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Abstract. The applicability of the accommodating function, a relatively
new measure for the quality of on-line algorithms, is extended.

The standard quality measure for on-line algorithms is the competitive
ratio, which is, roughly speaking, the worst case ratio of the on-line per-
formance to the optimal off-line performance. However, for many on-line
problems, the competitive ratio gives overly pessimistic results and/or fails
to distinguish between algorithms that are known to perform very differently
in practice. Many researchers have proposed variations on the competitive
ratio to obtain more realistic results. These variations are often tailor-made
for specific on-line problems.

The concept of the accommodating function applies to any on-line prob-
lem with some limited resource, such as bins, seats in a train, or pages in
a cache. If a limited amount n of some resource is available, the accom-
modating function A(α) is the competitive ratio when input sequences are
restricted to those for which the amount αn of resources suffices for an
optimal off-line algorithm. For all resource bounded problems, the standard
competitive ratio is limα→∞ A(α).

The accommodating function was originally used only for α ≥ 1. We
focus on α < 1, observe that the function now appears interesting for a
greater variety of problems, and use it to make new distinctions between
known algorithms and to find new ones.
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1 Introduction

An algorithm is said to be on-line if it receives its input in small pieces
and handles each piece without any knowledge about the rest of the input.
The standard quality measure for on-line algorithms is the competitive ratio
which is similar to the approximation ratio for approximation algorithms,
i.e., the profit/cost of the on-line solution is measured relative to the best
possible solution that could be obtained, if the whole input was known from
the beginning. However, often the difference in power between on-line and
off-line algorithms seems to be too large for this to give meaningful results;
the competitive ratio often gives results that are overly pessimistic and may
fail to distinguish between very different algorithms. For this reason many
variations on the competitive ratio have been proposed, some of which were
introduced in [4,6,14,15,19,21,23].

While some of the previous variations are tailor made for specific prob-
lems, the accommodating function applies to any problem with a limited
amount n of some resource. Informally, A(α) is the competitive ratio when
input sequences are restricted to those for which an optimal off-line algo-
rithm does not benefit from having more than the amount αn of resources.
These sequences are called α-sequences. We refer to on-line problems for
which any input sequence is an α-sequence for some α as resource bounded.
For such problems, the limit limα→∞ A(α) is the standard competitive ratio.
All problems considered in this paper are resource bounded. The accommo-
dating function was recently defined in [8], and it was applied to various
problems in [8] and [1], but only for α ≥ 1. In this paper, values of α < 1
are considered for the first time. The accommodating function is formally
defined in Sect. 2.

1.1 Motivation and background

The original motivation for considering this type of restriction of request
sequences is from the Seat Reservation Problem [7], the problem of assign-
ing seats to passengers in a train on-line, in a “fair” manner, to maximize
earnings. For the unit price version, the competitive ratio for this problem
is Θ( 1

k ), where k is the number of stations where the train stops. This very
discouraging performance cannot occur, however, for realistic request se-
quences. Based on data from previous years, the management is often able
to judge approximately how many cars are necessary to accommodate all
requests (given the entire set of seat reservations this is an easy problem).
Hence, it is more realistic to consider only request sequences that can be
fully accommodated by an optimal off-line algorithm. Such sequences, cor-
responding to α = 1, are called accommodating sequences. For the unit
price problem, A(1) ≥ 1

2 [7].
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The idea of restricting the adversary to only giving accommodating se-
quences carries over to any optimization problem with some limited re-
source, such as the seats in a train. Thus, for instance, it can be used on
the k-Server Problem, where the servers constitute a limited resource since
there are only k of them, or scheduling problems, where there is only a fixed
number of machines.

In addition to giving rise to new interesting algorithmic and analytical
problems, the accommodating function, compared to just one ratio, contains
more information about the on-line algorithms. This information can be
exploited in several ways. The shape of the function, for instance, can be
used to warn against critical scenarios, where the performance of the on-line
algorithm compared to the off-line can suddenly drop rapidly when fewer
resources are available.

In [8], a variant of bin packing is investigated, for which the number
of bins is fixed and the goal is to maximize the number of items packed.
The bins have height k and the items are integer sized. It is shown that, in
general, Worst-Fit has a strictly better competitive ratio than First-Fit, while,
in the special case of accommodating sequences, First-Fit has a strictly bet-
ter competitive ratio than Worst-Fit. In this case, the competitive ratio on
accommodating sequences seems the more appropriate measure, since it is
constant while, in the general case, the competitive ratio is Θ( 1

k ), basically
due to some sequences which seem very contrived. This shows that in ad-
dition to giving more realistic performance measures for some problems,
the competitive ratio on accommodating sequences can be used to distin-
guish between algorithms, showing, not surprisingly, that the decision as to
which algorithm should be used depends on what sort of request sequence
is expected. The obvious question at this point was: Where is the cross-over
point? When does First-Fit become better than Worst-Fit? This is another
motivation for considering the accommodating function.

In [8], the accommodating function was investigated for α ≥ 1, spanning
from the one known interesting case (accommodating sequences) to the other
(the standard competitive ratio). In this paper we extend the definition of the
accommodating function to include α < 1.

1.2 Results

As example problems, we first consider two maximization problems. For
Unrestricted Bin Packing, we analyze First-Fit and Best-Fit and investigate
a new variant of Unfair-First-Fit [1], called Unfair-First-Fitα. In general,
we do not assume that α is known to the algorithm, but Unfair-First-Fitα
is designed for the case where a good upper bound on α is known. This
algorithm turns out to be better than First-Fit for α close to 1.
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Fig. 1. Bounds on A(α) for the Seat Reservation Problem

For Seat Reservation, we consider three deterministic algorithms, which
asymptotically have the same competitive ratio on accommodating se-
quences, and show that the performance of these algorithms can be separated
using the proposed extension of the accommodating function.

Finally, we consider well known on-line minimization problems to em-
phasize the broad applicability of the accommodating function for α < 1.

1.2.1 The accommodating function for two maximization problems

For the Seat Reservation Problem, considering the accommodating function
for α < 1 corresponds to the situation where the management has provided
more cars than needed by an optimal off-line algorithm to accommodate all
passenger requests. This seems to be a desirable situation, since the only
way the train company can hope to accommodate all requests on-line is by
having more resources than would be necessary if the problem was solved
optimally off-line.

In this paper, we analyze the accommodating function for the problem in
general and for First-Fit and Worst-Fit in particular. The results for First-Fit
and Worst-Fit are depicted in Fig. 1 to the left of the line α = 1. To the right
of this line, general results from [8] are shown.

Although the competitive ratio on accommodating sequences fails to
distinguish between fair algorithms for the Seat Reservation Problem (they
all have ratio 1

2 in the limit), we investigate the accommodating function at
α = 1

3 for three different algorithms and discover that Worst-Fit is the worst
there, First-Fit is better, and an algorithm due to Kierstead and Trotter is
optimal at α = 1

3 .
We also consider another maximization problem, a variant of bin packing

called Unrestricted Bin Packing. We analyze the accommodating function
for the problem in general and for First-Fit and Best-Fit in particular. The
results for First-Fit are depicted in Fig. 2 to the left of the line α = 1.
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Fig. 2. Bounds on AFF(α) for Unrestricted Bin Packing

The results to the right of the line are from [8]. Moreover, we show how
performance guarantees for accommodating sequences can be extended in
a fairly general manner to better bounds on the competitive ratio for more
restricted sets of input sequences. Thus, accommodating sequences play
a more important role than originally anticipated. One can also see from
the graphs in Figs. 1 and 2 that accommodating sequences have unique
properties; the shape of the curve seems to often change significantly at
α = 1. In addition, for Unrestricted Bin Packing, we investigate an algorithm
called Unfair-First-Fitα, which is shown to perform significantly better than
First-Fit given that a good bound on α is known in advance.

1.2.2 The connection to resource augmentation

Resource augmentation is another technique which is used to give more re-
alistic results when the standard competitive ratio seems too negative [14].
With resource augmentation analysis, the on-line algorithm is given more
resources than the off-line algorithm, but the performance ratio is still the
worst case over all request sequences. There is clearly a similarity between
resource augmentation and the accommodating function with α < 1. How-
ever, for some problems there is a tremendous difference between the results
one gets with the two techniques. In these cases, the accommodating func-
tion gives the more positive results, because there can exist sequences where
the off-line algorithm could have done somewhat better with more resources
(and thus would not be considered in the accommodating function analy-
sis), while the on-line algorithm is unable to fully take advantage of its extra
resources.

As an example of this phenomenon, for α ≤ 1, we prove a perfor-
mance guarantee for the algorithm First-Fit for the Seat Reservation Prob-
lem, AFF(α) ≥ 1 − 1

2� , where � = � 1
α�, but even with 1

α times as many
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seats as the off-line algorithm, First-Fit’s competitive ratio can be as bad as
1+α

(α−2/n)(k−1) ; for fixed α, the ratio is Θ( 1
k ).

For Unrestricted Bin Packing, one can also show that resource aug-
mentation analysis gives results which are much more pessimistic than the
corresponding accommodating function results. We prove a performance
guarantee for First-Fit for 1

2 ≤ α ≤ 1 of AFF(α) ≥ 3+2α
8α , while the com-

petitive ratio of First-Fit is at most 1
αk , even when First-Fit has 1

α times as
many bins as the off-line algorithm (again k is the height of the bins).

On the other hand, there are many cases where results or proofs from
resource augmentation can be used to calculate the accommodating func-
tion for α < 1. Performance guarantees about algorithms analyzed using
resource augmentation directly give performance guarantees for the accom-
modating function. Impossibility results can also be applied if the original
adversary only used accommodating sequences. We illustrate this with three
minimization problems: the Paging Problem, the k-Server Problem, and
Machine Scheduling (minimizing the makespan). The clear intuitive appli-
cability of the accommodating function when the actual request sequences
are expected to have the proper form makes these results and proofs from
resource augmentation even more interesting than previously.

2 The accommodating function

We now define the accommodating function formally.

Definition 1 A resource dependent problem is an on-line optimization prob-
lem P , where each problem instance, in addition to the input data given
on-line, also has a parameter n, referred to as the amount of resources,
such that for each input, the optimal solution depends monotonically on n.

We let OPT denote an optimal off-line algorithm for the resource de-
pendent problem P . For any algorithm Aand any input sequence I for P ,
A(I) denotes the profit/cost of running A on I , and OPTn′(I) denotes the
profit/cost of OPT when the amount n′ of resources is available.

For a given resource parameter n and any α > 0, an input sequence I
is said to be an α-sequence, if

OPTαn(I) = OPTn′(I), for all n′ ≥ αn.

1-sequences are also called accommodating sequences.
A resource dependent problem is called resource bounded if every input

sequence is an α-sequence for some α. ��
If an input sequence is an α-sequence, then OPT does not benefit from

having more than the amount αn of resources. In particular, if an input
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sequence is an accommodating sequence, then OPT does not benefit from
having more resources than the amount already available. For many prob-
lems, the amount n of the resource is always a natural number. In that case,
one should only consider values of α such that αn ∈ N. If not, we define
A(α) to have the same value as A( �αn�

n ). Thus, A becomes a step function.

Definition 2 Let A be an on-line algorithm for a resource dependent maxi-
mization (minimization) problem. Then A is c-competitive on α-sequences,
if there exists a constant b, such that

A(I) ≥ c · OPT(I) − b
(
A(I) ≤ c · OPT(I) + b

)
,

for any α-sequence I . The accommodating function is defined as

AA(α) = sup{c | A is c-competitive on α-seq}
(AA(α) = inf{c | A is c-competitive on α-seq}). ��

Thus, for maximization problems, A(α) ≤ 1, and for minimization
problems, A(α) ≥ 1.

The condition that the problems should be resource bounded is necessary
to ensure that the limit of the competitive ratio on α-sequences for α → ∞
is the usual competitive ratio, since it is possible to create (very artificial)
problems which are not resource bounded and where the limit is not the
competitive ratio.

The condition implies that for every input sequence, when we increase the
amount of resources which can be used, then at some point we have enough,
so that extra resources will no longer improve the result. This seems very
natural, and we have not found any natural problems which are not resource
bounded. It is very easy to verify that all problems in this paper are resource
bounded. As an example, for unrestricted bin packing, if we have an input
sequence of length n, then when we allow n bins as resources, certainly no
items will be rejected, so more bins cannot improve the result.

To illustrate the problem without the resource boundedness, consider the
following artificial example:

Example 1 In this problem, we have one bin of size n. The size of this bin
is our resource. The input is a sequence of items which have a size and a
value. The objective is to maximize the total value.

There are two types of items, called ONE and STRETCH. ONE has
size 1 and value 1. The size of STRETCH is all remaining non-zero space
in the bin and its value is 1 − 1/n.

Since the value of STRETCH grows with the bin size, OPT will always
do better with a larger bin. This means that STRETCH cannot belong to any
α-sequence, and therefore the problem is not resource bounded.

For this problem, the competitive ratio of any greedy algorithm on α-
sequences is 1. However, the competitive ratio on all sequences is strictly
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smaller than 1. This is seen as follows: Give ONE and then STRETCH. If
STRETCH is rejected, then stop. The ratio is 1/(2 − 1/n) < 1 (here, OPT
takes STRETCH). If STRETCH is accepted, continue by giving another
ONE. The ratio is (2 − 1/n)/2 < 1 (here, OPT rejects STRETCH).

It is very easy to verify that all problems considered in this paper are
resource bounded, as the example with the bins shows, and we will not
mention this technicality again.

3 Unrestricted bin packing

In this section, we consider a maximization variant of Bin Packing, called
Unrestricted Bin Packing, in which the objective is to maximize the number
of items packed within n bins all of the same size k ∈ N. An input sequence
consists of items, the sizes of which are integers between 1 and k. The items
are given one by one and an on-line algorithm must pack each item before
the next item arrives. An α-sequence can be packed (by an optimal off-line
algorithm) within αn bins.

We use the following notation for a given α ≤ 1. Assume that we have a
numbering of the bins from 1 to n, according to the order in which they are
taken into use. The first αn bins, denoted BI, are called internal bins, and the
remaining n−αn bins, denoted BX, are called external bins. Whenever we
consider a fixed request sequence, we let A denote the set of items accepted,
i.e., packed in one of the n bins, by the on-line algorithm, and divide A
into the set AI of items packed in BI and the set AXof items packed in BX.
The set R contains the remaining (rejected) items. We sometimes use B′

X
to denote the set of nonempty external bins.

Some well-known bin packing algorithms are First-Fit (FF), Best-Fit
(BF), and Worst-Fit (WF). First-Fit packs each item in the first bin it fits in,
and Best-Fit chooses a most full bin in which the item fits. Worst-Fit packs
each item in a most empty bin, meaning that the first n items are packed in
separate bins. The bounds on First-Fit found in this section are depicted in
Fig. 2 in Sect. 1.

3.1 Performance guarantees

Definition 3 An algorithm for Unrestricted Bin Packing is called fair if it
never rejects an item that it is able to pack. ��

In this section, we give a performance guarantee for the class of fair
algorithms and better guarantees for three specific algorithms, two of which
are fair. In fact, the guarantees for the three algorithms are corollaries of
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a more general theorem extending results for accommodating sequences
(α = 1) to the α-sequences where α is less than 1.

Theorem 1 Any fair algorithm Afor Unrestricted Bin Packing has

AA(α) ≥



1
1 + α − 1

k

, 1
k ≤ α ≤ 1

1, α ≤ 1
k

Proof. If α ≤ 1
k , any α-sequence has at most n items, and hence any fair

algorithm will pack all items of an α-sequence. This gives A(α) = 1, for
α ≤ 1

k .
Assume now that 1

k ≤ α ≤ 1 and let I be an arbitrary α-sequence. Let
s denote the size of a smallest item in R. Since Ais fair, the empty space in
any bin is at most s − 1, meaning that the items accepted have a total size
of at least n(k − s+1). Since I is an α-sequence, the total size of the items
in I is at most αnk. Thus,

|R| ≤ 1
s
(αnk − n(k − s + 1))

≤ 1
s
(αnk − αn(k − s) − n), since α ≤ 1

= αn − n

s
≤ αn − n

k
, since s ≤ k

If |R| = 0, the result of Ais optimal. If |R| > 0, |A| ≥ n since Ais fair.
Therefore,

|A|
|A| + |R| ≥ n

n + αn − n
k

=
1

1 + α − 1
k

. ��
In Sect. 3.2, this performance guarantee is shown to be asymptotically

tight due to the behavior of Worst-Fit.
The proof of Theorem 1 shows that fair algorithms will reject fewer than

αn items. When considering First-Fit, a stronger fact can be shown, namely
that αn is an upper bound on the number of items not packed in the internal
bins, i.e., |AX| + |R| < αn. Furthermore, for any α-sequence with α ≤ 1,
First-Fit packs at least the fraction AFF(1) of the items in the internal bins,
and if it rejects an item no bin is empty. Similar or slightly weaker results can
be shown for a broader class of algorithms. For such algorithms, Theorem 2
may be used to extend performance guarantees obtained on accommodating
sequences to α-sequences with α < 1. When reading Theorem 2, recall that
B′

X denotes the set of nonempty external bins.

Theorem 2 Suppose that, for any α ≤ 1, the following three conditions
hold for an algorithm Afor Unrestricted Bin Packing.
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1. There exist constants β and b such that, for any α-sequence,

|AI| ≥ β(|AI| + |B′
X| + |R|) − b.

2. Whenever |R| > 0, no external bin is empty, i.e.,

|R| > 0 ⇒ |B′
X| = (1 − α)n.

3. For any α-sequence, |B′
X| + |R| ≤ αn.

Then,

AA(α) ≥




1 − (1 − β)
(

2 − 1
α

)
,

1
2

≤ α ≤ 1

1, α ≤ 1
2

.

Proof. Assume that |R| > 0, because otherwise A’s packing is optimal.
Then, by Conditions 2 and 3, (1 − α)n + |R| ≤ αn, which implies that
α > 1

2 . Hence, for α ≤ 1
2 , AA(α) = 1.

We assume now that |R| > 0 and 1
2 ≤ α ≤ 1 and split the remaining

part of the proof in two cases depending on the size of AI compared to β
and αn.

Case 1: |AI| ≥ β
1−β αn. In this case, the result follows from Conditions 2

and 3 alone:

|AI| + |AX|
|AI| + |AX| + |R| ≥ |AI| + |B′

X|
|AI| + |B′

X| + |R|
≥ |AI| + (1 − α)n

|AI| + αn
, by Conditions 2 and 3

≥ βαn + (1 − β)(1 − α)n
βαn + (1 − β)αn

, since |AI| ≥ βαn

1 − β

=
βα + (1 − β)(1 − α)

α

= 1 − (1 − β)
(

2 − 1
α

)
.
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Case 2: |AI| < β
1−β αn.

|AI| + |AX|
|AI| + |AX| + |R| ≥ |AI| + |B′

X|
|AI| + |B′

X| + |R|
≥ β − ε +

|B′
X|

|AI| + |B′
X| + |R| , by Condition 1 with

ε =
b

|AI| + |B′
X| + |R|

≥ β − ε +
(1 − α)n
|AI| + αn

, by Conditions 2 and 3

> β − ε +
(1 − β)(1 − α)
βα + (1 − β)α

, since |AI| <
βαn

1 − β

= β +
(1 − β)(1 − α)

α
− ε

= 1 − (1 − β)
(

2 − 1
α

)
− ε . ��

The constant b in the first condition of Theorem 2 is actually not needed
for any of the results in this paper; it is there to make the theorem more
generally applicable with β = AA(I).

The first corollaries to the theorem concern the fair algorithms First-Fit
and Best-Fit . They extend results from [8] saying that the two algorithms
are both 5

8 -competitive on accommodating sequences.

Corollary 1 For Unrestricted Bin Packing,

AFF(α) ≥



3 + 2α

8α
, 1

2 ≤ α ≤ 1

1, α ≤ 1
2 .

Proof. Let α ≤ 1 and consider any α-sequence I . Assume that First-Fit is
given only αn bins, and let Aα be the set of items packed by First-Fit in these
αn bins. By [8], AFF(1) ≥ 5

8 (and the additive constant in the definition
of the competitive ratio is not used in the proof). Hence, |Aα| ≥ 5

8 · |I|.
Assume now that First-Fit is given the same sequence I and n bins to pack
it in. Since each item is packed in the first bin in which it fits, exactly the
items in Aα will be packed in BI. Hence, the first condition is satisfied with
β = 5

8 .

Condition 2 holds since First-Fit is a fair algorithm.

None of the items in AX ∪ R fit in BI, i.e., |AX| + |R| ≥ |B′
X| + |R|

items do not fit in any of the αn internal bins. By the same argument as in
the proof of Theorem 1, this means that Condition 3 is satisfied. ��
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Corollary 2 For Unrestricted Bin Packing,

ABF(α) ≥



3 + 2α

8α
, 1

2 ≤ α ≤ 1

1, α ≤ 1
2 .

Proof. Again, we just need to verify the three conditions in Theorem 2.

Consider any α-sequence I and let A′
Xbe the set of items in I which

Best-Fit places as the first item in some external bin. No item in A′
X ∪R fits

in BI at the time it is given. The subsequence f(I) of I consisting of the items
in AI∪A′

X∪R is clearly also an α-sequence, and given the subsequence f(I)
and only αn bins, Best-Fit will accept exactly those items in AI. This shows
that the first condition is satisfied with β = ABF(1). By [8], ABF(1) ≥ 5

8
(and the additive constant in the definition of the competitive ratio is not
used in the proof).

Condition 2 holds because Best-Fit is fair.
Condition 3 holds because none of the items in A′

X ∪ R fit in BI. ��
The third corollary to the theorem above concerns the following slight

variation of the algorithm Unfair-First-Fit [1]. Unfair-First-Fit behaves just
like First-Fit unless the given item has size larger than k

2 . In this case, the
item is rejected on purpose, if the number of currently accepted items is at
least 2

3 of the number of items in the entire sequence seen so far. The new
algorithm given in Fig. 3, called Unfair-First-Fitα (UFFα), assumes that α
is known in advance. Using this knowledge, the algorithm divides the bins
into BI and BX. Note that the ratio considered in the if-statement of the
algorithm is the number of items in the internal bins, compared to all items
given. If this ratio is at least 2

3 , the item is rejected if it does not fit in an
external bin.

Input: S = 〈o1, o2, . . ., on〉
while S �= 〈〉

o := hd(S); S := tail(S)

if size(o) ≤ k
2 or |AI|

|AI|+|AX|+|R|+1 < 2
3

“Accept” - Try to pack o using First-Fit

else

“Reject” - Try to pack o in BX using First-Fit

Update AI, AX, R accordingly

Fig. 3. The algorithm Unfair-First-Fitα

The actions “Accept” and “Reject” should be understood with respect to
the internal bins, in that they distinguish between whether the internal bins
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are considered or not. In the “Accept” case, the item is placed in the internal
bins according to the First-Fit packing rule, if there is enough space. If there
is not enough space in any of the internal bins, the First-Fit rule is tried
against the external bins. If there is not enough space in either an internal
or an external bin, the item is rejected (added to R). The “Reject” case is
similar, but the internal bins are not considered.

If a good upper bound α′ on α is known, UFFα′ can be used, giving a
performance guarantee of AUFFα′(α

′).

Corollary 3 For αn ≥ 9,

AUFFα
(α) ≥




1 + α

3α
− ε,

1
2

≤ α ≤ 1, where ε =
4α − 2

(4n + 1)α
<

1
n

1, α ≤ 1
2

.

Proof. Let α ≤ 1 and consider any α-sequence I and the algorithm Unfair-
First-Fit. Assume that Unfair-First-Fit is given only αn bins, and let Aα

be the set of items packed by Unfair-First-Fit in these αn bins. By [1],
AUFF(1) ≥ 2

3 − 2
4n+1 (and the additive constant in the definition of the

competitive ratio is not used in the proof). Hence, |Aα| ≥ β|I|, where
β = 2

3 − 2
4n+1 . Assume now that UFFα is given the same sequence I and

n bins to pack it in. By the order in which the sets BI, BX, and R are tried,
UFFα packs exactly the items in Aα in BI. Hence, the first condition of
Theorem 2 is satisfied with β = 2

3 − 2
4n+1 .

An item is not rejected if it fits in BX, which proves the second condition.
To show the third condition, let s denote the size of a smallest item in

AX ∪ R. If this smallest item was packed by an “Accept” attempt, every
bin in BI has empty space less than s. Since all items could be packed in
BI, this means that |BX| + |R| < αn. If the smallest item was packed by
a “Reject” attempt, this item has size larger than k

2 , which then all items in
AX ∪ R must have. Since no two items of this size can be packed together,
there are at most αn such items.

Finally, assuming α ≥ 1
2 , we derive the bound

AUFFα
(α) ≥ 1 −

(
1 −

(
2
3

− 2
4n + 1

))(
2 − 1

α

)

= 1 −
(

1
3

+
2

4n + 1

)(
2 − 1

α

)

= 1 −
(

2
3

+
4

4n + 1
− 1

3α
− 2

(4n + 1)α

)

=
1 + α

3α
− 4α − 2

(4n + 1)α
. ��
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3.2 Impossibility results

The theorem below extends a result in [8] and it shows that any (even ran-
domized) on-line algorithm Afor Unrestricted Bin Packing has AA(α) < 1,
for α > 4

5 .

Theorem 3 Let α ≤ 1 and k ≥ 5. Then, for any on-line algorithm Afor
Unrestricted Bin Packing,

AA(α) ≤




2α + 4
7α

, if αn is even.

2α + 4
7α

+ O

(
1
n

)
, otherwise.

Proof. Note that, for α ≤ 4
5 , the bound is larger than 1. Hence, we may

safely assume that α ≥ 4
5 . The adversary gives two phases of items.

In the first phase, αn items of size �k−1
2 � are given. Since k ≥ 5, at most

two such items can be packed in one bin. Let q denote the fraction of bins
containing two items in A’s packing. Depending on the expected value of
q, E[q], the next phase is different.

Case 1: E[q] ≤ 3α−1
7 . The adversary gives �αn

2 � items of size k. By linearity
of expectation,

E

[ |A|
|A| + |R|

]
≤ n + E[q]n

�3
2αn� .

If αn is even, this reduces to

E

[ |A|
|A| + |R|

]
≤ 2 + 2E[q]

3α
≤ 14 + 2(3α − 1)

21α
=

2α + 4
7α

.

Otherwise, we get

E

[ |A|
|A| + |R|

]
≤ n + E[q]n

3
2αn − 1

2
=

2n + 2E[q]n
3αn − 1

≤ 14n + 2(3α − 1)n
21αn − 7

=
6αn+12n

21αn−7

=
(6αn+12n)(1+ 7

21αn−7)

(21αn − 7)(1+ 7
21αn−7)

=
(6αn + 12n)(1 + 1

3αn−1)
21αn

=
6α+12
21α

+
6α+12

21α(3αn−1)
=

2α+4
7α

+
2+4/α

21αn − 7

≤ 2α + 4
7α

+
5

12n − 5
, since α ≥ 4

5
.
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Case 2: E[q] > 3α−1
7 . The adversary gives αn items of size �k+1

2 . In this
case, Aaccepts at most αn + n − qn. Thus,

E

[ |A|
|A| + |R|

]
≤ αn + n − E[q]n

2αn
<

7α + 7 − (3α − 1)
14α

=
2α + 4

7α
. ��

The following theorem extends an impossibility result for First-Fit on
accommodating sequences in [1] and shows that, when n is sufficiently
large,

AUFFα
(α) > AFF(α), for 0.90 ≈ 7 +

√
85

18
< α ≤ 1.

Theorem 4 For Unrestricted Bin Packing, for 2
3 + 1

3n ≤ α ≤ 1,

AFF(α) ≤




5
9α − 1

+ O

(
1
n

)
, if n = 9 · 2i − 5 and k ≥ 12 · 23i,

i ∈ N0, and 3 | k

5
9α − 1

+ O

(
1√
n

)
, otherwise.

Proof. We first show the bound for the special values of n. Then we extend
to all values of n.Assume that, for some i ∈ N0, n is of the form n = 9·2i−5
and that k is at least 12 · 23i and is divisible by 3. An adversary can give the
following request sequence, divided into i + 3 phases:

Phase 0: 3 items of size A = k
3 − 23i.

Phase j = 1 . . . i: 3 · 2j pairs, each with one item of size
Bj = k

3 + 23i−3j+2,
followed by one of size Cj = k

3 − 23i−3j .
Phase i + 1: 3 · 2i items of size D = 2k

3 + 1.
Phase i + 2: 3 · (αn − (6 · 2i − 3)) items of size E = k

3 .

The number of items given in Phase i + 2 is non-negative, since α ≥
2
3 + 1

3n . First-Fit will pack the items of Phase 0 in one bin. The assumption
on k ensures that these three items will remain alone, since the smallest item
given after Phase 0 has size k

3 − 23i−3 and therefore the requirement is that
3 ·23i < k

3 −23i−3 giving that k > (9+ 3
8)23i. For each phase j, 1 ≤ j ≤ i,

First-Fit will pack one pair consisting of an item of size Bj and an item of
size Cj in each bin, using 3 · 2j bins. After such a pair is packed, all future
items are too large to join a pair. The number of bins used in the first i + 1
phases is 1 +

∑i
j=1 3 · 2j = 6 · 2i − 5. In the next phase, each item will

be placed in its own bin, using the last 3 · 2i bins. There will be no space
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for items from the last phase. Adding up the number of items from the first
i + 2 phases, First-Fit will accept 15 · 2i − 9 items.

OPT can pack each item from Phase 1 with two of the items of size B1
from Phase 2, using a total of three bins for this. Then, for 1 ≤ j ≤ i − 1,
it can place every pair of items of size Bj+1 together with one item of size
Cj . This occupies 3 · 2j bins. Then it can pack one item of size Ci together
with one item of size D using a total of 3 · 2i bins for this. The number of
bins used is 3 + 3

∑i−1
j=1 2j + 3 · 2i = 6 · 2i − 3. From the last phase, three

items can be packed together in each bin, and the entire sequence will in
this way occupy αn bins.

The ratio is thus

15 · 2i − 9
15 · 2i − 9 + 3 · (αn − (6 · 2i − 3))

=
5 · 2i − 3
αn − 2i

=
5 − 2

n

9α − 1 − 5
n

=
5

9α − 1
+ O

(
1
n

)
.

For n general, we choose integers n′ ∈ Θ(
√

n), c ≤ n′, and s ∈ Θ(
√

n)
satisfying n = sn′ + c and n′ = 9 · 2i − 5. By giving c items of size k
followed by s times the sequence described above (with n′ substituted for
n), we get the following performance ratio

c + s(15 · 2i − 9)
c + s(3αn′ − 3 · 2i)

≤ c + s(5 · 2i − 3)
s(αn′ − 2i)

=
5

9α − 1
+ O

(
c

n
+

1
n′

)

=
5

9α − 1
+ O

(
1√
n

)
.

��
The following theorem establishes that Theorem 1, showing that any fair

algorithm has accommodating function at least 1
1+α−1/k , is asymptotically

tight.

Theorem 5 For Unrestricted Bin Packing,

AWF(α) <
1

1 + α − 1
k − 1

n

, for α ≤ 1.

Proof. The adversary gives two phases of items:

– n items of size 1
– αn − �n

k  items of size k.

Worst-Fit will accept only the first phase, whereas the optimal algorithm
can behave like First-Fit and pack all items in αn bins. The ratio is

AWF(α) ≤ n

n + (αn − �n
k ) <

n

n + (αn − n+k
k )

=
1

1 + α − 1
k − 1

n

. ��
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4 Unit Price Seat Reservation

The other maximization problem we consider in detail is the Unit Price Seat
Reservation Problem.A train with n seats travels from a start station to an end
station, stopping at k ≥ 2 stations, including the first and last. Reservations
can be made for any trip from a station s to a station t. The passenger is
given a single seat number when the ticket is purchased, which can be any
time before departure. For political reasons, the problem must be solved
in a fair manner, i.e., the ticket agent may not refuse a passenger if it is
possible to accommodate him when he attempts to make his reservation. For
this problem an α-sequence can be packed by an optimal off-line algorithm
using αn seats.

The algorithms (ticket agents) attempt to maximize income, i.e., the sum
of the prices of the tickets sold. In this paper, we consider only the pricing
policy in which all tickets have the same price, the unit price problem, since
the results in [7] for the proportional price problem show that its competitive
ratio, even on accommodating sequences, is Θ( 1

k ).
The seat reservation problem is similar to the problem of coloring an

interval graph on-line (the seats corresponding to the colors), which has
been well studied because of applications to dynamic storage allocation.
The difference is that with graph coloring, all vertices must be given a
color and the goal is to minimize the number of colors used. With the seat
reservation problem, there is a fixed number n of colors, and the goal is to
maximize the number of vertices that are colored.

We use the following result from graph theory: Interval graphs are per-
fect [13], so the size of the largest clique is exactly the number of colors
needed to color the whole graph. Thus, when there is no pair of stations
(s, s + 1) such that the number of people who want to be on the train be-
tween stations s and s+1 is greater than the number n of seats, the optimal
off-line algorithm will be able to accommodate all requests. The contrapos-
itive is clearly also true; if there is a pair of stations such that the number of
people who want to be on the train between those stations is greater than n,
the optimal off-line algorithm will be unable to accommodate all requests.
We will refer to the number of people who want to be on the train between
two stations as the density between those stations.

For the Seat Reservation Problem, First-Fit and Worst-Fit are defined
similarly as for Unrestricted Bin Packing; First-Fit places each request on
the first seat it fits on, and Worst-Fit places each request on a seat where
the sum of the gap sizes on both sides of the request is largest possible. The
results found in this section for these two algorithms are depicted in Fig. 1
in Sect. 1.
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4.1 Performance guarantees

The performance guarantee for fair algorithms on accommodating sequences
found in [7] can be extended to a general performance guarantee for α ≤ 1.
Consider any α-sequence and any fair on-line algorithm A. Let A be the set
of requests which are accepted and R be the set rejected. For any subset S of
the n seats, let AS denote the subset of the intervals in A which A places on
seats in S. The following lemma shows that if many requests are rejected,
then the number of intervals in AS must be large. The lemma is used to
prove a performance guarantee on all fair algorithms. The main idea of the
proof is to focus on some specific subset, consisting of αn of the n seats.

Lemma 1 Let S be any subset of the seats, consisting of αn seats, α ≤ 1
and let I be any α-sequence. For any fair algorithm A, |AS | ≥ |R|.
Proof. Since A is fair, none of the requests in R can be placed on any of
the seats in S. Consider the following request sequence I ′, consisting of all
the intervals in AS ∪ R, with the intervals in AS coming before those in
R. Clearly, there exists a fair algorithm A

′ which given I ′ and a train with
αn seats places the intervals in AS exactly as A did, except that it uses all
αn seats instead of αn selected seats out of n. Algorithm A

′ accepts all the
intervals in AS , and, as a consequence, rejects all intervals from R.

The request sequence I ′ is an α-sequence, since it is constructed from
a subset of requests from an α-sequence, so every request could be accom-
modated in those αn seats by an optimal off-line algorithm. By [7], the
competitive ratio of any fair algorithm on accommodating sequences is at
least 1

2 and the additive constant in the definition of the competitive ratio is
not used in the proof, so |AS | ≥ |R|. ��
Theorem 6 Any fair algorithm for Unit Price Seat Reservation is 1

1+α -
competitive on α-sequences, for α ≤ 1.

Proof. Choose S to be a subset containing αn seats which minimizes |AS |.
By Lemma 1, |AS | ≥ |R|. Since S was chosen to minimize |AS |, A places
at least as many intervals on each seat not in S as it does on any seat in S.
Thus, |A| ≥ n |AS |

αn ≥ |R|
α . This gives a performance ratio of

|A|
|A| + |R| ≥

1
α |R|

1
α |R| + |R| =

1
1 + α

. ��
This result is asymptotically tight due to Worst-Fit’s behavior, as shown

in the next subsection.
It was shown in [7] that First-Fit’s competitive ratio on accommodating

sequences is not strictly better than 1
2 , the performance guarantee for any

fair algorithm. It is interesting that for α ≤ 1
2 , it is possible to prove that

First-Fit’s performance is better than Worst-Fit’s.
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Theorem 7 For Unit Price Seat Reservation,

AFF(α)≥2�−1(1−�α) + (2� − 1)α
2�−1(1−�α)+(2�)α

≥1− 1
2�

, where �=
⌊

1
α

⌋
and α ≤ 1.

Proof. Consider an α-sequence. Let A be the set of requests which are
accepted by First-Fit and R be the set rejected.

Divide the seats up into � blocks, where � = � 1
α�, such that the first αn

seats are in block 1, the next αn seats in block 2, etc. Any leftover seats will
be added to the �th block, so that it has n − �αn + αn seats. Let Ai denote
the set of intervals which First-Fit places in the ith block.

We consider the last block first and compute a lower bound on |A�|,
the number of intervals First-Fit places in it. Using the techniques from
the proof of Theorem 6, one can choose the αn seats from among the last
n − �αn + αn which contain the fewest intervals. Those seats must contain
at least |R| intervals, so |A�| ≥ 1−�α+α

α |R|.
First-Fit could not place any of the intervals it placed in the last block in

any previous block. Thus, one can look at the intervals in the second to last
block, in the last block, and in R, and note that they must form an α-sequence.
Again using the result that any fair algorithm is at least 1

2 -competitive on
accommodating sequences, we have that |A�−1| ≥ |R| + |A�|. Similarly,
|Ai| ≥ |R| +

∑�
j=i+1 |Aj |. If Ci denotes the total number of intervals

First-Fit places in the last i blocks, then Ci ≥ 2Ci−1 + |R|, so C� ≥
2�−1(1−�α)+(2�−1)α

α |R|. Thus, the performance ratio

AFF(α) ≥ |A|
|A| + |R| =

C�

C� + |R| ≥ 2�−1(1 − �α) + (2� − 1)α
2�−1(1 − �α) + (2�)α

. ��

This performance guarantee is not tight. Kierstead and Qin [16] have
shown that First-Fit colors every interval graph using at most 25.72 times
as many colors as necessary, so the competitive ratio on α-sequences is 1
when α ≤ 1

25.72 ≈ 0.039.

4.2 Impossibility results

Our first impossibility result for the Unit Price Seat Reservation Problem
shows that the general performance guarantee of Theorem 6 is asymptoti-
cally tight by giving a matching impossibility result for Worst-Fit.

Theorem 8 For Unit Price Seat Reservation,

AWF(α) <
1

1 + α − 1
k−1 − 1

n

, when α ≤ 1.
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Proof. Since this upper bound is at least 1 for αn < � n
k−1, we assume

that αn ≥ � n
k−1. Consider the sequence consisting of n intervals each of

size 1 “evenly” distributed among the intervals of the form [i, i + 1), for
1 ≤ i ≤ k − 1, i.e., the number of intervals for each i is either � n

k−1� or
� n

k−1, followed by αn−� n
k−1 copies of the interval [1, k). The unit-length

intervals can all be placed on � n
k−1 seats, so the sequence is an α-sequence.

Worst-Fit will put the unit-length intervals on separate seats and reject all of
the long intervals. OPT will accept all of the intervals since α ≤ 1, so the
ratio is

AWF(α) ≤ n

n + αn − � n
k−1 <

n

n + αn − n+k−1
k−1

=
1

1 + α − 1
k−1 − 1

n

.

��

Theorem 9 below says that if k can be arbitrarily large, no fair on-line
(deterministic or randomized) algorithm for the Unit Price Seat Reservation
Problem is better than 8−α

9α -competitive on α-sequences. Thus, for α > 4
5 ,

AA(α) < 1 for any algorithm Afor the problem. The proof of this is based
on Theorem 3.1 in [3], which in turn is based on a proof from [7].

Theorem 9 Let α ≤ 1 and k ≥ 9. Then, for any fair on-line algorithm Afor
Unit Price Seat Reservation,

AA(α) ≤ 8 − α

9α
+ O

(
1
k

)
.

Proof. Assume that αn is even, α ≤ 1 and k ≥ 9. Let k′ ≤ k be chosen
largest possible such that 6 divides k′ − 3. The adversary begins with αn

2
requests for each of the intervals [3s+1, 3s+3) for s = 0, 1, . . . , k′−3

3 . We
refer to these intervals as the original intervals. Any fair on-line algorithm
will accept this set of k′

3 · αn
2 requests. Suppose that after these requests are

accepted, there are qi seats which are empty from station 3i + 2 to station
3i + 5. For i = 0, 1, . . . , k′−9

6 , let pi = q2i + q2i+1.
If E[pi] ≤ 16−11α

9 n, the adversary proceeds with αn
2 requests for the

interval [6i + 2, 6i + 5) and αn
2 requests for the interval [6i + 5, 6i + 8).

For these αn additional requests, the on-line algorithm can accommodate
exactly pi of them. Thus, for the total of 2αn requests, the starting station of
which is in [6i + 1, 6i + 6), the on-line algorithm accommodates αn + pi.

If E[pi] > 16−11α
9 n, the adversary proceeds with αn

2 requests for the
interval [6i+3, 6i+7), followed by αn

2 requests for the interval [6i+2, 6i+4)
and αn

2 requests for the interval [6i+6, 6i+8). The [6i+3, 6i+7) requests
are all accepted. Out of the next αn requests, the on-line algorithm can
accommodate exactly (4 − 3α)n − pi of them. This is seen as follows.
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Consider the [6i + 2, 6i + 4) intervals. The on-line algorithm can place
n−q2i − αn

2 of these intervals on the same seat as a [6i+4, 6i+6) interval,
namely where there is no [6i + 1, 6i + 3) interval at the same time. On the
n − αn

2 seats where there are no [6i + 4, 6i + 6) intervals, one of the αn
2

intervals of type [6i+3, 6i+7)would prevent us from placing a [6i+2, 6i+4)
interval. Thus, the on-line algorithm can place at most n− αn

2 − αn
2 intervals

of type [6i+2, 6i+4) on seats with no [6i+4, 6i+6) interval. Adding up,
the total number of accepted requests are at most (2− 3α

2 )n−q2i. Similarly,
the on-line algorithm accepts at most (2− 3α

2 )n−q2i+1 of the [6i+6, 6i+8)
intervals, totaling (4 − 3α)n − pi. Thus, of the 5αn

2 requests, the starting
station of which is in [6i + 1, 6i + 6), the on-line algorithm accommodates
at most 3αn

2 + (4 − 3α)n − pi = (4 − 3
2α)n − pi of them.

Clearly for both cases, the density is nowhere more than αn, so the
optimal off-line algorithm can accommodate all requests on αn seats.

In this way, the requests are partitioned into k′−3
6 + 1 groups; each of

the first k′−3
6 groups consists of either 2αn or 5αn

2 requests and the last
group consists of αn

2 requests. For each of the first k′−3
6 groups, the on-

line algorithm can accommodate up to a fraction 8−α
9α of the requests in the

group. This leads to the theorem.
More precisely, let S denote the set of indices for which the first case

happens, and let S̄ denote the set of indices for which the second case
happens. By linearity of expectation,

E

[ |A|
|A| + |R|

]
≤

αn
2 +

∑
i∈S(αn+E[pi])+

∑
i∈S̄((4−3

2α)n−E[pi])
αn
2 +

∑
i∈S 2αn+

∑
i∈S̄

5αn
2

≤
α
2 +

∑
i∈S(α + 16−11α

9 ) +
∑

i∈S̄(4 − 3
2α − 16−11α

9 )
α
2 +

∑
i∈S 2α +

∑
i∈S̄

5α
2

≤
α
2 + (α + 16−11α

9 ) · k′−3
6

α
2 + 2α · k′−3

6

=
(8 − α)2k′ + 33α − 48

9α · 2k′ − 27α
,

where the last inequality holds because in general a
b = c

d < 1 and a < c

imply that e+ax+cy
e+bx+dy ≤ e+a(x+y)

e+b(x+y) . This completes the proof. ��

We consider a class of fair algorithms called Any-Fit, which will use an
empty seat only if there is not enough space on partially used seats. Any-Fit
includes both First-Fit and Best-Fit.



24 J. Boyar et al.







n
αn

Fig. 4. Placement for k = 22 and n = 9

Theorem 10 For any Any-Fit algorithm Afor Unit Price Seat Reservation,

AA(α) ≤ 1
3α − 1

+ O

(
1
k

)
, for

1
3

< α ≤ 1.

Proof. Since the upper bound is at least 1 for α ≤ 2
3 , we assume that α ≥ 2

3 .
Assume first that 3 divides n and 6 divides k − 4. Give n

3 requests of each
of the following types (see Fig. 4, where we have illustrated the placement
by A):

– [1, 2), [k − 1, k), and for i ∈ {1, . . . , k−4
6 } : [6i − 2, 6i + 2).

– [1, 4), [k − 4, k − 1), and for i ∈ {1, . . . , k−4
6 − 1} : [6i, 6i + 4).

– [k − 2, k), and for i ∈ {1, . . . , k−4
6 } : [6i − 4, 6i).

Since Ais fair, it accepts all these requests, amounting to n
3 (3k−4

6 +4) =
k+4
6 n.

OPT uses 2n
3 seats to accommodate all these requests, since the density

between any two stations is 2n
3 . OPT can use the space from 2n

3 up to αn to
accept the following intervals, which Awill be unable to accommodate:

– For i ∈ {1, . . . , k
2 − 1} : [2i − 1, 2i + 1).

We get the following ratio:

AA(α) ≤
k+4
6 n

k+4
6 n + (α − 2

3)n(k
2 − 1)

=
k + 4

(3α − 1)k + 8 − 6α

=
1

3α − 1
+ O

(
1
k

)
.

Let c = n mod 3 and d = (k − 4) mod 6. If c = 0 and d > 0, the
sequence above with k−4

6 replaced by �k−4
6 � can be used. If c > 0, the

adversary first gives c ≤ 2 intervals [1, k) and then gives the sequence
above with n

3 replaced by �n
3 � and k−4

6 replaced by �k−4
6 �. The ratio is then
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AA(α) ≤ c + k−d+4
6 (n − c)

c + k−d+4
6 (n − c) + (α − 2

3)(n − c)(k−d
2 − 1)

=
k + 4 − k−2

n c − (1 − c
n)d

(3α − 1)k + 8 − 6α − (3α−1)k+2−6α
n c − (1 − c

n)(3α − 1)d

≤ k + 4

(3α − 1)k + 8 − 6α − (6α−2)k+4−12α
n − 15α + 5

=
(k + 4)

(
1 +

(
(6α−2)k+4−12α

)
/n+15α−5

(3α−1)k+8−6α−
(
(6α−2)k+4−12α

)
/n−15α+5

)
(3α − 1)k + 8 − 6α

=
k + 4

(3α − 1)k + 8 − 6α
+ O

(
1
nk

+
1
k2

)

=
1

3α − 1
+ O

(
1
k

)
.

��

4.3 Distinguishing between algorithms

As mentioned above, First-Fit has a competitive ratio on accommodating
sequences which is not strictly better than 1

2 . This result is from [7]. Later,
in [3], it was shown that 1

2 is an asymptotic (for k much larger than n)
upper bound on the performance of any fair algorithm. Similarly, First-Fit’s
competitive ratio is no better than 2

k−1 − 1
(k−1)2 , while the performance

guarantee for any fair algorithm is 2
k [7]. Theorems 7 and 8 together show

that in contrast to these results for α ≥ 1, when α < 1
2 , First-Fit is not

as bad as any other possible fair algorithm. Specifically, Worst-Fit has an
asymptotic competitive ratio of at most 3

4 on 1
3 -sequences, while First-Fit

has a ratio of at least 7
8 .

Kierstead and Trotter [17] have shown that every interval graph with
clique number ω(G) can be (3ω(G) − 2)-colored on-line. Since colors cor-
respond to seat assignments, this means that their algorithm has a competitive
ratio of 1 on 1

3 -sequences. Their algorithm solves the problem of minimizing
the number of seats (colors) used; it is undefined for values of α > 1

3 when
applied to the maximization problem where the number of seats is limited.
However, their algorithm can obviously be extended in many ways so that
it solves this maximization problem. For example, one could use their al-
gorithm whenever it assigns a seat number which exists and use First-Fit
otherwise.

Chrobak and Ślusarek [11] have shown that there exists a sequence where
First-Fit uses more than 4.4 times as many seats (colors) as OPT, and thus is
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not 1-competitive on 1
3 -sequences. Thus, Kierstead and Trotter’s algorithm

has a better competitive ratio on 1
3 -sequences than First-Fit.

Kierstead and Trotter’s algorithm is not, however, better than First-Fit
on 1-sequences, since it has been shown [7] that no fair algorithm has a
competitive ratio on accommodating sequences which is strictly better than
1
2 asymptotically.

In conclusion, we have that the competitive ratio on α-sequences, where
α < 1, can be useful in distinguishing between algorithms.

Theorem 11 Kierstead and Trotter’s algorithm, First-Fit, and Worst-Fit,
all have asymptotic competitive ratio 1

2 on accommodating sequences, but
have different competitive ratios on 1

3 -sequences.

Note 1 It is tempting to try to use the techniques in Chrobak and
Ślusarek [11] to improve the impossibility result on First-Fit or the tech-
niques in Kierstead and Trotter [17] to improve the general impossibility
result. Unfortunately, the number of requests accepted is so large compared
to the number rejected that the impossibility results which can be obtained
are essentially 1. ��

5 Resource augmentation in comparison
with the accommodating function

The concept of the accommodating function should not be confused with
resource augmentation introduced in [14]. Resource augmentation analysis
gives the on-line algorithm more resources than the optimal off-line algo-
rithm that it is compared to, but there is no restriction on the input sequences.

Note 2 In the resource augmentation setting, the on-line algorithm has the
amount m of resources and the optimal off-line algorithm has the amount
n ≤ m of resources. Performance guarantees obtained in this setting are
also valid for the case where all input sequences are n

m -sequences. This
is because, even though the optimal off-line algorithm in our setting has
the same amount of resources as the on-line algorithm, the result it obtains
cannot be improved with extra resources beyond n when considering n

m -
sequences. ��

The contrapositive of the observation above gives that when considering
impossibility results, it is the other way around: impossibility results for the
accommodating function carry over to the resource augmentation setting.

Resource augmentation does not always give as realistic or optimistic
results as the accommodating function for α < 1. In order to obtain the same
results, one needs to restrict to accommodating sequences while also doing
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resource augmentation. To see that resource augmentation alone can be
insufficient, consider the algorithm First-Fit for Unit Price Seat Reservation.
Theorem 7 gives a performance guarantee for First-Fit for α ≤ 1: AFF(α) ≥
1 − 1

2� , where � = � 1
α�. In contrast, resource augmentation cannot give a

constant performance guarantee for First-Fit.

Theorem 12 For α > 2
n , the competitive ratio of First-Fit for Unit Price

Seat Reservation is at most 1+α
(α− 2

n
)(k−1)

, when First-Fit has at most 1
α times

as many seats as OPT.

Proof. Let 2
n ≤ α < 1 be given. We allow First-Fit to have n seats, while

OPT has �αn� seats. Consider the sequence beginning with � αn
k−1� requests

for [i, i + 1) for 1 ≤ i ≤ k − 1, one request for [i, i + 1) for 1 ≤ i ≤
�αn� − (k − 1)� αn

k−1�, n − 1 − � αn
k−1� requests for [1, k), and finally the

request [�αn� + 1 − (k − 1)� αn
k−1�, k). First-Fit will accept all of these

and the train will be full. The sequence continues with �αn� − 1 − � n
k−1�

requests for [i, i + 1) for 1 ≤ i ≤ k − 1, and First-Fit must reject them all.
Note that OPT can place one of the first short intervals on each of its �αn�
seats and thus reject all of the long intervals, except possibly the last “long”
interval. Thus, it can accept all of the unit-length intervals at the end. The
performance ratio is at most

|A|
|A| + |R| =

�αn� + n − � αn
k−1�

�αn − 1�(k − 1)
≤ 1 + α

(α − 2
n)(k − 1)

. ��
For Unrestricted Bin Packing, one can also show that resource augmen-

tation analysis alone gives results which are much more pessimistic than
the corresponding accommodating function results. Recall that the perfor-
mance guarantee from Corollary 1 for First-Fit for α ≤ 1 is AFF(α) ≥
min

{3+2α
8α , 1

}
.

Theorem 13 For Unrestricted Bin Packing, the competitive ratio of First-
Fit is at most 1

αk , when First-Fit has at most 1
α times as many bins as OPT.

Proof. We allow First-Fit to have n bins, while OPT has �αn� bins. The
adversary can give n items of size k followed by αnk items of size 1. First-
Fit will accept the first n items, but none of the small items. OPT will reject
the first n items and accept all the small items, giving a ratio of n

αnk = 1
αk .
��

Next, we consider three concrete minimization problems to demonstrate
how the accommodating function is applicable to them. These problems
show the subtleties in the definition of the accommodating sequences. They
also demonstrate how resource augmentation results can be applied to give
accommodating function results.
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5.1 Paging

We consider the Paging Problem in the page fault model, i.e., the algorithm
maintains a fast memory (cache) consisting of k pages of memory and the
input is a sequence of page requests. If a page in cache is requested, no cost
is incurred; otherwise the requested page must be transferred from the slow
memory at a cost of 1 and another page must be evicted from the cache. It is
usually assumed that the page to be evicted must be chosen before any of the
following requests are revealed. The goal is to choose an eviction strategy
which minimizes cost. Before the first page request is served, the cache is
empty. In this problem, the limited resource is the cache.

When an optimal off-line algorithm serves an α-sequence, it will have
the same cost for every cache size k′ ≥ αk. To see why such a se-
quence can consist of more than αk different pages, consider the fol-
lowing example: For k = 6, the following sequence is a 1

2 -sequence,
S = 〈1, 2, 3, 4, 5, 6, 7, 1, 2, 8, 9, 10, 1, 2, 11, 12〉. Keeping the two pages 1
and 2 in the cache will give a cost of 12 with a cache of size k′ for all k′ ≥ 3.

In the (h, k)-Paging Problem, the on-line algorithm is assumed to have
a cache of size k as in the usual Paging Problem, but the performance of
the on-line algorithm is measured relative to an optimal off-line algorithm
whose cache has size h ≤ k. (See [5] for a survey on (h, k)-Paging.)

Sleator and Tarjan [21] prove that for the (h, k)-Paging Problem
LRU (Least-Recently-Used) and FIFO (First-In/First-Out) are both k

k−h+1 -

competitive. Using Note 2, this implies that FIFO and LRU are k
(1−α)k+1 -

competitive. Sleator and Tarjan also prove that their performance guarantee
is tight, and a very similar proof shows that it is also tight for α-sequences.
The proof is given in detail here to give further intuition for α-sequences.

Theorem 14 Any deterministic Paging algorithm Ahas AA(α) ≥
k

(1−α)k + 1 , when α ≤ 1.

Proof. Let Abe a deterministic Paging algorithm. Assume that OPT has a
cache of size αk. The requests are given in phases P0, P1, . . . , Pn. In phase
P0, αk different pages are requested once. The rest of the phases consist of
k requests each. For each phase Pi, 1 ≤ i ≤ n, the first k −αk +1 requests
are to pages that have not been requested before. Let Si be the set consisting
of these k −αk +1 pages and the αk pages that were in OPT’s cache at the
beginning of Pi. Then, |Si| = k +1. Each of the remaining αk − 1 requests
in phase Pi is to a page in Si that is currently not in A’s cache.

The first k −αk +1 pages of phase Pi , 1 ≤ i ≤ n, cost both algorithms
k−αk+1, since they have not been requested earlier. During these k−αk+1
requests, OPT keeps the pages to be requested during the last αk−1 requests
of the phase in its cache. Thus, the optimal cost of each phase Pi, 1 ≤ i ≤ n,
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is (1 − α)k + 1, while the on-line cost is k. Since OPT has faults only on
requests to pages that have not been requested earlier, the sequence is an
α-sequence. ��

In [22] Young considers the randomized paging algorithm MARK for
(h, k)-Paging. When a page is requested it is marked, and when a page
must be evicted, MARK chooses uniformly at random among the unmarked
pages in the cache. If all pages in the cache are marked, all marks are erased.
Young proves that MARK is 2-competitive, when k

k−h < e, and 2(ln k
k−h −

ln ln k
k−h + 1

e−1)-competitive when k
k−h ≥ e. Combining Young’s result

with Note 2 directly gives us that, for α < 1,

AMARK(α) ≤
{

2, for 1
1−α < e

2
(
ln 1

1−α − ln ln 1
1−α + 1

e−1

)
, for 1

1−α ≥ e.

Using only h
k -sequences,Young [22] also proves that any randomized (h, k)-

Paging algorithm has a competitive ratio of at least ln k
k−h − ln ln k

k−h −
3

k(1−α) when k
k−h ≥ e. Thus, any randomized algorithm Ahas AA(α) ≥

ln 1
1−α − ln ln 1

1−α − 3
k(1−α) when 1

1−α ≥ e, so MARK is within a factor
of approximately 2 of optimal.

5.2 The k-Server Problem

The k-Server Problem [20] is a natural generalization of the Paging Prob-
lem which was discussed in the previous subsection. For the k-Server Prob-
lem [20], the algorithm controls k servers, which are located on points of
a metric space (M, d), where M is a set of points with |M | > k and d is
a metric for M . The request sequence is a sequence of points in M , and
the algorithm must service all requests sequentially, by having a server at
the point requested or moving one there. The goal is to minimize the total
distance the servers move. When considering the accommodating function
for the k-Server Problem, we use the servers as the resource; this is the
natural generalization from the last section where the pages in cache were
the resource. Hence, on an α-sequence, OPT does not benefit from having
more than αk servers.

Since the k-Server Problem is a generalization of the Paging Problem, by
Theorem 14, no k-Server algorithm can be better than k

(1−α)k + 1 -competitive
in general. In [20] it is proven that this impossibility result is actually valid
for any metric space.
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5.2.1 The Work Function Algorithm

The Work Function Algorithm (WFA) is believed to be an optimal on-line
algorithm for the k-Server Problem. The algorithm keeps track of the optimal
solution to the part of the input sequence seen so far, and tries to minimize
the cost of each move without getting too far from the optimal configuration.
More precisely, for each request to some point r, it moves a server from a
point x ∈ C minimizing w(C − x + r) + d(x, r), where C is the set of
points occupied by WFA’s servers, d(x, r) is the distance between x and r,
and w(C −x+ r) is the optimal cost of serving the requests seen so far and
ending up in the configuration C − x + r.

In [18], the Work Function Algorithm for the k-Server Problem is in-
vestigated in the case where the on-line algorithm has k servers and the
off-line algorithm has h ≤ k servers. Using Note 2, the performance guar-
antees found in [18] are also valid for the k-Server Problem on α-sequences.
Letting h = αk, one of these guarantees can be expressed as

WFAk(I) ≤ k · OPTαk(I) + (αk − 1) · OPTk(I) + const,

which reduces to WFAk(I) ≤ (k +αk − 1) · OPTk(I)+ const, in the case
of α-sequences. Thus, we arrive at the following theorem.

Theorem 15 For α ≤ 1, AWFA(α) ≤ (1 + α)k − 1.

5.2.2 Balance and Greedy

The algorithm Balance [10] serves each request r with a server si such that
Di+di(r) is minimized, where Di is the total distance traveled by the server
si before the request r and di(r) is the distance it will have to travel to serve
r. In general, Balance is not competitive, i.e., there is no constant c such
that Balance is c-competitive. A simple modification of the proof of this
gives that for α ≥ 2

k , Balance is not competitive, even on α-sequences. For
α = 1

k , however, Balance is k-competitive.
The algorithm Greedy serves each request r with a server si, such that

the distance moved, di(r), is minimized. Like Balance, Greedy is not com-
petitive on α-sequences, as long as α ≥ 2

k . This can be shown using only
three points. On the other hand, it is easy to see that, in contrast to Balance,
Greedy is 1-competitive on 1

k -sequences.

5.3 Machine scheduling minimizing makespan

We study the problem of assigning jobs to machines such that the makespan
is minimized, i.e., the completion time of the latest completing job is mini-
mized. The jobs are characterized by their length, and there are m identical
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machines. Each job must be assigned to a machine before the next job is
seen.

5.3.1 List Scheduling

The List Scheduling algorithm (LS) [12] schedules each new job on a least
loaded machine.

Theorem 16 For α ≤ 1, ALS(α) = 1 + α − 1
m .

Proof. In [12] it is shown that the competitive ratio of List Scheduling is at
most 1 + α − 1

m , if LS has m machines and the off-line algorithm has only
αm machines. Thus, according to Note 2 in Sect. 5, ALS(α) ≤ 1 + α − 1

m .
The sequence used in [9] to match this performance guarantee consists

of (αm − 1)m jobs of length 1, followed by one job of length m. Clearly,
this sequence is an α-sequence. Thus, ALS(α) ≥ 1 + α − 1

m . ��

5.3.2 General impossibility results

In [2] the scheduling problem is investigated in the resource augmentation
setting. For the case where OPT has only α times as many machines as the
on-line algorithm, a general impossibility result of 1+e− 1

α
(1−o(1)), valid for

both deterministic and randomized algorithms, is given using α-sequences.
They also give an impossibility result of 5

4 for deterministic algorithms for
α = 1

2 . The following impossibility result is a generalization of this result.

Our bound is tighter than the bound of 1 + e− 1
α

(1−o(1)) from [2], but it is
only valid for deterministic algorithms.

Theorem 17 Let α ≤ 1 and let � ≤ αm be an integer such that i | αm
for all i ∈ {1, 2, . . . , �}. Then, for any deterministic algorithm Afor the
scheduling problem,

if α ≥ m + 1
m

(
�∑

i=1

1
i

)−1

, then AA(α) ≥ � + 1
�

.

Proof. The jobs are given in phases starting with Phase 1. In the ith phase,
αm
i jobs of size i are given. The sequence is ended as soon as two jobs have

been assigned the same machine. This happens at the latest in Phase �, since∑�
i=1

αm
i ≥ m + 1. Let r ≤ � be the number of phases.

To prove that the sequence is an α-sequence, we must prove that the jobs
can be scheduled on αm machines such that the last job on each machine has
completion time r. Note that, for 1 ≤ i ≤ r, the total length of jobs of length
i is αm and the total length of all of the jobs is αmr. For the purpose of the
proof, we now schedule the jobs (without idle time) in non-increasing order
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of length. Assume to the contrary that a job of length i cannot be scheduled
such that its completion time is no later than r. This means that all machines
are busy until time r − i + 1. Thus, a total volume of (r − i + 1)αm has
been given. However, this is a contradiction, since this volume will not be
reached until all the jobs of length i have been processed.

The makespan of Ais at least r+1, and the optimal makespan is r. Thus,

AA(α) ≥ r + 1
r

≥ � + 1
�

. ��

Example.

α ≥ 2
3

m + 1
m

⇒ A(α) ≥ 3
2

α ≥ 6
11

m + 1
m

⇒ A(α) ≥ 4
3

α ≥ 12
25

m + 1
m

⇒ A(α) ≥ 5
4

For α ≥ 4
5 + 2

m , the following theorem supplies a stronger impossibility
result than Theorem 17. Specifically, for i = 2 and p = 1 +

√
2, it says that

α ≥ 8
9

+
16
9m

gives AA(α) ≥ 1 +
1√
2

≈ 1.707,

and for i = 3 and p = 1
2(1 +

√
3),

α ≥ 24
29

+
52

29m
gives AA(α) ≥ 1 +

1√
3

≈ 1.577.

Theorem 18 If (i = 2 and p ≥ 1 +
√

2) or (i = 3 and p ≥ 1
2(1 +

√
3)),

then

α ≥ 2 + 5
m − 2

mi

3 − 1
i − 1

�ip�
gives AA(α) ≥ i + 1

i
+

1
ip

for any deterministic algorithm Afor the scheduling problem.

Proof. Consider the following sequence consisting of three phases.

1. n1 = αm jobs of length 1
2. n2 = αm − 2 jobs of length p
3. 1 job of length p + 1, or n3 = αm − �n2

i  − � n1
�ip� jobs of length ip

Note that n3 > 0, since i ≥ 2 and �ip� ≥ 4. The jobs given in the first
phase form an α-sequence with optimal makespan 1. Thus, if two of these
jobs are scheduled on the same machine, AA(α) ≥ 2. Hence, we assume
that no two jobs from Phase 1 are placed on the same machine.
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If two jobs from Phase 2 are scheduled together with a job from Phase
1, or if three Phase 2 jobs are scheduled together, the on-line makespan is at
least 2p+1. In this case, the adversary gives one job of length p+1 in Phase
3. The sequence is now an α-sequence with optimal makespan p+1, giving
a competitive ratio of at least 2p+1

p+1 . Assuming that (i = 2 and p ≥ 1 +
√

2)

or (i = 3 and p ≥ 1
2(1 +

√
3)), this ratio is at least i+1

i + 1
ip .

Assume now that no two jobs from Phase 2 are scheduled together with
a job from Phase 1, and no three jobs from Phase 2 are scheduled together.
In this case, the adversary gives αm − �n2

i  − � n1
�ip� jobs of length ip in

Phase 3. At most m − n1 machines could receive two jobs from Phase 2,
so at least m2 = n2 − (m − n1) machines receive at least one job from
Phase 2. Assuming that α ≥ (2 + 5

m − 2
mi)/(3 − 1

i − 1
�ip�), we get that

m2 + n3 ≥ m + 1, and hence, some job from Phase 3 must be placed with
a job from Phase 2 plus another job from either Phase 1 or Phase 2. Thus,
the on-line makespan is at least 1 + p + ip.

Since the jobs from Phase 1 can be scheduled on � n1
�ip� machines, the

Phase 2 jobs on �n2
i  machines, and the Phase 3 jobs on αm − �n2

i  −
� n1

�ip� machines, giving a makespan of ip and using only αm machines, the
sequence is an α-sequence. Thus,

AA(α) ≥ 1 + p + ip

ip
=

i + 1
i

+
1
ip

.

��

6 Conclusion

The accommodating function for α ≤ 1 seems to be interesting for a variety
of on-line problems, possibly for a greater variety than when α > 1. For
example, the accommodating function for deterministic algorithms for the
Paging Problem has a very uninteresting shape for α > 1; the value is
constant at k, while for α ≤ 1, A(α) = k

(1−α)k+1 .
The study of the accommodating function in general and in partic-

ular for α ≤ 1 has given rise to new algorithms, Unfair-First-Fit and
Unfair-First-Fitα.

In addition, the Seat Reservation Problem demonstrates the utility of
the accommodating function with α < 1 in distinguishing between dif-
ferent algorithms. Three algorithms, which all have competitive ratio close
to 1

2 on accommodating sequences, have different competitive ratios on 1
3 -

sequences.
The proofs of performance guarantees seem, in general, to be more inter-

esting than the proofs of impossibility results. This appears less true for those
problems where performance guarantees concerning resource augmentation
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can be used directly, giving performance guarantees for the accommodating
function with α ≤ 1. However, the original proofs in the resource augmen-
tation setting tend to be interesting, and those results become even more
interesting given their application to this setting where the set of request
sequences is limited. On the other hand, the accommodating function with
α ≤ 1 sometimes gives much more useful information than resource aug-
mentation. Examples of this were given for the Seat Reservation Problem
and Unrestricted Bin Packing, using First-Fit.

Acknowledgment. We would like to thank an anonymous referee who helped improving the
presentation of the paper.
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