corresponding base exten-
sion. On external level we recommend choosing a more meaningful name for the
discriminant and mapping the base extension numbers to meaningful values, e.g.
male and female in the mentioned example. A discriminant is also helpful for
global insertions of objects. Depending on its value we exactly know the local
classes in which an object has to be inserted.

In the integrated schema depicted in Table 9 on P. 498 you will find the base
extensions 2 and 3, and the base extensions 4 and 5 sharing the same attributes,
respectively. Therefore we introduce a discriminant for these base extensions. The
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Fig. 19 Example – first integrated schema.

discriminant determines whether a person is a customer or not. Since the insertion
of a new attribute changed the original GIM schema we have to apply our GIM
algorithm again which expands the class C7 by the discriminant. The matrix Mat
remains unchanged. Figure 19 depicts the corresponding external schema without
class names but information about the class extensions and attributes.

Integrity constraints: During the derivation of an external schema we must con-
sider integrity constraints. Constraints of an external schema restrict insertions
of and updates on global objects to objects which can be stored in the underly-
ing databases and fulfill thereby the demand for surjectivity of the corresponding
database mapping. If integrity constraints would not be considered then global
applications would experience an inconsistent system where a global insertion is
rejected due to an invisible local constraint violation. Please remember, a feder-
ated database system has to behave as a normal database system for global ap-
plications. The publications [11,13] discuss how to deal with integrity constraints
during the schema integration. We explain here our main idea very shortly and
informally.

The data model GIM supports two kinds of integrity constraints: attribute do-
main constraints and uniqueness constraints.

domain constraints: If all the base extensions of a derived external class have
a domain constraint IC then IC is defined for the external class, too. In an object-
oriented schema, similar to attributes, integrity constraints are inherited. If a sub-
class has the same constraint as the superclass then the constraint can be omitted
in the subclass.

Sometimes the involved base extensions of a constraint do not exactly cor-
respond to any external class. In that case this constraint cannot be completely



The GIM integration method 509

Table 12 Integrity constraints

Class Integrity constraint

C8 salary ≥ 3500
C7 salary ≥ 3000
C10 description is not null
C10 card(employee) > 0
C10 unique(description)

defined in the external schema. We propose in this case to search the smallest
external class which includes all constraint base extensions and to connect the
constraint with the corresponding discriminant values:

∀o1 : o1(discriminant) ∈ {value1, . . . , valuen} ⇒ IC

Uniqueness constraints: If the base extensions of a uniqueness constraint are the
same as of an external class then the constraint is defined on this class. Sometimes,
such an external class does not exist but the union of some external classes equals
this set of base extensions. In that case the constraint can be expressed by an inter-
class uniqueness constraint. If this variant also fails then the use of a discriminant
attribute is the last solution. We extend a minimal superclass C containing the base
extensions of the constraint on attribute A with:

∀o1, o2 ∈ C : o1(discriminant) ∈ {value1, . . . , valuen}∧
o2(discriminant) ∈ {value1, . . . , valuen} ⇒

(o1(A) = o2(A) ⇒ o1 = o2)

In our example the integrity constraints of the base extensions are shown in
Table 8. The base extensions of the integrity constraints directly correspond to
external classes. The resulting integrity constraints can therefore very easily be
assigned to external classes as shown in Table 12.

The derivation of a first, external schema must be accompanied by a bijective
database state mapping. The mapping is fixed by the extensional composition of
base extensions to external classes. For the correct mapping in the inverse direction
we introduced the concept of discriminant and showed how to deal with integrity
constraints. The discriminant helps to map every object of the external schemata
to exactly one base extension.

8.2 Derivation of application views

In the previous subsection we described the derivation of a first, external schema.
In correspondence to the 3-level-schema-architecture, cf. [77], external schemata
express views for certain applications. One external schema should meet the re-
quirements of a certain application. Usually, the designer of an external schema
wants to influence the derivation process corresponding to his certain view.

In our GIM approach the designer starts with the first, external schema. There
are many operations to adapt the first schema. The operations are presented in
Table 13. The first two categories encompass operations already introduced in
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Table 13 View operations

Category Operation

translation complex data type
unidirectional reference

structure operation
homogenization attribute operation

renaming

projection
class selection

derivation extensional expansion
attribute expansion
removing classes
merging classes

Sect. 5 and Sect. 6, respectively. The operations of the different categories are
explained in the following subsections.

8.2.1 Translation and homogenization operations

The translation operations are operations concerning schema translation when a
GIM schema is involved. In contrast to Sect. 5, the derivation of an external
schema means performing a translation starting with a GIM schema. The oper-
ations include operations to construct complex datatypes as an inverse step to the
normalization step. Furthermore, the designer can transform bidirectional refer-
ences into unidirectional references.

For our example we decide to drop the reference attributes emp and people
from the classes C10 and C11, respectively, because we want to support the
inverse directions only. The dropping is done by ignoring the respective rows in
the GIM schema.

Of course, depending on the target data model many further operations are
possible. Here, we have restricted ourselves to the most common translation oper-
ations.

The translation operations are executed in the inverse direction as explained
in Sect. 5. The homogenization operations, however, can be performed in both
directions. Structure operations, as introduced in Sect. 6.1.1, allow the transfor-
mation of attributes into classes and vice versa. Attribute operations, explained
in Sect. 6.1.2, encompass composition and decomposition of attributes as well as
mapping to new data types and values.

In our example we map the values of the discriminant to boolean values be-
cause we must distinguish between base extension 2 and 3 and between 4 and 5,
respectively. The values 3 and 4 are mapped to true whereas the values 2 and 5
are mapped to false. The discriminant indicates whether a person is a customer.

The renaming operation involves attribute and class names. An extensional
comparison of external classes with local classes helps to find comprehensible
class names. Local attribute names can often be adopted. In our example we give
the introduced discriminant the new name customer.
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8.2.2 Derivation operations

Derivation operations were not introduced yet. The operations projection,
class selection, extensional expansion, and attribute
expansion filter database states. In other words, using these operations the
designer decides on a loss of data. Thus, the corresponding database mappings
cannot be injective mappings.

– Projection: Projection means that not each attribute of the first external schema
should be available in the final external schema. Therefore, in the GIM table
certain rows are eliminated before our derivation algorithm is applied.

– Class selection: Not each base extension should appear in an external class.
This can be done by eliminating certain columns from the GIM schema.

– Extensional and attribute expansion: Sometimes the designer wants to derive
either an external schema as an extensional or an attribute expansion of a partic-
ular local schema. For the attribute expansion all base extensions are removed
which are not covered by a local schema. For extensional expansion the attribute
set is restricted to attributes which appear in a certain local schema.

After performing these operations the derivation algorithm must be applied again.
Schema integration often produces very complex schemata, i.e. the number of

external classes is often very high. Although the derivation algorithm computes
maximal rectangles in some cases the number of classes can be further reduced.
Reducing the number of classes meets the demand for minimality. Depending on
the view, the understandability is not always improved as well. Therefore, the de-
signer has to decide on the application of these operations. Removing and merging
classes are operations defined on the classes of the first external schema. The fol-
lowing paragraphs introduce three different reduction operations.

Removing abstract superclasses: Sometimes the algorithm computes external
classes without extensions of their own. The extension ExtC of such a class
C = (ExtC , I ntC ) ∈ Con equals the union of its subclass extensions:

ExtC =
⋃

{ExtC Sub|(ExtC Sub, I ntC Sub) ∈ Con ∧ ExtC Sub ⊂ ExtC }
Such classes are often called abstract classes or classes with empty shallow ex-
tensions.

For example, the class C3 of Fig. 19 on P. 508 is an abstract class. An abstract
class can be removed without loss of data. Of course, the attributes inherited from
the removed superclass must be explicitly made visible in its subclasses and the
matrices Mat and MatN must be recomputed. Removing abstract classes reduces
the number of external classes but sometimes it reduces the understandability of
an external schema, too. Therefore, the designer must trade off minimality against
understandability.

In our example we remove the class C3. Furthermore we give the classes
meaningful names and obtain the external schema depicted in Fig. 20.

Removing subclasses: Similar to abstract classes, an external schema can con-
tain classes without own attributes. In other words, all attributes of a class
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Fig. 20 Example – external schema.

C = (ExtC , I ntC ) ∈ Con are inherited:

I ntC =
⋃

{I ntC Sup|(ExtC Sup, I ntC Sup) ∈ Con ∧ I ntC Sup ⊂ I ntC }
If such a class is removed then its objects belong to more than one most spe-

cialized class. A role concept, cf. [30,86], allows such a multiple membership of
objects but is often not available in database models. Therefore, classes without
attributes of their own can only be removed if the underlying data model supports
the role concept.

In our example the classes C6 and C9 are such classes.

Merging of classes: After removing super- and subclasses the number of external
classes can only be further if the designer merges external classes. Such a merging
of external classes to one external class is only possible if null values are allowed
to appear. If some classes are mutually very similar then null values appear only
for few attributes for objects of some base extensions. An extreme situation occurs
if one merges all classes into one class which produces a universal relation. Such
an extreme situation violates, however, the rules of a good design. Therefore, the
designer must very carefully decide on merging external classes.

Suppose, the classes C1 and C2 ∈ Con should be merged. Then we obtain the
intension and extension of the resulting external class as follows:

I nt := I ntC1 ∪ I ntC2

Ext := ExtC1 ∪ ExtC2

Null values appear on attributes from I ntC1 \ I ntC2 for objects from ExtC2 \ExtC1
and vice versa.

For each attribute from I nt and for each base extension from Ext a checkmark
must be set in the integrated schema. As the next step a discriminant attribute must
be introduced for the base extensions of Ext . An integrity constraint restricts in
dependence on the discriminant the occurrence of null values for updated or in-
serted global objects. A new application of the derivation algorithm then generates
the new external schema.
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For instance, the designer may decide to merge the classes Position and
Position-Dep. The unions of the intensions and extensions, respectively, are:

I nt = {description, qualification}
Ext = {10, 11},

In the GIM table (Table 9 on Page 498) a checkmark must be set for the base
extensions 10 and the attribute qualification. The discriminant must then
be defined for base extensions ranging from 1 to 5. An additional integrity con-
straint requires a null value for objects from base extension 1 for the attribute
first-name and job, and for objects from base extensions 4 and 5 for attribute
telephone.

The resulting final schema is depicted in Fig. 21 on Page 513. For comparison
we show the two input schemata again in Fig. 22. Table 14 shows the extensional
mapping of local classes to external classes and Table 15 the mapping in the oppo-
site direction using the discriminant. Such mappings can be automatically derived
from the mappings of the local schemata to the integrated schema and from the
further mappings up to the external schema.

Fig. 21 Example – final schema.

Fig. 22 Schema 1: company schema and Schema 2: department schema.
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Table 14 Example – global classes expressed by local classes

Global class Extension Local classes

Person (C1) 1–9 Person1 ∪ People2
Trainee (C2) 7,8 Trainee1
Person-Dep (C4) 2–5,7,9 People2
Employee (C5) 1–6 Employee1
Trainee-Cust (C6) 7 Trainee1 ∩ Customer2
Employee-Dep (C7) 2–5 Employee2
Manager (C8) 1–3 Manager1
Manager-Dep (C9) 2,3 Manager1 ∩ Employee2
Position (C10 ∪ C11) 10, 11 Position1 ∪ Position2

Table 15 Example – local classes expressed by global classes

Local class Extension Global classes

Person1 1–8 Trainee ∪ Employee
Employee1 1–6 Employee
Manager1 1–3 Manager
Trainee1 7,8 Trainee
People2 2–5,7,9 Person-Dep
Customer2 3,4,7,9 Person-Dep \ σcustomer = falseEmployee-Dep

Employee2 2–5 Employee-Dep
Cust-Emp2 3,4 σcustomer = trueEmployee-Dep
Position1 10,11 Position
Position2 11 σqualification	=null Position

9 Related work

The problem of schema integration in the context of multidatabases exists since
database systems have been applied. There is a huge number of publications in this
area. Various publications use different terms. For example, for the terms ‘multi-
database’ and ‘federated database system’ different definitions exist, e.g. [6,31,45,
52,73]. We followed the definition of a tightly coupled FDBS published in [73].
Our schema architecture is similar to the 5-level-schema-architecture from [73].
In Chapter 2 we compared our architecture with the well known 5-level-schema-
architecture.

We did not consider behavior integration. If the behavior is specified in a for-
mal description method, e.g. life cycle diagrams, then results from [53,58] can be
used for behavior integration.

For correctness and completeness of schema transformations, mappings be-
tween corresponding database instances must be analyzed. Such a mapping anal-
ysis together with requirements for the task of schema integration are described
in [32,47,48]. Similar to the SIG-formalism proposed in [47,48] we use a small
data model and define basic transformation operation. For the correctness proof
of every integration step we refer to [62]. Instead, we discussed correctness in-
formally and showed correspondences to SIG-operations. A much more detailed
construction of bijective database mappings for the GIM method is given in [62].
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Very important for schema integration is the choice of the common data model
in which the schema integration is performed. The suitability of different data
models as common data model is discussed in [2,33,60]. The favorite data model
is usually an object-oriented data model due to its semantical richness. We argue,
however, that heterogeneity among object-oriented schemata is often very com-
plex. Furthermore, we distinguish between a data model for homogenization and
models for external schemata. As common data model for homogenization we use
the Generic Integration Model GIM which enables an efficient algorithm to derive
an external schema in a user-friendly data model. The data model GIM was firstly
introduced in [64,65].

Schema integration means detecting and resolving schema conflicts. In the
literature many different conflict classifications were proposed, e.g. in [1,28,39,
40,50,71,75]. Due to the usage of GIM we have a relatively small number of
conflict types which make the schema integration easier than in other data models.
Many conflict types of other publications are combinations of our basic conflict
types.

A hard problem of schema integration is the detection of conflicts. We have as-
sumed that the designer knows the correspondences. Of course, this is only valid
for relatively small schemata. For a deeper discussion about finding correspon-
dences we refer to [24,27,50]. The publications [36,71] use context knowledge
and the idea of semantic similarity to detect correspondences.

The structure conflict is a frequently occurring conflict type. [49,50,75], for
example, explain the conflict and its resolution. Similar to our approach, the struc-
ture conflict is usually resolved by transforming the attribute into a single class.

Attribute conflicts are described in [15,28,39,43]. Following [28,39] they can
be sub-classified into conflicts concerning different domains, conflicting integrity
constraints, different operations, accuracy, and measures. The designer has to
specify a value mapping to relate values from different domains. [75] resolves at-
tribute conflicts by uniting attribute domains and applying integrity constraints for
value restrictions. A complex problem is missing injectivity of a mapping which
can produce an data loss when a global application inserts a new object and then
rereads it again. To the knowledge of the authors no published work solves this
problem yet. Our presented approach of splitting attributes transforms this prob-
lem into an intensional conflict where one class has more attributes than a corre-
sponding one.

The extensional conflict as one main conflict is subject of many publica-
tions, e.g. [4,15,41,46,49,50,72,76]. They usually resolve this conflict directly
in an object-oriented model by using specialization. The original classes are often
classes of the integrated schema enriched by new super-/subclasses and special-
ization relationships among them. [18], for example, suggests many operations
to resolve a conflict between two classes. Problems arise, however, if two spe-
cialization hierarchies with many classes need to be integrated. In this case, the
mentioned approaches generate very complex schemata. Furthermore, different
variants of conflict resolution are often possible. There are no strict choice rules
which help the designer. Therefore, the process of integrating specialization hier-
archies is usually very hard for the designer and produces often a huge number of
new classes. As mentioned in Sect. 3 most publications do not correctly analyze
extensional relations.
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[55,79,80] proposed the idea of deriving extensional relations from integrity
constraints. Our approach can be extended by this idea to obtain more correct
extensional assertions.

During the merging of classes, integrity constraints must be considered. The
publications [3,14,20,83,82] point out that integrity constraints can be in a con-
flict. A conflict occurs when specified extensional relationships are not satisfiable
due to different integrity constraints. The publications [3,14,20] handle this con-
flict as an unsolvable conflict and stop the schema integration. [82,83], however,
treat conflicting constraints as subjective and ignore them during the schema in-
tegration. [56] resolves the problem of conflicting integrity constraints by weak-
ening them for global classes. This treatment can cause problems when globally
inserted objects violate local integrity constraints.

In contrast to the mentioned approaches, the GIM method considers that a
conflict as indicating a design failure. Furthermore, the extensional decomposition
simplifies the problem, since we have to consider only conflicts between classes
with same extensions. Due to the restricted set of constraint types in GIM, con-
flicting constraints can easily be detected. This avoids problems of undecidability
described in [3,14,20,21]. Some ideas of our approach were firstly published in
[11-12, 13]. They discuss the relation between constraints and extensional set op-
erations. A more detailed discussion about integrity constraints with respect to
schema integration is given in [78].

Objects typically have object identifiers which must be considered during the
class merging. [22,64] introduce approaches to tackle the problem of object iden-
tifiers in FDBS.

Besides schema integration problems of data integration can occur. It is often
very hard to detect SAME objects. Some approaches to this problem are introduced
in [9,16,37,38,44,54,84,85,88].

The idea to use mechanisms of the formal concept analysis for the design
of object-oriented databases is not new. [87], for example, uses this technique to
generate a class hierarchy depending on an intensional analysis. In contrast to
our approach, however, [87] does not consider extensional relationships and can,
therefore, not directly be used for schema integration. In [63, 65–67] we described
how to decompose class extensions for schema integration. This decomposition
enables us to use mechanisms of formal concept analysis for schema integration.
Our GIM algorithm was firstly published in [67].

In our approach we used a discriminant to avoid loss of data. This problem
appears in some publications, e.g. in [42], as conflicting meta information. The
resolution of conflicts concerning meta data is topic of [10,59]. [10] introduces a
declarative language to overcome meta conflicts. In our approach we use the idea
of discriminants published in [25] and adapted it to our GIM scenario.

In the following we discuss publications of different database groups.

Publications from navathe and co-authors

These authors propose an extended entity-relationship model as common data
model. Their main focus is on the resolution of extensional conflicts. Depending
on binary extensional assertions for resolution they propose to merge, unite, or
to intersect classes, or adopt the original classes and establish new specialization
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relations among them [46]. Besides this conflict, attribute conflicts and conflicting
relationships are considered. They resolve these conflicts similar to the extensional
conflict by applying the concept of specialization.

Relationships of two ER-diagrams can be conflicting, e.g. with respect to ar-
ities, roles, and cardinality numbers. [51] resolves such conflicts very similar to
the resolution of the extension conflict.

A very good framework is [43] which describes the resolution of extension
conflicts, conflicting relationships, and attribute conflicts. [50] discusses the prob-
lem of detecting conflict correspondences between schemata to be integrated.

Publications from Saltor, Castellanos and Garcia-Solaco

The common data model of these publications is the object model BLOOM
(Barcelona object-oriented model) introduced in [61]. A motivation using an ob-
ject model is given in [7,60]. The detection of conflict correspondences is shown
in [24,27].

For resolution of extensional conflicts the publications [25,26,59] propose to
generalize conflicting classes. In order to avoid data loss they introduce a dis-
criminant attribute. Generalization means, however, not to merge SAME objects
to respective global objects. The object merging must be performed in a further
step. The use of generalization can produce very complex specialization hierar-
chies (e.g. in [25, p. 26]), especially if an extensional conflict involves many local
classes.

Meta conflicts, which are often called schematic discrepancies [42], are re-
solved by using a discriminant [59].

[28] claim that their integration method does not need to deal with extensional
conflicts. They need, however, correspondences between similar classes for which
they assume a specific default extensional assertion. In principle, default assertions
are also possible in other integration methods. In our opinion, integration without
knowing exact extensional relations can produce wrong integrated schemata.

Publications from Spaccapietra and Dupont

These publications consider different conflict classes introduced in [74]. Conflicts
are expressed by assertions. Basing on specified assertions, [75] describes differ-
ent integration rules which resolve these conflicts. This paper considers only iden-
tical assertions, i.e. no extensional overlaps or inclusions are regarded. Besides
extensional conflicts, conflicting binary relationships are resolved by introducing
the concept of paths following references.

Later publications extend the integration method by further extensional con-
flicts. [18] proposes the integration operations merging, subclass, union, intersec-
tion, multi-instantiation, partition, and preservation. A table shows which opera-
tion can be applied to which extensional conflict.

[17] points out that binary extensional relationships are not sufficient for a
correct extensional analysis. Dupont suggests additional types of non-binary ex-
tensional assertions. Binary and the new proposed assertions are, however, still
incomplete to exactly model all possible extensional relationships among classes.
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Publications from Ekenberg and Johannesson

The authors use a logic-based approach to schema transformation and integration.
Before performing an integration, the input schemata are normalized, respectively.
The common data model has concepts from logic programming and deductive
databases. [34] introduces the common data model and some transformation op-
erations. The operations, for example, can be used to transform optional attributes
into a specialization and to resolve a structure conflict. [35] argues that due to the
translation of the schemata into the common data model they are getting normal-
ized. Therefore, conflicts can be handled relatively easily.

10 Conclusion

The contribution of our work is a comprehensive integration method which is
based on the theory of formal concept analysis. In contrast to traditional ap-
proaches we distinguish between a data model for integration and a data model
for schemata of global applications. Due to the integration model GIM the prob-
lem of schema integration is transformed into a problem of formal concept anal-
ysis resulting in an efficient algorithm to derive global schemata. Furthermore,
we focused on the extensional conflict. In contrast to other approaches we are
able to resolve complex extensional correspondences. Furthermore, our method
allows a semiautomatic derivation of many different external schemata in corre-
spondence to application-specific needs. In order to adapt a schema to specific
needs, the designer manipulates the integrated GIM schema accordingly and in-
vokes the derivation algorithm again.

As our simple example has demonstrated, GIM schemata can become very
large and unhandy for a designer. This visualization problem, however, is not a
real restriction of the GIM method. The GIM representation should be an inter-
nal representation within a tool and should be hidden from the designer. The de-
signer controls the integration process by specifying extensional, intensional, and
attribute conflicts. The derivation steps can be influenced by using class identifiers
and attribute names of the first integrated schema.

Although complex GIM schemata can be hidden, resulting external schemata
can become very complex, too. Therefore, we introduced concepts to reduce the
complexity. The designer has to find a tradeoff between a design with many null
values and a complex external schema without null values. In our opinion, the high
complexity of resulting schemata is not a direct result from our GIM approach but
a general problem of schema integration. Of course, ignoring extensional relations
produces small integrated schemata. But they lack in dealing with redundancy and
have many null values. Even worse, the designer does not know where redundancy
and null values occur.

At the University of Magdeburg we implemented the main steps of the GIM
approach. We successfully used the prototype SIGMABenchin many scenarios, see
[70]. Besides schema integration the tool can also be used for view integration, de-
signing specialization hierarchies, and for extending hierarchies by further classes
and attributes.

Due to space limitations we were not able to discuss our integration tool
SIGMABench[70], and how database states are explicitly mapped. Furthermore,
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we explained the attribute conflict very briefly. For more information concerning
these issues we refer to [68].

Further research is especially needed for different aspects, e.g.:

– behavior integration: The combination of structural and behavior integration
requires further research.

– conflict detection: Conflict detection is a very time-consuming task for the de-
signer and should therefore be supported by efficient algorithms.

– schema modifications: Changing the underlying local schemata requires to
adapt the schemata on top of them including their mappings. A new integration
process is in general too costly. Therefore, there is a need for an incremental
schema integration.
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11. Conrad, S., Höding, M., Saake, G., Schmitt, I., Türker, C.: Schema integration with integrity
constraints. In: Small, C., Douglas, P., Johnson, R., King, P., Martin, N. (eds.) Advances
in Databases, 15th British National Conference on Databases, BNCOD 15, London, UK.
Lecture Notes in Computer Science, vol. 1271, pp. 200–214. Springer-Verlag, Berlin (1997)

12. Conrad, S., Schmitt, I., Türker, C.: Dealing with integrity constraints during schema in-
tegration. In: Engineering Federated Database Systems EFDBS’97—Proceedings of the
International CAiSE’97 Workshop, Barcelona, vol. 6, pp. 13–22. Fakultät für Informatik,
Universität Magdeburg (1997)



520 I. Schmitt, G. Saake

13. Conrad, S., Schmitt, I., Türker, C.: Considering integrity constraints during federated
database design. In: Embury, S.M., Fiddian, N.J., Gray, A.W., Jones, A.C. (eds.) Ad-
vances in Databases, 16th British National Conference on Databases, BNCOD 16, Cardiff,
Wales. Lecture Notes in Computer Science, vol. 1405, pp. 119–133. Springer-Verlag, Berlin
(1998)

14. Convent, B.: Unsolvable problems related to the view integration approach. In: Ausiello,
G., Atzeni, P. (eds.) Proceedings of the 1st International Conference Database Theory
(ICDT’86), Roma, Italy. Lecture Notes in Computer Science, vol. 243, pp. 141–156.
Springer-Verlag, Berlin (1986)

15. Dayal, U., Hwang, H.Y.: View definition and generalization for database integration in a
multidatabase system. IEEE Transactions on Software Engineering 10(6), 628–644 (1984)

16. DeMichiel, L.: Resolving database incompatibility: An approach to performing relational
operations over mismatched domains. IEEE Transactions on Knowledge and Data Engi-
neering 1(4), 485–493 (1989)

17. Dupont, Y.: Resolving fragmentation conflicts in schema integration. In: Loucopoulos, P.
(ed.) Entity-Relationship Approach—ER’94, Proceedings of the 13th International Confer-
ence on the Entity-Relationship Approach, Manchester, UK. Lecture Notes in Computer
Science, vol. 881, pp. 513–532. Springer-Verlag, Berlin (1994)

18. Dupont, Y., Spaccapietra, S.: Schema integration engineering in cooperative databases sys-
tems. In: Yetongnon, K., Hariri, S. (eds.) Proceedings of the 9th ISCA International Confer-
ence on Parallel and Distributed Computing Systems (PDCS’96), Dijon, France, September
1996, pp. 759–765. International Society for Computers and Their Application, Six Forks
Road, Releigh, NC (1996)

19. Duquenne, V.: Contextual implications between attributes and some properties of finite lat-
tices. In: Ganter, B., Wille, R. (eds.) Beiträge zur Begriffsanalyse, Chap. 10, pp. 213–239.
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“Föderierte Datenbanken”, Magdeburg, pp. 1–19. Shaker Verlag, Aachen (1998)



The GIM integration method 521
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