Acta Informatica 40, 431-458 (2004) m@

Digital Object Identifier (DOT) 10.1007/500236-003-0136-5 ﬁ@

Past is for free: on the complexity
of verifying linear temporal properties with past

Nicolas Markey

Département d’Informatique, Université Libre de Bruxelles,
Boulevard du Triomphe CP 212, 1050 Bruxelles, Belgium
(e-mail: nmarkey @ulb.ac.be)

Received: 4 September 2002 / 4 December 2003
Published online: 17 March 2004 — (©) Springer-Verlag 2004

Abstract. We study the complexity of satisfiability and model checking
problems for fragments of linear-time temporal logic with past (pLTL). We
consider many fragments of PLTL, obtained by restricting the set of allowed
temporal modalities, the use of negations or the nesting of future formulas
into past formulas. Our results strengthen the widely accepted fact that "past
is for free", in the sense that allowing symmetric past-time modalities does
not bring additional theoretical complexity. This result holds even for small
fragments and even when nesting future formulas into past formulas.

Introduction

Temporal logics. In 1977, Pnueli introduced temporal logics as a tool for
reasoning about concurrent programs [29]. Those logics provide powerful
methods for specifying and verifying properties of reactive systems. We
refer to [7,9,25,26] for more motivations and background.

Linear-time propositional temporal logic (called LTL) is the most used
framework in this area: An LTL formula expresses properties about the or-
dering of events along a run of a system. For instance, the fact that, at all
times, a request will eventually be granted can be expressed with:

G (request = F grant) (S1)

Temporal logics with past. LTL is a pure-future temporal logic, i.e. a logic
where modalities only refer to the future of the current state. It is possible,
however, to define past-time modalities [15,11,23]. For example, for ex-
pressing that a grant may only occur if some request has been issued, we



432 N. Markey

would write
G (grant = F~! request) (S2)

It is well-known that past-time modalities do not increase the expres-
siveness of LTL [15,12]. In [11], Gabbay gives a method for translating
LTL+Past formulas into equivalent pure-future LTL formulas. For instance,
an equivalent pure-future formula for (S2) would be

ﬁ((ﬁrequest) U (grant A ﬂreq_uest)) (S3)

expressing that we cannot reach a grant without encountering a request
in the meantime. By concern of minimality, since they do not add expressive
power, past modalities have not been widely studied, and model-checkers
such as Spin or Cadence-SMV do not handle LTL+Past specifications.
However, over the last few years, past has been more and more studied:
Several methods have been proposed for model-checking LTL+Past [33,16,
13,3], and some of them are being implemented.

The benefits of the past. Allowing past-time modalities makes specifica-
tions easier and more natural [23]. Furthermore, there is a sense in which
past really brings more expressive power: there is a succinctness gap be-
tween LTL and LTL+Past, i.e. there exists LTL+Past formulas that only have
LTL equivalents of exponential size [21,27]. Finally, since model checking
and satisfiability are not more difficult for LTL+Past (PSPACE-complete in
both cases [32]), one could argue that LTL+Past should be preferred.

These arguments seem to indicate that past is for free. Can this observa-
tion be made stronger and more systematic? In this paper, we investigate if
this line of argument still holds for different fragments of LTL+Past, in order
to characterize fragments that are more expressive but not harder to verify.

Looking for simpler fragments. PsPACE-hardness occurs in the gen-
eral case, but some fragments of LTL+Past have lower complexity (e.g.
LT (F,X)[32] or L(F,F~1) [10]). Identifying such “simpler” fragments
could lead to improved algorithms for special cases, and help understand
where the precise boundary lies between hard and easy fragments. Several
fragments have already been considered [32, 8], but not much is known about
those with past-time modalities.

Our contribution. We provide a systematic study of fragments of LTL+Past
obtained by three kinds of restrictions: On the set of allowed modalities, on
the use of negations, and on nesting of past and future modalities. This
includes the pure-future fragments. We sum up our results in Table 1. They
rely on a few basic techniques that are used throughout the paper.
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Several results are somewhat surprising. The first one is that our simple
techniques were sufficient to characterize the exact complexity classes for
all the problems we considered: All of them are either coNP-complete or
PSPACE. While many people would think that there is no room for model
checking problems between NP and PSPACE, the gap is actually quite large
and is populated by a few rare model checking problems [19,20,31].

We also prove that, in many cases, restrictions on the set of allowed
modalities or on the use of negations decrease the theoretical complexity of
verification problems. This means that there are many fragments for which
specialized algorithms could be more efficient than classical ones.

Concerning past-time modalities, it should be remarked that if a given
future modality is allowed, adding its symmetric past-time modality does
not increase the complexity. Moreover, allowing or disallowing the nesting
of future modalities in the scope of past modalities does not change the
complexity of the verification problems. To sum up, past comes with no
extra cost.

Last, we remark that, in some (positive) fragments, existential and uni-
versal problems may have different complexities. This had probably not been
remarked by Sistla and Clarke when they erroneously claim (in [32]) that
validity of Lt (F, X ) is conP-complete, when it is in fact PSPACE-complete.

Related work. As regards fragments of LTL+Past, Ramakrishna et al. [30]
studied LUSAT, the fragment of LTL+Past with only U and S, and they
provide an optimal (PSPACE) automata-theoretic algorithm for model check-
ing with this fragment. Other fragments of LTL (with no past) are addressed
in [8], namely fragments obtained by bounding the temporal height and the
number of atomic propositions of formulas. Branching-time temporal logics
with past have been investigated in [18,22].

Outline of the paper. In the sequel, we first formally define the structures,
logics and problems under study, and sum up our results. We prove NpP-com-
pleteness results in Sect. 2, and PSPACE-completeness results in Sect. 3. We
summarize our study and conclude in Sect. 4.

1 PLTL: Linear Temporal Logic with Past

Syntax of PLTL. Let AP = {P;, P,,...} be a countable set of atomic
propositions. We define the syntax of PLTL as follows:

PLTLS 6,9 =9V ¢ | ¢ [ X |9 U¢ | X ¢ |9YSe| P P]...

where U reads “until”, S reads “since”, X is “next” and X 1 is “previous”.
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Some very useful abbreviations are commonly defined: T = P, V - P,
=, &... As regards temporal modalities, we will use the classical F (even-
tually) and G (always), as well as their past counterparts F~' ¢ = T S¢
and G~ ¢ = ~F~! —¢, read “eventually in the past” and “always in the
past” respectively.

Modalities S, X!, F~! and G~ are called “past modalities”, while
U, X, F, G are “future modalities”.

Subformulas, temporal height and size of a formula. Given a formula @ €
PLTL, the set of its subformulas, denoted by sf(®), is defined inductively as
follows:
sf(P) = {P} forall P € AP
sf(=¢) = {=¢} Ust(¢) sf(¢ V) = {o Vv ¢} Usf(e) Ust(v)
sf (X 9)
(XL ) =

={X ¢} Usf(¢) sf(¢ U) ={¢ Uy} Ust(d) Ust(y)
(X7 o} ust(o) sfoS ) ={oS ¥} Ust(e)Ust(y)

Obviously, the number of subformulas is bounded by the size (i.e. the number
of symbols) of the formula. The closure of the formula @, written sf(®), is
the least set containing sf(®) and stable under negation. It contains at most
twice as many formulas as sf(®).

The temporal height of a formula @ € pLTL, for a given set M of modal-
ities, is defined recursively as follows:

har(P) =0
has(=¢) = har ()
ha(¢ V) = max(ha(¢), har(¥))

and, for any modality O of arity p,

0 otherwise

har(O(é1,...,¢p)) = max(has(¢1),. .. har(dp)) + {1 if O € .M

The temporal height of a formula is its temporal height for the set of all
modalities. The past temporal height is the temporal height for the set of
past-time modalities. The temporal height is obviously bounded by the size
of the formula.

Semantics. Formulas of PLTL are interpreted over paths. A path is a pair
(7, &) in which 7 is an infinite sequence of states 7(0), m(1), ... and £ is a
mapping {7 (0),7(1),... ,m(n),...} — 247, This way, the states of 7 are
labelled with atomic propositions.
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Given a path (7, £), a natural 7 and a formula ¢, we inductively define the
relation! (,&),4 = ¢ (read “¢ holds at position i along (7, £)”) as follows:

7,1 = P iff P € {(m(i)),

miEoNY iffmilEdand i =,

I S T)) iff m, i [~ ¢,

milEXe  iffmitlE

m,i =19 U¢ iff there exists some j > ¢ s.t.7,j = ¢ and for all
i <k<j mkE,

mifE=X"1¢ iffi >0and7,i— 1} ¢,

mi =1 S¢ iff there exists some j < ¢ s.t.7w,j = ¢ and for all
J<k<i mkE1.

Equivalence of formulas. Two formulas are (globally) equivalent over a
class IT of paths (which we denote ¢ = 1) if for any path = € IT and
any integer i, the equivalence m,i = ¢ < 7,4 | 1 holds. The formulas
are initially equivalent over II (¢ Ezﬂ ) if for all paths w € I, 7,0 =
¢ < 7,0 |= 1 is true. We omit I when the equivalence has to hold along
all paths in (247)N,

Obviously, two equivalent formulas are initially equivalent. The converse
does not hold. For instance, P; S P> and P, are initially equivalent, but they
clearly are not globally equivalent.

A formula ¢ is said to be initially (resp. globally) valid over II if it is
initially (resp. globally) equivalent to T over 1. Itis initially (resp. globally)
satisfiable over 11 if its negation is not initially (resp. globally) valid over 1.
This means that there exists a path m € II (resp. apath m € I and a position
i along that path) such that 7,0 |= ¢ (resp. 7, = ¢).

These definitions formalize the results we mentioned about expressive
power in the introduction: that PLTL is as expressive as LTL [15,12,11]
means that for any PLTL formula, there exists an initially equivalent LTL for-
mula. The exponential succinctness gap in [21] can be expressed as follows:
there exists a sequence of PLTL formulas (¢,,), s.t. |¢,| € O(n), and for
which any sequence of initially equivalent LTL formulas (¢,,) verifies that

|| € £2(27).

Verification problems. In this paper, we are concerned with the following
problems:

Initial satisfiability and validity, as defined above;

Universal model checking, i.e. initial validity over a given set /I of paths;
Existential model checking, i.e. initial satisfiability over a given set I/
of paths.

' In the sequel, we won’t mention & whenever it is not ambiguous.
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Note that we only study “initial” problems, since these are the most
interesting ones as regards verification. Moreover, in the general case, initial
problems and their global counterparts are interreducible: for instance, a
formula ¢ is globally satisfiable if, and only if, F' ¢ is initially satisfiable,
and conversely, ¢ is initially satisfiable if, and only if, G~! F~! ¢ is globally
satisfiable.

Kripke Structures. For model checking, the set /7 is often defined through
a Kripke Structure (KS for short), that is, a 4-tuple K = (Q, Qo, [, R) in
which @ is a finite set of states, Qg is the set of initial states, [ € (247)%
indicates the propositions that are true in each state of Q, and R C Q x Q
is a total relation representing the set of allowed transitions. The size of K,
which we denote | K|, is |Q| + | R|. A KS generates a set IT of infinite paths
in the obvious way.

It should be remarked right now that, in the general case, both model
checking problems are dual: indeed, there exists a path satisfying a formula ¢
if, and only if, it is not the case that every path satisfies the negation of ¢.
But this equivalence only holds for fragments allowing negation.

Loops. A path (m,€) is said to be ultimately periodic if there exist two
integers m and p, with p > 0, such that for any integer n > m, 7, = Tp4p.
Such a path can be finitely represented by a loop, that is a deterministic KS,
or, equivalently, by a couple of finite words (u, v) over the alphabet 247,
where |u| = m and |v| = p. The path correponding to a loop L = (u,v),
which we denote by 7y, is uv®. The type of a loop (u,v) is (|ul, |v]). The
size of a loop of type (m, p) is the integer m + p. The size of an ultimately
periodic path 7 is the size of the smallest loop encoding that path?.

Subpath, subloop. Given a path (7, &), a subpath is a path (7', {|/) where
7’ is a subsequence of 7. We equivalently say that 7’ is a subpath of 7, or
that 7 contains 7’. If 7’ is a subpath of , there exists an increasing function
f such that, for all ¢, 7} = 7 (i) We will write n/ Ty m when we need the
function f. Otherwise, we simply write 7’ C 7.

In the same way, given a loop L, a subloop is a loop L’ whose associated
path is a subpath of the path associated to L. We also write L' C L in that
case. Note that a subloop could be bigger than its original loop. For instance,
from the loop (&, ab) (where ¢ is the empty word), whose size is 2, we can
extract the loop (aaba, aab), whose size is 7.

Let L = (u,v) be a loop. We say that a subloop L' = (u/,v') of L is
acceptable, and we write L' < L, whenever v’ is a subpath of u and v’

% This “smallest loop” does exist, since if two loops of type (m, p) and (m/, p’) represent
the path 7, then we can build a loop of type (min(m, m'), gcd(p, p’)) encoding 7.
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Table 1. Complexity of PLTL verification

Exist. MC  Univ. MC Satisf. Validity
LT(F)LT(G)LT(X) NP-c. CONP-c. NP-c. CONP-c.
LY (F,X) (NP-c.) PSPACE-c. (NP-c.) PSPACE-c. *
LY(G,X) PSPACE-c. CONP-c. PSPACE-c. CONP-c.
LH(F,X™1) NP-c. PSPACE-c. NP-c. PSPACE-c.
LI(G,X™) PSPACE-c. CONP-c. NP-c. CONP-c.
LT(F,X,F ! X1 NP-c. PSPACE-c. NP-c. PSPACE-c.
LT(G,X, G, X1 PSPACE-c. CONP-c. PSPACE-c. CONP-c.
LI(G,s, X 1) PSPACE-c. PSPACE-c. NP-c. PSPACE-c.
LY (G,S, X 1) PSPACE-c. PSPACE-c. NP-c. PSPACE-c.
L(X,S,X™1) NP-c. CONP-c. NP-c. CONP-c.
L(F,F ') NP-c. CONP-c. NP-c. [10] CONP-c.
LH(F,S) PSPACE-c. ~ PSPACE-c.  PSPACE-c. CONP-c.
LY (G,S) PSPACE-c. PSPACE-c. NP-c. PSPACE-c.
LY(G,S) PSPACE-c. PSPACE-c. NP-c. PSPACE-c.
Lt(U) PSPACE-c. ~ PSPACE-c.  PSPACE-c. CONP-c.
LY(U,S) PSPACE-c. PSPACE-c. PSPACE-c. CONP-c.
PLTL (PSPACE-c.)  (PSPACE-c.) (PSPACE-c.) (PSPACE-c.)

a subpath of v. The size of an acceptable subloop is always lower than or
equal to the size of the original loop.

Fragments of PLTL. We consider three types of restrictions: first of all,
restrictions about the allowed modalities. For denoting the fragment of
LTL where only My, ... ,M,, are allowed, we use the classical notation
L(M;,... ,M,). For instance, L(F') is the logic where F is the only
allowed temporal modality®. The second restriction we deal with affects
negations: we write L™ (F , X)), for example, for the logic where the only
modalities are F' and X, and where modalities can not occur in the scope of
anegation. Last, a formula is said to be stratified if it has no future modality
in the scope of past modalities [24]. Sets of stratified formulas are denoted by
Lg(...). We write L} (F, S) when combining restrictions about negation
and stratification.

For example, F (a A G™1 (b V F¢)) liesin LT (F,G~!), but it is not
stratified. It is initially equivalent to (b V F ¢) U (a A (b V F¢)), whichis
inL*(U). Anditis globally equivalentto F (a A (FcV G=1bV b S ¢)),
which belongs to Ly (F, S).

Our results. In the sequel, we get the results shown in Table 1.

3 In this case, we see F as a modality, and not as an abbreviation for T U -.
4 Contrary to a claim in [32] that it is coNP-complete.



438 N. Markey

The results in bold are proved in this paper, the ones in parentheses
were proved in [32], and the other ones are corollaries, deduced by inclu-
sion or duality. For instance, existential model checking for L} (F,X 1)
is Np-complete since it is a subcase of existential model checking for
L+ (F, F! X, X! ), and since it is more general than existential model
checking for L™ (F ). pspAcE-completeness of validity for L(F , X ) comes
by duality from PSPACE-completeness of satisfiability for LT (G, X). It
should be remarked that X is self-dual (since we consider infinite paths)
but X! is not: for example, the argument above for validity of L(F ,X)
cannot be applied to L (F, X~ 1).

2 NP-complete problems

In this section, we first prove that verifying any non-trivial fragments of
PLTL is at least conp-hard. “Non trivial” means fragments allowing at least
one future modality. For “trivial” fragments, model checking problems
amount to evaluating a boolean formula, which is ALOGTIME-complete [4],
and satisfiability and validity are the classical satisfiability and validity prob-
lems for boolean formulas, which are (co)Np-complete .

We then provide Np algorithms for several fragments of pLTL, which
therefore are NP-complete.

2.1 Np-hardness of verifying linear temporal properties

Our first result is a small extension of a result given in [32]:

Theorem 1. For L™ (F ), LT(G ) and L™ (X)), the existential model check-
ing problem is Np-hard.

Proof. — We adapt Sistla and Clarke’s proof [32] of Np-hardness for model
checking L(F ). Toa 3-saT instance A\, \/ ; ¢ j, where the v; ; are literals
on {x1,x9,...,x,}, we associate the following KS:

To one path in that structure corresponds one valuation of the variables z;:
Variable z; is evaluated to true if, and only if, the path runs through state
x;. Satisfiability of our 3-SAT instance is equivalent to the existence of a
path verifying /\; \/, F a; ; in the above KS.
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— in the same way, satisfiability of A, \/ ; ¢i,j 1s equivalent to the existence
of a path satisfying /\; \/; G —(@ ;) in the same structure.
— for L1 (X)), our 3-sAT instance \; V; aij is satisfiable if, and only if,

the above KS contains a path verifying A, \/j X2n(ai,j)—1ai,j, where
n(xg) = n(Ty) = k. O

By duality (since, for instance, verifying that “all paths satisfy a formula
¢ € L (F )” amounts to verifying that “there does not exist a path satisfying
—¢”, with ¢ € LT(G)), we get

Theorem 2. Universal model checking for fragments L™ (G ), L™ (F ) and
Lt (X)) is coNpP-hard.

2.2 Np-easy problems

What we saw in the previous section entails that any non-trivial verifica-
tion problem concerning linear temporal logics is Np-hard. We know from
[32] that this lower bound is optimal for L(F ) and Lt (F , X ), that is, the
satisfiability and (existential) model checking problems for these logics are
NP-complete. In this section, we prove NP-easiness of satisfiability for four
other fragments: L(X , X!, S),L(F,F 1), L*(F,F~! X, X" 1), and
Lt (G, S). These results carry on to existential model checking, except for
L*(G, S), which we will prove is PSPACE-complete.
We systematically use the small witness method in order to do this,
consisting in
— providing a polynomial time algorithm for verifying that an ultimately
periodic path may be checked in polynomial time against any PLTL for-
mula;
— showing that the fragments listed above have the “polynomial witness
property”, i.e. if a formula is satisfiable, it is satisfiable along a polyno-
mial size ultimately periodic path.

This obviously gives an Np-algorithm for satisfiability: First guess an ulti-
mately periodic witness, and then check it. In several cases, this technique
also provides a proof for Np-easiness of the model checking problems: In-
deed, we show that, for some fragments, we can add arbitrary states in the
polynomial witness, which ensures that we can find a polynomial witness in
the KS under study. In these cases, the algorithm for existential model check-
ing is as follows: First pick the candidate witness in the Kripke structure,
and check that it satisfies the formula.

2.2.1 Model checking a loop

We first recall the following result:
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Theorem 3. Given a pure-future formula ¢ and a loop L, one can check in
time O(|L| - |¢|) whether 7,0 = ¢.

For a deterministic KS, the cTL model checking algorithm [5,6] can be
applied to LTL formulas too, since path quantification will always refer to
the only possible execution.

This simple approach does not extend to the problem of checking whether
a loop satisfies a PLTL formula: In a loop, future is “deterministic” but past
is not, since the first state of the periodic part has two predecessors. The
following lemma gives a way to overcome that problem?>.

Lemma 4. Let ¢ be a PLTL-formula. For any loop L of type (m, p), for all
k>m+ hp(o)p,

T, kEoifftr, k+p = ¢

This lemma indicates that, after some initial fluctuations, a state of the
periodic part always satisfies the same subformulas, irrespective of how
many times the periodic part has been traversed.

Proof. The proof is by induction on the structure of the formula ¢:

— For ¢ = P, ¢ = —¢1 and ¢ = ¢1 V ¢, the result is obvious;

- If ¢ = X ¢1 or ¢ = ¢1 U ¢, we can apply the induction hypothesis to
states occurring after the k-th one;

- If $ = X1 ¢y, thensince k — 1 > m + (hp(¢1) + Dp—1 > m +
hp(¢1)p, by induction hypothesis, we get the equivalence 77,k — 1 =
o1 ;:> nr,k—1+0p ‘: ¢1. Thus 7, k = X_1¢1 & L, k+p E
X7 o

— If $ = ¢1 S ¢a, we have hp(¢) = max(hp(é1), hp(d2)) + 1. Suppose
that 77,k |= ¢. There exists some k¥’ < k s.t. 7, k' = ¢2, and for
kK <1 <k,mp,l = ¢1. Two cases may arise:

- If ¥’ < k—p, then we know that the states from 7j,_,, to 7y, satisfy ¢;.
By induction hypothesis, so do the states from 7 to m4,. Thus,
7L,k 4+ p = ¢, since 7, k' = ¢2 and all the states between g/
and 7, satisfy ¢1;

— Otherwise, k' > k—p > m+ hp(¢1)p, and the induction hypothesis
directly applies to the states between 7 and 7.

Thus 7,k = ¢ = 7w,k + p | ¢. The reverse implication may be
proved similarly. O

Corollary 5. Model-checking PLTL over a loop can be done in polynomial
time.

5> Another algorithm, reducing to the problem of model checking a finite path against PLTL,
has been proposed in [28].



Past is for free 441

Proof. Givenaloop L of type (m, p) and a PLTL formula 1, we use dynamic
programming in order to compute which subformulas of ¢ are true in the
different states of the path mr. For this purpose, we apply the following
labelling algorithm:

— First unwind the periodic part of the loop h times with h greater than
hp(¢). This gives a loop of type (m + hp, p).
— Then label that loop with the subformulas in sf(¢) inductively, according
to the following rules:
— If ¢ is an atomic proposition P, label the state k£ with P if, and only
if, P € I(k),
— For boolean combinations, as well as for X - and U -modalities, use
the classical cTL labelling algorithm,
— For a formula ¢ = X! ¢, whenever a state ¢ is labelled with ¢1,
then label state ¢ 4+ 1 (if it exists) with ¢.
— For a formula ¢ = ¢1 S ¢, if a state ¢ is labelled with ¢, then label
it with ¢. Else if state ¢ — 1 has been labelled with ¢ and state ¢ has
been labelled with ¢1, then label state ¢ with ¢.

This algorithm runs in time O(|L|?+|¢|?). It can easily been proved, using
Lemma 4, that a state is labelled with the set of subformulas it satisfies.

2.2.2 Looking for ultimately periodic paths

We recall the existence of an ultimately-periodic witness for any satisfiable
formula of pLTL [32].

Theorem 6. A pure-future formula ¢ € LTL is satisfiable if, and only if,
it is satisfiable in a loop. A Kripke structure K “existentially” satisfies a
formula ¢ if, and only if, it contains an ultimately-periodic path satisfying
¢. These results also hold for PLTL formulas.

Proof. For L(U,X, S), the first statement is shown in [32]. The second
one can be shown by a classical reduction from model checking to satisfia-
bility (see [32, lemma4.3]): GivenaKS K = (Q, Qo, [, R) and a formula ¢,
we add a new atomic propositions P, for each ¢ € ). We define the follow-
ing formulas (we will use them several times in the sequel):

Yae = \ PeA N\ [Po=— | V Py

q€eqQ q€Q q'#q

Qblabel:/\ ]Dq:> /\p/\ /\ -p

q€Q p€El(q) p'¢l(q)
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Ytrans = /\ Pq = \/ XPq/
q€Q q s.t.
(.4 )eR
The first formula ensures that exactly one “state” proposition is true at a
time, the second one means that atomic propositions labelling that state are
true, and the third one means that transitions are respected.
Now, the formula

¢E = \/ qu NG wstate NG z/Jlabel NG wtrans A ¢
q0€Qo

is satisfiable if, and only if, K contains a path starting from ¢y along which
¢ is true. But if gfg is satisfiable, it is satisfiable along an ultimately-periodic
path. This path witnesses the existence of an ultimately-periodic path in K
along which ¢ is true.

The result is extended to PLTL thanks to the following Theorem:

Theorem 7 ([15,11]). For any PLTL formula ¢, there exists a boolean com-
bination of pure-future and pure-past formulas which is initially equivalent

to . O

2.2.3 Np-easy fragments

Lemmas 8 to 12 are four technical lemmas that directly entail the polynomial
witness property for several PLTL fragments. They prove Np-easiness of
satisfiability or validity for these fragments. Some of them also entail NP-
easiness of model checking.

Lemma 8. The truth of an L(X , X~ S)-formula ¢ in the initial state of
a path 7 only depends on the first hx (¢) states of .

This result is obvious.

Lemma9. Let ¢ € L(F ,F~1), and L be a loop s.t. 71,1 |= ¢ for some
integer i. Then there exists an acceptable subloop L' < L, whose size is
polynomial in |¢|, containing m;, and s.t. any acceptable subloop L" s.t.
L' 5 L" X5 L satisfies mr, f71(i) = ¢.

This lemma means that a path satisfying an L(F ,F~!) formula has
polynomialy many “important” states, the other states being removable.

Proof. We suppose that the loop L is of type (m, p), and that, for some 1,
L, = ¢. We write h = hp(¢).
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agcae%g aECEE;Qcﬁeigc’;'e’;’g’

unwind the loop

. select the states you
create the corresponding want to keep

acceptable subloop

a c e’ agcae’gcﬁeﬁgc’;’e’;’g’

Fig. 1. Construction of L’

For each subformula of ¢ of type F~! ¢, if there exists a position where
¢ is satisfied, then we know (from Lemma 4) that there is one lower than
m + hp. In this case, we write

ip-1¢g = min{i | 7p,7 = &}

The same holds for subformulas of type F' &: If there exists a state satisfying
&, we write

ipe =max{j € [;m+hp—1] | mr,j =&}

For each F - or F~! -subformula 1, we define Jy to be either equal to
iy if iy, < m, or congruent to 7, modulo p and between m and m +p — 1
otherwise. We define L’ to be the acceptable subloop of L built by keeping
states jy, for all F - and F~! -subformulas ) of ¢. We also add the current
state ;. The acceptable subloop L” is defined from L’ by possibly inserting
some other states of L. We let f be the function s.t. my» <y 77,. Remark
that

— L" has type (m”, p") with m” < m and p” < p,
— fm") < m < f(m" +1),
— for all k:, f(m” + kp”) <m+ kp < f(m” 4 kp” 4 1)‘

The example shown on Fig. 1 explains this construction.
We now have to prove that this construction is correct. For this, we show
that

Vd} € Sf(@),Vj € N’ 7Tl/aj ): QJZ) Al TFva(j) |: ¢
We prove this by induction on the structure of 1):

— for atomic propositions and boolean combinations, the result is straight-
forward;

— ift) = F 1)1, suppose that for some j, 71/, j = F 1)1. Then for some state
j' > j,wehave 71/, 7' = 11. By ind. hyp. and since f is increasing, we
eetasate f(7') > F(j) st.mr, f() = 1, and 7, £(7) = F o,
Conversely, if we suppose that 71,, f(j) = F 11, then there exists a state
' > f(j) s.t.wp, i’ E 1. Two cases may arise:
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— either j/ < m + hp — 1, then we have j' < ig,. By ind. hyp. we
get that 77/, f 1 (iFy,) | 41, and since f is increasing, we have
f_l(ile) > 7.

— orj’ > m+ hp. In that case, Lemma 4 ensures that there exists a state
k satisfying ¢ s.t. k is between m + (h— 1)p and m + hp — 1. Then
k <ipy,,and 7y, [ (ip 1) = 1. The remark above ensures that
[ (iwy, ) lies between m’ + (h—1)p’ and m’ 4+ hp'. Since Lemma 4
alsoappliesto L/, we getthatforalll > 0,7/, f ! (ip b))+ E .
Thus for all m, 7/, m = F 41, especially for m = j.

— if p = F~14)y, the proof is similar. O

Lemma 10. Let ¢ € LT(F,F~! X ,X™!) be a satisfiable formula, and
Laloop s.t. wp,i |= ¢ for some integer i. Then there exists an acceptable
subloop L' of L, whose size is polynomial in |¢|, containing 7;, and s.t. any
loop L" for which L' < L" < L satisfies wpn, f~1(i) & ¢.

Proof. The proof is similar to the proof of Lemma 9: We first unwind the
loop hp(¢) times. Then, by induction on the structure of the formula, we
build a set S of “witness states”. At each step, we prove that

V] < m—|—hp(¢> Pva € Sf<¢)7 (.77¢> € S:>7TL7j |:¢ (1)

— Initially, S contains {(, ¢)}. The property (1) is satisfied by hypothesis;
— While S contains pairs of the form (7, ) where v is not (a negation of)
an atomic proposition, we remove (j, ¢) from S, put it in 7" and
- if¢p = a V 3, then either 7, j = aor 7, j = (5. We add (j, ) or
(7, 3) to S in order to keep (1) true;
- if ¢ = a A 3, then add (j, «) and (4, 3) to S;
- if ¢ = Xa, thenadd (j + 1,a) (or (j +1 —p,a) if j +1 >
m+ hp(¢) - p)toS;
- if¢p = X!, then add (j — 1, ) to S. We know that j > 1 since
71,7 = X! a. Thus (1) still holds;
— if ¢ = F «, we know that « is true in some state k greater than j and
smaller than m + (h(¢) + 1)p. If k is greater than m + h(¢)p + 1,
then we can substract p in order to remains lower than m+ h(¢)p+ 1
(thanks to Lemma 4). Thus we add (k, «) to S, so that (1) is still
satisfied;
- if ¢y = F~! a, the argument is the same.

This process clearly ends, since the sum of sizes of formulas in S de-
creases at each step. Moreover, |S U T| < |¢| at the end.

Now consider the acceptable subloop L’ of L containing the states we
keptin SUT'. We also possibly add some other states (this construction is the
same as the one shown in Fig. 1). We write f for the function s.t. 77, <f 7.
The remarks of the previous proof still apply. Then 77/, f~1(i) = ¢.
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Indeed, we prove that, for any (j,) € TUS, wehave 7r/, f~1(j) = ¥:
clearly, for each (j,) in S, we have 77/, f~1(j) |= v since v is an atomic
proposition. For (j,1) € T, several cases may arise:

- if ) = aV 3, then either (j, «) or (j, 3) isin T'U S, and the result comes
by ind. hyp.,

- if ¢ = a A (3, then (j,«) and (4, 3) are in T'U S, and the result also
comes from the ind. hyp.,

- if¢p = X, then (j+1, ) (or (j+1—p,«))isin TUS. In the first case,
the result is immediate. In the second case, it comes from Lemma 4,

— for the other modalities F,F~! and X!, the argument is the same.

O

This proof can easily be adapted to L+ (F, X ,F~! -X~1 =), where
—X ! is the dual modality of X~!. Indeed, we simply have to han-
dle that dual modality slightly differently, by differentiating the case when
j = 0 and the other cases when building S. By duality from this remark,

we get a coNP algorithm for universal model checking and validity for
LT(G,X,G! X1,

Lemma 11. Let ¢ € LT (G, S, X 1), 7 a path and a a state. Then

- Ifa®,0 |= ¢, then for all i, a*,i = ¢;
- If,0 = ¢, then (m0)“, 0 = ¢.

Proof. We use structural induction once again: Assume that a¥,0 = ¢.
Then:

— If ¢ is an atomic proposition, a conjunction or a disjunction, the result is
obvious;

- If ¢ = G 9, then a*, 0 |= 9. By induction hypothesis, a*, ¢ = 9 for all
i, and a¥, i |= ¢ for all i;

- If ¢ = 11 Sbg, then a*, 0 |= 2. By induction hypothesis, all position
i satisfy 15 along @, and a®, i |= ¢ for all ¢;

— If ¢ = X114, we cannot have a*, 0 |= ¢.

The second statement is proved in the same way: We assume that 7, 0 = ¢,
and prove that (79)“,0 = ¢:

— Itis obvious for atomic propositions and positive boolean combinations;

- If ¢ = G 1), then 7,0 |= 9. By induction hypothesis, (), 0 = 1, and
the first statement of the lemma ensures that for positions 4, ()%, i |= 1.
Hence the result;

— If ¢ = 9)1 S 19, the same arguments apply;

— The case when ¢ = X1 ) is trivial, as previously.

Lemma 12. Let ¢ € L™ (U, S). Forall path 7 and for all state s, we have
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— if for some i, s“,i [~ ¢, then for all i, ¥ i [~ ¢;
— iffor some i, 7,1 [~ ¢, then for all j, (m;)“, ] = ¢.

Thus a non-valid L™ (U, S )-formula has a small counterexample, and
validity for that fragment is coNP-complete.

Proof. We begin with the first statement, by induction:

— For atomic propositions, or (positive) boolean combinations of subfor-
mulas, the result is obvious;

- If ¢ = ¢1 U ¢, then s¥,i [~ ¢ entails that ¥, i [~ ¢9. By induction,
for all j, ¥, j I~ ¢2, and ¢ cannot be satisfied along s*;

— A similar argument may be used if ¢ = ¢1 S ¢o.

We prove the second part of the lemma in the same way:

— It is obvious for atomic propositions, as well as for conjunctions or
disjunctions;

- If = ¢1 U ¢o, then 7,i [~ ¢ entails that 7,7 [~ ¢o. By induction,
()%, i [~ ¢, and the first part of the lemma ensures that (7;)%, j = ¢2
for all j. Hence (m;)“, j [~ ¢ for all j;

— In the same way, when ¢ = ¢1 S ¢, then (7;)%, i [~ ¢2, then (m;), j -
¢9 for all j, and (m;), j K~ ¢ for all j.

Theorem 13. Satisfiability and existential model checking are Np-
completeforL(X, S, X 1), L(F,F~ 1), LT(F,F !, X,X ), andfor
their non-trivial fragments.
Validity is conp-complete for L™ (U, S) and its non-trivial fragments.
Satisfiability is Np-complete for LT (G, S, X)) and its non-trivial
fragments.

NP-easiness is a direct consequence of the previous results. Np-hardness
was proved in Sect. 2.1. These results are summarized in the Table 1.

3 PSPACE-complete problems

In this section, we prove PSPACE-hardness of verification problems for sev-
eral fragments of PLTL.

The proofs are reductions from two tiling problems we now define: Let C
be a finite set of colors. A domino-type is a 4-tuple (d"P, d%wn dleft qright)
of colors of C. Given a set T C C* of domino-types, and two inte-
gers m and n, tiling the m x n-grid amounts to finding a function
f:[l,m] x[1,n] =T st

V(laj) € [Lm_ 1] X [Ln]a f(ivj)right = f(l+ 17j)16ﬂ
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Fig. 2. The Kripke structure K associated with our tiling problem

V(i,j) € [Lm] x [Ln =1], f@@,5)" = f(i,j+1)%""

We consider the following tiling problem, which is a slightly modified
version of [14, prob. Bs]:

Given a set 7" of domino-types, a natural m (in unary), and two colors
co and c; of C, does there exist a natural n s.t. the m X n-grid can
be tiled, with the additional conditions that f(1,1)%"" = ¢, and
flm,n)"? = ¢1?

This problem is pSPACE-complete. The second problem we will use is the
following:

Given a set 1" of domino-types, a natural m (in unary), and two colors
co and ¢; of C, do all correct tiling satisfying f(1,1)%"" = ¢,
eventually satisfy f(m,n)"? = ¢; for some n?

This problem is also PSPACE-complete since it can encode the universality
problem for a polynomial space Turing machine.

Let (C,T = {d1,...dp}, m,co,c1) be an instance of By. W.l.o.g., we
may assume that the domino-types whose d“P-color is ¢; are numbered from
1 to ¢, and the other ones from ¢ + 1 to p.

We build the Kripke structure shown on Fig. 2. The set of atomic propo-
sitionsis TU{E}U{i =k | k=1,...,m}. The initial states are all the
states where the d%°“"-color is ¢ and the value of 7 is 1. All the transitions
from a state labelled with ¢ = k to a state labelled with i = k -+ 1 are enabled
for K < 'm — 1. For ¢ = m, if the d“P-color is not ¢y, then it is only possible
to go to states labelled with ¢ = 1, else it is only possible to go to state F.

We now have to write formulas stating that:
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— Colors are respected from left to right;
— Colors are respected from top to bottom;
— The initial and final conditions are fulfilled.

3.1 The fragment Lt (U )

It is well-known that model-checking and satisfiability are PSPACE-complete
for L(U) [32]. The result here is a little stronger since we cannot, for
instance, encode the G modality in L*( U ).

Theorem 14. Existential model-checking for L (U ) is PSPACE-hard.

Proof. We simply have to express the three properties stated above with
L*(U) formulas:

— Both “initial” and “final” conditions are satisfied:
i =TUE

— The sequence of colors from left to right is correct:

m—1
?bhorizg ( /\ /\(i:k/\d):>

k=1 deT

(i=kU(i=k+1n \/ d’)))UE
d'eT
dleft —qright

— The sequence is also correct from bottom to top:

(ﬁvertE(/m\ /\(i_k/\d)2><i—kU<—\i_k‘/\

k=1deT

(ni=k)U(EV@i=kr \/ d’))))) UE
d'er
d! down — qup

A path in K satisfying the conjunction of those formulas eventually
reaches E, after having run n times through a state where ¢ = 1 holds. The
path gives rise to a function f: [1,m] x [1,n] — T in the obvious way. This
function is a tiling function since the path satisfies the ¢neri; and ¢yer condi-
tions. Thus the (PSPACE-complete) problem B; is (polynomialy) reducible
to model-checking L™ ( U ), and model checking L™ ( U ) is PsPACE-hard.

Corollary 15. Satisfiability for L (U ) is PSPACE-hard.
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Proof. A classical method for such a proof is to reduce model checking
to satisfiability. However, since we cannot use or express G in LT(U),
we cannot encode the behaviour of a (general) Kripke structure. Thus we
will reduce our tiling problem to the satisfiability problem, by encoding the
Kripke structure of Fig. 2 into an L™ (U ) formula. This is possible since
we only have to encode its behaviour until it reaches E.

We assume that the KS of Fig. 2 is (Q, Qo, [, R), and we keep the nota-
tions introduced in the proof of Theorem 6, page 441.

We define

def

¢K = \/ qu AN=E N (¢state A ¢label A wtrans) UFE
q0€Qo

By construction, ¢x A Pnoriz /A Gvert 18 satisfiable if, and only if, the
instance of the tiling problem we considered has a solution.

Theorem 16. Universal model checking is PSPACE-hard for L™ (U ).

Proof. This proof requires the second tiling problem: The input is the same,
but the question is whether all correct tilings having cq as leftmost bottom
color will eventually have c; as rightmost top color. We will write a for-
mula expressing that each path either does not represent a correct tiling, or
eventually reaches F. Thus we write

— Left-to-right tiling condition is not satisfied at some place:

m—1
gbhorizg \/ \/TU<i:k3AdA

k=1 deT

(i—kU(i—k+1/\ A ﬁd’)>>

d'eT
d’left —qright

— Bottom-up tiling condition is not fulfilled at some place:

Prert = {n/ \/TU(izk/\d/\(i:kU(ﬁi:k:A
k=1deT
(ri=kUG=kA A ﬂ’)))))

d'eT
d/ down —Jup
A path satisfying those properties does not correspond to a correct tiling.
Thus checking that all the paths satisfy ¢noriz V @vert V. T U E amounts to
solving our tiling problem.
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3.2 PSPACE-hardness for LY (F , X ), LY(G,X), LH(F,X"!) and
LG, X

Satisfiability and existential model checking for L™ (F,X) are Np-
complete [32]. We show here that universal model checking is harder for
that fragment.

Theorem 17. The universal model checking problem for L+ (F ,X) is
PSPACE-hard.

Proof. The reduction is similar to the previous one, and formulas are even
easier to write: We simply have to write the formulas expressing that a path
does not correspond to a correct tiling:

— Left-to-right tiling condition is not satisfied at some place:

m—1
Qbhorizg \/ \/F(i:kﬁ/\d/\ /\ Xﬁd,>

k=1 deT d'eT
d'left =qright

— Bottom-up tiling condition is not fulfilled at some place:

Brert = \7 \/F(z‘:k/\d/\ A\ X"wl’)

k=1deT d'erT
d! down — qup

By duality, we get

Corollary 18. Existential model checking and satisfiability problems are
PSPACE-hard for LT (G, X).

Proof. For existential model checking, the result comes by duality from
the previous Theorem. The reduction from existential model checking to
satisfiability for L(F , X ) [32] also applies to LT (G, X)).

It is easy to adapt the proof of Theorem 17 to L™ (F , X1 ). This entails
the following Theorem:

Theorem 19. The universal model checking problem for LT (F ,X~1) is
PSPACE-hard.

The following result also holds, but is not exactly dual with the previous
one:

Theorem 20. The existential model checking problem is PSPACE-hard for
LH(G, X 1)
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Proof. We consider the dual problem of the one we used for the proof of
Theorem 16: Given the same input, the question is whether there exists a
correct tiling that never satisfies the “final” condition. For this purpose, we
simply have to express that a path satisfies the tiling conditions:

— Left-to-right tiling condition is satisfied:

m
¢horizg/\/\G<i:k/\d:> \/ X_ld/>
k=2deT d'eT
d'right —qleft

— Bottom-up tiling condition is satisfied:

¢Vertg}n\/\G<i:k/\d:><X_lkJ_\/ \/ X—l”d/))

k=1deT d'eT
d/up —=ddown
Checking that there exists a path satisfying ¢noriz A dvert A G = E amounts
to solving the initial PSPACE-complete problem.

Even though satisfiability for L} (G, X~1) is Np-complete , we prove
here that validity for L} (F,X~!) is pspACE-complete, which emphasizes
the fact that X! is not self-dual:

Lemma 21. Validity is pSPACE-hard for LT (F , X~ 1).

Proof. We reduce the same problem we used in the proof of Theorem 16:
Do all correct tilings having ¢q as leftmost bottom color eventually have c;
as rightmost top color?

We encode a slightly modified KS in order to be able to refer to the
beginning of a path: The only initial state is labelled with Init, it has no
incoming edge and has outgoing edges to the states where ¢ = 1 and the
d®wn_color is co. Fig. 3 illustrates this construction.

The reduction is achieved as follows: We write a formula stating that

— either the path does not belong to the modified structure,
— or it does not correspond to a correct tiling,
— or it eventually reaches F.

For the sake of simplicity, and since it is not ambiguous, we assume that
our new KS is defined by (Q, {Init}, R, ). We keep the notations introduced
in the proof of Theorem 6. That a path does not belong to the modified
structure can be expressed through a disjunction of four subformulas:

Qbinit = —Init
¢state =F _‘@Z}state
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i=1,dp i=2,dp
P N
4
..Y
| i=1,dg41 i=2,dg 11 |
i=1,dq i=2,dg
g
%
Init > i=1,d2 s i=2,dg
N .
i=1,d; i=2,d;

ddown _

Fig. 3. The modified Kripke structure (assuming that exactly d2> and d 1 have cg as
color)

Dlabel = F —1apel

Guans = F (‘Jl’til‘ N /\ (—|S, vX! —|S)> V (Im't AXE T)
(s,s")ER

A path satisfies the disjunction of these formulas iff it is not extracted from
our Kripke structure.

Expressing that the path does not represent a correct tiling is done in the
same way as before:

Shoiz = \/ F[XTdA-EAn- \/ d

deT d'eT
d'left —gright

$en = \/ F <(X1 y"dA-E A= \/ d’)

deT d'eT
d! down — qJup

Let G be an infinite correct tiling having ¢y as leftmost bottom color,
and m¢ its associated path. Since the disjunction is valid, and since 7g
correspond to a correct tiling, the validity of the disjunction above entails
that 7 satisfies F' F, i.e. that the tiling eventually has ¢; as its rightmost
top color.

Conversely, if all correct tilings having ¢ as leftmost bottom color even-
tually have c; as rightmost top color. Then, if a path belongs to the Kripke
structure and correspond to a correct tiling, it will eventually reach state F.
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3.3 pSPACE-hardness for LT (F, S) and L} (G, S)

Theorem 22. Existential model checking for LY (F, S) is PSPACE-hard.

Proof. We still consider the structure of Fig. 3. We express that

— the initial and final conditions are satisfied:
o = FE

— horizontal sequences of dominoes form a correct tiling:

Qshoring(E/\(/\ NG=knd) =

k=2deT
(i=kSGi=k—1n \/ d’))) smn)
d'eT
d/right —dleft

— vertical tiling conditions are fulfilled:

¢vengF<E/\<7\ NG=knd) = (i=kS (=i =kA

k=1deT

(~i=k)SUnitv (i=kn \/ d’)))))) S nm)
d'eT
d'up —ddown

A path satisfying all these conditions eventually reaches E, and corre-
sponds to a correct tiling. Thus, existential model checking for L} (F, S)
is PSPACE-complete.

Theorem 23. Existential model checking for LY (G, S) is PSPACE-hard.

Proof. This demonstration uses the same problem as in the demonstration of
Theorem 20, but the reduction uses the structure of Fig. 3. Thus, we have to
write two formulas stating that the sequence of states satisfies the horizontal
and vertical tiling conditions:

— Left-to-right tiling condition is satisfied:

Phoriz = /m\ /\G(i:/md;» \ (isz(izk—l/\d’))

k=2deT d'er
d/might —left
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— Bottom-up tiling condition is satisfied:

¢t:7\ /\G(i—kAd:»(z‘—ks (—w':k/\

k=1deT
(i =k)S (I”ifv (i=kn \/ d,))>>>
d'eT
d/up =ddown

Checking that there exists a path satisfying ¢noriz A dvert A G = E amounts
to solving the initial PSPACE-hard problem.

Theorem 24. Satisfiability is PSPACE-hard for LY (F | S).

Proof. We simply have to encode the KS of Fig. 3 into temporal logic
formulas. We keep the notations of the proof of Lemma 21. We define the
followong formulas:

Dinit = Init A Ystate N Vlabel
Prrans = [((Z =1A ﬂ(ddown =¢))=>@E=18Si= m)) A

<(i — 1A (d9 =)= (=1 S (Gimie Vi = m))> A

(AG=k=G=ks <z‘=k—1>>>)] S G

k=2
¢path = F (E ANE S (_‘E A (_‘E A wstate A wlabel A ¢trans) S ¢init))

This does not ensure that a path exactly encodes a run in the Kripke
structure, since we cannot avoid going back to Init in the middle of the run.
But the formula ensures that the part of the path between the first occurence
of an E and the latest Init before that E really encodes a run in the Kripke
structure. The conjunction of this formula and formulas of the proof of
Theorem 22 is satisfiable if, and only if, the tiling problem has a solution.
Thus satisfiability is PSPACE-complete for LT (F, S).

Theorem 25. The universal model checking problem for LY (F,S) is
PSPACE-hard.

Proof. The reduction is similar to the one of Theorem 16. We have to write
formulas expressing that horizontal or vertical tiling conditions are not ful-
filled. In L} (F, S), this cas be written as follows:
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— Left-to-right tiling condition is not satisfied at some position:

whorlz(k,d)g((’L:k/\d)/\(l:kS(rL:k1/\ /\ _‘d,>))
d'eT
d'right —qleft
Phoriz = \/ \/ F Ynoriz(k,d)
k=2deT

— Bottom-up tiling condition is not fulfilled at some position:

Uvert(k,d)
o ((i:k/\d)/\(isz(w’zkz/\(ﬁi:kS

(=i A )

d'eT
d'up =ddown
m

Dvert = \/ \/ F wvert(kz,d)

k=1deT

All path satisfy F E'V ¢noriz V dvert if, and only if, all correct tiling eventually
have c; as rightmost top color.

Theorem 26. The universal model checking problem for LY (G, S) is
PSPACE-hard.

Proof. We reduce the dual problem of our initial tiling problem: Given the
same input, the question is whether there exists no correct tiling meeting
both initial and final conditions. This is achieved by writing that, for all path
in the Kripke structure of Fig. 3, if state E is eventually reached, then the
path does not correspond to a correct tiling. Thus we write:

o (eore (T ) (1)
k=2deT k=1deT

Theorem 27. Validity for LY (G, S) is PSPACE-hard.

Proof. We keep the notations of the previous proof, and write the following
formula:

6 =Init=G |E=
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P ((\/ \Y ﬂ’horiz(k,d)) v (\/ \V wvm(k,d)> v

k=2deT k=1deT

“state V WPlabel V /\ -s'Vs'S—s
(s,s")ER

Clearly, if ¢ is valid, then the path corresponding to a correct tiling having
co as leftmost bottom color cannot reach F, i.e. the tiling never has c; as
rightmost top color. Conversely, if no correct tiling ever meets both initial
and final requirements, then any path not satisfying ¢ will start in state Init,
reach state F, and correspond to a correct tiling, which is impossible.

Theorem 28. Model-checking and satisfiability for fragments L*(U),
LT(G,X), LHNG,X™ 1), LI(F,S) and for fragments of
PLTLcontaining one of them, are PSPACE-complete. Model-checking is
PSPACE-complete for LT (G, S).

Proof. This is a direct consequence of [32, Theorem 4.1], and of Theorems
in this section.

4 Concluding remarks

The results we got are sufficient to completely classify all the considered
fragments of PLTL w.r.t. the complexity of (existential and universal) model-
checking and satisfiability problems.

This exhaustive case study led to several surprising results. We showed
that existential and universal model checking might have the different com-
plexity for positive fragments (NP vs. PSPACE). We found only one case
where existential model checking and satisfiability have different theoret-
ical complexity. On the other hand, we observe that using the symmetric
past-time modalities of the allowed future modalities does not increase the
complexity of verification problems. The same remark holds for the use of
future modalities in the scope of past-time modalities. This all boils down
to the conclusion that past is really cheap.

After this study on the effect of adding past into fragments of LTL, it
would be interesting to look into when “past is for free” for extensions of that
logic, such as cTL* (as far as we know, the complexity of model checking
for cTtL* with linear past is still open [18]) or timed temporal logics ([2]
proves that, for the validity problem over timed state sequences, past can be
added for free in the Metric Temporal Logic from [17], but not in the Timed
Propositional Temporal Logic of [1]).
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