
Digital Object Identifier (DOI) 10.1007/s00236-003-0120-0
Acta Informatica 39, 613–698 (2003)

c© Springer-Verlag 2003

A comparison of pebble tree transducers
with macro tree transducers

Joost Engelfriet, Sebastian Maneth�

Leiden University, LIACS, PO Box 9512, 2300 RA Leiden, The Netherlands
(e-mail: {engelfri,maneth}@liacs.nl)

Received: 16 January 2003 / 5 April 2003

Abstract. The n-pebble tree transducer was recently proposed as a model
for XML query languages. The four main results on deterministic trans-
ducers are: First, (1) the translation τ of an n-pebble tree transducer can
be realized by a composition of n + 1 0-pebble tree transducers. Next, the
pebble tree transducer is compared with the macro tree transducer, a well-
known model for syntax-directed semantics, with decidable type checking.
The 0-pebble tree transducer can be simulated by the macro tree transducer,
which, by the first result, implies that (2) τ can be realized by an (n + 1)-
fold composition of macro tree transducers. Conversely, every macro tree
transducer can be simulated by a composition of 0-pebble tree transduc-
ers. Together these simulations prove that (3) the composition closure of
n-pebble tree transducers equals that of macro tree transducers (and that of
0-pebble tree transducers). Similar results hold in the nondeterministic case.
Finally, (4) the output languages of deterministic n-pebble tree transducers
form a hierarchy with respect to the number n of pebbles.

1 Introduction

Trees appear in science in many contexts. For instance, they are used to rep-
resent the structure of a composed object: the object is obtained by applying
a certain operation (at the root of the tree) to its components (represented
by the subtrees); such a tree corresponds to the derivation tree of a grammar
generating the object. Another more recent example is XML, a general data

� Present address: Swiss Institute of Technology Lausanne, Programming Methods
Laboratory (LAMP), 1015 Lausanne, Switzerland (e-mail: sebastian.maneth@epfl.ch)

614 J. Engelfriet, S. Maneth

format for structured documents; there, the interest is in the structure of the
tree itself. Natural application areas of trees are (we mention only four) (i)
linguistics (phrase structure), (ii) compilers (derivation trees, or parse trees),
(iii) functional programming (terms), and (iv) databases (XML documents).

Let us now consider the translation of trees into other trees. It plays an
important role in each of the four areas: (i) for natural language transla-
tion (see, e.g., [41,47]) (ii) for the specification of the syntax-directed se-
mantics of a programming language, and its implementation in a compiler,
cf. [38,42,45,61], (iii) for functional programs working on tree structured
data, cf., e.g., [59], and (iv) for the specification and implementation of XML
transformation (e.g., XSLT; cf. [48,5]) and XML query languages [58].
Now, consider the (sequential) composition of tree translations. It appears
in applications in a natural way: e.g., as multi-pass compilers, as model
for deforestation in functional languages [43,60] and as implementation of
queries to a (possibly iterated) view of an (XML) database.

This paper is concerned with tree translations and compositions of them.
In particular, we study the relationship between then-pebble tree transducer,
introduced in [50,49] as a model for XML query languages (cf. also [58]),
and the macro tree transducer [18,19,6,24,25,31] which is a model for
syntax-directed semantics. We first discuss the pebble tree transducer (in
the terminology used within this paper, which differs slightly from that in
[50,49]) and then the macro tree transducer.

An n-pebble tree transducer (n-ptt) is a finite state device that translates
ordered ranked trees (which might be codings of XML documents). Its
reading head is a pointer to a node of the input tree and can be moved to
another node along the edges of the input tree. The n-ptt is equipped with n
pebbles, marked 1, . . . , n, which can be dropped at or lifted from the current
node (pointed at by the reading head). A computation starts in the initial state
with the reading head at the root node, and no pebbles on the input tree. The
ptt can test (in its current state) the label of the current node, its “position”
(i.e., whether it is the root node or the jth child of a node, j ≥ 1), and
the presence of the pebbles at the current node. Depending on the test, it
generates an output tree, at the leaves of which new computations can be
spawned (which will each have their “own” copy of the input tree, with
pebbles and reading head). This means that, in terms of the output tree, the
basic operation inherent in a computation step of an n-ptt is the replacement
of leaves by trees (“first order tree substitution”). When a new computation
is spawned, the ptt can change its state and either move the reading head to
a neighboring node, or lift/drop a pebble at the current node. Pebbles must
be used in a stack-like fashion: if l ≤ n pebbles are on the tree, then pebble
l can be lifted (if it is present at the current node) or pebble l + 1 can be
dropped at the current node (if l + 1 ≤ n). We note here that in the model

A comparison of pebble tree transducers with macro tree transducers 615

of [50,49,58] the reading head is considered to be a pebble too; thus, our
n-pebble tree transducer is there called an (n+ 1)-pebble tree transducer.

As observed in [50], the pebble tree transducer can be obtained from
the tree-walking automaton of [4] (see also [22]) by adding pebbles and
the ability to generate output trees rather than strings. We observe here that
the deterministic pebble tree transducer without pebbles, i.e., the 0-ptt, is
very closely related to the attribute grammar: a well-known compiler writing
formalism (see, e.g., [11,1,52]). Here, the attributes of the attribute grammar
should have trees as values (in which case it is also called an attributed tree
transducer [12,30,31]). This relationship was discussed in [21], where the
0-ptt is called an RT(Tree-walk) transducer (see also [25]). Thus, 0-ptts
are essentially attribute grammars, and n-ptts could be viewed as “attribute
grammars with pebbles”. If we further restrict the 0-ptt in such a way that
the reading head may only move down in each computation step, then we
obtain the classical top-down tree transducer [54,56,36], as mentioned in
[50].

For a pebble tree transducer, the restriction of input and output to monadic
trees gives rise to a natural transducer model for string translation which
was considered in [17]. For some of the results of the present paper we will
mention the corresponding results for pebble string transducers, but for more
details the reader is referred to [17]. String automata that use pebbles in a
stack-like fashion (which basically means that the pebbles have nested life
times) were introduced in [33] and extended to trees in [13] (see also [51]).

The macro tree transducer (mtt) is also a finite state device that translates
trees into trees. It can be obtained by combining the top-down tree transducer
and the macro grammar [27], i.e., the states of the top-down tree transducer
may have parameters of type output tree, and thus computations can be
spawned at non-leaf nodes of the output tree. Now, when the mtt executes a
move at such a node v, it is replaced by an output tree which may spawn new
computations, and in which each leaf labeled by the formal parameter yj

is replaced by the corresponding actual parameter, i.e., the jth subtree of v
(“second-order tree substitution”). Just as for the top-down tree transducer,
the reading head of the macro tree transducer can only move down. This
implies that deterministic macro tree transducers do not have nonterminating
computations, as opposed to deterministic pebble tree transducers.

Note that it is well known that (in the total deterministic case) all at-
tributed tree transducers can be simulated by macro tree transducers [29,
6,32,14], and that the composition closures of the two coincide (cf., e.g.,
Chapter 6 of [31]). This suggests that (in the deterministic case) 0-ptts can be
simulated by mtts, and that their composition closures coincide: one of our
results. Macro tree transducers are well studied in tree transducer theory, and
about their composition closure many attractive properties are known; for

616 J. Engelfriet, S. Maneth

instance: it has decidable type checking [24], the translations can be com-
puted in linear time (in the sum of the sizes of input and output tree) [46],
and the output languages form a full AFL and have decidable emptiness and
finiteness problems [9].

Before we discuss our results, let us consider the relationship of tree
transducers to (XML based) databases, cf. [58,50]. In terms of databases,
tree transducers can be seen as a query language: the input tree is the current
content of the database and the output tree is a result of the query that
is computed by the transducer. Of course the result can be input to another
query; this corresponds to the sequential composition of two tree transducers.
In fact, the application of a query q to a database D (a set of inputs) is often
used to define a derived version of the database, called the “view ofD under
q”. This corresponds to the output language τ(R) of a tree transducer τ
taking a set R of input trees. We will assume (as in [50]) that R is a regular
tree language (corresponding to a database type constraint as defined, e.g.,
by a DTD or a specialized DTD in XML).

Our first main result is completely independent of macro tree transducers.
It is a result about pebble tree transducers only: The translation of an n-
pebble tree transducer can be realized by the composition of n + 1 zero-
pebble tree transducers. In fact, the use of the first pebble can be simulated
by (pre-)composing with the translation of a deterministic zero-pebble tree
transducer. In terms of databases this means that a user who understands
the concept of a view and that of a 0-pebble query (computed by a 0-ptt)
need not be bothered with queries of n-pebble tree transducers for n > 0,
i.e., need not know about pebbles at all. Moreover, we observe that it is a
desirable property of a query language to be closed under composition: it
means that querying a view (i.e., the result of a previous query) gives a result
for which there is a direct query on the original database. Thus, it is natural
to define the query language of a class of tree translations as its composition
closure. Note that the class of pebble tree translations is not closed under
composition (both in the deterministic and the nondeterministic case). For
the composition closure of pebble tree transducers the first result implies
that it is equal to the composition closure of zero-pebble tree transducers.
Hence, as query languages in the above sense, the pebble tree transducer
and the zero-pebble tree transducer are equally expressive.

Our second main result is that every pebble tree transducer can be sim-
ulated by a composition of macro tree transducers. In the nondeterministic
case, to simulate n pebbles, n+1 mtts are needed in the composition and the
mtts must be extended by the ability to remain at a node, instead of strictly
moving down in each step. Since such a transducer can loop, it can have
nonterminating computations. In the deterministic case, n pebbles can be
simulated by the composition of n + 1 (conventional) deterministic mtts.

A comparison of pebble tree transducers with macro tree transducers 617

Also, a simulation in the converse direction is possible: for every macro tree
transducer there is a composition of 0-pebble tree transducers which real-
izes the same translation. This gives our third main result: the composition
closure of n-pebble tree transducers equals that of macro tree transducers,
i.e., as query languages both formalisms have the same power. Since mtts
always terminate, the simulations prove that compositions of deterministic
pebble tree transducers can be transformed into ones that always terminate.
Technically speaking, this is one of the key results of this paper.

Our fourth main result concerns the power of defining views, or, equiv-
alently, the power to generate output languages (for deterministic transduc-
ers): n + 1 pebbles give strictly more views than n pebbles, i.e., there is a
hierarchy with respect to the number n of pebbles, of the output languages
of n-pebble tree transducers. The proof is based on the “mtt-hierarchy”
of (string) output languages of n-fold compositions of mtts that was re-
cently proved in [16]. The result strengthens the hierarchy of translations
of n-pebble tree transducers, which follows from an obvious size-to-height
relationship for such translations (viz., the height of the output tree is poly-
nomially bounded in the size of the input tree, with exponent n + 1). The
proof uses counter examples that are monadic, and thus also proves that
there is a hierarchy of output languages of n-pebble string transducers, as
already presented in [17]. Moreover, it is shown that nondeterminism gives
more views: even without pebbles a nondeterministic (0-)ptt can compute a
view that cannot be computed by any composition of deterministic pebble
tree transducers.

Finally, we address the type checking problem for compositions of pebble
tree transducers; it is the question whether all output documents in a view
satisfy a given type (i.e., a regular tree language). Since it is well known that
inverse type inference for compositions of macro tree transducers is solvable
[24], our second main result provides an alternative proof of the main result
of [50] that type checking for pebble tree transducers is decidable. We also
obtain an extension from [9]: “almost always” type checking is solvable for
compositions of pebble tree transducers; it is the question whether all output
documents in a view, except finitely many, satisfy a given type (and if so, to
produce the list of exceptions).

The structure of this paper is as follows. The Preliminaries (Sect. 2) fix
basic notations and definitions, mainly concerning trees, tree substitution,
and tree grammars. Section 3 presents the definition of the n-pebble tree
transducer (with a comparison to the original definition of [50] in Sect. 3.1),
and proves some of its elementary properties. In particular, the size-to-height
relationship for ptts is proved, and then applied to show that there is a proper
hierarchy of translations and that the class of pebble tree translations is not
closed under composition. Sections 3.2 and 3.3 compare ptts to attribute

618 J. Engelfriet, S. Maneth

grammars and to the RT(S) transducers of [21,25] (with S = Tree-walk).
Section 4 proves our first result, the decomposition of an n-pebble tree
translation into n + 1 zero-pebble tree translations. In Sect. 5 pebble tree
transducers are compared with macro tree transducers. In particular, our
second and third main results are proved there. In Sect. 6 the output languages
of pebble tree transducers are investigated; it is proved that these languages
form a proper hierarchy with respect to the number of pebbles. Section 7
discusses type checking, and almost always type checking. The paper ends
with conclusions and suggestions for further research in Sect. 8.

Even when not explicitly mentioned in the lemmas and theorems, all our
results are effective.

2 Preliminaries

The set {0, 1, . . .} of natural numbers is denoted by N. The empty set is
denoted by ∅. For k, l ∈ N, [k] denotes the set {1, . . . , k} and [k, l] denotes
the set {k, . . . , l}. For a set A, |A| is the cardinality of A, P(A) is the set
of subsets of A, A∗ is the set of all strings over A, and A+ is the set of
nonempty strings over A. The empty string is denoted by ε. If the elements
of A are strings themselves, then we might write a string w ∈ A∗ as w =
[a1; a2; . . . ; an] with ai ∈ A; in particular, we will then use λ to denote the
empty string (of strings), i.e., λ has a different type than ε. The length of
a string w is denoted |w|, and the ith symbol in w is denoted by w(i). For
n ≥ 0, A≤n denotes the set {w ∈ A∗ | |w| ≤ n}.

For sets A and B, their cartesian product is A × B = {(a, b) | a ∈
A, b ∈ B}. An ordered pair (a, b) will also be denoted 〈a, b〉, and A × B
will also be denoted by 〈A,B〉.

For a binary relation R and a set A, R(A) denotes the set {y | ∃x ∈
A : (x, y) ∈ R} and R−1(A) denotes the set {x | ∃y ∈ A : (x, y) ∈ R}.
Moreover, for a class R of binary relations and a class of sets A, R(A)
denotes the class of sets {R(A) | R ∈ R, A ∈ A}. The composition of two
(binary) relationsR andS, denoted byR◦S, is the set of pairs {(x, z) | there
is a y with (x, y) ∈ R and (y, z) ∈ S}. For n ≥ 0, the n-fold composition of
Rwith itself is denotedRn. The reflexive, transitive closure and the transitive
closure of R are denoted R∗ and R+, respectively. For classes of relations
R and S, R ◦ S denotes the class of relations {R ◦ S | R ∈ R, S ∈ S}.
For n ≥ 1, Rn denotes R ◦ · · · ◦ R (n times) and R∗ denotes the class⋃

n≥1Rn.
For a binary relation⇒⊆ A×A over a setA, we will call, for a, a′ ∈ A,

a derivation a ⇒∗ a′ a computation (by ⇒ starting with a). Moreover, a
computation starting with a can also be infinite. A computation is complete

A comparison of pebble tree transducers with macro tree transducers 619

if it is either infinite or of the form a⇒∗ a′
⇒, i.e., there is no a′′ ∈ A such
that a′ ⇒ a′′; in the latter case, a′ is the result of the computation.

2.1 Ranked sets and trees

A set Σ together with a mapping rankΣ :Σ → N is called a ranked set. For
k ≥ 0, Σ(k) is the set {σ ∈ Σ | rankΣ(σ) = k}; we also write σ(k) to
indicate that rankΣ(σ) = k. For a set A, 〈Σ,A〉 is the ranked set Σ × A
with rank〈Σ,A〉(〈σ, a〉) = rankΣ(σ) for every 〈σ, a〉 ∈ 〈Σ,A〉.

Let Σ be a ranked set. The set of trees over Σ, denoted by TΣ , is the
smallest set of strings T ⊆ (Σ ∪ {(,), , })∗ such that Σ(0) ⊆ T and if
σ ∈ Σ(k), k ≥ 1, and t1, . . . , tk ∈ T , then σ(t1, . . . , tk) ∈ T . For a set A,
the set of trees over Σ indexed by A, denoted by TΣ(A), is the set TΣ∪A,
where for every a ∈ A, rankA(a) = 0. For the rest of this paper we choose
the set of parameters to be Y = {y1, y2, . . .}. For m ≥ 0, Ym denotes the
set {y1, . . . , ym}. Thus, TΣ(Y) is the set of trees over Σ with parameters.

For every tree t ∈ TΣ , the set of nodes of t, denoted by V (t), is the
subset of N∗ that is inductively defined as follows: if t = σ(t1, . . . , tk) with
σ ∈ Σ(k), k ≥ 0, and ti ∈ TΣ for all i ∈ [k], then V (t) = {ε} ∪ {iu | u ∈
V (ti), i ∈ [k]}. Thus, ε represents the root of a tree and for a node u the
ith child of u is represented by ui. The size of t is its number of nodes, i.e.,
size(t) = |V (t)|, and the height of t is the number of nodes on a longest
path of t, i.e., height(σ(t1, . . . , tk)) = 1 + max{height(ti) | i ∈ [k]}.

The label of t at node u is denoted by t[u]; we also say that t[u] occurs
in t (at u). The rank of u is the rank of its label t[u]; in particular, u is a
leaf if it has no children, i.e., if it has rank zero. If u = vw with w ∈ N∗,
then v is an ancestor of u and u is a descendant of v; if w
= ε, then v is a
proper ancestor of u and u is a proper descendant of v. The subtree of t at
node u is denoted by t/u; a subtree t/ui is called a subtree of node u. The
substitution of the tree s ∈ TΣ at nodeu in t is denoted by t[u← s]; it means
that the subtree t/u is replaced by s. Formally, these notions can be defined
as follows: t[ε] is the first symbol of t (in Σ), t/ε = t, t[ε← s] = s, and if
t = σ(t1, . . . , tk), i ∈ [k], and u ∈ V (ti), then t[iu] = ti[u], t/iu = ti/u,
and t[iu← s] = σ(t1, . . . , ti[u← s], . . . , tk).

Let u ∈ N∗. For every j ≥ 1, u is the parent of uj, denoted by
parent(uj), and j is the child number of uj, denoted by childno(uj). More-
over, we define childno(ε) = 0.

Let Σ be a ranked alphabet. For a tree t ∈ TΣ , yt denotes the yield of
t, i.e., the string in (Σ(0) − {e})∗ obtained by reading the leaves of t from
left to right, omitting nodes labeled by the special symbol e of rank 0 (e.g.,
for t = σ(a, σ(e, b)), yt = t[1]t[22] = ab). The string yt can be obtained
recursively as follows; if t = e then yt = ε, if t ∈ Σ(0) − {e} then yt = t,

620 J. Engelfriet, S. Maneth

and if t = σ(t1, . . . , tk), k ≥ 1, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ , then
yt = yt1 · · · ytk.

A ranked alphabetΣ is monadic if all its symbols are of rank one, except
the special symbol e of rank zero, i.e., if Σ = Σ(1) ∪ {e(0)}; a tree in TΣ is
a monadic tree. For a monadic tree t = a1(a2(· · · am(e))), pt denotes the
path of t, i.e., the string a1 · · · am ∈ (Σ(1))∗.

2.2 Tree substitution

First, we define string substitution: For strings v, w1, . . . , wn ∈ A∗ and
distinct a1, . . . , an ∈ A, we denote by v[a1 ← w1, . . . , an ← wn] the
result of (simultaneously) substituting wi for every occurrence of ai in v.
Note that the substitution [a1 ← w1, . . . , an ← wn] is a homomorphism
on strings. Let P be a condition on a and w such that {(a,w) | P} is a
partial function. Then we use, similar to set notation, [a← w | P] to denote
the substitution [L], where L is the list of all a ← w for which condition
P holds. Since trees are strings, we can use ordinary string substitution to
replace leaves in a tree: forα of rank zero, t[α← s] is the tree obtained from
t by replacing each node labeledα by the tree s. This type of tree substitution
(i.e., replacing leaves) is often called “first-order tree substitution”; note that
top-down tree transducers and also pebble tree transducers are based on this
type of substitution.

Recall from the previous subsection that for a node u of t, t[u ← s] is
the tree obtained by replacing in t the subtree rooted at u by s. This type of
tree substitution (i.e., replacing a subtree) is also often called first-order tree
substitution. Note that if {u1, . . . , un} is the set of all α-labeled nodes in t
and α is of rank zero, then t[α← s] = t[u1 ← s] · · · [un ← s].

We now turn to a different type of substitution, which is used in macro
tree transducers: “second-order tree substitution”. It means to replace in a
tree a symbol of arbitrary rank by a tree s. Here, the question arises how to
deal with the subtrees of a symbol of rank k ≥ 1 that is replaced. We use, at
leaves of s, the (formal) parameters y1, . . . , yk as placeholders for the 1st,
. . ., kth subtrees of the symbol being replaced.

As for first-order tree substitution, let us first define the explicit replace-
ment of a node u in t. Let k be the rank of u, i.e., t[u] ∈ Σ(k), and let s
be a tree with parameters in Yk, i.e., s ∈ TΣ(Yk). Then the second-order
substitution of s at u in t, denoted by t[[u ← s]], is the tree obtained by
replacing in t the subtree rooted at u by s, in which each yj is replaced by
the jth subtree t/uj of u in t; thus, t[[u ← s]] can be defined in terms of
first-order substitution as

t[[u← s]] = t[u← s[yj ← t/uj | j ∈ [k]]].

A comparison of pebble tree transducers with macro tree transducers 621

Note, by the way, that t[[u ← s]] = t[u ← s] in the case that s does not
contain parameters.

Next, we define the second-order tree substitution of all σ’s (of rank
k) in t by the tree s ∈ TΣ(Yk). Let σ1, . . . , σn be distinct elements of
Σ, n ≥ 1, and for each i ∈ [n] let si be a tree in TΣ(Yki

), where
ki = rankΣ(σi). The second-order tree substitution of σi by si in t, de-
noted by t[[σ1 ← s1, . . . , σn ← sn]] is inductively defined as follows
(abbreviating [[σ1 ← s1, . . . , σn ← sn]] by [[. . .]]). For t = σ(t1, . . . , tk)
with σ ∈ Σ(k), k ≥ 0, and t1, . . . , tk ∈ TΣ , (i) if σ = σi for an
i ∈ [n], then t[[. . .]] = si[yj ← tj [[. . .]] | j ∈ [k]] and (ii) otherwise
t[[. . .]] = σ(t1[[. . .]], . . . , tk[[. . .]]). We will say that [[σ1 ← s1, . . . , σn ← sn]]
is a second-order tree substitution over Σ. Note that it is a mapping from
TΣ to TΣ . In fact, it is a tree homomorphism [35]. Let P be a condition on σ
and s such that {(σ, s) | P} is a partial function. Then we use [[σ ← s | P]]
to denote the substitution [[L]], where L is the list of all σ ← s for which
condition P holds. In second-order tree substitutions we use for the relabel-
ing σ ← δ(y1, . . . , yk) of σ(k) by δ(k) the abbreviation σ ← δ; note that
this is, in fact, a string substitution.

We will use elementary properties of second-order substitution (both
t[[u← s]] and t[[σ1 ← s1, . . . , σn ← sn]]) without proof. For instance, (just
as ordinary substitution) second-order tree substitution is associative (by
the closure of tree homomorphisms under composition, cf. Theorem IV.3.7
of [35]), i.e., t[[σ ← s]][[σ ← s′]] = t[[σ ← s[[σ ← s′]]]] and if σ′
= σ then
t[[σ ← s]][[σ′ ← s′]] = t[[σ′ ← s′, σ ← s[[σ′ ← s′]]]], and similarly for the
general case (cf. Sections 3.4 and 3.7 of [8]).

It should be clear that t[[σ1 ← s1, . . . , σn ← sn]] can be obtained from
t by the iterative application of one-node substitutions t′[[u ← si]]. More
precisely, let Φ = [[σ1 ← s1, . . . , σn ← sn]] and define the binary relation
⇒Φ on trees as follows: t1 ⇒Φ t2 if t2 = t1[[u ← si]] for some i ∈
[n] and some u ∈ V (t1) with t1[u] = σi. Note that if ti ⇒∗

Φ t′i then
σ(t1, . . . , tk)⇒∗

Φ σ(t′1, . . . , t′k). Using this and the definition of the second-
order tree substitution Φ, it is straightforward to show (by induction on the
structure of t) that t⇒∗

Φ tΦ.

2.3 Tree languages and tree grammars

LetΣ be a ranked alphabet. A tree language (overΣ) is a subset of TΣ . Both
yield and path (defined in Sect, 2.1) are extended to tree languages in the
obvious way, i.e., for L ⊆ TΣ , yL = {yt | t ∈ L} and pL = {pt | t ∈ L}
(note that pL is only defined ifΣ is monadic). For a classL of tree languages,
yL = {yL | L ∈ L} and pL = {pL | L ∈ L}.

622 J. Engelfriet, S. Maneth

A regular tree grammar is a tuple G = (N,Σ, S0, P) where N is a
finite set of nonterminals, Σ is a ranked alphabet, S0 ∈ P is the initial
nonterminal, and P is a finite set of productions of the form A → ζ with
A ∈ N and ζ ∈ TΣ(N). For trees ξ, ξ′ ∈ TΣ(N), ξ ⇒G ξ′ if ξ′ = ξ[u← ζ]
for a leaf u of ξ labeled by A ∈ N and a production A→ ζ in P . The tree
language generated by G is L(G) = {t ∈ TΣ | S0 ⇒∗

G t}. The class of all
regular tree languages is denoted by REGT.

We assume the reader to be familiar with the elementary properties of
the regular tree languages (see, e.g., [35,36]).

3 Pebble tree transducers

In this section the n-pebble tree transducer (n-ptt) is defined, and two easy
results about them are proved. The first one is a normal form for the rules
of n-ptts (Lemma 2). After that, we give several examples of n-ptts. Then
the second result is proved: a size-to-height relationship for translations of
n-ptts (Lemma 7). Using this relationship (and the examples of before),
it is shown that there is a proper hierarchy of translations of n-ptts, with
respect to the numbern of pebbles, and that the class of ptt translations is not
closed under composition. In Sect. 3.1 the differences between our definition
of n-pebble tree transducer and the original one of [50] are discussed. In
Sect. 3.2 it is shown that, under certain conditions, 0-pebble tree transducers
are attribute grammars; to be precise, that noncircular deterministic 0-pebble
tree transducers compute the same total functions as attribute grammars.
Finally, in Sect. 3.3, we explain how n-ptts fit into the framework of RT(S)
transducers of [21,25]. These subsections are independent from the rest of
the paper, and therefore can be skipped.

An n-pebble tree transducer is a finite state device that takes an (ordered,
ranked) tree as input and generates a tree as output. It processes the input
tree starting in the initial state with its reading head at the root node (i.e.,
with the root node as “current node”). It then walks on the input tree, from
node to node, usingn pebbles to find its way. Depending on the current state,
the label of the current node and its child number (that is, 0 for the root and
j ≥ 1 for a node that is the jth child of its parent), and on the presence
of the pebbles 1, . . . , n at the current node, the transducer can generate a
tree as output; the leaves of that tree may contain state-instruction pairs that
determine how to proceed. The possible instructions are to move to one of
the neighbors of the current node (i.e., to a parent or a child) or to stay there,
or to lift or drop a pebble. The pebbles 1, . . . , n are used in a stack-like
fashion, i.e., if l ≤ n pebbles are on the tree, then at most two instructions
concerning pebbles are available: either drop pebble l+ 1 (if l+ 1 ≤ n) or
lift pebble l (if it is present at the current node).

A comparison of pebble tree transducers with macro tree transducers 623

An n-ptt can be seen as a particular type of functional program: each
state is a function with one parameter. The parameter is the “input configu-
ration” h which contains the current node of the input tree and the positions
of the pebbles. The function body consists of a case distinction on the input
configuration h; more precisely, the case distinction is on test(h), see below,
which is a triple consisting of the label of the current node, the information
about which pebbles are at the current node, and the child number of the cur-
rent node. The function body may contain recursive calls to other functions,
and generates output of type output tree.

Definition 1 For n ≥ 0, an n-pebble tree transducer (for short, n-ptt) is a
tuple M = (Σ,∆,Q, q0, R), where Σ and ∆ are ranked alphabets of input
and output symbols, respectively, Q is a finite set of states, q0 ∈ Q is the
initial state, andR is a finite set of rules. A rule is of the form 〈q, σ, b, j〉 → ζ
where ζ is of one of the two forms

ζ =
{ 〈q′, ϕ〉
δ(〈q1, stay 〉, . . . , 〈qk, stay 〉)

for q ∈ Q, σ ∈ Σ, b ∈ {0, 1}≤n, j ∈ [0, J] with J = max{rankΣ(σ) | σ ∈
Σ}, q′ ∈ Q, ϕ ∈ Iσ,b,j , δ ∈ ∆(k), k ≥ 0, and q1, . . . , qk ∈ Q. The set Iσ,b,j

of instructions is defined as

{stay} ∪ {up | j
= 0} ∪ {downi | i ∈ [ν]} ∪
{drop | l < n} ∪ {lift | l ≥ 1, b(l) = 1}

where ν = rankΣ(σ) and l = |b|. A rule r as above is called 〈q, σ, b, j〉-rule
or q-rule, and its right-hand side ζ is denoted by rhs(r). For a subset Q′ of
Q, a q-rule with q ∈ Q′ is also called Q′-rule.

If Σ and ∆ are monadic then M is monadic. If for every q, σ, b, and j
there is at most one 〈q, σ, b, j〉-rule inR, thenM is deterministic (for short,
M is an n-dptt). If there is at least one such rule then M is total. ��

If an n-ptt M is monadic (recall the definition of monadic trees from
Sect. 2.1) and if we view monadic trees as strings, then the resulting string-to-
string translations realized by monadic n-ptts are the same as those realized
by the two-way n-pebble string transducers of [17] (and similarly for the
deterministic transducers). Viewing a monadic tree t as a string corresponds
to taking its path pt, i.e., the string a1 · · · am for t = a1(a2(· · · am(e) · · ·)).

Let us now discuss how, for a given input tree s ∈ TΣ , the n-ptt M
computes an output tree. An (n-pebble) input configuration (on s) is a pair
h = (u, π), where u ∈ V (s) and π ∈ V (s)≤n. The set of all n-pebble input
configurations on s is denoted by ICn,s. The input configuration (u, π)means
that the reading head ofM is at node u, that there are l = |π| pebbles on the

624 J. Engelfriet, S. Maneth

tree, and that the pebbles 1, . . . , l are present at the nodes π(1), . . . , π(l),
respectively.

By ‘testing’ the configuration h = (u, π), M can determine the label σ
of the current node u, the number l of pebbles on the tree, the bit string b
(of length l) that has the ith bit set iff the ith pebble is at u, and the child
number j of u (see Sect. 2.1 for the notion of child number). Thus, we
define test(h) as the triple (σ, b, j), where σ = s[u], b(i) = (π(i) = u) for
i ∈ [l], with l = |π|, and j = childno(u). For test(h) = (σ, b, j) and an
instruction ϕ ∈ Iσ,b,j , the execution of ϕ on h, denoted by ϕ(h), is the input
configuration defined as

ϕ(h) = ϕ((u, π)) =

(u, π) if ϕ = stay
(parent(u), π) if ϕ = up
(ui, π) if ϕ = downi

(u, πu) if ϕ = drop
(u, [π(1); . . . ;π(l − 1)]) if ϕ = lift

Note that π is a string of strings and that [π(1); . . . ;π(l − 1)] is the string
consisting of the strings π(1), . . . , π(l−1); cf. the beginning of the Prelim-
inaries. Thus, [π(1); . . . ;π(l − 1)] is the unique π′ such that π = π′u.

A configuration ofM on s is a pair 〈q, h〉 ∈ 〈Q, ICn,s〉. It means that q is
the current state and h is the current input configuration. The set 〈Q, ICn,s〉
of all configurations of M on s is denoted CM,s. A rule 〈q, σ, b, j〉 → ζ of
M is applicable to 〈q, h〉 if (σ, b, j) = test(h). A sentential form (of M on
s) is a tree in T∆(CM,s), containing the already produced output and the
configurations at which the computation of M may continue.

The computation relation of M on s, denoted by ⇒M,s, is the binary
relation overT∆(CM,s) defined as follows: for ξ, ξ′ ∈ T∆(CM,s), ξ ⇒M,s ξ

′
iff there are

(N) a leaf v of ξ labeled by 〈q, h〉 ∈ CM,s, and
(R) a rule 〈q, σ, b, j〉 → ζ in R applicable to 〈q, h〉
such that ξ′ = ξ[v ← η] where η equals

− 〈q′, ϕ(h)〉 if ζ = 〈q′, ϕ〉, and
− δ(〈q1, h〉, . . . , 〈qk, h〉) if ζ = δ(〈q1, stay〉, . . . , 〈qk, stay〉).

Note that ξ′ = ξ[v ← ζ[h]M,s] where

[h]M,s = [〈q′, ϕ〉 ← 〈q′, ϕ(h)〉 | q′ ∈ Q,ϕ ∈ Itest(h)]. (#)

A computation of M on an input tree s always starts at the root node ε
of s, and with no pebbles present; in other words, the initial configuration is
〈q0, h0〉, where the initial input configuration h0 is defined as (ε, λ). Recall,
from the beginning of the Preliminaries, that ε denotes the empty string, and

A comparison of pebble tree transducers with macro tree transducers 625

that λ is used to denote the empty string of strings. The translation realized
by M , denoted by τM , is defined as

τM = {(s, t) ∈ TΣ × T∆ | 〈q0, h0〉 ⇒∗
M,s t}.

Two transducers are equivalent, if they realize the same translation. The
class of all translations realized by n-ptts is denoted by n-PTT, and in the
deterministic case byn-DPTT. The unions

⋃
n≥0 n-PTT and

⋃
n≥0 n-DPTT

are denoted by PTT and DPTT, respectively. It should be clear that for
a deterministic n-ptt M , τM is a function (cf. Lemma 20 where this fact
is proved for the more general case of deterministic n-pebble macro tree
transducers).

Note that forn ≥ 0,n-PTT(REGT)denotes the class of all tree languages
τM (R) = {t | (s, t) ∈ τM for some s ∈ R} where M is an n-ptt and R
is a regular tree language. This is the class of output languages of n-PTT.
From the point of view of databases it is the class of views corresponding
to queries realized by n-ptts (on some type R). In fact, we will use similar
terminology for any class of tree transducers.

Since pebble tree transducers, just as regular tree grammars, are based
on first-order tree substitution, it is quite obvious to see that for a fixed
input tree the computations of an n-ptt can be simulated by a regular tree
grammar. Formally, let M = (Σ,∆,Q, q0, R) be an n-ptt and let s ∈ TΣ

be an input tree. As stated in Proposition 3.5 of [50], there is a regular tree
grammar GM,s such that its derivations correspond to the computations by
⇒M,s. In fact, the nonterminals of GM,s are the configurations 〈q, h〉 in
CM,s, with initial nonterminal 〈q0, h0〉, and if 〈q, h〉 ⇒M,s ξ then GM,s

has the production 〈q, h〉 → ξ. Clearly, GM,s generates the tree language
τM (s) ⊆ T∆.

PTTs with general rules.When constructing the rules of a ptt, it is convenient
not to be restricted to the two forms of possible right-hand sides of Defi-
nition 1, i.e., either “navigation” (viz. 〈q, ϕ〉) or “output one symbol” (viz.
δ(〈q1, stay〉, . . . , 〈qk, stay〉)). It should be intuitively clear that we can allow
any tree ζ over output symbols and symbols 〈q, ϕ〉 as right-hand side of a
rule, without changing the expressiveness of the model. Roughly speaking,
such a right-hand side ζ can be simulated by a subprogram that generates
ζ, using only rules with right-hand sides of the above two kinds (navigation
or output).

A rule of the form 〈q, σ, b, j〉 → ζ with ζ ∈ T∆(〈Q, Iσ,b,j〉) is a general
rule, and an n-ptt with general rules is a tupleM = (Σ,∆,Q, q0, R) where
R is a finite set of general rules (and the rest is as for an n-ptt). For M ,
the notions ‘deterministic’, ‘total’, and ‘monadic’ are defined in the same
way as for an n-ptt. Recall the definition of the computation of an n-ptt.

626 J. Engelfriet, S. Maneth

The computation relation for a ptt with general rules is defined as follows:
ξ ⇒M,s ξ

′ iff there are (N) a leaf v of ξ labeled by 〈q, h〉 ∈ CM,s, and (R)
a rule 〈q, σ, b, j〉 → ζ in R applicable to 〈q, h〉, such that

ξ′ = ξ[v ← ζ[h]M,s],

where [h]M,s is defined in equation (#) above.

Lemma 2 For every n-pttM with general rules there is an equivalent n-ptt
M ′. If M is deterministic, then so is M ′.

Proof. Let M = (Σ,∆,Q, q0, R) be an n-ptt with general rules. The con-
struction of the rules of the n-ptt M ′ is similar to the construction of pro-
ductions in normal form for a regular tree grammar (cf. Lemma 3.4 of [35]).
Let M ′ = (Σ,∆,Q ∪ Qr, q0, R

′) be defined as follows. Consider a rule
〈q, σ, b, j〉 → ζ in R. Let (ζ, ε) be a state in Qr and let the rule

〈q, σ, b, j〉 → 〈(ζ, ε), stay〉
be in R′. For every w ∈ V (ζ) let (ζ, w) be a state in Qr and let the rule

〈(ζ, w), σ, b, j〉 → ζ[w](〈(ζ, w1), stay〉, . . . , 〈(ζ, wk), stay〉)
be in R′, where k is the rank of the label ζ[w] of w. Obviously, M ′ is an
n-ptt and τM ′ = τM .

Actually, this lemma is just an easy special case of Theorem 16 in Sect. 5
(more precisely, the case that all states of the “n-pmtt” M have rank zero;
then M is an n-ptt with general rules). Thus, the proof of Theorem 16
contains a formal correctness proof of the above construction. ��
Convention 3. From now on, when defining an n-ptt (or n-dptt) we tacitly
give the definition of one with general rules, without explicitly mentioning
that Lemma 2 should be applied in order to obtain an equivalent n-ptt (or
n-dptt). Note that from this point of view Lemma 2 is a normal form result.

Examples. We now give several examples of pebble tree transducers. We
start with deterministic transducers without pebbles: In Example 4 two de-
terministic 0-pebble tree transducers are defined, such that their composition
has an exponential size-to-height relationship; this will be used later in this
section to prove that PTT and DPTT are not closed under composition. In
Example 5, a deterministic monadic n-ptt, n ∈ N, is defined which has
polynomial size increase with exponent n + 1; it will be used later in this
section to prove that the translations of n-ptts and of n-dptts form hierar-
chies with respect to the number n of pebbles. Finally, in Example 6, an
example of a nondeterministic 0-pebble transducer is given that translates
each input tree into infinitely many different output trees; this example will
play a special role in Sect. 5.

A comparison of pebble tree transducers with macro tree transducers 627

Example 4 Let Σ = {a(1), e(0)} and ∆ = {σ(2), e(0)}. The first 0-dptt M1
translates a monadic tree (in TΣ) of size m+ 1 (i.e., a tree s with ps = am,
cf. the definition of the “path” ps of a monadic tree s in Sect. 2.1) into a full
binary tree (in T∆) with 2m leaves. LetM1 = (Σ,∆, {q}, q, R1) where, for
j ∈ {0, 1}, R consists of the following (general) rules

〈q, a, ε, j〉 → σ(〈q, down1〉, 〈q, down1〉)
〈q, e, ε, j〉 → e.

Obviously, the tree tm = τM1(a
m(e)) is a full binary tree with 2m leaves,

i.e., with yield ytm = e2
m

.
The next 0-dptt M2 translates a binary tree (in T∆) with m leaves into

a monadic tree (in TΣ) of size m + 1, i.e., into the tree am(e). Let M2 =
(∆,Σ, {d, d′, u}, d, R2) and let the following (general) rules be in R2.

〈d, σ, ε, j〉 → 〈d, down1〉 for j ∈ [0, 2]
〈d, e, ε, 1〉 → a(〈d′, up〉)
〈d′, σ, ε, j〉 → 〈d, down2〉 for j ∈ [0, 2]
〈d, e, ε, 2〉 → a(〈u, up〉)
〈d, e, ε, 0〉 → a(e)

〈u, σ, ε, 1〉 → 〈d′, up〉
〈u, σ, ε, 2〉 → 〈u, up〉
〈u, σ, ε, 0〉 → e

Obviously, M2 performs a depth-first left-to-right tree traversal on its input
tree s ∈ TΣ , outputting an a for each leaf (labeled e) of s. Each σ-labeled
node is visited three times by M2 (in states d, d′, and u, respectively) and
each e-labeled node is visited once (in state d).

Finally, consider the composition

τ = τM1 ◦ τM2 = {(am(e), a2m
(e)) | m ∈ N}.

The size of τ(s) is 2size(s)−1+1, i.e., τ is of exponential size increase. Thus,
τ has a non-polynomial size-to-height relationship (because the height of a
monadic tree equals its size). ��

Recall from Definition 1 that an n-ptt is monadic if its input and output
alphabets are monadic. The next example presents, for n ∈ N, the monadic
n-dptt Mn such that

τMn = {(am−1(e), ak−1(e)) | k = mn+1},
i.e., it has polynomial size increase with exponent n + 1. It will be proved
later (Lemma 7) that this is indeed the maximal size increase of a monadic
n-ptt.

628 J. Engelfriet, S. Maneth

Example 5 Let Σ = ∆ = {a(1), e(0)}. Let M0 be a 0-dptt that realizes the
identity on all input trees in TΣ : M0 has set of states Q0 = {q0} and, for
j ∈ {0, 1}, it has the rules

〈q0, a, ε, j〉 → a(〈q0, down1〉)
〈q0, e, ε, j〉 → e

For every n ≥ 0 we now define inductively the (n+ 1)-dptt Mn+1 which,
above each symbol in an output tree ofMn, inserts a copy of the correspond-
ing input tree (more precisely, of the monadic piece am−1 of the input tree
am−1(e)). The idea of the construction is as follows. Whenever Mn gener-
ates an output symbol δ, the new (n+ 1)-dptt Mn+1 instead drops a pebble
at the current node u, and changes into a new state qup. In state qup it moves
to the root of the input tree s. Then it changes into the state qdown in which
it moves down to the leaf of s, copying each a of the input tree. Finally, it
changes into the state qfind and searches for the node with the most recently
placed pebble, i.e., the node u. Once at u, it lifts the pebble, outputs δ, and
proceeds according to the rules of Mn (doing the same as above whenever
output is generated).

For n ≥ 0 define Mn+1 = (Σ,∆,Qn+1, q0, Rn+1) with
– Qn+1 = Qn ∪ {qc | q ∈ Qn, c ∈ {up, down,find, back}}
– For every rule r = (〈q, σ, b, j〉 → ζ) inRn: if ζ ∈ 〈Qn, Iσ,b,j〉 then let r

be in Rn+1, and otherwise (i.e., ζ = e or ζ = a(〈q′, stay〉) with q′ ∈ Q)
let the rules

〈q, σ, b, j〉 → 〈qup, drop〉
〈qback, σ, b, j〉 → ζ

be in Rn+1. For every q ∈ Qn, b ∈ {0, 1}≤n+1, and b′ ∈ {0, 1}≤n let
the following rules be in Rn+1:

〈qup, σ, b, 1〉 → 〈qup, up〉 for σ ∈ Σ
〈qup, σ, b, 0〉 → 〈qdown, stay〉 for σ ∈ Σ
〈qdown, a, b, j〉 → a(〈qdown, down1〉) for j ∈ {0, 1}
〈qdown, e, b, j〉 → 〈qfind, stay〉 for j ∈ {0, 1}
〈qfind, σ, b

′0, 1〉 → 〈qfind, up〉 for σ ∈ Σ
〈qfind, σ, b

′1, j〉 → 〈qback, lift〉 for σ ∈ Σ, j ∈ {0, 1}.
Clearly, Mn+1 is deterministic, i.e., τMn+1 ∈ (n + 1)-DPTT. Let us

now show that Mn+1 has polynomial size increase with exponent n + 2.
Consider an input tree s = am−1(e), m ≥ 1. Then τM0(s) = s. The 1-
dptt M1 inserts am−1 above each of the m symbols of τM0(s), i.e., τM1(s)
has k − 1 = (m − 1)m + (m − 1) occurrences of a, and thus its size is
k = m2 = size(s)2. In general we get

size(τMn+1(s)) = (size(s)− 1) · size(τMn(s)) + size(τMn(s))
= size(s) · size(τMn(s))
= size(s)n+2.

A comparison of pebble tree transducers with macro tree transducers 629

Finally note that instead of defining Mn recursively, it would have also
been possible to give a direct construction of an n-dptt that realizes the same
translation as Mn: it systematically generates all possible configurations in
which all n pebbles are present, starting with all the pebbles and the reading
head at the root node and ending with all the pebbles and the reading head
at the leaf, generating an a for each such configuration. Obviously, there are
size(s)n+1 such configurations. ��
Example 6 Let Σ be a ranked alphabet, J = max{rankΣ(σ) | σ ∈ Σ}, and
let ∆ = Σ ∪ {σ̄(1) | σ ∈ Σ}. Let monΣ ⊆ TΣ × T∆ be the translation
consisting of all pairs (s, t) such that t is obtained from s by inserting, above
each σ-labeled node in s, an arbitrary number of unary symbols σ̄ (we use
‘mon’ to stand for “monadic insertion”). The following nondeterministic
0-ptt MΣ realizes the translation monΣ .

Let MΣ = (Σ,∆, {q}, q, R) where, for every σ ∈ Σ(k), k ≥ 0, and
j ∈ [0, J], the following rules are in R.

〈q, σ, ε, j〉 → σ̄(〈q, stay〉)
〈q, σ, ε, j〉 → σ(〈q, down1〉, . . . , 〈q, downk〉)

It should be clear that indeed τMΣ
= monΣ .

Note that monΣ is an instance of a “regular insertion” (see, e.g., Section
2.3 of [20]), which inserts strings (seen as monadic trees) of an arbitrary
regular language Rσ above each symbol σ of an input tree. ��

Size-to-height relationship of PTT translations. In the next lemma we show
an elementary property of the translation realized by an n-ptt: for a given in-
put tree, the height of an output tree is either unbounded or it is polynomially
bounded by the size of the input tree, where the exponent of the polynomial
is n + 1. This is due to the fact that the number of possible configurations
on the input tree is polynomially bounded by its size.

Lemma 7 Let M be an n-ptt. There is a c > 0 such that for every input
tree s, if τM (s) is finite then height(t) ≤ c · size(s)n+1 for every output tree
t ∈ τM (s).

Proof. Let M = (Σ,∆,Q, q0, R) and s ∈ TΣ . We claim that if τM (s) is
finite then height(t) ≤ |CM,s| for every t ∈ τM (s). Since the number of
configurations of M on s is at most |Q| · size(s) · (size(s) + 1)n (state,
current node, and the position of the n pebbles), this shows the lemma for,
e.g., c = |Q| · 2n.

To prove the claim, consider the regular tree grammar G′
M,s with set

of nonterminals CM,s, initial nonterminal 〈q0, h0〉, and all productions
〈q, h〉 → δ(〈q1, h1〉, . . . , 〈qk, hk〉) such that δ ∈ ∆(k), k ≥ 0, and

630 J. Engelfriet, S. Maneth

〈q, h〉 ⇒∗
M,s δ(〈q1, h1〉, . . . , 〈qk, hk〉). It should be clear that the language

L(G′
M,s) generated by G′

M,s equals τM (s). It should also be clear, by
the usual pumping argument (see, e.g., Proposition 5.2 of [36]), that if
t ∈ L(G′

M,s) has height larger than |CM,s|, which is the number of nonter-
minals of G′

M,s, then L(G′
M,s) is infinite.

We note that the proof would work as well with GM,s, discussed above
after the definition of τM , but is even more apparent withG′

M,s which gener-
ates exactly one output symbol at each derivation step (and thus corresponds
to a nondeterministic finite state tree automaton). ��

The fact that translations of n-ptts have polynomial size-to-height rela-
tionship of input to output tree (Lemma 7), has two immediate consequences:

(1) Hierarchies of translations. Recall from Example 5 the deterministic
monadic n-ptt Mn+1, n ∈ N, and note that height(t) = size(t) for ev-
ery monadic tree t. As was shown in the example, height(τMn+1(s)) =
size(s)n+2, which means that there is no c such that height(τMn+1(s)) ≤
c · size(s)n+1 for every input tree s. By Lemma 7 we obtain that τMn+1

cannot be realized by any n-dptt, i.e., τMn+1
∈ n-DPTT. This proves that

τMn+1 ∈ (n+ 1)-DPTT− n-DPTT,

i.e., there is a proper hierarchy of translations of deterministic n-ptts with
respect to the number n of pebbles.

In fact, by Lemma 7, even

(n+ 1)-DPTT− n-PTT
= ∅,

which means that also the translations of nondeterministic n-ptts form a
proper hierarchy with respect to the number n of pebbles.

(2) Nonclosure under composition. Recall from Example 4 the two 0-dptts
M1 andM2. As was shown in the example, the composition τ = τM1 ◦ τM2

has exponential size-to-height relationship. Thus, by Lemma 7, τ cannot be
realized by any n-ptt, and therefore 0-DPTT◦0-DPTT � PTT which means
that

DPTT and PTT are not closed under composition.

As discussed in the Introduction, it is an undesirable property of a query
language not to be closed under composition: it means that querying a view
(i.e., the result of a previous query) might give a result for which there is no
direct query on the original database. For this reason, one may argue that
the query language of pebble tree transducers determines the classes DPTT∗
and PTT∗ of (deterministic and nondeterministic) queries, rather than DPTT
and PTT, respectively. Note further, that in the case of monadic trees, the

A comparison of pebble tree transducers with macro tree transducers 631

class of two-way pebble string translations corresponding to DPTT is closed
under composition, as was shown in Theorem 2 of [17] (and so is the class
corresponding to 0-DPTT).

3.1 Comparison with the model of Milo, Suciu, and Vianu

In this subsection our definition of n-pebble tree transducer (Definition 1) is
compared to the original definition of [50]. This comparison is not needed
in order to understand the remainder of the paper, and hence can be skipped.

The n-pebble tree transducer of [50] translates binary trees, using n
pebbles named 1, . . . , n. The pebbles are put on the input tree in the order
of their names, i.e., if there are l pebbles on the tree, then pebble l is the
most recently placed pebble, called the current pebble. It acts as the reading
head and moves according to the label of the node on which it is (the current
node), the current state, and the absence or presence of the various other
pebbles on the current node. In other words, there are up to n − 1 “real”
pebbles that are tested in the transitions, plus the additional current pebble
(the “reading-head-pebble”). To place a new pebble means that the current
pebble l remains at the current node, and pebble l+ 1, which now becomes
the current pebble, is placed on the root of the input tree. To pick the current
pebble l + 1 means to remove it, making pebble l the current one. In terms
of a model with a reading head in place of the current pebble these two
operations can be seen as follows: (1) first a pebble is dropped at the node
of the reading head, and then the reading head jumps to the root and (2) the
reading head jumps to the node of the highest numbered pebble, and then
this pebble is lifted.

Our model of n-pebble tree transducer (Definition 1) has a reading head
and additionally hasnpebbles, that it may drop/lift at the current node, which
is the node pointed at by the reading head. Moreover, our transducer has the
ability to check whether the current node is the root node, viz. checking, in
the left-hand side of a rule, whether the child number equals zero: “is the
current node the child of no node?”, i.e., “is it the root node?”. This is a
natural choice because the transducer can check whether the current node
is a leaf (by the rank of the node label), i.e., it can recognize the bottom
boundary of the input tree, so it should also be able to recognize the top
boundary of the input tree, i.e., its root. In the model of [50] a root check
can be implemented by placing an extra pebble on the root (or by having a
special root symbol). Note that the explicit test for the child number j that
is present in the left-hand side of a rule of our transducer, is also present
in the model of [50] for j
= 0: it occurs when the applicability of an upj-
instruction (with j = 1, 2) is determined. Since we are particularly interested
in deterministic transducers, it seems more appropriate to explicitly include

632 J. Engelfriet, S. Maneth

this test in the left-hand side of a rule, because it leads to a natural definition
of determinism: for each left-hand side there should be at most one rule.

Let n-MSV denote the class of tree translations realized by the (n+ 1)-
pebble tree transducers of [50] (i.e., having n “real” pebbles), where we
drop the restriction to binary ranked alphabets. Denote by n-PTTno-root the
class of tree translations that can be realized by then-pebble tree transducers
obtained from Definition 1 by removing the root-check, i.e., by requiring
that if 〈q, σ, b, 0〉 → ζ is a rule, then 〈q, σ, b, j〉 → ζ is also a rule, for all
possible j ≥ 1. Below we prove the following inclusions, for n ≥ 0:

n-MSV ⊆ n-PTT ⊆ (n+ 1)-PTTno−root ⊆ (n+ 1)-MSV, (∗)

also for the deterministic case.
First inclusion of (∗): the move transition (q, place-new-pebble) of an

n-MSV transducer can be simulated by an n-ptt by first dropping a pebble
and changing into a new state r, and then in r to move up to the root node
(recognized by the root-check), at which we change into the state q. The
move transition (q, pick-current-pebble) is simulated by changing into state
r and then, as before, to move to the root node. Now we search the tree for
the highest numbered pebble, which can be realized by a depth-first left-to-
right traversal of the tree (cf., e.g., Example 3.3 of [50], and our Example 4).
Once arrived at the node that has the highest numbered pebble, we lift it and
change to state q.

Second inclusion of (∗): To simulate the root-check of an n-PTT, the
(n+ 1)-PTTno-root drops a pebble in its initial configuration, i.e., at the root
node; then the root-check is simply realized by checking the presence of
this pebble.

Third inclusion of (∗): A (q, drop) transition of an (n+1)-PTTno-root can
be simulated by an (n+1)-MSV transducer in the following way. First place
a new pebble, by a transition (r, place-new-pebble). This means that current
pebble l remains at the current node, and the new current pebble l + 1 (the
reading-head-pebble) will be at the root. Now search for the pebble l and
move to state q once it is found. A (q, lift) transition of an (n+1)-PTTno-root

is simulated by a (q, pick-current-pebble) transition of an (n + 1)-MSV
transducer.

Clearly, the above implies that MSV =
⋃

n≥0 n-MSV = PTT and hence
our results about the class PTT directly carry over to the class MSV (and
similarly in the deterministic case). On the other hand, our results that de-
pend on the number n of pebbles, i.e., results about the classes n-PTT and
n-DPTT, should be handled with care when translating them into the model
of [50].

A comparison of pebble tree transducers with macro tree transducers 633

3.2 0-PTTs are attribute grammars

In this subsection it is shown that 0-dptts and attribute grammars are closely
related formalisms and, under certain conditions, realize the same class of
translations. Since we do not use this in the remainder of the paper, the
subsection can be skipped.

Attribute grammars were introduced by Knuth in [42] to model syntax-
directed semantics. They are now the basis of many compiler-compiler sys-
tems (see, e.g., [11]). An attribute grammar can be seen as a device which
translates the set of trees (i.e., the free algebra) over a many-sorted signa-
ture. This is, in fact, the set of derivation trees of a context-free grammar
G: the sorts are the nonterminals of G and the symbols are the productions
of G (see Section 3 of [37]). The output trees are interpreted in a semantic
domain, i.e., they are viewed as expressions denoting objects in that domain.
Thus, an attribute grammar defines a tree-to-object translation. If the inter-
pretation of the output trees is dropped, then an attribute grammar defines
a tree-to-tree translation [12]. We will only consider one-sorted signatures
from now on, for the sake of simplicity. Then the resulting (uninterpreted)
attribute grammars are also called attributed tree transducers [30,31].

The table in Figure 1 shows the correspondence between deterministic
zero pebble tree transducers and attribute grammars (seen as attributed tree
transducers).

0-dptt attribute grammar
states attributes
initial state designated attribute at the root
rules semantic rules that define the attributes

Fig.1. Correspondence between 0-dptts and attribute grammars

Attribute grammars (for short, AGs) are total deterministic, and even
required to have no infinite computations starting with any sentential form,
i.e., they are “noncircular”, which, in the 0-ptt notation, means that there is
no computation 〈q, h〉 ⇒+

M,s ξ where 〈q, h〉 occurs in ξ. This implies that
AGs define total functions. Formally, a 0-ptt M is noncircular, if there are
no input tree s, configuration c ∈ CM,s, and sentential form ξ of M on s
such that c ⇒+

M,s ξ and c occurs in ξ (such a configuration c will also be
called “circular”, cf. Sect. 5.2).

To understand the formal definition of an attribute grammar as a special
type of 0-dptt, we first extend the 0-ptt formalism to have rules with left-hand
side 〈q, σ, τ, ε, j〉 where τ is the label of the parent of the current node (or
‘−’ if j = 0). Clearly, this extension does not change the power of 0-dptts (a
0-dpttM ′ can simulate an extended oneM , because in state q at node u,M ′
can visit u’s parent u′, move down to u into state (q, τ) where τ is the label

634 J. Engelfriet, S. Maneth

of u′, and then apply the 〈q, σ, τ, ε, j〉-rule ofM). Furthermore, we allow the
extended 0-dptts to use in the right-hand side of a 〈q, σ, τ, ε, j〉-rule the new
instruction updowni, with 1 ≤ i ≤ rankΣ(τ), which is simply a subroutine
for moving to the parent of the current node u and then to the ith child (i.e.,
to the ith sibling of u).

Next we restrict the extended 0-dptts: The attributes (states) are divided
into inherited attributes (i-states) and synthesized attributes (s-states). Now
the restriction says that the

– rules for s-states are: 〈q, σ, τ, ε, j〉-rules that disregard τ and j and have
no up instruction in the right-hand side (and no updowni), and

– rules for i-states are: 〈q, σ, τ, ε, j〉-rules that disregard σ, have no downi

instruction in the right-hand side, but are allowed to use updowni.

The extended 0-ptts that fulfill the above two conditions and additionally are
total deterministic and noncircular, are called attributed tree transducers (for
short att). Note that for the 〈q, σ, τ, ε, j〉-rules to disregard, e.g., the symbol
σ, means that all 〈q, σ, τ, ε, j〉-rules for σ ∈ Σ have the same right-hand
side. Note also that, intuitively, the first condition means that for each s-
state, at a σ-labeled node, there is a unique applicable rule, and the second
condition means that for each i-state, at a jth child of a τ -labeled node, there
is a unique applicable rule. Moreover, from an s-state it is not possible to
move up, and from an i-state it is not possible to move down, respectively.

Finally note that an attribute grammar is usually specified by giving for
each input symbol σ (i.e., each production of the underlying context-free
grammar){

all rules 〈 q , σ , [τ , ε , j] 〉 → ζ q synthesized
all rules 〈 q , [σ′] , σ , [ε] , j 〉 → ζ q inherited

where the brackets ‘[’ and ‘]’ around the symbols mean that they are not
present in the actual left-hand side of the attribute grammar rule (which
is the same as disregarding it). Figure 2 shows the rules, in this attribute

Fig. 2. An att (with s-state d and i-states t and u) equivalent to M2 of Example 4

grammar notation, of an att that computes the same translation as the 0-dptt
M2 of Example 4, in a similar way.

Clearly, for every att there is an equivalent noncircular 0-dptt, because
an att is an extended 0-dptt. We now show that also the converse holds, i.e.,
that for every noncircular 0-dptt M that realizes a total function, there is an
equivalent att; this proves that such 0-dptts and atts have the same power.

A comparison of pebble tree transducers with macro tree transducers 635

Theorem 8 A total function from TΣ to T∆ can be realized by an attributed
tree transducer iff it can be realized by a noncircular 0-dptt.

Proof. As stated before, every att is an (extended) noncircular 0-dptt, by
definition. It remains to show that for every noncircular0-dpttM that realizes
a total function, there is an equivalent attA. Since τM is a total function, we
may assume thatM is total: this can be achieved by simply adding (dummy)
rules for the left-hand sides that do not have a rule (note that these rules will
never be applied).

Let M = (Σ,∆,Q, q0, R) and let J = max{rankΣ(σ) | σ ∈ Σ}. Note
that M is not extended. The att A is constructed as follows:

– s-states: (q, j) with q ∈ Q and j ∈ [0, J]; initial state: (q0, 0)
– i-states: (q, ϕ) with q ∈ Q and ϕ ∈ {stay, up}
– rules for s-states:

For every 〈q, σ, ε, j〉 → ζ in R and (τ, j′) ∈ (Σ × [J]) ∪ {(−, 0)}, let

〈(q, j), σ, τ, ε, j′〉 → ζ ′

be a rule of A, where

ζ ′ =

δ(〈(q1, j),stay〉, . . ., 〈(qk, j), stay〉) if ζ=δ(〈q1,stay〉,. . ., 〈qk, stay〉)
〈(q′, j), stay〉 if ζ = 〈q′, stay〉
〈(q′, i), downi〉 if ζ = 〈q′, downi〉
〈(q′, stay), stay〉 if ζ = 〈q′, up〉

– rules for i-states:
For every q ∈ Q, σ ∈ Σ, and (τ, j) ∈ (Σ × [J]) ∪ {(−, 0)}, let

〈(q, stay), σ, τ, ε, j〉 → 〈(q, up), up〉 for j
= 0
〈(q, up), σ, τ, ε, j〉 → 〈(q, j), stay〉

be rules of A. Furthermore, A has the (dummy) rule
〈(q, stay), σ,−, ε, 0〉 → 〈p, stay〉 where p is an arbitrary state of
A.

Note that the rules of A even disregard τ , and do not contain the updowni

instructions. It should be clear that A is equivalent to M , i.e., τA = τM .
Intuitively, whenever M is in state q at node u, the att A will be in s-state
(q, childno(u)) at the same node u. This property is obviously preserved by
down and stay moves: If M moves down to its ith child ui into state q′,
then A moves down to ui into s-state (q′, i), and if M stays at u in state q′,
then A stays at u in s-state (q′, childno(u)). Now, if M moves up into state
q′, then A cannot move up directly, because (q, childno(u)) is an s-state
(only i-states are allowed to move up). Thus, A first changes into the i-state

636 J. Engelfriet, S. Maneth

(q′, stay), then moves up into the i-state (q′, up), and finally does a stay move
into the s-state (q′, j), where j = childno(parent(u)). It is not difficult to
see that A is noncircular, because M is. ��

Note that for an attributed tree transducer it is well known that the height
of the output tree is linear in the size of the input tree (cf., e.g., Lemma 5.40
of [31]); this corresponds to the case n = 0 of Lemma 7.

Attribute grammars can also be defined as nondeterministic and partial
devices. In fact, the attributed tree transducer of [30] is defined nondetermin-
istically. In [39,28] it is shown that domains of (deterministic) partial AGs
are the languages recognized by universal tree-walking automata, which,
essentially, are the acceptor version of 0-dptts. We finally note that the rela-
tionship between 0-ptts and attribute grammars was already pointed out in
Section 3 of [21], where 0-ptts are called RT(Tree-walk) transducers; these
transducers are discussed in the next subsection.

3.3 Relationship to grammars with storage

In this subsection we explain that the n-ptt is an instance of the regular tree
S transducer, for a storage type S. This is only needed to understand some
of our references to the literature, and hence can be skipped.

Grammars, automata, and transducers with storage have been consid-
ered in [21,25,26], both for strings and for trees. The special case of string
automata with storage was extensively investigated in AFL and AFA the-
ory [34]. Here we discuss the regular tree transducers with storage, or RT(S)
transducers, where S is an arbitrary storage type (such as the Counter, the
Pushdown, or the Stack). Basically, an RT(S) transducer is a regular tree
grammar (see Sect. 2.3) of which the nonterminals are viewed as the states
of the transducer. Moreover, with each occurrence of a nonterminal in a sen-
tential form a storage configuration of S is associated, and the productions
of the grammar are extended with tests and instructions of S that operate
on these configurations. Thus, the derivations of the grammar are controlled
by the storage configurations. The RT(S) transducer receives one of a set of
designated initial storage configurations of S as input (associated with the
initial nonterminal), and produces the generated tree as output. This means
that it translates initial configurations into trees.

As observed already in the Introduction (and at the end of the previous
subsection), the 0-ptt is the same as the RT(Tree-walk) transducer of [21],
i.e., the RT(S) transducer where S is the storage type Tree-walk. A storage
configuration of Tree-walk consists of an input tree s, together with an input
configuration on s, as defined for the 0-ptt, i.e., a node u of s; it is an initial
storage configuration if u is the root of s, in which case it is identified with s
(and thus, the RT(Tree-walk) transducer indeed translates trees into trees).

A comparison of pebble tree transducers with macro tree transducers 637

The tests of the storage type Tree-walk allow to test the label and child
number of the node u, and its instructions are the instructions of the 0-ptt,
i.e., up, stay, and downi. As an example of a production of an RT(Tree-walk)
transducer, consider

A[label = σ?childno = 3?] → δ(α,B[down2], C[up]).

Intuitively, this production means that a nonterminal (or state) A which has
storage configuration (s, u) where s is an input tree and u a node of s with
label σ and child number 3, can be replaced by the right-hand side, in which
the nonterminals (or states)B andC have storage configurations (s, u2) and
(s, parent(u)), respectively. Thus, it corresponds to the rule 〈A, σ, ε, 3〉 →
δ(α, 〈B, down2〉, 〈C, up〉) of a 0-ptt.

It should now be clear to the reader that the storage type Tree-walk can
easily be extended to the storage type n-Pebble, for every n ∈ N, such that
the RT(n-Pebble) transducer is precisely the n-ptt. Hence, all results for
RT(S) transducers proved in, e.g., [21,25,26] hold in particular for n-ptts.

Another storage type of interest is Tree (denoted TR in [25,26]): it is
Tree-walk without the instructions stay and up, and without the test on child
number. We observe here that the RT(Tree) transducer is precisely the top-
down tree transducer.

In [25,26], also context-free tree transducers with storage, or CFT(S)
transducers, are investigated. They are defined in the same way as RT(S)
transducers, except that context-free tree grammars rather than regular tree
grammars are used. In particular, the CFT(Tree) transducer is (a notational
variant of) the macro tree transducer. Thus, in this paper, we compare
RT(n-Pebble) transducers with CFT(Tree) transducers.

We finally note that with every storage type S is associated the storage
type P(S) of pushdowns of S-configurations. It is easy to see (see Sec-
tion 6(7) of [21]) that every RT(Tree-walk) transducer, i.e., every 0-ptt, can
be simulated by an RT(P(Tree)) transducer: roughly speaking, the nodes
that are on the path from the root to the current node are pushed on the stack;
thus, a downi instruction is simulated by a push(downi) instruction, which
pushes node ui on the pushdown (if uwas the node on top of the pushdown),
and an up instruction is simulated by popping the pushdown. It is shown in

638 J. Engelfriet, S. Maneth

[25] that, under certain conditions, the RT(P(S)) transducer has the same
power as the CFT(S) transducer.

4 Decomposition of pebble tree transducers

In this section it is proved that each n-pebble tree transducer M can be
decomposed into the (n+1)-fold composition of 0-pebble tree transducers;
more precisely, the first n 0-ptts of the composition are deterministic, and
the last one is nondeterministic (and they are all deterministic if M is).
This means that for a pebble transducer, a pebble can be simulated by the
application of a translation of a deterministic 0-ptt. Thus, instead of taking
care of many pebbles at the same time (viz. programming an n-ptt) one
can simply consider pebble transducers without pebbles, and sequentially
compose them. Note that in the string case an analogous result holds, but with
one pebble rather than zero: each n-pebble string transducer can be realized
by the composition of n 1-pebble string transducers (Theorem 1 of [17]).
The idea of the proof in the string case is similar to, but easier than, the
one for trees in this section. The one pebble is really needed: deterministic
0-pebble string transducers are closed under composition (because they are
the two-way finite state transducers [7]).

Let us sketch the proof of this decomposition. LetM be an n-ptt, n ≥ 1.
We want to discuss how to decompose M ’s translation τM into the com-
position of a fixed total function EncPeb, realized by a deterministic 0-ptt,
and an (n − 1)-ptt M ′. The idea of the function EncPeb is to add infor-
mation about the position of the first pebble of M to the input tree. More
precisely, the input tree is enlarged by adding to each node, as an additional
(last) subtree, a copy of the input tree in which that node is marked. The
computation of M on an input tree s is simulated by the (n− 1)-ptt M ′ on
the input tree EncPeb(s). As long as M has no pebbles on s, M ′ simulates
it on the original nodes of s, of which the labels are primed to distinguish
them from the new nodes of EncPeb(s). However, when M drops the first
pebble on node v of s, M ′ instead enters the new subtree of v and walks to
the marked node, corresponding to v. In that subtree M ′ behaves just like
M , using pebble i as pebble i+ 1 ofM . IfM checks for the presence of its
first pebble, then M ′ checks whether the current node is marked. If M lifts
its first pebble, then M ′ returns to v by walking up to the first primed node.

There is one difficulty in the construction sketched above, and that is
the precise definition of EncPeb(s). Suppose that, as suggested above, each
additional subtree is indeed a precise copy of the input tree, with one node
marked by barring its label. Then it is easy to see that EncPeb can be realized
by a dptt M1 with one pebble. In fact, M1 has states q0, q1, and q2, and the

A comparison of pebble tree transducers with macro tree transducers 639

following rules (with σ ∈ Σ(k), j ≥ 0, j′ > 0, and b ∈ {0, 1}):
〈q0, σ, ε, j〉 → σ′(〈q0, down1〉, . . . , 〈q0, downk〉, 〈q1, drop〉)
〈q1, σ, b, j′〉 → 〈q1, up〉
〈q1, σ, b, 0〉 → 〈q2, stay〉
〈q2, σ, 0, j〉 → σ(〈q2, down1〉, . . . , 〈q2, downk〉)
〈q2, σ, 1, j〉 → σ(〈q2, down1〉, . . . , 〈q2, downk〉)

Thus, to generate the additional tree,M1 drops its pebble at the current node,
walks to the root, and copies the input tree, putting a bar on the label of the
node that carries the pebble.

However, it can be proved that this mapping EncPeb cannot be realized
by a zero-pebble tree transducer. For this reason, we instead define EncPeb in
such a way that the new subtree of node v is a “folded” copy of the input tree
s, obtained from s by turning v into the root node. This is done by reversing
the direction of the edges on the path from the root to v, i.e., by inverting the
parent-child relationship between all ancestors of v. It is not difficult to see
that this EncPeb can be realized by a zero-pebble ptt (see also Example 3.7
of [49]): to generate the new subtree it can just copy the input tree starting
at the current node v and “walking away” from v. It should also be clear
that the (n − 1)-ptt M ′ can still simulate M on this folding of s, provided
some additional information is added to the labels of the (ex-)ancestors of
v that allows M ′ to reconstruct the form of s, and, thus, to turn a walk on s
into a walk on the folding of s. This information can easily be produced by
the zero-pebble ptt. Note that the simulation of the dropping and lifting of
the first pebble has even become easier: when it is dropped, M ′ just moves
down one step (to the root of the new subtree), and when it is lifted,M ′ just
moves up one step.

We now give a more precise description of the mapping EncPeb, to
prepare for its formal definition. For every input tree s of M , EncPeb(s)
has all nodes of the original tree s, but additionally each node v of rank k
in the tree s, has rank k + 1 in EncPeb(s) and its (k + 1)th subtree is the
tree sdir

v , obtained by adding the “redirection information” mentioned above
to the labels of the folding sv of the input tree s at v. We first describe how
the intermediate tree sv is constructed from s, and then show how to relabel
it in order to obtain the tree sdir

v . The tree sv is obtained from s by inverting
the parent-child relationship of all ancestors of u. More precisely, if u is an
ancestor of v in s, then, in sv, the parent of u is swapped with its ith child,
where i = swapv(u) and

swapv(u) =
{
k + 1 if u = v
l if v = ulv′ for l ∈ N and some v′ ∈ N∗

with k = rankΣ(s[v]). Since v itself has no child that is an ancestor of v, its
parent is added as a new, (k+1)th child. If u is the root node, then it has no

640 J. Engelfriet, S. Maneth

parent, but in order to keep the ranks of the new symbols in sdir
v as uniform as

possible, we assume an imaginary parent of u, labeled by a dummy symbol
$. Clearly M ′ will never visit these $-labeled nodes in EncPeb(s), because
that would correspond to an up instruction of M at the root node, which
does not exist.

We now discuss how to relabel sv in order to obtain the tree sdir
v . Let u be

an ancestor of v. Since in sv the parent of u was swapped with its ith child,
i = swapv(u), also the corresponding move instructions of the (n− 1)-ptt
M ′ have to be swapped. We capture this “swapping information” by the set
di, defined as

di = {(up, downi), (downi, up)}.
Also, the child number j of u (in s) may have changed in sv. Thus, forM ′ to
have complete information about the original order of the ancestors of v, we
include both di and the original child number j of u in the label of the corre-
sponding node in sdir

v . Hence, sdir
v is obtained from sv by relabeling, for every

ancestor u of v, the node corresponding to u by (s[u], childno(u), dswapv(u)).
Note that the node of sdir

v corresponding to v, i.e., its root, is marked
in the sense that it is the unique node of sdir

v with label (σ, j, di) such that
i = rankΣ(σ) + 1. Note also that, in fact, the child number information
is superfluous: if a node of sdir

v has label (σ, j, di) and its ith child has
label (σ′, j′, di′), then j = i′ (and if its ith child has label $, then j = 0).
Moreover, even the di information is superfluous, because i is the number of
the unique child that is an (ex-)ancestor of v (or has label $). Thus, it would
have sufficed to mark all (ex-)ancestors of v. However, the addition of this
information simplifies the formal definition of M ′.

Fig. 3. The trees s, sv , and sdir
v

Figure 3 shows a tree s in which the node v = 231 is encircled, the
corresponding tree sv which is obtained from s by turning v into the root
node and reversing the order of the ancestors of v, as described above, and

A comparison of pebble tree transducers with macro tree transducers 641

the tree sdir
v obtained from sv by relabeling each ancestor of v by the correct

triple (σ, j, di). As an example of the translation EncPeb, consider Figure 4
which shows the tree s = α(β, γ(δ)) together with the tree EncPeb(s).

Formally, the tree EncPeb(s) is defined as follows. First, define for every
v ∈ V (s) the function encv that maps every u ∈ V (s) to the corresponding
node in the subtree sdir

v of EncPeb(s). Letw be the longest common ancestor
ofu and v, letu′ ∈ N∗ such thatu = wu′, and letw1 = v, w2, . . . , wm = w,
m ≥ 1, be the nodes on the path from v to w (i.e., wi is a child of wi+1 for
1 ≤ i < m). Then

encv(u) = v(k + 1)swapv(w1) · · · swapv(wm−1)u′

with k = rankΣ(s[v]). Figure 5 shows the nodes u, v, and wi in the tree s.
Obviously, encv is an encoding, i.e., for every u, u′ ∈ V (s)

(P0) encv(u) = encv(u′) iff u = u′.

Fig. 4. The trees s = α(β, γ(δ)) and EncPeb(s)

642 J. Engelfriet, S. Maneth

Fig. 5. The nodes u, v, and wi in the tree s

Using encv(u) we can define the set of nodes of EncPeb(s) as

V (EncPeb(s)) = V (s) ∪ {encv(u) | u, v ∈ V (s)}
∪ {encv(ε)swapv(ε) | v ∈ V (s)}.

The labels of the nodes of EncPeb(s) are as follows. Note that nodes
in V (s) are labeled by primed copies of the corresponding symbols of
Σ, because their rank in EncPeb(s) has increased by one. Denote the tree
EncPeb(s) by s′. Then, for every u, v ∈ V (s),

(P1) s′[u] = σ′ where σ = s[u]
(P2) if u is not an ancestor of v then s′[encv(u)] = s[u]
(P3) if u is an ancestor of v then s′[encv(u)] = (s[u],

childno(u), dswapv(u))
(P4) s′[encv(ε)swapv(ε)] = $.

Note that the information childno(u) is available at node encv(u) of s′.
If u is an ancestor of v this is by definition of the relabeling, viz. P3, and
otherwise, by the definition of encv(u), we get

(P5) if u is not an ancestor of v then childno(u)=childno(encv(u)).

In the next lemma the 0-dptt MEncPeb realizing EncPeb is constructed,
and, for a given n-ptt M , the (n − 1)-ptt M ′ is constructed such that the
composition of τMEncPeb and τM ′ equals the translation τM realized by M .

Lemma 9 For every n ≥ 1, n-PTT ⊆ 0-DPTT ◦ (n− 1)-PTT and
n-DPTT ⊆ 0-DPTT ◦ (n− 1)-DPTT.

Proof. LetM = (Σ,∆,Q, q0, R) be an n-ptt, and let J = max{rankΣ(σ) |
σ ∈ Σ}. We will define the deterministic 0-ptt MEncPeb and the (n− 1)-ptt

A comparison of pebble tree transducers with macro tree transducers 643

M ′ such that τM = τMEncPeb ◦ τM ′ . The 0-ptt MEncPeb realizes the mapping
EncPeb described above this lemma, i.e., it adds to each node v of rank k
of an input tree s, as (k + 1)th subtree, the tree sdir

v (cf. Figure 3). It has
initial state q which copies the current node v of rank k (adding a prime to
its label), and spawns the generation of sdir

v as (k + 1)th subtree, in state
q∞. In the subtree sdir

v , MEncPeb uses states qν , ν ∈ [J], to denote that the
previously processed node had child number ν. Finally, it has a state qid that
realizes the identity.

Define MEncPeb = (Σ,Γ, S, q, P) with

Γ = Σ ∪ {σ′(k+1) | σ ∈ Σ(k), k ≥ 0}
∪ {(σ, j, di)(k) | σ ∈ Σ(k), k ≥ 0, i ∈ [k], j ∈ [0, J]}
∪ {(σ, j, dk+1)(k+1) | σ ∈ Σ(k), k ≥ 0, j ∈ [0, J]}
∪ {$(0)}

and S = {q, q∞, q1, . . . , qJ , qid}. For every σ ∈ Σ(k), k ≥ 0, j ∈ [0, J],
and ν ∈ [k] let the following rules be in P .

〈q, σ, ε, j〉 → σ′(〈q, down1〉, . . . , 〈q, downk〉, 〈q∞, stay〉)
〈q∞, σ, ε, j〉 → (σ, j, dk+1)(〈qid, down1〉, . . . , 〈qid, downk〉, ξj)
〈qν , σ, ε, j〉 → (σ, j, dν)(〈qid, down1〉, . . . , 〈qid, downν−1〉, ξj ,

〈qid, downν+1〉, . . . , 〈qid, downk〉)
〈qid, σ, ε, j〉 → σ(〈qid, down1〉, . . . , 〈qid, downk〉)

where ξj = $ if j = 0, and ξj = 〈qj , up〉 if j ∈ [J]. This ends the construc-
tion of MEncPeb. It should be clear that indeed τMEncPeb(s) = EncPeb(s) for
every s ∈ TΣ . In particular this implies that the properties P1 – P5 (stated
before the lemma) hold for s′ = τMEncPeb(s).

We now define the (n − 1)-ptt M ′ = (Γ,∆,Q, q0, R′). Since, in the
correctness proof, we will need to know which rules r′ inR′ were constructed
from the rule r ∈ R, we will call r′ related to r if it is constructed from r.
Then R′ is defined as {r′ | ∃r ∈ R : r′ is related to r}.

Let q ∈ Q, σ ∈ Σ(k), k ≥ 0, b ∈ {0, 1}≤n, j ∈ [0, J], and let r =
(〈q, σ, b, j〉 → ζ) be a rule in R. The new rules of M ′ are defined by the
following case distinction on the bit string b.

– (zero pebbles) b = ε: If ζ
= 〈q′, drop〉 for any q′ ∈ Q then let the rule
〈q, σ′, ε, j〉 → ζ be related to r, and otherwise let the rule 〈q, σ′, ε, j〉 →
〈q′, downk+1〉 be related to r.

– (first pebble not at current node) b = 0b′ for some b′ ∈ {0, 1}≤n−1:
Let the rule 〈q, σ, b′, j〉 → ζ be related to r, and, for every i ∈ [k] and
j′ ∈ [J + 1], let the rule

〈q, (σ, j, di), b′, j′〉 → ζ[〈q′, ϕ〉 ← 〈q′, ϕ′〉 | q′ ∈ Q, (ϕ,ϕ′) ∈ di]

be related to r.

644 J. Engelfriet, S. Maneth

– (first pebble at current node) b = 1b′ for some b′ ∈ {0, 1}≤n−1: If b′ = ε
and ζ = 〈q′, lift〉 for q′ ∈ Q, then let, for every j′ ∈ [J + 1], the rule
〈q, (σ, j, dk+1), b′, j′〉 → 〈q′, up〉 be related to r, and otherwise let, for
every j′ ∈ [J + 1], the rule

〈q, (σ, j, dk+1), b′, j′〉 → ζ[〈q′, ϕ〉 ← 〈q′, ϕ′〉 | q′ ∈ Q, (ϕ,ϕ′) ∈ dk+1]

be related to r. (Remark: the rules with j′
= k + 1 are useless, but their
presence simplifies the correctness proof.)

This concludes the construction ofM ′. Clearly,M ′ is deterministic ifM is.
Let s ∈ TΣ and s′ = τMEncPeb(s). In order to prove the correctness of the

construction, we extend the notion of relatedness from rules to sentential
forms: For ξ ∈ T∆∪CM,s

and ξ′ ∈ T∆∪CM′,s′ : ξ is related to ξ′ if ξ′ = ξ[enc],
where [enc] is the substitution [〈q, h〉 ← 〈q, enc(h)〉 | q ∈ Q, h ∈ ICn,s]
and the “encoded” input configuration enc(h) ∈ ICn−1,s of M ′ is defined
as follows: if h = (u, λ) with u ∈ V (s) then enc(h) = h, and if h =
(u, vv1 · · · vl) with u, v, v1, . . . , vl ∈ V (s) and l ∈ [0, n− 1] then

enc(h) = enc(u, vv1 · · · vl) = (encv(u), encv(v1) · · · encv(vl)).

Note that for every rule r′ ∈ R′ there is precisely one rule r inR related
to r′ which we denote by rel(r′). We first show, in Claim 1, that if a rule is
applicable to a configuration, then there is a related rule applicable to the
related configuration, and vice versa.

Claim 1. Let 〈q, h〉 ∈ CM,s and r ∈ R.

r is applicable to 〈q, h〉 iff there is a rule r′ ∈ R′ such that

rel(r′) = r and r′ is applicable to 〈q, enc(h)〉.

Case 1, h = (u, λ) for u ∈ V (s): Let σ = s[u] and j = childno(u).
Then, r is applicable to 〈q, h〉 iff its left-hand side is 〈q, σ, ε, j〉. By the
definition of R′ this is iff there is an r′ ∈ R′ with rel(r′) = r and left-hand
side 〈q, σ′, ε, j〉. Since enc(h) = h and, by P1, s′[u] = σ′, this is iff r′ is
applicable to 〈q, enc(h)〉.
Case 2, h = (u, vv1 · · · vl) for u, v, v1, . . . , vl ∈ V (s) and l ∈ [0, n − 1]:
Let σ = s[u], p ∈ {0, 1} with p = 1 iff v = u, b′ ∈ {0, 1}l with b′(µ) = 1
iff vµ = u for µ ∈ [l], and j = childno(u). We distinguish two subcases.

Case (i), u is not an ancestor of v: Since p = 0 (because u
= v), r is
applicable to 〈q, h〉 iff its left-hand side is 〈q, σ, 0b′, j〉. By the definition of
R′ this is iff there is an r′ ∈ R′ with rel(r′) = r and left-hand side 〈q, σ, b′, j〉.
Since enc(h) = (encv(u), encv(v1) · · · encv(vl)), s′[encv(u)] = s[u] by P2,

A comparison of pebble tree transducers with macro tree transducers 645

childno(encv(u)) = childno (u) by P5, and encv(vµ) = encv(u) iff vµ = u
for µ ∈ [l] by P0, this is iff r′ is applicable to 〈q, enc(h)〉.
Case (ii), u is an ancestor ofv: Let j′ = childno(encv(u)) and i = swapv(u).
Now r is applicable to 〈q, h〉 iff its left-hand side is 〈q, σ, pb′, j〉. By the def-
inition ofR′ this is iff there is an r′ inR′ with rel(r′) = r and left-hand side
〈q, (σ, j, di), b′, j′〉 (note that, by the definition of swapv(u), i ∈ [k] if p = 0
and i = k+1 otherwise). Since enc(h) = (encv(u), encv(v1) · · · encv(vl)),
s′[encv(u)] = (σ, j, di) by P3, and encv(vµ) = encv(u) iff vµ = u for
µ ∈ [l] by P0, this is iff r′ is applicable to 〈q, enc(h)〉, which concludes the
proof of Claim 1.

Next we prove a claim about the result of applying related rules r and r′ to
related configurations. More precisely, the claim shows that the application
of related rules to related configurations yields related sentential forms.
Recall, for an input configuration h, the definition (#) of the substitution
[h]M,s in the definition of the computation relation of M on s (Sect. 3); we
will denote it here by [h], and similarly we denote [enc(h)]M ′,s′ by [enc(h)].

Claim 2. Let 〈q, h〉 ∈ CM,s, r ∈ R applicable to 〈q, h〉, and r′ ∈ R′ applica-
ble to 〈q, enc(h)〉, with r = rel(r′). Then rhs(r′)[enc(h)] = rhs(r)[h][enc].

Let σ ∈ Σ(k), k ≥ 0, b ∈ {0, 1}≤n, and j ∈ [0, J] such that (σ, b, j) =
test(h). Thus, r is a 〈q, σ, b, j〉-rule.

If rhs(r) ∈ T∆∪〈Q,stay〉 then rhs(r′) = rhs(r) and, since there are only
stay instructions, applying the substitution [h][enc] is equivalent to applying
[〈q, stay〉 ← 〈q, enc(h)〉 | q ∈ Q] which, for the same reason, is equivalent
to applying [enc(h)].

If rhs(r) = 〈q′, ϕ〉 with ϕ ∈ Iσ,b,j − {stay} then we distinguish the
following three cases. Let u ∈ V (s).

Case 1, ϕ = drop: If h = (u, λ) then enc(h) = h and
rhs(r′) = 〈q′, downk+1〉. Thus, rhs(r′)[enc(h)] = 〈q′, downk+1(h)〉 =
〈q′, (u(k + 1), λ)〉 which, by the definition of enc, equals 〈q′, enc(u, u)〉 =
〈q′, drop(h)〉[enc] = rhs(r)[h][enc]. If h = (u, vv1 · · · vl) for
v, v1, . . . , vl ∈ V (s) and l ≥ 0, then rhs(r′) = rhs(r) (re-
call that drop is not changed by the swapping information di).
Thus, rhs(r′)[enc(h)] = 〈q′, drop(encv(u), encv(v1) · · · encv(vl))〉 =
〈q′, (encv(u), encv(v1) · · · encv(vl)encv(u))〉 = 〈q′, enc(u, vv1 · · · vlu)〉 =
〈q′, drop(h)〉[enc] = rhs(r)[h][enc].

Case 2, ϕ = lift: If h = (u, u) then rhs(r′) = 〈q′, up〉 and
enc(h) = (encu(u), λ) = (u(k + 1), λ). Consequently, rhs(r′)[enc(h)] =
〈q′, up(u(k+ 1), λ)〉 = 〈q′, (u, λ)〉 = 〈q′, enc(u, λ)〉 = 〈q′, lift(h)〉[enc] =
rhs(r)[h][enc].

646 J. Engelfriet, S. Maneth

If h = (u, vv1 · · · vlu) for v, v1, . . . , vl ∈ V (s) and
l ≥ 0 then rhs(r′) = rhs(r). Hence, rhs(r′)[enc(h)] =
〈q′, lift(encv(u), encv(v1) · · · encv(vl)encv(u))〉 = 〈q′, (encv(
u), encv(v1) · · · encv(vl))〉 = 〈q′, enc(u, vv1 · · · vl)〉 = 〈q′, lift(h)〉[enc] =
rhs(r)[h][enc].

Case 3, ϕ ∈ {up, down1, . . . , downk}: If h = (u, λ) then rhs(r′) = rhs(r),
enc(h) = h, and enc(ϕ(h)) = ϕ(h). Thus, on rhs(r), [enc(h)] = [h] =
[h][enc]. If h = (u, vv1 · · · vl) for v, v1, . . . , vl ∈ V (s) and l ≥ 0 then we
distinguish the following two cases, where p denotes the string vv1 · · · vl

and p′ denotes encv(v1) · · · encv(vl).

Case (i), u is not an ancestor of v: Then rhs(r′) = rhs(r), i.e., it suffices to
show that ϕ(enc(h)) = enc(ϕ(h)). Now enc(h) = (encv(u), p′) = (v(k′ +
1)swapv(w1) · · · swapv(wm−1)u′, p′), where k′ is the rank of s[v], w1 =
u,w2, . . . , wm are the nodes on the path from v to the longest common ances-
torwm of u and v, and u = wmu

′. Since u is not an ancestor of v, u′ ∈ N+.
Thus, applying ϕ to enc(h) amounts to applying it to u′, and hence to u. For
a node z, define ϕ(z) = parent(z) if ϕ = up, and ϕ(z) = zi if ϕ = downi.
Then ϕ(enc(h)) = (v(k′ + 1)swapv(w1) · · · swapv(wm−1)ϕ(u′), p′) =
enc(wmϕ(u′), p) = enc(ϕ(wmu

′), p) = enc(ϕ(u), p) = enc(ϕ(h)).

Case (ii), u is an ancestor of v: If ϕ = up then rhs(r′) = 〈q′, downi〉
where i = swapv(u) by P3 and the definition of r′. Thus, we must
show that enc(up(h)) = downi(enc(h)). Now up(h) = (ū, p) where
ū = parent(u). Thus, encv(ū) = v(k′ + 1)swapv(w1) · · · swapv(wm−1),
where w1 = v, . . . , wm = ū are the nodes on the path from v to ū.
This implies that wm−1 = u and swapv(wm−1) = i, i.e., enc(ū, p) =
downi(v(k′ + 1)swapv(w1) · · · swapv(wm−2), p′) = downi(enc(h)).

If ϕ = downi for i ∈ [k], then we distinguish whether or not ui is
an ancestor of v. If ui is not an ancestor of v, then rhs(r′) = rhs(r) and
we must show that enc(ϕ(h)) = ϕ(enc(h)). Since encv(ui) = encv(u)i
we get enc(downi(h)) = enc(ui, p) = (encv(ui), p′) = (encv(u)i, p′) =
downi(encv(u), p′) = downi(enc(h)).

If ui is an ancestor of v, then rhs(r′) = 〈q′, up〉, i.e., we must show
that enc(downi(h)) = up(enc(h)). Now downi(h) = (ui, p) and enc(h) =
(v(k′ + 1)swapv(w1) · · · swapv(wm−1), p′), where k′ is the rank of s[v]
and w1 = v, . . . , wm = u are the nodes on the path from v to u; thus,
up(enc(h)) = (v(k′ + 1)swapv(w1) · · · swapv(wm−2), p′). Since wm−1 =
ui, this equals enc(ui, p) = downi(enc(h)).

This concludes the proof of Claim 2.
The next claim shows that the application of related rules to the same

node in related sentential forms (i.e., ξ and ξ′ with ξ′ = ξ[enc]), yields
again related sentential forms. Recall the definition of⇒M,s from Sect. 3:

A comparison of pebble tree transducers with macro tree transducers 647

If ξ ⇒M,s ξ̃ then there is a leaf ρ in ξ such that ξ̃ = ξ[ρ ← ζ[h]], where
ξ[ρ] = 〈q, h〉 ∈ CM,s and ζ is the right-hand side of a rule r ofM applicable
to 〈q, h〉; we say that “ξ ⇒M,s ξ̃ by rule r at node ρ”.

Claim 3. Let ξ ∈ T∆∪CM,s
and η ∈ T∆∪CM′,s′ with η = ξ[enc]. If ξ ⇒M,s ξ̃

by rule r ∈ R at node ρ ∈ V (ξ) and η ⇒M ′,s′ η̃ by rule r′ at node ρ, with
r = rel(r′), then η̃ = ξ̃[enc].

Note that if ξ[ρ] = 〈q, h〉 then, by the definition of [enc], η[ρ] =
〈q, enc(h)〉. Now Claim 3 can be proved using Claim 2 as follows:

η̃ = ξ[enc][ρ← rhs(r′)[enc(h)]]
= ξ[enc][ρ← rhs(r)[h][enc]] (by Claim 2)
= ξ[ρ← rhs(r)[h]][enc] (associativity of substitution)
= ξ̃[enc].

Last but not least, it is shown in the final claim of this proof that related-
ness (viz. the application of [enc]) is preserved in arbitrary computations of
M and M ′.

Claim 4. Let l ≥ 0 and η ∈ T∆∪CM′,s′ . Then

〈q0, h0〉 ⇒l
M ′,s′ η iff ∃ξ : 〈q0, h0〉 ⇒l

M,s ξ and ξ[enc] = η.

The proof of Claim 4 is by induction on the length l of the computations.
For l = 0 the statement is obvious because 〈q0, h0〉[enc] = 〈q0, h0〉. Let us
now prove the induction step.

First, the ‘if’ part: Let ξ, ξ̃ be sentential forms of M on s such that

〈q0, h0〉 ⇒l
M,s ξ ⇒M,s ξ̃,

and let ρ ∈ V (ξ), 〈q, h〉 ∈ CM,s, and r ∈ R be the involved node, con-
figuration, and rule, respectively, of the last step of the computation. Let
η̃ = ξ̃[enc]. By induction, 〈q0, h0〉 ⇒l

M ′,s′ η with η = ξ[enc]. It follows
from the definition of [enc] that η[ρ] = 〈q, enc(h)〉. By Claim 1 there is a rule
r′ applicable to 〈q, enc(h)〉 with rel(r′) = r. Hence η ⇒M ′,s′ ξ̃[enc] = η̃
by Claim 3.

Second, the ‘only if’ part: Let η, η̃ be sentential forms of M ′ on s′ such
that

〈q0, h0〉 ⇒l
M ′,s′ η ⇒M ′,s′ η̃,

and let ρ ∈ V (η), 〈q, h′〉 ∈ CM ′,s′ , and r′ ∈ R′ be the involved node,
configuration, and rule, respectively, of the last step of the computation.
By induction, there exists ξ such that 〈q0, h0〉 ⇒l

M,s ξ and ξ[enc] = η.
Hence, by the definition of [enc], h′ = enc(h) for some h ∈ ICn,s and,
using Claim 1, rel(r′) is applicable to 〈q, h〉 at node ρ of ξ. Let ξ̃ be the

648 J. Engelfriet, S. Maneth

result of that application. Then ξ̃[enc] = η̃ by Claim 3. This ends the proof
of Claim 4.

Since, for every t ∈ T∆, ξ[enc] = t iff ξ = t, it follows immediately
from Claim 4 that τM ′(s′) = τM (s). Furthermore, since s′ = τMEncPeb(s)
we obtain that τMEncPeb ◦ τM ′ = τM . ��

From Lemma 9 we obtain the decomposition result of this section, our
first main theorem: every n-ptt can be decomposed into n + 1 0-ptts, and
similarly in the deterministic case. In more detail, the first n translations of
this composition are in fact (very simple) deterministic transducers: they all
realize the total function EncPeb.

Theorem 10 For every n ≥ 1, n-PTT ⊆ 0-PTTn+1 and
n-DPTT ⊆ 0-DPTTn+1.

A consequence of Theorem 10 is the equality of the composition closure
of all ptts with the composition closure of all 0-ptts, and similarly in the
deterministic case.

Corollary 11 PTT∗ = 0-PTT∗ and DPTT∗ = 0-DPTT∗.

In terms of databases, Corollary 11 means that the query language of
pebble tree transducers, i.e., the composition closure PTT∗ (DPTT∗), is
equal to the query language of 0-pebble tree transducers.

We note here that the key result of [50] is that inverse n-ptt translations
preserve the regular tree languages, i.e., if τ ∈ n-PTT andR ∈ REGT, then
τ−1(R) ∈ REGT. It follows from Theorem 10 that, in fact, it suffices to
show this for 0-ptts.

5 Pebble tree transducers and macro tree transducers

In this section we compare the model of pebble tree transducers with that
of macro tree transducers, well known from tree language theory [18,6,24,
31]. Since, according to Sect. 3.2, 0-pebble tree transducers can be thought
of as attribute grammars, the (total deterministic) zero pebble case is closely
related to the well-known comparison of attributed tree transducers with
macro tree transducers (see, e.g., [19,6,14,32]).

The main result is that an n-pebble tree transducer can be simulated by
the composition of n+1 macro tree transducers (for short, mtts). Moreover,
it is shown that mtts can be simulated by compositions of ptts. Thus, the
composition closure of all ptts is equal to the composition closure of all
mtts. To be precise, in the nondeterministic case, the mtts must additionally
be allowed to use stay instructions (“stay-mtts”). These are the second and
third main results of this paper.

A comparison of pebble tree transducers with macro tree transducers 649

Let us now discuss these results in more detail. The macro tree transducer
can be obtained from the 0-ptt in the following way: First, consider a 0-ptt
M that uses no up or stay instructions, i.e., only down instructions. If we
additionally allow M to have general rules (with arbitrary right-hand sides
in T∆(〈Q, down〉), where ‘down’ denotes the set {downi | i ≥ 1}), then
M is a top-down tree transducer [54,56,4,20,36] (cf. also the discussion on
top-down tree transducers in Sect. 3.1 of [49]).

Now, by adding parameters (of type output tree) to the states of the top-
down tree transducer, we obtain the macro tree transducer (for short, mtt). A
nice consequence of the fact that mtts have no stay and up instructions, is that
they have no infinite computations, i.e., they terminate for every input tree.
It was proved in the previous section (Corollary 11) that the composition
closure of all ptts is equal to the composition closure of all 0-ptts. Hence,
in order to prove the equivalence to the composition closure of all mtts, it
suffices to show how to simulate 0-ptts by mtts and vice versa.

In order to formalize the simulation of 0-ptts by mtts, we first define a
more general model which is of interest on its own: the n-pebble macro tree
transducer (for short, n-pmtt). It is obtained from the n-ptt by adding param-
eters to the states. Then, an mtt is a 0-pmtt that uses only down instructions.
In order to prove that a 0-ptt can be simulated by an mtt we first eliminate
the up instructions by the use of parameters (Lemma 34), thus obtaining
a 0-pmtt without up instructions, but which still uses stay instructions: a
“stay-mtt”. Using Theorem 10, this shows that n-PTT ⊆ sMTTn+1, where
sMTT denotes the class of translations realized by stay-mtts (and similarly
for the deterministic classes).

In the deterministic case we prove, in Theorem 31, that stay moves can
be eliminated from deterministic stay-mtts, i.e., the translation of a 0-dptt
can be realized by a deterministic macro tree transducer, and hence ann-dptt
can be realized by the (n+1)-fold composition of deterministic macro tree
transducers (Theorem 35). As suggested in the Introduction, Theorem 31
is, technically speaking, one of the key results of this paper: it involves
removing nonterminating computations (which stay at a node of the input
tree) from the stay-mtt; this is done in several intermediate stages in the
proof of Theorem 31.

In the nondeterministic case it can be shown that stay-mtts are “close”
to mtts, in particular that they have the same output languages (which is of
interest for the type checking problem) and that in a composition of stay-
mtts, all except the first can be mtts (Theorems 30 and 29, respectively). The
reason why a nondeterministic stay-mtt cannot always be simulated by an
mtt is that τM (s) may be infinite, i.e., there are stay-mtts M that generate
infinitely many output trees for one input tree s. A prototypic example of
such a transducer is the nondeterministic 0-pttMΣ of Example 6 that realizes

650 J. Engelfriet, S. Maneth

the translation monΣ : it inserts above each σ-labeled node u of the input
tree s ∈ TΣ , arbitrarily many nodes labeled by the (unary) symbol σ̄. In
fact, this translation can be used in order to simulate an arbitrary stay-
mtt M by an mtt: first MΣ translates s into the “(arbitrarily) blown up”
version s′ ∈ monΣ(s) of s by inserting unary nodes, and then a macro tree
transducerM ′ can be constructed that on s′ simulates the stay-mttM (on s):
If M does a stay move, then M ′ moves down on the unary (barred) nodes.
Thus, sMTT ⊆ MON ◦MTT (Lemma 27), where MON is the class of all
translations monΣ .

The structure of this section is as follows. In Sect. 5.1, pebble macro
tree transducers are defined and some of their basic properties are proved.
Section 5.2 deals in particular with properties of deterministic pmtts. Sec-
tion 5.3 defines macro tree transducers and stay-mtts, and investigates their
relationship. Section 5.4 presents the simulation of ptts by compositions of
(stay-) macro tree transducers. Finally, in Sect. 5.5 the simulation of (stay-)
macro tree transducers by compositions of ptts is presented, and it is proved
that the composition closures of ptts and (stay-) mtts coincide.

5.1 Pebble macro tree transducers

The n-pebble macro tree transducer (for short, n-pmtt) is obtained from the
n-ptt by allowing each state to have a finite number of parameters y1, . . . , ym

of type output tree (in addition to the, implicit, parameter of type “input
configuration”). Moreover, the right-hand side of a rule of an n-pmtt is an
arbitrary tree over output symbols, state-instruction pairs 〈q′, ϕ〉 of the same
rank as q′, and parameters. For instance, 〈q, up〉(α, σ(y1, 〈q′, down1〉)) is a
possible right-hand side (for a state of rank ≥ 1), where q and q′ are of
rank 2 and 0, respectively. Viewing an n-pmtt as a functional program this
means that each state (of rank m) is a function with m+ 1 parameters, and
in the function body each case of the case distinction consists of an arbitrary
expression over output symbols, function calls, and parameters. Recall from
Sect. 2.1 that Ym denotes the set {y1, . . . , ym}.
Definition 12 For n ≥ 0, an n-pebble macro tree transducer is a tuple
M = (Σ,∆,Q, q0, R), where Σ and ∆ are ranked alphabets of input and
output symbols, respectively, Q is a ranked alphabet of states, q0 ∈ Q(0) is
the initial state, and R is a finite set of rules of the form

〈q, σ, b, j〉(y1, . . . , ym)→ ζ,

where q ∈ Q(m), m ≥ 0, σ ∈ Σ, b ∈ {0, 1}≤n, j ∈ [0, J] with J =
max{rankΣ(σ) | σ ∈ Σ}, and ζ ∈ T∆∪〈Q,Iσ,b,j〉(Ym). A rule r as above
is called 〈q, σ, b, j〉-rule or q-rule, and its right-hand side ζ is denoted by
rhs(r). For a subset Q′ of Q, a q-rule with q ∈ Q′ is also called Q′-rule.

A comparison of pebble tree transducers with macro tree transducers 651

If for every q, σ, b, and j there is at most one 〈q, σ, b, j〉-rule in R, then
M is deterministic (for short,M is an n-dpmtt). If there is at least one such
rule then M is total. ��

Note that an n-ptt with general rules (cf. Lemma 2) is the special case
of an n-pmtt in which each state has rank zero, i.e., has no parameters.
For an n-pmtt M , the ranked set of all configurations of M on s, denoted
by CM,s, is defined as 〈Q, ICn,s〉 (recall, from the beginning of Sect. 2.1,
that this means that 〈q, h〉 ∈ 〈Q, ICn,s〉 has the same rank as q). A rule
〈q, σ, b, j〉(y1, . . . , ym) → ζ of M is applicable to a configuration 〈q, h〉 if
(σ, b, j) = test(h). A sentential form (of M on s) is a tree over ∆ ∪ CM,s.

Let ξ be a sentential form and u ∈ V (ξ). Then u is outside in ξ if no
proper ancestor of u is labeled by a configuration. The computation relation
of M on s ∈ TΣ is defined as follows: For ξ, ξ′ ∈ T∆∪CM,s

, ξ ⇒M,s ξ
′ iff

there are

(N) a node v outside in ξ labeled by 〈q, h〉 ∈ C(m)
M,s, m ≥ 0, and

(R) a rule 〈q, σ, b, j〉(y1, . . . , ym)→ ζ in R applicable to 〈q, h〉
such that ξ′ = ξ[[v ← ζ[[h]]M,s]] where

[[h]]M,s = [[〈q′, ϕ〉 ← 〈q′, ϕ(h)〉 | q′ ∈ Q,ϕ ∈ Itest(h)]]. (#)

Recall from Sect. 2.2 that ξ[[v ← η]] denotes ξ[v ← η[yj ← ξ/vj | j ∈
[m]]]. Recall also that the substitution [[h]]M,s is just a relabeling: every node
labeled 〈q′, ϕ〉 is relabeled by 〈q′, ϕ(h)〉.

The translation τM realized byM is defined in the same way as for an n-
ptt. The class of all translations realized by n-pmtts is denoted by n-PMTT.
If the transducers are deterministic, then the respective class is denoted by
n-DPMTT. The unions of these classes over n ∈ N are denoted PMTT and
DPMTT, respectively. Note that n-PTT ⊆ n-PMTT, and similarly for the
deterministic case.

Example 13 In order to demonstrate that the addition of parameters gives
a proper extension to pebble tree transducers, we construct a deterministic
0-pebble macro tree transducer that realizes a translation that has an expo-
nential size-to-height relationship, and therefore cannot be realized by any
pebble tree transducer by Lemma 7. Let M = (Σ,Σ, {q(0)0 , q(1)}, q0, R)
where Σ = {a(1), e(0)} and let R consist of the following four rules.

〈q0, a, ε, 0〉 → 〈q, down1〉(〈q, down1〉(e))
〈q0, e, ε, 0〉 → a(e)
〈q, a, ε, 1〉(y1) → 〈q, down1〉(〈q, down1〉(y1))
〈q, e, ε, 1〉(y1) → a(y1)

652 J. Engelfriet, S. Maneth

Now, let us consider how M computes the output tree τM (s), for the
input tree s = a(a(e)):

〈q0, h0〉 = 〈q0, (ε, λ)〉 ⇒M,s 〈q, (1, λ)〉(〈q, (1, λ)〉(e))
⇒M,s 〈q, (2, λ)〉(〈q, (2, λ)〉(〈q, (1, λ)〉(e)))
⇒M,s a(〈q, (2, λ)〉(〈q, (1, λ)〉(e)))
⇒M,s a(a(〈q, (1, λ)〉(e)))
⇒M,s a(a(〈q, (2, λ)〉(〈q, (2, λ)〉(e))))
⇒2

M,s a(a(a(a(e)))).

It should be clear that τM = {(am(e), a2m
(e)) | m ∈ N}. Thus, τM is

not of polynomial size-to-height increase and therefore

0-DPMTT− PTT
= ∅. ��
In the sequel we will also apply⇒M,s to trees with parameters, i.e, trees

in T∆∪CM,s
(Y); then, the parameters are just viewed as output symbols of

rank zero.
Note that, by the requirement in (N) that v is outside, the order in which

configurations in a tree ξ ∈ T∆∪CM,s
are replaced is top-down; in other

words, ξ is evaluated in a “call-by-name” (or “lazy”) fashion: the value
of an actual parameter is not evaluated until the “function-call” has been
evaluated and the parameter is needed. In terms of macro tree grammars
this order of replacement is called “outside-in”, or “OI” for short (cf., e.g.,
[27,23]). Macro tree grammars (also called context-free tree grammars)
can be obtained from a pmtt by removing the tree-walk facility (then the
configurations become the states, viz. the nonterminals). Just as the compu-
tations of an n-ptt can be simulated by a regular tree grammar, as shown in
the beginning of Sect. 3, it is possible to obtain, for a fixed input tree s, a
computation by⇒M,s (for a pmttM) as the derivation of a macro tree gram-
marGM,s: The (ranked) nonterminals ofGM,s are the configurations 〈q, h〉
in CM,s and if 〈q, h〉(y1, . . . , ym) ⇒M,s α then GM,s has the production
〈q, h〉(y1, . . . , ym) → α. For macro tree grammars the OI requirement is
superfluous, i.e., the same tree language is generated with unrestricted order
of replacement (see Theorem 4.1.2 of [27]; see also Section 3.2 of [24]). This
implies that also for pmtts the outside-in requirement in (N) can be dropped,
without changing τM . We keep the restriction because it is technically more
convenient.

As explained in Sect. 3.3, n-ptts are the same as RT(n-Pebble) trans-
ducers. From the previous paragraph it should be clear that we just have
to replace the regular tree grammar (RT) by the context-free tree gram-
mar (CFT) in order to obtain a formalism that is equivalent to the n-pmtt:
the CFT(n-Pebble) transducer. In particular, the 0-pmtt is the same as the

A comparison of pebble tree transducers with macro tree transducers 653

CFT(Tree-walk) transducer, which is related to the so-called macro at-
tributed tree transducer of [44,31] in the same way as the 0-ptt is related to
the attribute grammar (see Sect. 3.2).

Convention 14. In order to make the rules of n-pmtts more readable, we
fix the convention (both for the n-ptts of Definition 1 and the n-pmtts of
Definition 12) that stay instructions may be omitted, i.e., instead of 〈q, stay〉
for a state q, we may simply write q.

Since pmtts have stay moves, their rules 〈q, σ, b, j〉(y1, . . . , ym) → ζ
can be restricted in such a way that each ζ has one of the forms

ζ =

〈q′,ϕ〉(〈q1,stay〉(y1, . . ., ym), . . ., 〈qk, stay〉(y1, . . ., ym)) (navigation)
δ(〈q1,stay〉(y1, . . ., ym), . . ., 〈qk,stay〉(y1, . . ., ym)) (output)
yµ (parameter selection)

A pmtt is in normal form if the right-hand side of each of its rules has one of
the above three forms. Using Convention 14, this means that the right-hand
side of an n-pmtt rule is either a parameter, or of one of the following two
forms:

– 〈q′, ϕ〉(q1(y1, . . . , ym), . . . , qk(y1, . . . , ym)) or
– δ(q1(y1, . . . , ym), . . . , qk(y1, . . . , ym)).

It will be proved in the next theorem (Theorem 16) that every pmtt can
be put into normal form. This shows that the pmtt can also be viewed as a
very simple extension of the ptt in its original form (i.e., without general
rules).

To prove Theorem 16 we will use the following basic lemma (also to
be used in the proof of Theorem 31). It shows that a stay instruction in the
right-hand side of a rule can be expanded by “applying” an appropriate rule.
This is similar to the well-known technique of applying a production of a
context-free grammar to the right-hand side of another production. Note that
the occurrence of the stay instruction need not be outside.

Lemma 15 Let M = (Σ,∆,Q, q0, R) be an n-pmtt M , n ≥ 0, let

r1 = 〈q1, σ, b, j〉(y1, . . . , ym1)→ ζ1 and
r2 = 〈q2, σ, b, j〉(y1, . . . , ym2)→ ζ2

be rules of M , and let u ∈ V (ζ1) have label ζ1[u] = 〈q2, stay〉. As-
sume, moreover, that r2 is the unique rule in R with left-hand side
〈q2, σ, b, j〉(y1, . . . , ym2). Let M ′ = (Σ,∆,Q, q0, R′) be the n-pmtt with
R′ = {r′ | r ∈ R} where r′ = r for r
= r1, and

r′
1 = 〈q1, σ, b, j〉(y1, . . . , ym1)→ ζ1[[u← ζ2]]

654 J. Engelfriet, S. Maneth

(i.e., M ′ is obtained from M by changing rule r1 into r′
1).

Then τM ′ = τM .

Proof. We may assume that q1
= q2, that u ∈ V (ζ1) in r1 is the unique
occurrence of the state q2 in the right-hand sides of the rules of M , that
r2 is the unique q2-rule in R, and that q2 is not the initial state. In fact,
if this is not the case, then change ζ1[u] into 〈q̄2, stay〉, and add the rule
〈q̄2, σ, b, j〉(y1, . . . , ym2)→ ζ2 to R, where q̄2 is a new state.

Note that, consequently, if 〈q0, h0〉 ⇒∗
M,s ξ and 〈q2, h〉 occurs in ξ, then

test(h) = (σ, b, j), as can easily be shown by induction on the length of the
derivation. This means that r2 is applicable to 〈q2, h〉.

We also note that r1
= r2 and hence q2 does not occur in ζ2. This implies
that for every ξ ∈ T∆∪CM,s

there exists ξ̃ ∈ T∆∪CM,s
such that ξ ⇒∗

M,s ξ̃ by

q2-rules only (i.e., by applications of r2) and ξ̃ has no outside occurrences of
configurations 〈q2, h〉, h ∈ ICn,s. To see this, let us say that an occurrence
of 〈q2, h〉 in a sentential form is almost outside if none of its ancestors is
labeled 〈q, h′〉 with q
= q2. It should now be clear that after applying r2 to
all outside occurrences of configurations 〈q2, h〉 in the sentential form ξ, the
maximal number of almost outside occurrences of configurations 〈q2, h〉
on a path of the sentential form has decreased. Thus, ξ̃ is obtained after
repeating this process at most height(ξ) times.

Let s ∈ TΣ . In order to prove the correctness of M ′, i.e., that τM ′(s) =
τM (s), first a claim is proved. Part (1) of the claim shows how to simulate
M by M ′: if a rule r other than r2 is applied by M then M ′ can apply
the corresponding rule r′, and if rule r2 is applied then M ′ need not apply
a rule, because the involved trees are equal under the substitution Ψ (de-
fined in the Claim); intuitively, Ψ carries out all M ’s computation steps for
configurations 〈q2, h〉, h ∈ ICn,s. The second part of the Claim shows how
to simulate M ′ by M ; it uses the fact mentioned above: starting with any
sentential form ξ ofM , there is a computation by⇒M,s (using rule r2 only)
such that the resulting tree ξ̃ has no outside occurrences of configurations
〈q2, h〉.
Claim. Let the substitution Ψ be defined as

Ψ = [[〈q2, h〉 ← ζ2[[h]] | h ∈ ICn,s]]

where [[h]] = [[h]]M,s = [[h]]M ′,s is defined as in (#) above (below Defini-
tion 12).

(1) Let ξ, ξ′ ∈ T∆∪CM,s
such that ξ ⇒M,s ξ

′ by the rule r at node v of ξ. If
r = r2 then ξΨ = ξ′Ψ , and if r
= r2 then ξΨ ⇒M ′,s ξ

′Ψ by the rule r′
at node v of ξΨ .

(2) For η, η′ ∈ T∆∪CM′,s and ξ ∈ T∆∪CM,s
, if η ⇒M ′,s η

′ and ξΨ = η

then there exists ξ′ such that ξ ⇒∗
M,s ξ

′ and ξ′Ψ = η′.

A comparison of pebble tree transducers with macro tree transducers 655

Proof of Part (1). ξ ⇒M,s ξ
′ by r at v. By the definition of⇒M,s this means

that v is outside in ξ and has label 〈q, h〉 ∈ CM,s, such that ξ′ = ξ[[v ← ζ[[h]]]]
where ζ is the right-hand side of the rule r, which is applicable to 〈q, h〉.

If r = r2, then q = q2 and ζ = ζ2, and so ξ′Ψ = ξ[[v ← ζ2[[h]]]]Ψ = ξΨ ,
because v has label 〈q2, h〉 and q2 does not occur in ζ2.

If r
= r2 then q
= q2 because r2 is the only q2-rule. Note that since v
is outside in ξ, it is also outside in ξΨ and ξΨ/v = (ξ/v)Ψ . This implies
that (ξΨ)[v] = ξ[v] = 〈q, h〉. Thus, the rule r′ of M ′, which has the same
left-hand side as r, is applicable to ξΨ at v. Let η′ be the result of that
application. Hence, ξΨ ⇒M ′,s η

′. Note also that ξ′Ψ = ξ[[v ← ζ[[h]]]]Ψ =
ξΨ [[v ← ζ[[h]]Ψ]] because v is outside and does not have label 〈q2, h〉. We
now distinguish two cases.

If r
= r1, then r′ = r and ξ′Ψ = ξΨ [[v ← ζ[[h]]]] because q2 does not
occur in ζ. Since this equals η′, ξΨ ⇒M ′,s ξ

′Ψ .
If r = r1, then q = q1 and ζ = ζ1, and r′ = r′

1. In this case we obtain
that ξ′Ψ = ξΨ [[v ← ζ1[[h]]Ψ]] = ξΨ [[v ← (ζ1[[u← ζ2]])[[h]]]] = η′.

Proof of Part (2). If η ⇒M ′,s η
′ then there is a node v outside in η such

that η[v] = 〈q, h〉 ∈ CM,s and there is a rule r′ in R′ with right-hand side
ζ that is applicable to 〈q, h〉 such that η′ = η[[v ← ζ[[h]]]]. If ξ ∈ T∆∪CM,s

such that ξΨ = η, then, by the remark above this Claim, there exists ξ̃
such that ξ ⇒∗

M,s ξ̃ only by q2-rules, and ξ̃ has no outside occurrences of

configurations 〈q2, h′〉, h′ ∈ ICn,s. By part (1) of this Claim, ξ̃Ψ = ξΨ = η.
Consider the outside occurrence v of 〈q, h〉 in η. Since the application of
Ψ to ξ̃ does not replace any outside occurrences of configurations 〈q2, h′〉
(because there are none), ξ̃Ψ [v] = ξ̃[v]. Let ξ′ be the result of applying the
rule r ofM to ξ̃ at v. Then η = ξ̃Ψ ⇒M ′,s ξ

′Ψ by applying r′ at v, according
to part (1) of this Claim. Hence ξ′Ψ = η′, which concludes the proof of the
Claim.

We are now ready to prove that τM ′ = τM . First, τM (s) ⊆ τM ′(s): If
〈q0, h0〉 ⇒∗

M,s t ∈ T∆ then, by part (1) of the Claim above, 〈q0, h0〉 =
〈q0, h0〉Ψ ⇒∗

M ′,s tΨ = t (where Ψ is as in the Claim). Second, τM ′(s) ⊆
τM (s): Assume that 〈q0, h0〉 ⇒∗

M ′,s t ∈ T∆. Then, by part (2) of the Claim,
〈q0, h0〉 ⇒∗

M,s ξ for some ξ ∈ T∆∪CM,s
with ξΨ = t. As mentioned before

the Claim, there exists a ξ̃ such that ξ ⇒∗
M,s ξ̃ by q2-rules, ξ̃ has no outside

occurrences of configurations 〈q2, h〉, and ξ̃Ψ = ξΨ by part (1) of the Claim.
Since ξ̃Ψ ∈ T∆, ξ̃ has no outside occurrences of configurations 〈q, h〉 with
q
= q2 (by the definition of Ψ). Hence, ξ̃ ∈ T∆ and 〈q0, h0〉 ⇒∗

M,s ξ̃ =
ξ̃Ψ = t. ��

In the next theorem we prove that for every pmttM there is an equivalent
pmtt M ′ in normal form. In particular, if all states of M are of rank 0 (i.e.,

656 J. Engelfriet, S. Maneth

M is an n-ptt with general rules), then M ′ is a ptt (without general rules).
Thus, this result encompasses Lemma 2.

Theorem 16 For everyn-pmttM there is an equivalentn-pmttM ′ in normal
form. If M is deterministic, then so is M ′. If all states of M are of rank 0,
then M ′ is an n-ptt.

Proof. Let M = (Σ,∆,Q, q0, R) be an n-pmtt. Intuitively, M ′ uses stay
moves to generate the right-hand side ζ of a q-rule of M node by node (in
states (ζ, w,m) for node w of ζ, where m is the rank of q). Note that if M ′
simulates a computation ofM , then parts of the right-hand sides of the rules
of M might never be generated by M ′, because of the outside-in order of
applying rules. This is, however, no problem, due to Lemma 15.

Define M ′ = (Σ,∆,Q ∪Qr ∪Qp, q0, R
′) as follows. Consider a rule

ρ = 〈q, σ, b, j〉(y1, . . . , ym)→ ζ in R.

For every µ ∈ [m], let pm
µ be a state in Qp of rank m and let the rule

〈pm
µ , σ, b, j〉(y1, . . . , ym)→ yµ

be in R′. Let (ζ, ε,m) be a state in Qr of rank m and let the rule

ρ′ = 〈q, σ, b, j〉(y1, . . . , ym)
→ 〈(ζ, ε,m), stay〉(pm

1 (y1, . . . , ym), . . . , pm
m(y1, . . . , ym))

be in R′. For every w ∈ V (ζ) let (ζ, w,m) be a state in Qr of rank m and
let the rule

〈(ζ, w,m), σ, b, j〉(y1, . . . , ym)→
ζ[w]((ζ, w1,m)(y1, . . . , ym), . . . , (ζ, wk,m)(y1, . . . , ym))

be inR′, where k is the rank of ζ[w]. Obviously,M ′ is in normal form (note
that we have used Convention 14).

The correctness of M ′, i.e., the equality τM ′ = τM , is based on
Lemma 15. In fact, it should be clear that if Lemma 15 is applied itera-
tively to a rule r1 = ρ′ for all appropriate (Qr ∪ Qp)-rules r2, the original
rule ρ is reobtained. More precisely, by first applying m Qp-rules the rule
ρ′ is transformed into the rule

〈q, σ, b, j〉(y1, . . . , ym)→ 〈(ζ, ε,m), stay〉(y1, . . . , ym),

and then size(ζ) applications of Qr-rules transform this rule into ρ (gener-
ating ζ in a way similar to a regular tree grammar).

Thus, by Lemma 15,M ′ is equivalent with then-pmttM ′′ = (Σ,∆,Q∪
Qr ∪Qp, q0, R

′′) whereR′′ is the union ofR and all (Qr ∪Qp)-rules ofM ′.
Since, obviously, the states in Qr ∪Qp do not occur in the sentential forms
of M ′′ that are generated from 〈q0, h0〉, M ′′ is equivalent to M . ��

A comparison of pebble tree transducers with macro tree transducers 657

In some proofs it will be convenient to deal with total transducers. There-
fore, we show in the next lemma that every transducer can be made total,
without changing the translation; this is done by simply adding, for each
missing q-rule, a rule with 〈q, stay〉 as (root of the) right-hand side.

Lemma 17 For every n-pmtt M , n ≥ 0, there is an equivalent total n-pmtt
M ′. If M is deterministic, then so is M ′.

Proof. Let M = (Σ,∆,Q, q0, R) and let J = max{rankΣ(σ) | σ ∈ Σ}.
Define M ′ = (Σ,∆,Q, q0, R′), where R′ = R ∪ C and for every σ ∈ Σ,
q ∈ Q(m), m ≥ 0, b ∈ {0, 1}≤n, and j ∈ [0, J] such that there is no
〈q, σ, b, j〉-rule in R, let the rule

〈q, σ, b, j〉(y1, . . . , ym)→ 〈q, stay〉(y1, . . . , ym)

be in C. Clearly, M ′ is equivalent to M : τM ⊆ τM ′ because R ⊆ R′. To
see that τM ′ ⊆ τM , let s ∈ TΣ and let ξ, ξ′ ∈ T∆∪CM′,s = T∆∪CM,s

.
If ξ ⇒M ′,s ξ

′ by a rule in R then also ξ ⇒M,s ξ
′ by the same rule, and

if ξ ⇒M ′,s ξ
′ by a rule in C, then ξ′ = ξ and thus, ξ ⇒∗

M,s ξ
′. Hence,

〈q0, h0〉 ⇒∗
M ′,s t ∈ T∆ implies that 〈q0, h0〉 ⇒∗

M,s t and thus τM ′ ⊆ τM .
��

5.2 Deterministic pebble macro tree transducers

In this subsection some basic properties of deterministic pmtts are proved.
First, a general lemma about binary relations that are “one-step confluent”
is proved. Then it is shown that the computation relation of a dpmtt M is
one-step confluent. Together this implies that M either halts or computes
forever on a given input tree, and that τM is a function. Finally it is proved
that a computation of M is infinite if it has a “cycle”.

Consider a deterministic pmtt M and an input tree s. It should be in-
tuitively clear that for a sentential form ξ of M on s, either all complete
computations by⇒M,s starting with ξ are infinite, or they are all finite, of
the same length, and with the same result (recall, from the Preliminaries,
the definition of a complete computation). This is proved in the following
two lemmas, based on the fact that ⇒M,s is one-step confluent. A binary
relation⇒ is one-step confluent if ξ ⇒ ξ1 and ξ ⇒ ξ2 for ξ1
= ξ2 implies
that there is a ξ′ with ξ1 ⇒ ξ′ and ξ2 ⇒ ξ′. This is a particular conflu-
ence property which implies, e.g., that ⇒ is subcommutative [40] (called
‘strongly confluent’ in [10]). Though not explicitly mentioned, the result that
one-step confluence implies the statement of the following lemma, seems
to be folklore within the area of term rewriting; nevertheless, we present a
formal proof.

658 J. Engelfriet, S. Maneth

Lemma 18 Let A be a set,⇒⊆ A × A a binary relation that is one-step
confluent, and let ξ ∈ A. Either the complete computations by⇒ starting
with ξ are all infinite, or they are all finite, of the same length, and with the
same result.

Proof. Consider two complete computations, both starting with ξ ∈ A. If
one of the computations is finite, then by Claim 1 the other computation is
also finite, and has the same length and the same result.

Claim 1. If ξ ⇒i ξ1 and ξ ⇒j ξ2 for 0 ≤ i ≤ j, ξ1, ξ2 ∈ A, and ξ1
⇒ (i.e.,
there is no ξ̃ ∈ A such that ξ1 ⇒ ξ̃), then j = i and ξ2 = ξ1.

We prove Claim 1 by induction on i. For i = 0, ξ
⇒ and thus j = i and
ξ2 = ξ1 = ξ. For i + 1 ≥ 1, ξ ⇒i+1 ξ1 means that there is a ξ′ such that
ξ ⇒ ξ′ ⇒i ξ1. Since j ≥ i + 1, there is a ξ′′ such that ξ ⇒ ξ′′ ⇒j−1 ξ2.
If ξ′′ = ξ′ then, by induction, j − 1 = i, i.e., j = i+ 1, and ξ2 = ξ1. Now
let ξ′′
= ξ′. By one-step confluence there is a ξ̄ such that ξ′ ⇒ ξ̄ (which
implies i ≥ 1) and ξ′′ ⇒ ξ̄. By Claim 2, ξ̄ ⇒i−1 ξ1 and thus ξ′′ ⇒i ξ1.
Then, by induction (applied to ξ′′), j − 1 = i, i.e., j = i+ 1, and ξ2 = ξ1,
which concludes the proof of Claim 1.

Claim 2. Let k ≥ 1 and ξ, ξ′, η ∈ A. If ξ ⇒k ξ′
⇒ and ξ ⇒ η then
η ⇒k−1 ξ′.

The claim is proved by induction on k. For k = 1 it follows from the
one-step confluence of⇒ that η = ξ′ and thus η ⇒0 ξ′. For k + 1, there is
a ξ1 such that ξ ⇒ ξ1 ⇒k ξ′. If η = ξ1 then the claim holds. Otherwise, by
one-step confluence, there must be an η1 such that ξ1 ⇒ η1 and η ⇒ η1. By
induction η1 ⇒k−1 ξ1 and thus η ⇒k ξ′. ��

The following easy lemma shows that, for a dpmtt M and an input tree
s, the computation relation⇒M,s is one-step confluent.

Lemma 19 For every dpmttM and input tree s,⇒M,s is one-step confluent.

Proof. We have to show that for ξ, ξ1, ξ2 ∈ T∆∪CM,s
with ξ1
= ξ2:

if ξ ⇒M,s ξ1 and ξ ⇒M,s ξ2, then ∃ξ′ with ξ1 ⇒M,s ξ
′ and ξ2 ⇒M,s ξ

′.

If ξ ⇒M,s ξl for l ∈ [2] then there are v1, v2 ∈ V (ξ) and ζ1, ζ2 ∈ T∆∪CM,s

such that ξl = ξ[vl ← ζl] for l ∈ [2]. SinceM is deterministic there is at most
one rule applicable to ξ[vl]. Thus, v1 = v2 would imply the contradiction
ξ1 = ξ2. Hence, v1
= v2. Moreover, by the “outside” requirement in (N), v2
is not an ancestor of v1, and v1 is not an ancestor of v2. Hence ξ1/v2 = ξ/v2
and ξ2/v1 = ξ/v1 and thus, for l ∈ [2], ξl ⇒M,s ξ

′, where ξ′ = ξ[vl ← ζl |
l ∈ [2]]. ��

A comparison of pebble tree transducers with macro tree transducers 659

An immediate consequence of Lemmas 18 and 19 is that τM is a (partial)
function, because if (s, t), (s, t′) ∈ τM , then 〈q0, h0〉 ⇒∗

M,s t is a finite
complete computation and therefore, by Lemma 18, t′ = t.

Lemma 20 For every dpmtt M , τM is a function.

In fact, Lemmas 19 and 20 were already proved for a more general
formalism (see Sect. 3.3): In the proof of Lemma 3.14 of [25] it is shown
that the derivation relation of a deterministic CFT(S) transducer (where S
is an arbitrary storage type) is one-step confluent. Thus, Lemma 19 is the
special case that S = n-Pebble. Similarly, Lemma 20 is a special case of
Theorem 3.15 of [25].

Since the number of configurations of a dpmtt M is finite (for some
given input tree), every infinite computation by M must have repetitions of
a configuration. In fact the repetitions will be in such a way that a configu-
ration c will “cycle”, i.e., it will compute a tree that contains c itself at an
outside occurrence (c is “circular”). The next easy lemma states that circular
configurations lead to infinite computations.

Consider a deterministic n-pmtt M and an input tree s of M . A config-
uration c ∈ C(m)

M,s, m ≥ 0, is circular if there is a t ∈ T∆∪CM,s
(Ym) such

that

– c(y1, . . . , ym)⇒+
M,s t and

– c occurs outside in t.

We now show how to apply a computation starting with some configura-
tion, to an outside occurrence of that configuration in a sentential form. Then,
the iterative application of such computations, applied to a node generated
by the previous computation, is formalized (“pumping”).

Application of a computation: Consider a computation
c(y1, . . . , ym) ⇒+

M,s t (where t not necessarily contains c) and consider
a tree ξ ∈ T∆∪CM,s

(Ym) that has an outside occurrence v of c. It follows
from the definition of ⇒M,s and by induction, that ξ ⇒+

M,s ξ[[v ← t]].
(In fact, if u is outside in t′, then vu is outside in ξ[[v ← t′]] and
ξ[[v ← t′]][[vu← ζ[[h]]M,s]] = ξ[[v ← t′[[u← ζ[[h]]M,s]]]].)

Iteration of applications: If a sentential form ξ0 (of M on s) has an out-
side occurrence v0 of c1 ∈ C

(m1)
M,s , m1 ≥ 0, and for every i ≥ 1 there

are ti and ci+1 ∈ C(mi+1)
M,s , mi+1 ≥ 0, such that ci(y1, . . . , ymi) ⇒+

M,s ti
and ti has an outside occurrence vi of ci+1, then by composing the corre-
sponding computations of the form ξ ⇒+

M,s [[v ← t]], we obtain the infinite

660 J. Engelfriet, S. Maneth

computation

ξ0 ⇒+
M,s ξ0[[v0 ← t1]]︸ ︷︷ ︸

ξ1

⇒+
M,s ξ1[[v0v1 ← t2]]︸ ︷︷ ︸

ξ2

⇒+
M,s · · ·

⇒+
M,s ξi[[v0v1 · · · vi ← ti+1]]︸ ︷︷ ︸

ξi+1

⇒+
M,s · · · . ($)

Lemma 21 LetM be a dpmtt, s an input tree ofM , and ξ a sentential form
ofM on s. If there exists a ξ′ such that ξ ⇒∗

M,s ξ
′ and ξ′ contains an outside

occurrence of a circular configuration c, then every complete computation
by⇒M,s starting with ξ is infinite.

Proof. Let v be the outside occurrence of c in ξ′. Since c is circular, there
exists a t such that c(y1, . . . , ym) ⇒+

M,s t and t has an outside occurrence
v of c. Let ξ0 = ξ′, v0 = v, and, for i ≥ 1, let ti = t, ci = c, and vi = v.
Then there is an infinite computation of the form ($), displayed above. Thus
there is an infinite computation starting with ξ′ and hence one starting with
ξ. This implies, by Lemmas 18 and 19, that every computation by ⇒M,s

starting with ξ is infinite. ��
It can be shown that, in fact, the implication in this lemma is an equiv-

alence, i.e., if a complete computation of M starting with ξ is infinite, then
ξ leads to a circular configuration. Thus, infinite computations are due to
“cycles”.

5.3 Macro tree transducers (with and without stay moves)

An obvious way to make sure that a 0-pebble macro tree transducer M has
no infinite computations, is to disallow up and stay instructions, or, in other
words, to only allow down instructions. The transducer model obtained from
the 0-pmtt in this way, is the macro tree transducer of [18,19,6,24], defined
next.

Definition 22 Let M be a 0-pmtt such that the rules of M contain no up
instructions. Then M is a stay-macro tree transducer (for short, stay-mtt).
If, moreover, the rules ofM contain no stay instructions (i.e., there are only
down instructions) then M is a macro tree transducer (for short mtt, and
dmtt if M is deterministic). If all states of an mtt are of rank zero, then it is
a top-down tree transducer.

As an example of a (deterministic) macro tree transducer, reconsider the
0-dpmtt M of Example 13: it has no up and no stay moves, i.e., it is a dmtt.

The class of all translations realized by stay-mtts is denoted sMTT, and
DsMTT for deterministic stay-mtts. The class of all translations realized by

A comparison of pebble tree transducers with macro tree transducers 661

mtts is denoted by MTT, and DMTT for deterministic mtts. The class of all
translations realized by total deterministic mtts is denoted by DtMTT. Note
that translations realized by total deterministic mtts are total functions. Note
also that the analogue of Lemma 17 does not hold for mtts. In fact, DtMTT
is the class of all total functions in DMTT. We denote by T and DT (DtT)
the classes of translations realized by top-down tree transducers and (total)
deterministic top-down tree transducers, respectively.

It follows from the definition that top-down tree transducers are 0-ptts
(with general rules) that only use down instructions. Thus, by Lemma 2, we
obtain the obvious fact that top-down tree transducers can be simulated by
0-ptts, as observed in [50] and stated in the next lemma.

Lemma 23 T ⊆ 0-PTT and DT ⊆ 0-DPTT.

Usually (see, e.g., [24,31]) the rules of an mtt are defined as rewrite rules
in which variables of the form xi represent the downi instructions. Also, the
child number j is not present in the left-hand sides of mtt rules; clearly this
information can be incorporated into the states of an mtt, i.e., in order to
transform an mttM defined in the pmtt formalism as above into one defined
in the conventional way, new states (q, j) would be introduced, for every
state q of M and possible child number j, and the initial state would be
(q0, 0). From this it also follows, as observed in Sect. 3.3, that the mtt is in
fact the CFT(Tree) transducer, and that the top-down tree transducer is the
RT(Tree) transducer.

Since, in the definition of the computation relation of an n-pmtt, we have
fixed in (N) the order in which rules are applied to be outside-in (OI), this
also fixes the order for an mtt to be OI (or, equivalently, unrestricted; see
Corollary 3.13 of [24] and cf. the discussion after Example 13). Macro tree
transducers with the inside-out (IO) order of rule application have also been
studied in the literature. In the total deterministic case there is no difference
between the OI and IO translations. We also note that MTT∗ = MTT∗

IO,
where MTTIO denotes the class of all IO translations realized by macro
tree transducers (cf. Theorem 7.3 of [24]), and similarly in the deterministic
case.

We now cite two well-known facts about macro tree transducers.

Fact 24. Inverses of (compositions of) macro tree transducers preserve the
regular tree languages, i.e., if τ ∈ MTT∗ and R ∈ REGT, then τ−1(R) ∈
REGT.

Fact 25. For an output language K of a composition of macro tree trans-
ducers, i.e., for K ∈ MTT∗(REGT),

(i) it is decidable whether or not K is empty, and

662 J. Engelfriet, S. Maneth

(ii) it is decidable whether or notK is finite; moreover, if the answer is yes,
the list of elements of K can be computed.

Fact 24 is proved in Theorem 7.4 of [24]. It immediately implies
Fact 25(i): since K = τ(R) is empty iff τ−1(T∆) ∩ R is empty, the re-
sult follows from the fact that REGT is closed under intersection, and that
emptiness of regular tree languages is decidable (cf. [35]). Fact 25(ii) is
shown in Theorem 4.5 of [9].

In the remainder of this subsection, we relate the new class sMTT to the
well-known class MTT of translations realized by mtts. In particular, it is
proved in Theorem 31 that, in the deterministic case, stay-mtts realize the
same class of translations as mtts, i.e., DsMTT = DMTT, and it is proved
in Theorem 29 that, in the nondeterministic case, compositions of n stay-
mtts can be realized by the composition of one stay-mtt and n − 1 mtts,
i.e., sMTTn ⊆ sMTT ◦ MTTn−1. In the nondeterministic case, which is
proved first, the main proof is rather straightforward (Lemma 27), while the
deterministic case (Theorem 31) has a quite involved proof.

Due to nondeterminism and the presence of stay moves, a stay-mtt M
can generate infinitely many output trees for one particular input tree (see
Example 6). This implies thatM ’s translation cannot be realized by an mtt,
because, due to the absence of stay moves, in every computation step of an
mtt a node of the input tree is “consumed”; hence, an mtt translates each
input tree into a finite number of output trees. In order to eliminate stay
moves from nondeterministic stay-mtts, we consider the translation monΣ

(of Example 6) that inserts unary σ̄’s above each symbol σ of a tree. Then,
we can decompose M into monΣ followed by an mtt M ′.

Notation 26. Let MON be the class of all monΣ for all ranked alphabetsΣ.

Note that the 0-pttMΣ of Example 6 that realizes monΣ is also a stay-mtt.
Thus, MON ⊆ 0-PTT and MON ⊆ sMTT.

In the next lemma it is shown how to remove the stay instructions from
a stay-mtt, by pre-composing with a translation in MON.

Lemma 27 sMTT ⊆ MON ◦MTT.

Proof. Let M = (Σ,∆,Q, q0, R) be a stay-mtt, i.e., a 0-pmtt without up
instructions. We construct a macro tree transducer M ′ such that monΣ ◦
τM ′ = τM . The idea of the construction of M ′ is as follows. Instead of
staying at some σ-labeled node u of the input tree s, the new transducerM ′
will move down on the monadic piece of σ̄-labeled nodes that are present
above the σ-labeled node v in monΣ(s) that corresponds to u. In order to
know, until we arrive at v, the child number of v in the original tree s, we
keep this information in the states of M ′. That is, states of the form (q, j)
are used to simulate sequences of stay moves; this is done only on barred

A comparison of pebble tree transducers with macro tree transducers 663

symbols, i.e., there are no rules for states of the form (q, j) and input symbols
σ. As soon as there is a non-stay instruction, i.e., a downi instruction into
state q, we change into a state of the form (q, downi). Such a state will move
down the remaining monadic piece of σ̄’s, and at the σ-labeled node v it will
execute the downi move into state q. Note that, for this simulation to succeed,
the number of σ̄-labeled nodes above v should be larger than the number
of stay moves that M executes at u during any of its subcomputations that
arrive at u.

Let M ′ = (Γ,∆,Q ∪ Q′, q0, R′) with Γ = Σ ∪ Σ̄, Σ̄ = {σ̄(1) | σ ∈
Σ}, and Q′ = Q ∪ 〈Q, [0, J]〉 ∪ 〈Q, down〉, where ‘down’ denotes the set
{downi | i ∈ [J]} and J = max{rankΣ(σ) | σ ∈ Σ}.

Let 〈q, σ, ε, j〉(y1, . . . , ym)→ ζ be a rule in R. Then let the rules

〈q, σ̄, ε, j〉(y1, . . . , ym) → ζΦjΨ
〈(q, j), σ̄, ε, 1〉(y1, . . . , ym)→ ζΦjΨ

be in R′, where the substitutions Φj and Ψ are defined as

Φj = [[〈q′, stay〉 ← 〈(q′, j), down1〉 | q′ ∈ Q]]
Ψ = [[〈q′, downi〉 ← 〈(q′, downi), down1〉 | q′ ∈ Q, i ∈ [J]]].

Moreover, for every q ∈ Q(m), m ≥ 0, σ ∈ Σ(k), k ≥ 1, and i ∈ [k], let
the rules

〈(q, downi), σ̄, ε, 1〉(y1, . . . , ym)→ 〈(q, downi), down1〉(y1, . . . , ym)
〈(q, downi), σ, ε, 1〉(y1, . . . , ym) → 〈q, downi〉(y1, . . . , ym)

be inR′. Obviously, the rules ofM ′ do not contain stay instructions anymore,
and thus M ′ is an mtt.

Before we prove the correctness of the construction ofM ′, we need some
auxiliary notions. Let s ∈ TΣ and s′ ∈ monΣ(s). Recall that s′ is obtained
from s by inserting above each σ-labeled node u, an arbitrary number of
nodes u′ labeled σ̄ (of rank 1), which are “associated” with u. We now
define the function dec, which maps each node u′ of s′ to the associated
node u of s: Let u′ = i1 · · · im ∈ V (s′) with i1, . . . , im ∈ [J] and m ≥ 0.
Define dec(u′) = iν1 · · · iνn , where ν1 < . . . < νn, n ≥ 0, are all indices
µ ∈ [m] such that s′[i1 · · · iµ−1] ∈ Σ. Finally, we define the substitution
[[dec]] which changes a sentential form of M ′ into one of M by relabeling
the configurations of M ′ appropriately. Let [[dec]] = [[Q]][[down]] where [[Q]]
denotes the substitution

[[〈r, (u′, λ)〉 ← 〈q′, (dec(u′), λ)〉 | q′ = r for r ∈ Q and
q′ = q for r = (q, j) ∈ Q× [0, J]]]

and

[[down]] = [[〈(q, downi), (u′, λ)〉 ← 〈q, (dec(u′)i, λ)〉 | q ∈ Q, i ∈ [J]]].

664 J. Engelfriet, S. Maneth

In the sequel, we will also apply dec to input configurations h′ of M ′, i.e.,
if h′ = (u′, λ) then dec(h′) = (dec(u′), λ).

Next we state, without proof, two obvious properties about configurations
that occur in sentential forms η of M ′ on an input tree s′ ∈ TΓ with s′ ∈
monΣ(s) and s ∈ TΣ . Since both properties are about (the child numbers
in s) of nodes of s′, we call them N1 and N2. Let 〈q0, h0〉 ⇒∗

M ′,s′ η and let
〈p, (u′, λ)〉 be a configuration that occurs in η. Then

(N1) if p = (q, j) ∈ (Q× [0, J]) then childno(dec(u′)) = j, and
(N2) if p ∈ Q then childno(dec(u′)) = childno(u′).

Before it is proved, in Claims 2 and 3 thatM ′ is correct, i.e., that monΣ ◦
τM ′ = τM , we first relate in Claim 1 the right-hand side ζΦjΨ of a (Q ∪
Q× [0, J])-rule of M ′ to the right-hand side ζ of the corresponding rule of
M .

Claim 1. Let s ∈ TΣ , s′ ∈ monΣ(s), h = (u, λ) ∈ IC0,s, and h′ = (u′, λ) ∈
IC0,s′ such that dec(h′) = h and s′[u′] ∈ Σ̄. Let [[h]] denote [[h]]M,s, and let
[[h′]] denote [[h′]]M ′,s′ . Finally, let σ = s[u] and j = childno(u). For every
ζ ∈ T∆∪〈Q,Iσ,ε,j〉(Ym), m ≥ 0,

ζΦjΨ [[h′]][[dec]] = ζ[[h]].

The proof of Claim 1 is by induction on the structure of ζ. If ζ = y ∈ Ym

then ζΦjΨ [[h′]][[dec]] = y = ζ[[h]], because none of the substitutions replaces
parameters. Let l ≥ 0 and ζ1, . . . , ζl ∈ T∆∪〈Q,Iσ,ε,j〉(Ym).

If ζ = δ(ζ1, . . . , ζl) with δ ∈ ∆(l), then ζΦjΨ [[h′]][[dec]] =
δ(ζ1ΦjΨ [[h′]][[dec]], . . . , ζlΦjΨ [[h′]][[dec]]) which, by induction, is
δ(ζ1[[h]], . . . , ζl[[h]]) = δ(ζ1, . . . , ζl)[[h]] = ζ[[h]].

If ζ = 〈q, stay〉(ζ1, . . . , ζl) with q ∈ Q(l) then

ζΦjΨ = 〈(q, j), down1〉(ζ1ΦjΨ, . . . , ζlΦjΨ) and
ζΦjΨ [[h′]][[dec]] = 〈q, dec(down1(h′))〉(ζ1ΦjΨ [[h′]][[dec]],

. . . , ζlΦjΨ [[h′]][[dec]]).

By induction, and since dec(down1(h′)) = dec(h′) = h (note that s′[u′] =
σ̄), this equals 〈q, h〉(ζ1[[h]], . . . , ζl[[h]]) = ζ[[h]].

If ζ = 〈q, downi〉(ζ1, . . . , ζl) then

ζΦjΨ = 〈(q, downi), down1〉(ζ1ΦjΨ, . . . , ζlΦjΨ) and
ζΦjΨ [[h′]][[dec]] = 〈q, downi(dec(down1(h′)))〉(ζ1ΦjΨ [[h′]][[dec]],

. . . , ζlΦjΨ [[h′]][[dec]]).

By induction, and since dec(down1(h′)) = h, this is
〈q, downi(h)〉(ζ1[[h]], . . . , ζl[[h]]) = ζ[[h]], which concludes the proof
of Claim 1.

A comparison of pebble tree transducers with macro tree transducers 665

Next, it is proved that monΣ ◦ τM ′ ⊆ τM . In fact, since 〈q0, h0〉[[dec]] =
〈q0, h0〉 and t[[dec]] = t for t ∈ T∆, this follows by induction from Claim 2.

Claim 2. Let s ∈ TΣ and s′ ∈ monΣ(s). For every η, η′ ∈ T∆∪CM′,s′
with 〈q0, h0〉 ⇒∗

M ′,s′ η, if η ⇒M ′,s′ η′ by a (Q ∪ Q × [0, J])-rule then
η[[dec]]⇒M,s η

′[[dec]], and ifη ⇒M ′,s′ η′ by a 〈Q, down〉-rule thenη[[dec]] =
η′[[dec]].

Let v ∈ V (η) with η[v] = 〈p, h′〉 and h′ = (u′, λ), u′ ∈ V (s′), such
that η′ = η[[v ← ζ ′[[h′]]]] where ζ ′ is the right-hand side of a rule applicable
to 〈p, h′〉. Let u = dec(u′).

Casep ∈ (Q∪Q×[0, J]): Thens′[u′] = σ̄withσ = s[u], becausep-rules
are only defined for barred input symbols. If p = (q, j) ∈ Q×[0, J] then, by
N1, childno(u) = j. If p = q ∈ Q then, by N2, childno(u) = childno(u′).
This means that in both cases ζ ′ = ζΦjΨ where ζ is the right-hand side
of a 〈q, σ, ε, j〉-rule r of M and j = childno(u). Since [[dec]] is a relabel-
ing of configurations, v is outside in η[[dec]] and labeled by the configu-
ration 〈q, (u, λ)〉. Thus, r can be applied to v: η[[dec]] ⇒M,s η[[dec]][[v ←
ζ[[h]]]]. By Claim 1 the latter equals η[[dec]][[v ← ζ ′[[h′]][[dec]]]] = η[[v ←
ζ ′[[h′]]]][[dec]] = η′[[dec]], which proves the claim for this case.

Case p = (q, downi) ∈ 〈Q(m), down〉, m ≥ 0: By the definition of
[[dec]] this implies that η[[dec]][v] = 〈q, (ui, λ)〉. Moreover, ζ ′[[h′]] is either
equal to 〈(q, downi), (u′1, λ)〉(y1, . . . , ym), with s′[u′] ∈ Σ̄, or equal to
〈q, (u′i, λ)〉(y1, . . . , ym), with s′[u′] ∈ Σ. In both cases, the application of
[[dec]] gives 〈q, (ui, λ)〉(y1, . . . , ym), which proves that η[[dec]] = η′[[dec]].
This ends the proof of Claim 2.

It remains to prove that τM ⊆ monΣ◦τM ′ . This will follow from Claim 3.
Denote byM ′(Q) the restriction ofM ′ to (Q∪Q× [0, J])-rules and denote
by M ′(Q, down) its restriction to 〈Q, down〉-rules. Intuitively, to simulate
a computation step ofM ,M ′ first applies all possible 〈Q, down〉-rules, and
then it applies a (Q ∪Q× [0, J])-rule. Let⇒ denote

⇒∗
M ′(Q,down),s′ ◦ ⇒M ′(Q),s′ .

Claim 3. Letn ≥ 0, s ∈ TΣ , and s′ ∈ monΣ(s) such that for everyu ∈ V (s)
|dec−1(u)| ≥ n+ 1. Let ξ ∈ T∆∪CM,s

. If 〈q0, h0〉 ⇒n
M,s ξ then there exists

an η ∈ T∆∪CM′,s′ such that

1. 〈q0, h0〉 ⇒n η and
2. η[[dec]] = ξ.

The proof of Claim 3 is by induction on n. If n = 0 then the statement
holds for η = 〈q0, h0〉. Now consider the following computation of length
n+ 1.

〈q0, h0〉 ⇒n
M,s ξ ⇒M,s ξ

′.

666 J. Engelfriet, S. Maneth

By induction there exists an η such that 〈q0, h0〉 ⇒n η and η[[dec]] = ξ.

Let v ∈ V (ξ) and 〈q, h〉 ∈ C
(m)
M,s, m ≥ 0, such that ξ[v] = 〈q, h〉 and

ξ′ = ξ[[v ← ζ[[h]]]] where ζ is the right-hand side of a rule of M applicable
to 〈q, h〉. By the definition of [[dec]], η[v] = 〈p, h′〉 with (i) p = q, or (ii)
p = (q, j) with j ∈ [0, J], or (iii) p = (q, downi). Let h = (u, λ) and
h′ = (u′, λ). We now show that there exists an η′ such that η ⇒ η′ and
η′[[dec]] = ξ′.

Cases (i) and (ii). Then dec(u′) = u. In case (i) it follows from N2 that
childno(u′) = childno(u), and in case (ii), i.e., p = (q, j), it follows from
N1 that j = childno(u). Since, in the computation 〈q0, h0〉 ⇒n η exactly
n steps by ⇒M ′(Q),s′ have been applied, s′[u′] must be a barred symbol,
because there are ≥ n + 1 of them, by the condition |dec−1(u)| ≥ n + 2.
Thus, s′[u′] = σ̄ with σ = s[u]. Hence M ′ has a rule with right-hand
side ζ ′ = ζΦjΨ which is applicable to 〈p, h′〉. We obtain η ⇒M ′(Q),s′

η[[v ← ζ ′[[h′]]]] = η′. The application of [[dec]] to η′ gives, using Claim 1,
η[[dec]][[v ← ζ ′[[h′]][[dec]]]] = ξ[[v ← ζ[[h]]]] = ξ′. This ends the proof of the
claim for this case.

Case (iii) p = (q, downi): Then η ⇒+
M ′(Q,down),s′ η

′′ where η′′ is the same

as η except that η′′[v] = 〈q, (u′′i, λ)〉 with s′[u′′] ∈ Σ, dec(u′′) = dec(u′),
and dec(u′′i) = dec(u′)i = u. By Claim 2, η′′[[dec]] = η[[dec]] = ξ and
〈q0, h0〉 ⇒n η′′. Now, to the configuration 〈q, (u′′i, λ)〉 of η′′ we can apply
one step of⇒M ′(Q),s′ , as shown in case (i), to obtain η′′ ⇒M ′(Q),s′ η′ with
η′[[dec]] = ξ′. This concludes the proof of Claim 3.

It should be obvious how to show that for every s ∈ TΣ there exists
s′ ∈ monΣ(s) such that τM (s) ⊆ τM ′(s′): If 〈q0, h0〉 ⇒n

M,s t ∈ τM (s),
n ≥ 1, then let s′ ∈ monΣ(s) be as required in Claim 3. By Claim 3, applied
to ξ = t, there exists η such that 〈q0, h0〉 ⇒∗

M ′,s′ η (because⇒ ⊆⇒∗
M ′,s)

and η[[dec]] = t. Since t ∈ T∆, η = t. Hence t ∈ τM ′(s′). ��
The next small lemma shows that sMTT is closed under post-composition

with MON. It will be needed to prove Theorems 29 and 30.

Lemma 28 sMTT ◦MON ⊆ sMTT.

Proof. LetM = (Σ,∆,Q, q0, R) be a stay-mtt. We will construct the stay-
mtt M ′ such that τM ′ = τM ◦mon∆. The idea of defining M ′ is to replace
each output symbol δ (of rank m) in the right-hand side of a rule of M by
a new state qδ (of rank m), which will generate an arbitrary number of δ̄’s
followed by the δ, i.e., a tree of the form δ̄(· · · δ̄(δ(y1, . . . , ym))).

Let M ′ = (Σ,∆ ∪ {δ̄ | δ ∈ ∆}, Q′, q0, R′) where Q′ = Q ∪ {q(m)
δ |

δ ∈ ∆(m),m ≥ 0}. For every rule 〈q, σ, b, j〉(y1, . . . , ym)→ ζ inR, let the

A comparison of pebble tree transducers with macro tree transducers 667

rule
〈q, σ, ε, j〉(y1, . . . , ym)→ ζΨ

be in R′, where the substitution Ψ is defined as

Ψ = [[δ ← 〈qδ, stay〉 | δ ∈ ∆]].

Moreover, for every δ ∈ ∆(m), m ≥ 0, σ ∈ Σ, and j ∈ [0, J] let the rules

〈qδ, σ, ε, j〉(y1, . . . , ym)→ δ̄(qδ)
〈qδ, σ, ε, j〉(y1, . . . , ym)→ δ(y1, . . . , ym)

be in R′.
A formal proof of the correctness of M ′ is left to the reader. ��
For compositions of stay-mtts we obtain, from Lemmas 27 and 28, that

stay moves can be removed from all transducers in the compositions, except
the first one, as stated in the next theorem.

Theorem 29 For every n ≥ 1, sMTTn+1 = sMTT ◦MTTn.

Proof. By induction on n. For n = 1, sMTT2 ⊆ sMTT ◦ MON ◦ MTT
by Lemma 27, which is included in sMTT ◦MTT by Lemma 28. Now for
n + 1, sMTTn+2 = sMTT ◦ sMTTn+1 is included in sMTT2 ◦MTTn by
induction. By the casen = 1 the latter is included in sMTT◦MTT◦MTTn =
sMTT ◦MTTn+1. ��

It should be clear that the class REGT of regular tree languages is closed
under MON, i.e., that MON(REGT) ⊆ REGT (take the regular tree gram-
mar in normal form, i.e., with at most one terminal symbol in the right-hand
side of each production; for every production A → σ(A1, . . . , Ak) add all
productions A→ σ̄(Aσ), Aσ → σ̄(Aσ), and Aσ → σ(A1, . . . , Ak).) Thus
we obtain from Theorem 29 and Lemma 27 that (compositions of) stay-mtts
define the same output languages as (compositions of) mtts.

Theorem 30 For every n ≥ 1, sMTTn(REGT) = MTTn(REGT).

Since MON ⊆ sMTT, we also obtain from Theorem 29 and Lemma 27
that sMTT∗ = MON ◦MTT∗.

For deterministic stay-mtts we prove in the next theorem (and in the
remainder of this subsection) that stay moves can be removed, i.e., the re-
spective classes of translations coincide. As mentioned before, since the
proof involves the nontrivial task of removing infinite computations, it is a
key result of this paper.

Theorem 31 DsMTT = DMTT.

668 J. Engelfriet, S. Maneth

Proof. We have to show that DsMTT ⊆ DMTT. LetM = (Σ,∆,Q, q0, R)
be a 0-dpmtt without up instructions and let J = max{rankΣ(σ) | σ ∈ Σ}.
We will construct the 0-dpmtt M ′ that has down instructions only, i.e., a
dmtt, by removing the stay instructions that appear in the right-hand sides
of the rules of M . Roughly speaking, this is done by applying rules to the
stay instructions in a right-hand side, while keeping track of possible circu-
lar configurations, and forcing τM ′(s) to be undefined if in the computation
〈q0, h0〉 ⇒∗

M,s there is a sentential form that has an outside occurrence of
a circular configuration (recall the notion of a circular configuration from
Sect. 5.2, and see Lemma 21). Before M ′ is defined, we construct several
intermediate 0-dpmtts: first N which has information about circular con-
figurations, then N ′ which does not have circular configurations anymore,
then N ′′ which does not execute stay instructions anymore, and finally M ′
which has only down instructions.

By Lemma 17 we may assume that M is total. First, we construct the
0-dpmtt N which is equivalent to M , but additionally keeps information in
its states about which states have been passed, while staying at a particular
node of the input tree.

Define N = (Σ,∆,QN , (q0,∅), RN) where QN = 〈Q,P(Q)〉 and

for every (q, F) ∈ Q
(m)
N , m ≥ 0, σ ∈ Σ, j ∈ [0, J], and rule

〈q, σ, ε, j〉(y1, . . . , ym)→ ζ in R, the rule

〈(q, F), σ, ε, j〉(y1, . . . , ym)→ ζ[[stayq,F]][[down]]

is in RN , where the substitutions [[stayq,F]] and [[down]] are defined as

[[stayq,F]] = [[〈q′, stay〉 ← 〈(q′, F ∪ {q}), stay〉 | q′ ∈ Q]],
[[down]] = [[〈q′, downi〉 ← 〈(q′,∅), downi〉 | q′ ∈ Q, i ∈ [J]]].

Since N has, besides the additional sets F in its states, exactly the same
rules as M , it obviously realizes the same translation as M , i.e., τN = τM .
In fact, it can be shown easily that for all ξ1, ξ2 ∈ T∆∪CN,s

(Y),

(C1) if ξ1 ⇒N,s ξ2 then ξ1[[no F’s]]⇒M,s ξ2[[no F’s]],

and for all η1, η2 ∈ T∆∪CM,s
(Y), and ξ1 ∈ T∆∪CN,s

(Y) with ξ1[[no F’s]] =
η1,

(C2) if η1⇒M,sη2 then ∃ξ2∈T∆∪CN,s
(Y) : ξ2[[no F’s]]=η2 and ξ1⇒N,sξ2,

where the substitution [[no F’s]] is defined as

[[〈(q, F), h〉 ← 〈q, h〉 | 〈(q, F), h〉 ∈ CN,s]].

By induction on the length of the computations, C1 implies τN ⊆ τM and
C2 implies τM ⊆ τN . Note that N is total because M is total.

A comparison of pebble tree transducers with macro tree transducers 669

The following claim expresses that the sets F in the states of N contain
the intended states of M , i.e., those that were entered while staying at a
particular node.

Claim. Let s ∈ TΣ . If 〈(q0,∅), h0〉 ⇒∗
N,s ξ ∈ T∆∪CN,s

and 〈(q, F), h〉 ∈
CN,s occurs outside in ξ, then for every r ∈ F of rank m ≥ 0,

(a) there is an η ∈ T∆∪CM,s
such that 〈q0, h0〉 ⇒∗

M,s η and 〈r, h〉 occurs
outside in η, and

(b) there is an η′ ∈ T∆∪CM,s
(Ym) such that 〈r, h〉(y1, . . . , ym) ⇒+

M,s η
′

and 〈q, h〉 occurs outside in η′.

Since this claim is intuitively obvious, but its proof is technically rather
involved, we postpone its proof until after the present proof.

We now use the information in the states of N to remove its circular
configurations, i.e., its infinite computations (cf. Lemma 21). DefineQcycle =
{(q, F) ∈ QN | q ∈ F}. We remove all rules for (q, F) ∈ Qcycle from RN ,
thus obtaining the 0-dpmtt N ′.

Formally, let N ′ = (Σ,∆,QN , (q0,∅), RN ′), where RN ′ is the set of
all p-rules in RN with p ∈ QN −Qcycle.

It is straightforward to prove the correctness of the definition of N ′,
i.e., that τN ′ = τN : Since RN ′ ⊆ RN , it clearly holds that τN ′ ⊆ τN . To
prove that τN ⊆ τN ′ , let s ∈ TΣ and consider a complete computation
ξ0 = 〈(q0,∅), h0〉 ⇒N,s ξ1 ⇒N,s · · · ⇒N,s ξn ∈ T∆. Then, for i ∈
[0, n], ξi has no outside occurrence of 〈p, h〉 ∈ CN,s with p ∈ Qcycle. To
see this, assume to the contrary that some ξi has an outside occurrence of
〈(q, F), h〉 ∈ C(m)

N,s with q ∈ F andm ≥ 0. Then by the Claim above, there
are η, η′ ∈ T∆∪CM,s

(Y) such that 〈q0, h0〉 ⇒∗
M,s η, 〈q, h〉 occurs outside in

η, 〈q, h〉(y1, . . . , ym)⇒+
M,s η

′, and 〈q, h〉 occurs outside in η′, i.e., 〈q, h〉 is
circular. By Lemma 21 this implies that the complete computations by⇒M,s

starting with 〈q0, h0〉 are infinite, and hence that τM (s) is undefined. Since
τN = τM this contradicts the existence of the finite complete computation
ξ0 ⇒∗

N,s ξn. Thus, only rules ofN ′ are applied in the computation ξ0 ⇒∗
N,s

ξn, which means that ξ0 ⇒∗
N ′,s ξn, and therefore τN ⊆ τN ′ . This ends the

proof of the correctness of N ′.
Next, the 0-dpmtt N ′′ = (Σ,∆,QN , (q0,∅), RN ′′) is defined by itera-

tively applying rules to the stay instructions that appear in the right-hand side
of each rule r of N ′. This is done with the use of Lemma 15, changing N ′
gradually into N ′′ by iterating the following procedure. Initially, N ′′ = N ′
and RN ′′ = RN ′ . Now consider a rule r = 〈(q, F), σ, ε, j〉(y1, . . . , ym)→
ζ in RN ′′ and change it into the rule r̄ = 〈(q, F), σ, ε, j〉(y1, . . . , ym) →
ζΦσ,j where

Φσ,j=[[〈(q′, F ′), stay〉←ζ ′ | 〈(q′, F ′), σ, ε, j〉(y1, . . ., ym′)→ζ ′ is in RN ′′]].

670 J. Engelfriet, S. Maneth

Note that if 〈(q′, F ′), stay〉 occurs in the right-hand side ζ of r, then F ′ has
larger cardinality than the F in the left-hand side of r (and thus the same
holds for r̄).

Clearly, the new rule r̄ can be obtained from the old rule r by iterated
application of Lemma 15 (see the last paragraph of Sect. 2.2). Thus, by
that lemma, an equivalent 0-dpmtt is obtained. After changing, in this way,
every rule r into r̄, the minimal cardinality of all state sets F such that
〈(q, F), stay〉 occurs in a right-hand side of a rule in RN ′′ for some q with
(q, F) /∈ Qcycle has increased. Hence, after repeating this process at most |Q|
times, the only 〈(q, F), stay〉 that occur in right-hand sides of rules satisfy
(q, F) ∈ Qcycle (for which there are no rules inRN ′′). The resulting 0-dpmtt
is, by definition, N ′′.

Last but not least, we define the dmtt M ′. This is done by removing the
stay instructions that appear in the rules of N ′′. Since N ′′ has no rules for
states inQcycle, we can, in order to constructM ′, replace each stay instruction
in a rule ofN ′′ by a down1 instruction (or remove the rule, if the input symbol
has rank zero).

Formally, let M ′ = (Σ,∆,QN , (q0,∅), R′) where R′ is defined as
follows. Let r = 〈p, σ, ε, j〉(y1, . . . , ym)→ ζ with σ ∈ Σ(k) and k ≥ 0 be
a rule in RN ′′ . If k = 0 and ζ ∈ T∆(Ym) then let r be in R′. If k ≥ 1 then
let the rule

〈p, σ, ε, j〉(y1, . . . , ym)→ ζ[[〈p′, stay〉 ← 〈p′, down1〉 | p′ ∈ Qcycle]]

be in R′. Obviously, M ′ is a dmtt. It is straightforward to show that τM ′ =
τN ′′ = τM . ��

In the remainder of this subsection, the Claim in the proof of Theorem 31
is proved. The uninterested reader can skip directly to Sect. 5.4.

For the proof of the Claim we need two technical lemmas, which are
presented now. They state two general facts about pmtts. The first one is
about the decomposition of computations, and the second one is about how
to find the rule that generated a particular symbol during a computation. The
first is needed to prove the second.

Consider a pmtt M , an input tree s, and a sentential form ξ =
τ(ξ1, . . . , ξn) with τ ∈ C

(n)
M,s. The first lemma states that a computation

ξ ⇒∗
M,s η can be decomposed into m + 1 computations by⇒M,s starting

with τ(y1, . . . , yn) and with ξ1, . . . , ξn (for some m ≥ 0). A similar result
holds for macro grammars (cf. Theorem 4.1.1 of [27], where only the case
that η is terminal is considered). Note that the second item of Lemma 32
implies that

τ(ξ1, . . . , ξn)⇒k0
M,s ηlin[yj ← ξπ(j) | j ∈ [m]]

A comparison of pebble tree transducers with macro tree transducers 671

and that the third item implies that

ηlin[yj ← ξπ(j) | j ∈ [m]]⇒k1+···+km
M,s ηlin[yj ← ηj | j ∈ [m]] = η.

Lemma 32 Let M = (Σ,∆,Q, q0, R) be a pmtt. Let τ ∈ (∆ ∪ CM,s)(n),
n ≥ 1, and η, ξ1, . . . , ξn ∈ T∆∪CM,s

(Y). If τ(ξ1, . . . , ξn) ⇒k
M,s η, k ≥ 0,

then there exists a tree ηlin ∈ T∆∪CM,s
(Ym),m ≥ 0, such that ηlin is linear in

Ym (i.e., each y ∈ Ym appears at most once in ηlin), and there exist a mapping
π : [m] → [n], trees η1, . . . , ηm ∈ T∆∪CM,s

(Y), and k0, k1, . . . , km ∈ N
such that

– η = ηlin[yj ← ηj | j ∈ [m]],
– τ(y1, . . . , yn)⇒k0

M,s ηlin[yj ← yπ(j) | j ∈ [m]],

– for every j ∈ [m], ξπ(j) ⇒kj

M,s ηj ,
– k0 + k1 + · · ·+ km = k, and
– for every j ∈ [m], if yj does not occur outside in ηlin then kj = 0.

Proof. The proof is by induction on the length k of the computation of η.
It is obvious for k = 0: take ηlin = τ(y1, . . . , yn), m = n, π is the identity
on [n], ηj = ξj and kj = 0 for j ∈ [0, n]. Now consider the following
computation of length k + 1

τ(ξ1, . . . , ξn)⇒k
M,s η ⇒M,s η

′. (∗)
By induction, η = ηlin[yj ← ηj | j ∈ [m]] where ηlin and η1, . . . , ηm satisfy
the conditions of the lemma, for certain π : [m]→ [n] and k0, . . . , km ∈ N.
Let v be the node in η to which a rule is applied in the last step of the
computation (∗).
Case 1. v ∈ V (ηlin) and ηlin[v]
∈ Ym. Hence, ηlin[v] = η[v] and therefore
we can apply the rule of the last step in (∗) to ηlin: ηlin ⇒M,s η̃ with η′ =
η̃[yj ← ηj | j ∈ [m]]. Let m′ be the number of occurrences of parameters
in the tree η̃. Next, we “linearize” (in the parameters) the tree η̃: let η′

lin ∈
T∆∪CM,s

(Ym′) and π̃ : [m′]→ [m] such that

η̃ = η′
lin[yj ← yπ̃(j) | j ∈ [m′]].

Note that for every j ∈ [m], if π̃−1(j) is not a singleton (i.e., if yj does not
occur exactly once in η̃) then yj occurs at a descendant of v in ηlin, and so,
by the last condition of the lemma, kj = 0. This shows that kπ̃(1) + · · · +
kπ̃(m′) = k1+ · · ·+km. Now define η′

j = ηπ̃(j) and k′
j = kπ̃(j) for j ∈ [m′],

and define k′
0 = k0 + 1 and π′ = π̃ ◦ π : [m′]→ [n]. Then

η′ = η′
lin[yj ← yπ̃(j) | j ∈ [m′]][yj ← ηj | j ∈ [m]]

= η′
lin[yj ← ηπ̃(j)︸︷︷︸

=η′
j

| j ∈ [m′]]

672 J. Engelfriet, S. Maneth

and τ(y1, . . . , yn) ⇒k0
M,s ηlin[yj ← yπ(j) | j ∈ [m]] ⇒M,s η̃[yj ← yπ(j) |

j ∈ [m]]. The latter tree equals η′
lin[yj ← yπ̃(j) | j ∈ [m′]][yj ← yπ(j) |

j ∈ [m]] = η′
lin[yj ← yπ(π̃(j)) | j ∈ [m′]] which is equal to η′

lin[yj ←
yπ′(j) | j ∈ [m′]]. Thus, the “primed versions” of the first four conditions
of the lemma hold. It remains to prove the last condition of the lemma. Let
j ∈ [m′]. Clearly, if yj does not occur outside in η′

lin then yπ̃(j) does not
occur outside in ηlin and hence kπ̃(j) = 0 by the last condition for ηlin.

Case 2. v
∈ V (ηlin) or ηlin[v] ∈ Ym. This means that there is a j0 ∈ [m]
such that yj0 occurs outside in ηlin, ηj0 ⇒M,s η

′
j0

, and η′ = ηlin[yj ← ηj |
j ∈ [m]− {j0}][yj0 ← η′

j0
]. Hence, for k′

j0
= kj0 + 1 (and everything else

the same) the statement of the lemma holds. ��
The second lemma is based on the following technical notions. LetM =

(Σ,∆,Q, q0, R) be a pmtt and let s ∈ TΣ . For a symbol α

– ξ ∈ T∆∪CM,s
(Y) computes α if there is a ξ′ such that ξ ⇒∗

M,s ξ
′ and ξ′

has an outside occurrence of α, and
– c ∈ C

(m)
M,s (with m ≥ 0) directly computes α if there is a ξ ∈

T∆∪CM,s
(Ym) such that c(y1, . . . , ym) ⇒M,s ξ, α occurs in ξ, and ξ

computes α.

If, in the first definition, ξ ⇒k
M,s ξ

′ then we say that ξ k-computes α. If

ξ k-computes α for ξ = c(y1, . . . , ym), c ∈ C(m)
M,s, and m ≥ 0, then we say

that c k-computes α. Clearly, computing configurations is transitive, that
is, for configurations a, b, and c and k1, k2 ∈ N, if a k1-computes b and b
k2-computes c, then a (k1 + k2)-computes c (and similarly, for a replaced
by a tree ξ).

Consider now Lemma 33. Intuitively, the lemma states that if config-
uration c computes another configuration d, then a rule ρ must have been
applied, which contains d in its right-hand side ζ (in the lemma, ρ is the rule
of M that is applicable to c′). To be more precise, d is in ζ[[h]]M,s where h
is the input configuration of c.

Recall the Claim in the proof of Theorem 31. In the proof of that claim
we will apply Lemma 33 to d = 〈(q, F), h〉 with F
= ∅; then, by the
definition of the rules ofN , ρmust have 〈(q, F), stay〉 in its right-hand side,
and thus c′ must equal 〈(q′, F ′), h〉 for some (q′, F ′) ∈ QN . Note that, in
Lemma 33, c′ is not necessarily different from c.

Lemma 33 LetM be a pmtt and let s be an input tree ofM . Let c, d ∈ CM,s

with c
= d and let k′ ∈ N. If c k′-computes d, then there are c′ ∈ CM,s and
k′′ < k′ such that (1) c k′′-computes c′ and (2) c′ directly computes d.

Proof. The proof is by induction on k′. Letm be the rank of c. Since c
= d,
k′ ≥ 1, i.e., there is a computation

c(y1, . . . , ym)⇒M,s ξ ⇒k
M,s ξ

′

A comparison of pebble tree transducers with macro tree transducers 673

where k = k′ − 1, ξ, ξ′ ∈ T∆∪CM,s
(Ym), and d occurs outside in ξ′. If d

occurs in ξ then the lemma holds for c′ = c and k′′ = 0. Consider now
the case that d does not occur in ξ. Since ξ k-computes d, we can apply
the claim below to obtain a configuration c̃ in ξ and k̃, l ∈ N such that ξ
k̃-computes c̃, c̃ l-computes d, and k̃+ l ≤ k. Now, c̃
= d because c̃ occurs
in ξ and d does not. Since l < k′, we can apply the induction hypothesis
(to c̃, l, and d). Hence, there are c̃′ and l′ < l such that c̃ l′-computes c̃′ and
c̃′ directly computes d. Since c(y1, . . . , ym) ⇒M,s ξ and ξ k̃-computes c̃,
c (k̃ + 1)-computes c̃. By the transitivity of computing configurations we
obtain that c (k̃ + 1 + l′)-computes c̃′. It follows from k̃ + l ≤ k and l′ < l
that k̃ + l′ < k = k′ − 1, and therefore k̃ + 1 + l′ < k′. Thus, the lemma
holds for c′ = c̃′ and k′′ = k̃ + 1 + l′. It remains to prove the claim.

Claim. Let ξ ∈ T∆∪CM,s
(Y) and k ∈ N. If ξ k-computes d, then there are

k̃, l ∈ N and a configuration c̃ in ξ such that k̃ + l ≤ k, ξ k̃-computes c̃,
and c̃ l-computes d.

The proof is by induction on the structure of ξ. Since ξ k-computes d
there is an η such that ξ ⇒k

M,s η and η has an outside occurrence of d. This

implies that ξ
∈ Y , i.e., ξ is of the form τ(ξ1, . . . , ξn) for τ ∈ (∆∪CM,s)(n),
n ≥ 0, and ξ1, . . . , ξn ∈ T∆∪CM,s

(Y).
We now apply Lemma 32 to the computation τ(ξ1, . . . , ξn) ⇒k

M,s η,
and obtain a tree ηlin ∈ T∆∪CM,s

(Ym), m ≥ 0, which is linear in Ym, a
mapping π : [m] → [n], η1, . . . , ηm ∈ T∆∪CM,s

(Y), and k0, k1, . . . , km ∈
N such that (1) η = ηlin[yj ← ηj | j ∈ [m]], (2) τ(y1, . . . , yn) ⇒k0

M,s

ηlin[yj ← yπ(j) | j ∈ [m]], (3) for every j ∈ [m], ξπ(j) ⇒kj

M,s ηj , and (4)
k0 + k1 + · · ·+ km = k.

Case (i). d occurs outside in ηlin. Then τ ∈ CM,s and τ k0-computes d.
Hence, for k̃ = 0, l = k0, and c̃ = τ the claim holds.

Case (ii). d does not occur outside in ηlin. Since d occurs outside in η, there
must be a j ∈ [m] such that yj occurs outside in ηlin and d occurs outside in
ηj . This implies that ξπ(j) kj-computes d. By induction there are k̃, l ∈ N
and a configuration c̃ in ξπ(j) such that k̃+l ≤ kj , ξπ(j) k̃-computes c̃, and c̃ l-

computesd. Since ξ = τ(ξ1, . . . , ξn)⇒k0
M,s ηlin[yj ← ξπ(j) | j ∈ [m]] = η′′

and yj occurs outside in ηlin (at u), every outside node (v) in ξπ(j) is also

outside in η′′ (at uv). Hence, since ξπ(j) k̃-computes c̃, we obtain that η′′

k̃-computes c̃ and so ξ (k0 + k̃)-computes c̃. It follows from k̃ + l ≤ kj

that (k0 + k̃) + l ≤ k0 + kj , which is ≤ k because
∑

µ∈[m] kµ = k. This
concludes the proof of the claim and hence of the lemma.

674 J. Engelfriet, S. Maneth

5.3.1 Proof of the claim in the proof of Theorem 31. For ease of reference
we repeat the claim.

Claim. Let s ∈ TΣ . If 〈(q0,∅), h0〉 ⇒∗
N,s ξ ∈ T∆∪CN,s

and 〈(q, F), h〉 ∈
CN,s occurs outside in ξ, then for every r ∈ F of rank m ≥ 0,

(a) there is an η ∈ T∆∪CM,s
such that 〈q0, h0〉 ⇒∗

M,s η and 〈r, h〉 occurs
outside in η, and

(b) there is an η′ ∈ T∆∪CM,s
(Ym) such that 〈r, h〉(y1, . . . , ym) ⇒+

M,s η
′

and 〈q, h〉 occurs outside in η′.

The proof is by induction on the length k of the given computation.
Assume it holds for all i < k and consider a state r ∈ F . The application
of Lemma 33 to c = 〈(q0,∅), h0〉, d = 〈(q, F), h〉, and k′ = k gives
an i < k and a configuration c′ such that c i-computes c′ and c′ directly
computes d. Since 〈(q, F), stay〉 must appear in the right-hand side of the
rule applicable to c′, it follows from the definition of the rules of N that
c′ is of the form 〈(q′, F ′), h〉 with F = {q′} ∪ F ′. It follows from C1 (in
the proof of Theorem 31) that there is an η̃ such that 〈q0, h0〉 ⇒∗

M,s η̃

and η̃ has an outside occurrence of 〈q′, h〉, and that there is an η̃′ such that
〈q′, h〉(y1, . . . , yn)⇒+

M,s η̃
′ and 〈q, h〉 occurs outside (at v) in η̃′ (where n

is the rank of q′). If q′ = r, then the claim holds for η = η̃ and η′ = η̃′.
Consider now the case that q′
= r. Since F = F ′ ∪ {q′}, r must be in

F ′. We apply the induction hypothesis to 〈(q0,∅), h0〉, i, and 〈(q′, F ′), h〉
to obtain an η such that 〈q0, h0〉 ⇒∗

M,s η and 〈r, h〉 occurs outside in η, and
an η̄ with 〈r, h〉(y1, . . . , ym)⇒+

M,s η̄ and 〈q′, h〉 occurs outside in η̄ (at u).

Thus, part (a) of the claim holds. Since 〈q′, h〉(y1, . . . , yn) ⇒+
M,s η̃

′, there

is a computation η̄ ⇒+
M,s η̄[[v ← η̃′]] = η′ and 〈q, h〉 occurs outside in η′

(at uv). This proves (b) and concludes the proof of the Claim. ��

5.4 Simulation of PTTs by macro tree transducers

In this subsection it is proved that, by the use of parameters, we can remove
all up instructions from a 0-pttM , thus obtaining a stay-mtt that realizes the
same translation as M .

In fact, this result is already known. It was proved in [25] in the setting
of transducers with storage. As discussed at the end of Sect. 3.3, 0-PTT =
RT(Tree-walk) and hence 0-PTT ⊆ RT(P(Tree)). By Theorem 5.14, Corol-
lary 5.21, and Theorem 4.18 of [25], RT(P(Tree)) ⊆ CFT(Treeid). Here,
‘id’ indicates the addition of an identity instruction (Definition 3.7 of [25])
and thus the possibility to stay at a node. Since, as observed in Sect. 3.3,
CFT(Tree) = MTT, it should be clear that CFT(Treeid) is precisely the
class sMTT. In the same way it follows that 0-DPTT ⊆ DsMTT, because

A comparison of pebble tree transducers with macro tree transducers 675

the proofs preserve determinism. Since the proof in [25] is complicated by
the fact that it is shown for arbitrary storage types, we present here a direct
proof for completeness sake.

Since DsMTT = DMTT by Theorem 31, the fact that 0-DPTT ⊆
DsMTT proves that 0-DPTT ⊆ DMTT (and this is a new result). For total
functions this result was also proved in [25] (Theorem 5.16); in the noncir-
cular case (see Sect. 3.2) it is the well-known fact that attribute grammars
can be simulated by macro tree transducers [29,6,32,14].

Lemma 34 0-PTT ⊆ sMTT and 0-DPTT ⊆ DsMTT.

Proof. LetM = (Σ,∆,Q, q0, R) be a 0-ptt and let q1, . . . , qm be the states
in Q. We want to construct a stay-mtt M ′ that realizes the same translation
as M . The idea of M ′ is to replace each up instruction into state qν , by
the selection of the parameter yν . Hence, if the current node is v, then in
the νth parameter position of a state of M ′, we have to compute what M
does at the parent of v. Obviously, if v is the root node, then there is no
parent, and therefore the corresponding states of M ′ have no parameters.
More precisely,M ′ has states (q, 0) of rank zero which are used if the current
node is the root node, and if the current node is not the root node, then M ′
uses states (q,m) of rank m. For every move of M from v to its jth child
vj,M ′ computes in the νth parameter position of the new state (q,m) what
happens if M moves back to v into state qν . Thus, the parameters are used
in a stack-like fashion, to keep track of all possible future ‘computations’
(more precisely, of the corresponding ‘recursive function calls’) of all states
on ancestors of the current node; in that way moving up into state qν is
realized by M ′ by selecting the parameter yν , and therefore M ′ has no up
instructions. Note that this kind of stack technique was invented by Rounds
(cf. Theorem 7 of [54], which was generalized in Lemma 5.4 of [25]).

Let us now define M ′. Let M ′ = (Σ,∆,Q′, (q0, 0), R′), where Q′ =
{(q, µ)(µ) | q ∈ Q,µ ∈ {0,m}} and R′ = {rel(r) | r ∈ R}. For every rule
r ∈ R the related rule rel(r) is defined as follows. Let r = (〈q, σ, ε, j〉 → ζ)
with q ∈ Q, σ ∈ Σ, and j ∈ [0, J]. Then

rel(r) =
{ 〈(q, 0), σ, ε, 0〉 → trans0(ζ), if j = 0
〈(q,m), σ, ε, j〉(y1, . . . , ym)→ transm(ζ), otherwise

where, for every µ ∈ {0,m}, transµ(ζ) =

– yν if ζ = 〈qν , up〉 for ν ∈ [m]
– δ((r1, µ)(y1, . . . , yµ), . . . , (rk, µ)(y1, . . . , yµ)) if ζ = δ(r1, . . . , rk)

with δ ∈ ∆(k), k ≥ 0, and r1, . . . , rk ∈ Q,
– and if ζ = 〈q′, ϕ〉 with ϕ ∈ {downi | i ∈ [J]} ∪ {stay} then it equals

– 〈(q′,m), downi〉((q1, µ)(y1, . . . , yµ), . . . , (qm, µ)(y1, . . . , yµ)) if
ϕ = downi

676 J. Engelfriet, S. Maneth

– 〈(q′, µ), stay〉(y1, . . . , yµ) if ϕ = stay.

Obviously, if M is deterministic, then so is M ′.
Let s ∈ TΣ . Before we prove the correctness of the construction of

M ′ we need some auxiliary notions. Define the full m-ary “stack tree”
(fmt) that is generated by M ′ in order to keep track of the computa-
tions at ancestors as follows. For a configuration 〈q, (u, λ)〉 of M , the tree
fmt(〈q, (u, λ)〉) ∈ TCM′,s is defined as 〈(q, 0), h〉 if u = ε, and otherwise

as 〈(q,m), h〉(fmt(〈q1, up(h)〉), . . . , fmt(〈qm, up(h)〉)), where h = (u, λ).
We can now define the substitution Φ, that allows us to extend the notion of
relatedness from rules to sentential forms:

Φ = [〈q, (u, λ)〉 ← fmt(〈q, (u, λ)〉) | q ∈ Q, u ∈ V (s)].

Two sentential forms ξ ∈ T∆∪CM,s
and ξ′ ∈ T∆∪CM′,s are related, if ξ′ =

ξΦ.

Claim 1. For c ∈ CM,s and r ∈ R, r is applicable to c iff rel(r) is applicable
to cΦ[ε].

Let c = 〈q, (u, λ)〉 and r = 〈q, σ, ε, j〉 → ζ. The rule r is applicable to
c iff s[u] = σ and j = childno(u) iff rel(r) is applicable to cΦ[ε] because,
for u = ε, 〈q, (u, λ)〉Φ[ε] = 〈(q, 0), (u, λ)〉 and the left-hand side of rel(r)
is 〈(q, 0), σ, ε, 0〉, and for u
= ε, 〈q, (u, λ)〉Φ[ε] = 〈(q,m), (u, λ)〉 and the
left-hand side of rel(r) is 〈(q,m), σ, ε, j〉(y1, . . . , ym). This proves Claim 1.

By Claim 2 below, the application of related rules to the same node
in related sentential forms yields again related sentential forms. Now, if
ξ1 ⇒M,s ξ2 by rule r at node ρ and ξ′

1 is related to ξ1, then by Claim 1 rel(r)
is applicable to ξ′

1 at ρ because ξ′
1[ρ] = (ξ1[ρ])Φ[ε], and, by Claim 2, ξ′

2 is
related to ξ2 where ξ′

1 ⇒M ′,s ξ
′
2 by rel(r). Thus, if 〈q0, h0〉 ⇒∗

M,s t ∈ T∆,
then 〈(q0, 0), h0〉 ⇒∗

M ′,s t because 〈q0, h0〉 is related to 〈(q0, 0), h0〉. This
means that τM ⊆ τM ′ . Similarly, 〈(q0, 0), h0〉 ⇒∗

M ′,s t ∈ T∆ implies that
〈q0, h0〉 ⇒∗

M,s t and thus τM ′ ⊆ τM . It remains to prove Claim 2.

Claim 2. Let ξ1, ξ2 ∈ T∆∪CM,s
and ξ′

1, ξ
′
2 ∈ T∆∪CM′,s such that ξ1 and ξ′

1
are related. If ξ1 ⇒M,s ξ2 by rule r ∈ R at node ρ in ξ1 and ξ′

1 ⇒M ′,s ξ
′
2

by rule rel(r) at node ρ in ξ′
1, then ξ2 and ξ′

2 are related.

Let ξ1[ρ] = 〈q, (u, λ)〉 and r = 〈q, σ, ε, j〉 → ζ. Let µ = 0
if u = ε and otherwise µ = m. Then ξ′

1/ρ = fmt(〈q, (u, λ)〉) =
〈(q, µ), (u, λ)〉(t1, . . . , tµ) with ti = fmt(〈qi, up(u, λ)〉) for every i ∈ [µ].

If ζ = 〈q′, stay〉 then ξ2 = ξ1[ρ ← 〈q′, (u, λ)〉] and rel(r) has
right-hand side 〈(q′, µ), stay〉(y1, . . . , yµ). Then ξ′

1 ⇒M ′,s ξ
′
2 = ξ′

1[ρ ←
〈(q′, µ), (u, λ)〉(t1, . . . , tµ)] = ξ′

1[ρ ← fmt(〈q′, (u, λ)〉)] = ξ1Φ[ρ ←
fmt(〈q′, (u, λ)〉)] = ξ1[ρ← 〈q′, (u, λ)〉]Φ = ξ2Φ.

A comparison of pebble tree transducers with macro tree transducers 677

If ζ=δ(r1, . . ., rk) then ξ2=ξ1[ρ←δ(〈r1, (u, λ)〉, . . ., 〈rk, (u, λ)〉)] and
rel(r) has right-hand side δ((r1, µ)(y1, . . . , yµ), . . . , (rk, µ)(y1, . . . , yµ)).
Then ξ′

1 ⇒M ′,s ξ′
2=ξ

′
1[ρ←δ(〈(r1, µ), (u, λ)〉(t1, . . ., tµ), . . . , 〈(rk, µ),

(u, λ)〉(t1, . . ., tµ))] = ξ′
1[ρ ← δ(fmt(〈r1, (u, λ)〉), . . . , fmt(〈rk, (u, λ)〉))]

= ξ1[ρ← δ(〈r1, (u, λ)〉, . . . , 〈rk, (u, λ)〉)]Φ = ξ2Φ.
If ζ=〈q′, downi〉 then ξ2=ξ1[ρ←〈q′, (ui, λ)〉] and rel(r) has right-hand

side 〈(q′,m), downi〉((q1, µ)(y1, . . ., yµ), . . ., (qm, µ)(y1, . . ., yµ)). Then
ξ′
1 ⇒M ′,s ξ′

2 = ξ′
1[ρ ← 〈(q′,m), (ui, λ)〉(〈(q1, µ), (u, λ)〉(t1, . . . , tµ),

. . . , 〈(qm, µ), (u, λ)〉(t1, . . . , tµ))] = ξ′
1[ρ ← fmt(〈q′, (ui, λ)〉)] = ξ1[ρ ←

〈q′, (ui, λ)〉]Φ = ξ2Φ.
If ζ = 〈q′, up〉 then u = u′i for some u′ ∈ V (s) and i ∈ [J], and ξ2 =

ξ1[ρ← 〈q′, (u′, λ)〉]. The right-hand side of rel(r) is yν for ν ∈ [m] such that
qν = q′. Thus ξ′

1 ⇒M ′,s ξ
′
2 = ξ′

1[ρ ← tν] = ξ′
1[ρ ← fmt(〈qν , (u′, λ)〉)] =

ξ1[ρ← 〈q′, (u′, λ)〉]Φ = ξ2Φ. ��

Now, from Theorem 10 together with Lemma 34 and Theorem 31 we
obtain our second main result: every n-ptt can be simulated by the com-
position of n + 1 stay-mtts (mtts in the deterministic case). Note that, as
for Theorem 10, the first n translations are realized by (very simple) total
deterministic mtts: they all realize EncPeb ∈ DtMTT.

Theorem 35 For every n ≥ 1, n-PTT ⊆ sMTTn+1 and n-DPTT ⊆
DMTTn+1.

By Theorem 29 and Lemma 27 the nondeterministic part of this theorem
implies that n-PTT ⊆ MON ◦ MTTn+1. The deterministic part of Theo-
rem 35 is, in fact, optimal, i.e., n-DPTT is not included in DMTTn. This
will follow immediately from Theorem 41 in Sect. 6.

5.5 Simulation of macro tree transducers by PTTs

In the previous subsection it was shown how to simulate n-ptts by compo-
sitions of stay-mtts, and by compositions of dmtts in the deterministic case.
Now we show the converse direction, namely, how to simulate a stay-mtt by
a composition of 0-ptts, and a deterministic mtt by a composition of 0-dptts.
This result, together with the converse simulation of the previous subsection,
proves that ptts and stay-mtts have the same composition closure (and that
dptts and dmtts have the same composition closure). Hence, the classes of
output languages of compositions of ptts and of mtts coincide.

Recall that by Lemma 27, sMTT ⊆ MON◦MTT. Since MON ⊆ 0-PTT
by Example 6, this means that sMTT ⊆ 0-PTT ◦MTT. Thus, it will suffice
to consider the simulation of mtts by ptts.

678 J. Engelfriet, S. Maneth

In order to prove that an mtt can be simulated by compositions of ptts, we
use a well-known decomposition result of (total deterministic) mtts into com-
positions of top-down tree transducers and so-called “YIELD mappings”
(see, e.g., [23,18]). Recall from Definition 22 that a top-down tree trans-
ducer is an mtt M without parameters, i.e., with each state of rank zero.
The configurations of a top-down tree transducer are always at the leaves
of a sentential form, in contrast to an mtt whose configurations can also
be at non-leaf nodes of a sentential form. This means that a top-down tree
transducer can simulate the state behavior of an mtt, but only at the leaves of
its sentential forms, because it cannot carry out the second-order tree sub-
stitution inherent in a computation step of an mtt (viz. applying a rule to a
configuration of rank > 0). Now, YIELD mappings carry out second-order
tree substitution. Altogether, a total deterministic mtt M can be simulated
by first running a (total deterministic) top-down tree transducer that realizes
M ’s state behavior and generates a special intermediate tree, and then apply-
ing a YIELD mapping to that tree (realizing the second-order tree substitu-
tion inherent inM ’s computation). In other words, DtMTT ⊆ DtT◦YIELD
(Proposition 4.17 of [6]; cf. also Theorem 4.8 of [24]). Partialness and nonde-
terminism of an mtt can be handled by post-composing a total deterministic
mtt with a corresponding top-down tree transducer (Corollary 6.12 of [24]),
i.e., MTT ⊆ DtMTT ◦ T and DMTT ⊆ DtMTT ◦DT. Thus, we obtain (cf.
also Theorem 7.3 of [24])

MTT ⊆ (T ∪ YIELD)3 and DMTT ⊆ (DT ∪ YIELD)3.

As stated in Lemma 23, top-down tree transducers can be realized by
0-ptts; we now prove, in Lemma 36, that YIELD mappings can be real-
ized by 0-ptts. Note that for attribute grammars (see Sect. 3.2) these results
are well known: top-down tree transducers can be simulated by attribute
grammars [6] and so can YIELD mappings (shown in Theorem 1.3 of [19],
without correctness proof, and in Corollary 6.24 of [31], using an indirect
proof). Together with the above decomposition result this will allow us to
prove the equality of the composition closure of ptts and stay-mtts, in The-
orem 38.

Let us now define YIELD mappings and show that they can be realized
by 0-ptts. A YIELD mappingYf is a mapping fromTΣ toT∆(Y) determined
by a mapping f from Σ(0) to T∆(Y), for ranked alphabets Σ and ∆. It is
defined in the following way:

(i) for α ∈ Σ(0), Yf (α) = f(α) and
(ii) for σ ∈ Σ(k), s1, . . . , sk ∈ TΣ , and k ≥ 1,

Yf (σ(s1, . . . , sk)) = Yf (s1)[yµ ← Yf (sµ+1) | µ ∈ [k − 1]].

The class of all YIELD mappings is denoted by YIELD.

A comparison of pebble tree transducers with macro tree transducers 679

Intuitively, to compute the tree Yf (s) for some s = σ(s1, . . . , sk) ∈ TΣ ,
the mapping Yf has to be applied to the first subtree s1, and in the resulting
tree each parameter yµ, µ ∈ [k− 1], has to be replaced by Yf applied to the
(µ+ 1)th subtree sµ+1. Note that if f is a mapping from Σ(0) to T∆(Ym),
m ≥ 0, then Yf is a mapping from TΣ to T∆(Ym).

As a small example of a YIELD mapping, consider the ranked alphabet
Σ with Σ(0) = {a, b, c}, Σ(2) = {σ} and the mapping f from Σ(0) to
T∆(Y1) with ∆ = {a(1), b(1), c(1), e(0)}, and f(a) = a(y1), f(b) = b(y1),
and f(c) = c(e). Now let s = σ(a, σ(b, c)). Then Yf (s) is a (monadic tree)
representation of the yield abc of the tree s, namely,

Yf (s) = f(a)[y1 ← Yf (σ(b, c))]
= a(y1)[y1 ← f(b)[y1 ← c(e)]︸ ︷︷ ︸

b(c(e))

]

= a(b(c(e))).

Note that, in general, a YIELD mapping Yf is realized by a dmtt Mf

with one state q and rules

〈q, α, ε, j〉(y1, . . ., ym)→ f(α)
〈q, σ, ε, j〉(y1, . . ., ym) → 〈q, down1〉(〈q, down2〉(y1, . . . , ym), . . . ,

〈q, downk〉(y1, . . ., ym), yk, . . ., ym),

where f is a mapping from Σ(0) to T∆(Ym), and yk, . . . , ym is empty if
m < k.

We now show that YIELD mappings can be realized by 0-dptts.

Lemma 36 YIELD ⊆ 0-DPTT.

Proof. Let Σ and ∆ be ranked alphabets, J = max{rankΣ(σ) | σ ∈ Σ},
m ≥ 0, and let f be a mapping from Σ(0) to T∆(Ym). We now define the

deterministic 0-ptt M = (Σ,∆ ∪ {y(0)
µ | µ ∈ [m]}, Q, q, R) such that

τM = Yf . Let Q = {q, q1, . . . , qm, q′
1, . . . , q

′
m}. For the state q, let the

following rules be in R.

〈q, σ, ε, j〉 → 〈q, down1〉 for σ ∈ Σ(k), k ≥ 1,
and j ∈ [0, J]

〈q, α, ε, j〉 → f(α)[yµ ← 〈qµ, stay〉 | µ ∈ [m]] for α ∈ Σ(0)

and j ∈ [0, J].

Intuitively, starting in a configuration 〈q, (u, λ)〉, M will compute the tree
Yf (s/u) when restricted to input configurations (v, λ) where v is a de-
scendant of u, i.e., v = uv′ with v′ ∈ V (s/u). However, in place of a

680 J. Engelfriet, S. Maneth

parameter yµ this tree will have a configuration 〈qµ, (u, λ)〉; such a config-
uration computes the actual parameter tree which should replace yµ during
M ’s computation of Yf (s). For every µ ∈ [m] let the rules

〈qµ, σ, ε, 1〉 → 〈q′
µ, up〉 for σ ∈ Σ

〈qµ, σ, ε, j〉 → 〈qµ, up〉 for σ ∈ Σ and j ∈ [2, J]
〈qµ, σ, ε, 0〉 → yµ for σ ∈ Σ
〈q′

µ, σ, ε, j〉 → 〈q, downµ+1〉 for σ ∈ Σ(k), µ+ 1 ≤ k, and j ∈ [0, J]
〈q′

µ, σ, ε, j〉 → 〈qµ, stay〉 for σ ∈ Σ(k), µ+ 1 > k, and j ∈ [0, J]

be in R. Intuitively, in a configuration 〈qµ, (u, λ)〉, M computes for yµ the
actual parameter tree at u, which is the (µ + 1)th child of u’s parent u′ if
u is a first child and u′ has a (µ + 1)th child, and otherwise is the actual
parameter tree at u′ (cf. the rules of the dmttMf shown below the definition
of YIELD).

We now prove the correctness of the construction of M . Let s ∈ TΣ . It
must be shown that τM (s) = Yf (s). In what follows, let⇒M,s be denoted by
⇒. By the claim below, 〈q, h0〉 ⇒∗ Yf (s)[yµ ← 〈qµ, h0〉 | µ ∈ [m]] = ξ.
Since 〈qµ, h0〉 ⇒ yµ for every µ ∈ [m], ξ ⇒∗ Yf (s)[yµ ← yµ | µ ∈ [m]] =
Yf (s). Thus, 〈q, h0〉 ⇒∗ Yf (s).

In the remainder of this proof we will write 〈q, u〉 instead of 〈q, (u, λ)〉.
Claim. For every u ∈ V (s), 〈q, u〉 ⇒∗ Yf (s/u)[yµ ← 〈qµ, u〉 | µ ∈ [m]].

The proof of the claim is by induction on the size of s/u.

Case 1, u is a leaf: Let α = s[u]. Then 〈q, u〉 ⇒ f(α)[yµ ← 〈qµ, u〉 |
µ ∈ [m]]. By the definition of Yf , f(α) = Yf (α), and, since u is a leaf,
Yf (α) = Yf (s/u), which proves the claim for this case.

Case 2, u is not a leaf: By the definition of the q-rule of M for symbols of
positive rank, 〈q, u〉 ⇒ 〈q, u1〉. By induction

〈q, u1〉 ⇒∗ Yf (s/u1)[yµ ← 〈qµ, u1〉 | µ ∈ [m]] = ξ.

WhatM computes in a configuration 〈qµ, u1〉 depends on the numbersµ+1
and k, where k is the rank of s[u]: If µ+ 1 > k then

〈qµ, u1〉 ⇒ 〈q′
µ, u〉 ⇒ 〈qµ, u〉,

and if µ+ 1 ≤ k then

〈qµ, u1〉 ⇒ 〈q′
µ, u〉

⇒ 〈q, u(µ+ 1)〉
⇒∗ Yf (s/u(µ+ 1))[yν ← 〈qν , u(µ+ 1)〉 | ν ∈ [m]]

(by induction)
⇒∗ Yf (s/u(µ+ 1))[yν ← 〈qν , u〉 | ν ∈ [m]]

(because µ+ 1 ≥ 2).

A comparison of pebble tree transducers with macro tree transducers 681

Thus, there is a computation starting from ξ (displayed above), of the form

ξ ⇒∗ Yf (s/u1) [yµ ← Yf (s/u(µ+ 1))Ψ | µ ∈ [m], µ+ 1 ≤ k]
[yµ ← 〈qµ, u〉 | µ ∈ [m], µ+ 1 > k],

where Ψ = [yν ← 〈qν , u〉 | ν ∈ [m]]. This is equal to

Yf (s/u1)[yµ ← Yf (s/u(µ+ 1)) | µ ∈ [m], µ+ 1 ≤ k]Ψ.

Since “µ ∈ [m], µ + 1 ≤ k” means the same as “µ ∈ [k − 1]” we obtain,
by the definition of Yf , that the above equals Yf (s/u)Ψ . This concludes the
proof of the claim and of the lemma. ��

Consider again the example of a YIELD mapping Yf given above the
previous lemma and the tree s = σ(a, σ(b, c)). LetM be the 0-dptt obtained
by the construction in the proof of the previous lemma (and let⇒ denote
⇒M,s). Then

〈q, ε〉⇒〈q, 1〉⇒a(〈q1, 1〉)⇒a(〈q′
1, ε〉)⇒a(〈q, 2〉)⇒

a(〈q, 21〉)⇒a(b(〈q1, 21〉))⇒a(b(〈q′
1, 2〉))⇒a(b(〈q, 22〉))⇒a(b(c(e))),

which is the correct tree Yf (s), as shown in the example.

Lemma 37 sMTT ⊆ 0-PTT 4 and DMTT ⊆ 0-DPTT 3.

Proof. By Lemma 27, sMTT ⊆ MON ◦MTT which is included in 0-PTT ◦
MTT by Example 6. As mentioned above, MTT ⊆ (T ∪ YIELD) 3 which
is included in 0-PTT 3 by Lemmas 23 and 36. Hence sMTT ⊆ 0-PTT 4.
In the deterministic case, DMTT ⊆ (DT ∪ YIELD) 3 which is included in
0-DPTT 3 by Lemmas 23 and 36. ��

It was proved at the end of Sect. 4 that the composition closure of n-ptts
equals the one of 0-ptts, i.e., PTT∗ = 0-PTT∗ (and DPTT∗ = 0-DPTT∗ in
the deterministic case). We are now ready to prove our third main result,
namely, that these classes equal the composition closure of stay-mtts (and
of dmtts in the deterministic case).

Theorem 38 PTT∗ = 0-PTT∗ = sMTT∗ and
DPTT∗ = 0-DPTT∗ = DMTT∗.

Proof. By Corollary 11, PTT∗ = 0-PTT∗ and DPTT∗ = 0-DPTT∗. We now
show that 0-PTT∗ = sMTT∗ and 0-DPTT∗ = DMTT∗. By Theorem 35
and Lemma 37, 0-PTT ⊆ sMTT ⊆ 0-PTT∗ and 0-DPTT ⊆ DMTT ⊆
0-DPTT∗. This implies the required equalities. ��

682 J. Engelfriet, S. Maneth

In terms of databases Theorem 38 shows that, as query languages, ptts and
mtts have the same expressiveness. For total functions, it was already known
that total deterministic macro tree transducers and (noncircular) attributed
tree transducers have the same composition closure (see Chapter 6 of [31]).

In the deterministic case, we have also proved that DPTT∗ ⊆ 0-DPTT∗
term,

where the latter is the class of translations realized by 0-dptts that have no
infinite computations, i.e., they are terminating: first simulate the dptts by
(compositions of) dmtts, then decompose the dmtts into (deterministic) top-
down tree transducers and YIELD mappings following the results in [24],
and finally simulate those by (compositions of) 0-ptts, using Lemmas 23
and 36, respectively (obviously, the constructions in the proofs of these
two lemmas give terminating 0-dptts; in fact, they are even noncircular, see
Sect. 3.2). Note that it is not clear whether or not infinite computations can
be removed directly from an n-dptt, i.e., whether or not DPTT ⊆ DPTTterm.

In [50] it is stated as an open problem whether PTT contains all bottom-
up tree translations (denoted B, and DB in the deterministic case). Note that
we obtain from Lemmas 23, 36, and 37 that DB ⊆ 0-DPTT 3 and B ⊆
0-PTT2 because DB ⊆ DMTT (Corollary 6.16 of [24]) and B ⊆ T◦YIELD
(Theorem 5.16 and Lemma 5.5 of [24]).

If we consider the class of output languages of PTT∗, then by the pre-
vious theorem, PTT∗(REGT) = sMTT∗(REGT) and by Theorem 30 this
equals MTT∗(REGT). Thus, PTT∗ and MTT∗ define the same class of out-
put languages.

Corollary 39 PTT∗(REGT) = MTT∗(REGT).

As stated in Fact 25, emptiness and finiteness of tree languages in
MTT∗(REGT) are decidable. In Sect. 7 on type checking we will use these
facts to show that “type checking” and “almost always type checking” are
decidable for languages in MTT∗(REGT). Through Corollary 39 this pro-
vides an alternative proof of the main result of [50] that type checking is
decidable for languages in PTT∗(REGT).

6 Pebble hierarchies for deterministic PTTs

In this section we consider for deterministic pebble tree transducers the
following question: Is the (deterministic) pebble tree transducer with n+ 1
pebbles more powerful than the one with n pebbles? As the power of the
pebble tree transducer we consider its ability

(i) to translate,
(ii) to generate output tree languages, and
(iii) to generate output string languages.

A comparison of pebble tree transducers with macro tree transducers 683

The first two aspects are important for database theory (translations are
queries, and output tree languages are views) and the third one is mainly of
interest for formal language theory. Note that an output string language is
obtained from an output tree language by taking the yields of its trees; thus,
it is of the form yτM (R) = {yt | (s, t) ∈ τM for some s ∈ R} where M is
a pebble tree transducer and R ∈ REGT.

In Sect. 3 it was shown already that the number n of pebbles gives rise
to a proper hierarchy of translations; in other words, with respect to (i),
the dptt with n + 1 pebbles is strictly more powerful than the one with n
pebbles. In this section we show that also with respect to (iii), and hence
also (ii), n+1 pebbles are strictly more powerful than n. More precisely, for
the classes y(n-DPTT(REGT)) of output string languages of n-dptts, there
is a proper hierarchy with respect to n, i.e., y((n − 1)-DPTT(REGT)) �
y(n-DPTT(REGT)) for all n ≥ 1. We call this the “dptt-hierarchy”.

Recall from Theorem 35 that (n − 1)-DPTT ⊆ DMTTn. The proper-
ness of the dptt-hierarchy will be proved using a ‘bridge theorem’ for the
classes yDtMTTn(REGT), viz. Theorem 18 of [16]. This bridge theorem
provides a method to obtain languages that are not in yDtMTTn(REGT).
In [16] it was used to prove that the “(total) dmtt-hierarchy” is proper,
i.e., yDtMTTn(REGT) � yDtMTTn+1(REGT): Theorem 23 of [16]. Here
we will use it to show that y(n-DPTT(REGT)) contains languages not in
yDMTTn(REGT), and hence not in y((n − 1)-DPTT(REGT)). Since the
dptt-hierarchy involves non-total functions, we first prove that totality is
irrelevant for output languages of DMTTn, i.e., that for every n ≥ 1,

yDMTTn(REGT) = yDtMTTn(REGT). (∗)

We show, by induction on n, that DMTTn(REGT) = DtMTTn(REGT),
i.e., even the corresponding classes of tree languages coincide. The proof is
based on Theorem 6.18 of [24] which says that DMTT = FTA ◦ DtMTT,
where FTA is the class of identity functions restricted to regular tree lan-
guages, i.e., applying a function in FTA is the same as taking the in-
tersection with a regular tree language. For n = 1 this implies that
DMTT(REGT) = DtMTT(FTA(REGT)). Since regular tree languages
are closed under intersection (cf., e.g., [35]), FTA(REGT) = REGT and
hence DtMTT(FTA(REGT)) = DtMTT(REGT). For n + 1, it follows
from Theorem 6.18 of [24] and by induction that DMTTn+1(REGT) =
DtMTT(FTA(DtMTTn(REGT))). Now FTA(DtMTTn(REGT)) equals
DtMTTn(REGT): for Rin, Rout ∈ REGT and τ ∈ DtMTTn, τ(Rin) ∩
Rout = τ(Rin ∩ τ−1(Rout)) and Rin ∩ τ−1(Rout) is in REGT by Fact 24
and the fact that REGT is closed under intersection.

Let us now state the bridge theorem of [16], in terms of non-total dmtts.
To do this we first define the notion of δ-completeness. Let A and B be

684 J. Engelfriet, S. Maneth

disjoint alphabets. Consider a string w of the form

w = w1a1w2a2 · · · al−1wlalwl+1

with l ≥ 0, a1, . . . , al ∈ A, and w1, . . . , wl+1 ∈ B∗. Define the string
resA(w) ∈ A∗ as a1 · · · al. If all w2, . . . , wl are pairwise different, then w
is a δ-string for a1 · · · al. Let L ⊆ A∗ and L′ ⊆ (A ∪ B)∗. If L′ contains,
for every w ∈ L, a δ-string for w, then L′ is called δ-complete for L.

Lemma 40 (Theorem 18 of [16]) Let A and B be disjoint alphabets, and
let L ⊆ A∗ and L′ ⊆ (A∪B)∗ be languages such that L′ is δ-complete for
L and resA(L′) = L.

(a) For every n ≥ 1,
if L′ ∈ yDMTTn+1(REGT), then L ∈ yDMTTn(REGT).

(b) If L′ ∈ yDMTT(REGT), then L ∈ yDT(REGT).

The next theorem (Theorem 41, which is the main result of this sec-
tion) proves that there is an n-dptt that generates an output string language
which is not in yDMTTn(REGT). Recall from Definition 1 that an n-ptt is
monadic if its input and output alphabetsΣ and∆ are monadic, and that the
corresponding string-to-string translations are those realized by two-way
n-pebble string transducers. The first part of the proof of Theorem 41 was
already presented in (the proof of) Theorem 5 of [17]: with one pebble more,
there is a monadic (n+ 1)-dptt that generates an output language which is
not in yDMTTn(REGT) when viewed as a string language (through paths).
Together with the fact that the output languages of monadic n-dptts (viewed
as string languages) are output string languages of n-fold compositions of
total deterministic mtts (Theorem 4 of [17]) this proves that the output tree
languages of monadic n-dptts form a proper hierarchy with respect to the
number n of pebbles: the “pebble string transducer hierarchy” (Theorem 5
of [17]). The second part of the proof of Theorem 41 shows that without the
monadic restriction the extra pebble is not needed.

Note that, in terms of the translations, this result implies immediately
that n-DPTT � DMTTn, which cannot be proved using size-height proper-
ties of translations of dmtts. Thus, the inclusion n-DPTT ⊆ DMTTn+1 of
Theorem 35 is optimal.

Theorem 41 For every n ≥ 1,

y(n-DPTT(REGT))− yDMTTn(REGT)
= ∅ .

Proof. The inequality will be proved using the ‘bridge theorem’ Lemma 40.
First, let n = 1 and let Σ = {a(1), e(0)}. It is well known that the language
K = {(amb)m | m ≥ 0} is not in yDT(REGT) (see Theorem 3.16 of [20]).

A comparison of pebble tree transducers with macro tree transducers 685

This means, by Lemma 40(b), that K can be used in order to construct
languages K ′ not in yDMTT(REGT).

Before it is shown how to obtain a 1-dptt such that the yield of its output
language is such a K ′, we show how to construct a monadic 1-dptt MK

with pτMK
(TΣ) = {(amb)m | m ≥ 0} = K (recall the definition of p

from Sect. 2.1, e.g., for the tree s = a(a(b(e))), ps is the string aab). The
idea of MK is straightforward: MK uses the pebble as a counter to make
m copies of the input tree am(e). On input tree ame, it drops the pebble
at the root node, copies the input tree top-down, replacing the e by b, thus
generating amb as output. Then it searches the pebble, moves it one node
down, and then again generates another copy of amb. This is repeated until
the pebble has reached the leaf of the input tree, thus generating the monadic
tree (amb)me. It should be obvious how to define the rules of MK .

Given a monadic n-dpttM (with arbitrary input and output alphabetsΣ
and ∆, respectively) we will construct below the

– n-dptt split(M) and the
– monadic (n+ 1)-dptt conf(M)

(with the same input alphabetΣ) such that forL = pτM (TΣ) andA = ∆(1):

– L′ = yτsplit(M)(TΣ) is δ-complete for L and
– L′ = pτconf(M)(TΣ) is δ-complete for L,

and resA(L′) = L in both cases, which will be proved in Claims 2 and 1,
respectively.

Let now, again, n = 1 and Σ = {a(1), e(0)}. Consider the 1-dptt
split(MK) obtained from the monadic 1-dptt MK of above. Then K ′ =
yτsplit(MK)(TΣ) is δ-complete for pτMK

(TΣ) = K and resA(K ′) = K,
where A = ∆(1) and ∆ is the output alphabet of MK . Since K
∈
yDT(REGT) we apply Lemma 40(b) in order to “bridge” K ′ out of the
class yDMTT(REGT); we obtain thatK ′
∈ yDMTT(REGT) which proves
the theorem for n = 1 (because TΣ ∈ REGT).

Now let n > 1. Define inductively the monadic n-dptt Nn =
conf(Nn−1) and N1 = MK . We will prove by induction on n that

pτNn(TΣ)
∈ yDMTTn−1(REGT).

As stated above, L′ = pτNn(TΣ) is δ-complete for L = pτNn−1(TΣ) and
resA(L′) = L, where A = ∆(1) and ∆ is the output alphabet of Nn−1.

For n = 2, L = K
∈ yDT(REGT) which implies by Lemma 40(b) that
L′
∈ yDMTT(REGT).

For n > 2 assume that L = pτNn−1(TΣ)
∈ yDMTTn−2(REGT). Then
L′ = pτNn(TΣ) is not in yDMTTn−1(REGT) by Lemma 40(a).

686 J. Engelfriet, S. Maneth

Note that, since monadic n-ptts are the same as n-pebble string trans-
ducers, pτNn(TΣ) is an output language of an n-pebble string trans-
ducer; as mentioned above the theorem, the fact that pτNn(TΣ)
∈
yDMTTn−1(REGT) was used in Theorem 5 of [17] to prove the proper-
ness of the pebble string transducer hierarchy.

We now apply the construction split toNn, to obtain then-dptt split(Nn).
Take L = pτNn(TΣ) and L′ = yτsplit(Nn)(TΣ). Then, by the above, L′ is
δ-complete for L and resA(L′) = L, where A = ∆(1) and ∆ is the output
alphabet of Nn. Hence, since L
∈ yDMTTn−1(REGT) by the inductive
proof above, we obtain from Lemma 40(a) that L′
∈ yDMTTn(REGT).
Since L′ ∈ y(n-DPTT(REGT)), this proves the theorem.

Let M = (Σ,∆,Q, q0, R) be an arbitrary monadic n-dptt, n ≥ 1. In
what follows, we construct the monadic (n + 1)-dptt conf(M) and the n-
dptt split(M), and prove in Claims 1 and 2 that their corresponding output
languages are δ-complete for pτM (TΣ). First we define the monadic (n+1)-
dptt conf(M): The construction of conf(M) is similar to the construction of
Mn+1 in Example 5. The idea is that conf(M) simulatesM , and additionally
inserts above each unary symbol of the output tree of M a coding wc of the
current configuration c ∈ CM,s. This coding is obtained as follows. If the
current configuration is c = 〈q, (u, π)〉, then conf(M) first moves from u
up to the root (in state qup). From there (in state qdown) it moves to the leaf
of the input tree s, outputting at each node v the symbol (q, σ, b), where
σ is the label of v and b is the information on the pebbles at v. After this,
conf(M) needs to move back to the node u to continue the computation
of M . This is done by dropping, before the coding is generated, an extra
pebble at u. After the coding is generated, conf(M) changes into the state
qfind and moves to the node with the most recently dropped pebble, i.e., to
u. Note that the symbol (q, σ, b) generated by conf(M) at v also contains
the information about the position of the reading head: if b indicates that the
most recently dropped pebble is present, then the reading head is at v (i.e.,
v = u). It should now be clear thatwc is indeed a coding of c, i.e.,wc
= wc′

for c
= c′.
Define conf(M) = (Σ,Γ,Q′, q0, R′) with

– Γ = ∆ ∪ {(q, σ, b)(1) | q ∈ Q, σ ∈ Σ, b ∈ {0, 1}≤n+1}
– Q′ = Q ∪ {qc | q ∈ Q, c ∈ {up, down,find, back}}
– For every rule r = (〈q, σ, b, j〉 → ζ) in R: if ζ ∈ 〈Q, Iσ,b,j〉 or ζ = e,

then let r be in R′; if ζ = a(q′) with a ∈ ∆(1) and q′ ∈ Q, then let the
rules

〈q, σ, b, j〉 → 〈qup, drop〉
〈qback, σ, b, j〉 → a(q′)

A comparison of pebble tree transducers with macro tree transducers 687

be in R′. For every q ∈ Q, b ∈ {0, 1}≤n+1, and b′ ∈ {0, 1}≤n let the
following rules be in R′:

〈qup, σ, b, 1〉 → 〈qup, up〉 for σ ∈ Σ
〈qup, σ, b, 0〉 → 〈qdown, stay〉 for σ ∈ Σ
〈qdown, σ, b, j〉 → (q, σ, b)(〈qdown, down1〉) for σ ∈ Σ(1), j ∈ {0, 1}
〈qdown, e, b, j〉 → (q, e, b)(〈qfind, stay〉) for j ∈ {0, 1}
〈qfind, σ, b

′0, 1〉 → 〈qfind, up〉 for σ ∈ Σ
〈qfind, σ, b

′1, j〉 → 〈qback, lift〉 for σ ∈ Σ, j ∈ {0, 1}.

Note that Γ should be defined in such a way that the set {(q, σ, b)(1) |
q ∈ Q, σ ∈ Σ, b ∈ {0, 1}≤n+1} is disjoint with ∆. In that way we will be
able to apply Lemma 40 for A = ∆(1) and B = Γ −∆.

Clearly, τconf(M) ∈ (n + 1)-DPTT and res∆(1)(pτconf(M)(TΣ)) =
pτM (TΣ).

Claim 1. Let M be a monadic n-dptt with input ranked alphabet Σ. Then
pτconf(M)(TΣ) is δ-complete for pτM (TΣ).

Let M ′ denote conf(M). Since both M and M ′ are monadic, we will
drop the parentheses and the symbol ewhen we show computations. It has to
be shown that for every w ∈ L = pτM (TΣ) there is a w′ ∈ L′ = pτM ′(TΣ)
such that w′ is a δ-string for w. Let s ∈ TΣ . If w = pτM (s) is defined, then
there is a computation

〈q0, h0〉 = c0 ⇒∗
M,s d0 ⇒M,s a0c1 ⇒∗

M,s a0d1 ⇒M,s a0a1c2 ⇒∗
M,s · · ·

⇒∗
M,s a0 · · · am−1dm ⇒M,s a0 · · · amcm+1 ⇒∗

M,s a0 · · · am = w,

where a0, . . . , am ∈ ∆(1) and c0, d0, . . . , cm, dm, cm+1 ∈ CM,s. Then, all
configurations d0, . . . , dm are pairwise different becauseM is deterministic.
Take w′ = τM ′(s). Now, if c⇒M,s d then c⇒M ′,s d, because M ′ has the
same rules as M for right-hand sides that do not contain an output symbol.
If d ⇒M,s ac, then d ⇒∗

M ′,s wdac where wd is the coding of d discussed
above. Applied to the computation of w by⇒M,s, we obtain

c0⇒∗
M ′,sd0⇒∗

M ′,swd0a0c1⇒∗
M ′,swd0a0d1⇒∗

M ′,swd0a0wd1a1c2⇒∗
M ′,s· · ·

⇒∗
M ′,swd0a0wd1a1· · ·wdmamcm+1⇒∗

M ′,swd0a0wd1a1· · ·wdmam=w′.

All the strings wdi
are pairwise different because the di are. This implies

that w′ is a δ-string for w, which ends the proof of Claim 1.

Second, we construct the n-dptt split(M). The idea of split(M) is as
follows: just as conf(M), split(M) simulates M and additionally outputs
before each unary output symbol generated by M a coding of the current
configuration that M is in. However, this time we do not want to use an

688 J. Engelfriet, S. Maneth

extra pebble to do this, but rather generate the corresponding string as yield
and use split(M)’s ability to generate non-monadic output in order to ‘split’
the computation, i.e., to initiate parallel computations (which start with the
same input configurations) in order to insert the current configuration of M
before an output symbol. More precisely, if M , in configuration c, outputs
a unary symbol a and changes into configuration c′, then split(M), in c,
computes a tree with yieldwc a c

′, wherewc is a coding of the configuration
c. The coding is similar to the one of conf(M): split(M) moves from the
current node u up to the root of the input tree s and then down to the leaf of
s, outputting at every node v a symbol (q, σ, b), where c = 〈q, h〉 for some
h, σ is the label of v, and b is the information of the pebbles at v. It should
be clear that in this way the current configuration is coded in a unique way.
Note that split(M) also produces output when moving up; this takes care of
the coding of the position u of the reading head. Thus wc is a coding of c,
i.e., wc
= wc′ for c
= c′.

Define split(M) = (Σ,Γ,Q′, q0, R′) with

– Γ = {φ(3), ψ(2), e(0)} ∪ {a(0) | a ∈ ∆(1)} ∪ {(q, σ, b)(0) | q ∈ Q, σ ∈
Σ, b ∈ {0, 1}≤n};

– Q′ = Q ∪ {qup | q ∈ Q} ∪ {qdown | q ∈ Q}
– For every rule r = (〈q, σ, b, j〉 → ζ) in R: if ζ ∈ 〈Q, Iσ,b,j〉 or ζ = e,

then let r be in R′; if ζ = a(q′) with a ∈ ∆(1) and q′ ∈ Q then let the
rule

〈q, σ, b, j〉 → φ(〈qup, stay〉, a, 〈q′, stay〉)
be in R′.
For every q ∈ Q and b ∈ {0, 1}≤n let the following rules be in R′:

〈qup, σ, b, 1〉 → ψ((q, σ, b), 〈qup, up〉) for σ ∈ Σ
〈qup, σ, b, 0〉 → ψ((q, σ, b), 〈qdown, stay〉) for σ ∈ Σ
〈qdown, σ, b, j〉 → ψ((q, σ, b), 〈qdown, down1〉) for σ ∈ Σ(1), j ∈ {0, 1}
〈qdown, e, b, j〉 → (q, e, b) for j ∈ {0, 1}.

As before for conf(M),Γ should be defined in such a way thatA = ∆(1)

is disjoint with B = Γ −∆.
Clearly, τsplit(M) ∈ n-DPTT and res∆(1)(yτsplit(M)(TΣ)) = pτM (TΣ).

Claim 2. Let M be a monadic n-dptt with input alphabet Σ. Then
yτsplit(M)(TΣ) is δ-complete for pτM (TΣ).

Let M ′ denote split(M) and let s ∈ TΣ . If w = pτM (s) is defined,
then there is a computation by⇒M,s as displayed in the proof of Claim 1.
Now, if c⇒M,s d then c⇒M ′,s d, because M ′ has the same rules as M for
right-hand sides that do not contain an output symbol. If d ⇒M,s ac, then
there is a computation (showing only the yields of the respective sentential

A comparison of pebble tree transducers with macro tree transducers 689

forms) d ⇒∗
M ′,s wdac where wd is the coding of d described above. This

means that there is the computation by ⇒M ′,s displayed in the proof of
Claim 1, generating as yield the string w′ which is δ-complete for w. This
proves Claim 2. ��

It follows immediately from Theorem 41 and the inclusion n-DPTT ⊆
DMTTn+1 in Theorem 35, that the dptt-hierarchy is proper: our fourth main
result.

Theorem 42 The dptt-hierarchy is proper, i.e., for n ≥ 0,

y(n-DPTT(REGT)) � y((n+ 1)-DPTT(REGT)).

The fact that y(n-DPTT(REGT)) − yDMTTn(REGT)
= ∅ (The-
orem 41) means that counter examples of the dmtt-hierarchy can al-
ready be found in the dptt-hierarchy. Thus, if we additionally knew that
yDMTT(REGT) − yDPTT(REGT)
= ∅, then the inclusion diagram in
Figure 6 would be a Hasse diagram. We conjecture that this is the case.

Fig. 6. Inclusion diagram relating the dptt-hierarchy to the dmtt-hierarchy

Note that, with respect to the corresponding classes of translations the
figure is a Hasse diagram because, as shown in Example 13, DMTT −
DPTT
= ∅ (M of Example 13 is a dmtt).

In the case of nondeterministic n-pebble tree transducers (and also for
compositions of nondeterministic mtts) it is open whether there is a proper
hierarchy of output languages. If we compare the output languages of non-
deterministic ptts with those of deterministic ones, then it can be shown that
even at the lowest level (i.e., without pebbles), nondeterminism is more pow-
erful than determinism: There is a language generated by a nondeterministic
0-ptt, which is not in DPTT∗(REGT), and hence

DPTT(REGT) � PTT(REGT).

690 J. Engelfriet, S. Maneth

In terms of databases this means that, for queries realized by pebble trans-
ducers, nondeterminism gives strictly more views than determinism. It fol-
lows from the fact that there is a language L generated by a (nondeter-
ministic) top-down tree transducer, i.e., which is in yT(REGT), and which
cannot be generated by compositions of deterministic mtts, i.e., which is
not in yDMTT∗(REGT). This was proved in Theorem 25 of [16], as an-
other application of the bridge theorem (Lemma 40). Since T ⊆ 0-PTT
by Lemma 23, and DPTT∗ = DMTT∗ by Theorem 38, we obtain that
L ∈ y(0-PTT(REGT))− yDPTT∗(REGT).

7 Type checking

As mentioned in the Introduction, the application of a query q to a database
D (a set of inputs) defines a derived version of the database: the view of D
under q. Now if q is computed by the tree transducerM , andD is represented
by the regular tree language R, then the view of D under q is equal to the
output language τM (R). An important issue in XML-based query languages
is type checking of views (see, e.g., [50,53,58,2,3,57,55]). The main result
of [50] is that type checking is decidable for pebble tree transducers. For a
class X of tree translations, the type checking problem (for X) is defined
in Figure 7. If the output of type checking is “yes”, i.e., the view τ(Rin) is

Fig. 7. Type checking for translations in X

included in Rout, then we say that τ type checks for (Rin, Rout).
Intuitively, type checking means to verify whether or not all documents

in a view conform to a certain type. As a typical scenario of type checking,
imagine that τ translates XML documents into HTML documents. Thus, for
a set R of XML documents τ(R) is an “HTML-view” of the documents in
R. Now, a particular user might be interested only in very particular XML
documents, for instance, documents that have no nested lists, represented by
the type XMLno−nest. Since XML documents are unranked trees, this type
corresponds to a string, or, rather, a forest a1, . . . , ak of one node trees ai;
using the usual encoding of unranked trees by binary trees, this corresponds
to ‘combs’ of the form σ(a1, σ(a2, · · ·σ(ak, e) · · ·)), where σ has rank 2.
Obviously, this is a regular tree language. Then, the user wants to verify
that also the corresponding HTML documents τ(XMLno−nest) do not have

A comparison of pebble tree transducers with macro tree transducers 691

nested lists, i.e, are of type HTMLno−nest. Thus, he wants to know whether or
not τ type checks for (XMLno−nest,HTMLno−nest). As mentioned above,
this problem is decidable if τ is defined by a ptt.

It is well known in tree transducer theory that type checking is decid-
able for translations in MTT∗, i.e., it is decidable for an output language in
MTT∗(REGT) whether or not it is included in a given regular tree language.

Proposition 43 Type checking of compositions of macro tree transducers is
decidable.

This can be seen as follows. The translation τ ∈ MTT∗ type checks for
(Rin, Rout) iff K = τ(Rin) ∩ Rc

out is empty, where Rc
out denotes the com-

plement of Rout. Since REGT is effectively closed under complement and
MTT∗(REGT) is effectively closed under intersection with regular tree lan-
guages, the tree languageK is in MTT∗(REGT). This implies, by Fact 25(i),
that K’s emptiness is decidable which gives Proposition 43. Note that it is
obvious that MTT∗(REGT) is closed under intersection with a regular tree
language R, because that is the same as applying the partial identity for R,
i.e., a mapping in FTA (cf. the discussion in the beginning of Sect. 6), which
is a top-down tree translation and hence is in MTT.

Together with Theorem 30, Proposition 43 implies that even for compo-
sitions of stay-mtts, type checking is decidable.

Corollary 44 Type checking of compositions of stay-mtts is decidable.

Since PTT∗(REGT) = MTT∗(REGT) by Corollary 39, Proposition 43
gives an alternative proof of the main result of [50]. We can now strengthen
this result, based on the fact that the finiteness of languages in MTT∗(REGT)
is decidable by Fact 25(ii). More precisely, we can solve almost always type
checking, which is a weaker variation of type checking, defined in Figure 8.
Intuitively, almost always type checking means to check whether or not all
output documents in the view τ(Rin), except finitely many exceptions, satisfy
the output type Rout. Moreover, if the answer is yes, the list of exceptions is
produced.

Fig. 8. Almost always type checking for translations in X

Since K = τ(Rin) − Rout is in MTT∗(REGT), as shown above,
Fact 25(ii) implies that its finiteness is decidable, and if so, that the finitely

692 J. Engelfriet, S. Maneth

many exceptions can be computed. By Corollary 39, this proves the next
theorem.

Theorem 45 Almost always type checking of compositions of pebble tree
transducers is solvable.

Note that in the affirmative case, τ type checks for (Rin, Rout∪F) where
F = τ(Rin) − Rout is the finite set of exceptions. The new output type
Rout∪F is indeed a regular tree language and can be determined effectively.

In the remainder of this section we present a straightforward type check-
ing algorithm for translations realized by (compositions of) deterministic
mtts. As shown below Proposition 43, type checking for compositions of
dmtts can be solved using Fact 25(i), and as discussed below Fact 25, the
proof of Fact 25(i) uses inverse type inference (for τ and Rout); this means
to determine the set of input trees of τ which generate output in Rout, i.e.,
to determine the regular tree language τ−1(Rout). Recall the example XML
to HTML translation τ of before. Now imagine that the generated HTML
documents should conform to a certain type Rout, and one wants to know
which XML documents are admissible as input of τ , in order to generate
documents of the required typeRout: just do inverse type inference for τ and
Rout.

Clearly, for a function τ

τ typechecks for (Rin, Rout) iff Rin ⊆ τ−1(Rout).

Since checking the inclusion of two regular tree languages is well known, we
concentrate on the inverse type inference problem. Note that also in [50] type
checking is solved by inverse type inference (using MSO logic to represent
types).

If τ is a composition τ1 ◦ τ2 ◦ · · · ◦ τn of translations, then

τ−1(Rout) = τ−1
1 (τ−1

2 (· · · τ−1
n (Rout))).

Thus, to solve the type inference problem for X∗ (where X is a class of
translations) it suffices to solve it for X .

We now discuss an algorithm that performs inverse type inference for
τM and Rout, for a deterministic mtt M and an output type Rout. Hence, the
algorithm constructs a description of the regular tree language τ−1

M (Rout).
Note that the existence of such an algorithm follows from the facts that
DMTT ⊆ (DT ∪ YIELD)3, see Sect. 5.5, and that the inverses of DT and
YIELD both (effectively) preserve the regular tree languages (cf. the proof
of Fact 24 in Theorem 7.4 of [24]). From the proofs of these results in the
literature it is straightforward, but rather awkward, to extract the algorithm.
Since, in fact, a direct algorithm is quite easy to understand, we present it

A comparison of pebble tree transducers with macro tree transducers 693

here. As description for a regular tree language we use the deterministic
bottom-up finite state tree automaton, defined next.

A deterministic bottom-up finite state tree automaton (for short, dbfta)
is a tuple B = (P, Pfin, Σ, δ) where P is a finite set of states, Pfin ⊆ P
is the set of final states, Σ is a ranked alphabet, and δ is the collection
(δσ)σ∈Σ of transition functions such that for every σ ∈ Σ(k), k ≥ 0, δσ
is a mapping from P k to P . The tree language L(B) ⊆ TΣ recognized by
B is {s ∈ TΣ | δ(s) ∈ Pfin} where δ is the extension of δσ to trees in TΣ

which is recursively defined as follows. For every σ ∈ Σ(k), k ≥ 0, and
s1, . . . , sk ∈ TΣ , δ(σ(s1, . . . , sk)) = δσ(δ(s1), . . . , δ(sk)).

Let M = (Σ,∆,Q, q0, R) be a deterministic mtt. For technical reasons
we assume M to be total. Clearly, this is not a restriction: just add a new
“undefined” symbol⊥ and for each left-hand side that has no rule, add a rule
with right-hand side⊥. Moreover, we assume that the 〈q, σ, ε, j〉-rules ofM
disregard j, i.e., all 〈q, σ, ε, j〉-rules for j ∈ [0, J] have the same right-hand
side. (Obviously this is not a restriction, because the j can be incorporated
into the states; cf. the discussion below Lemma 23.)

We are now ready to construct the dbfta A with L(A) = τ−1
M (Rout). Let

B = (P, Pfin, ∆, β) be a deterministic bottom-up finite state tree automaton
with L(B) = Rout. Define A = (D,Dfin, Σ, δ) where D consists of all
mappings d such that for every q ∈ Q(m) and m ≥ 0, d(q) is a mapping
from Pm to P , and Dfin consists of all d ∈ D such that d(q0)() ∈ Pfin.

For every σ ∈ Σ(k), k ≥ 0, and d1, . . . , dk ∈ D, let δσ(d1, . . . , dk) = d
where d is defined as follows. For every q ∈ Q(m),m ≥ 0, p1, . . . , pm ∈ P ,
and rule 〈q, σ, ε, j〉(y1, . . . , ym)→ ζ in R, let

d(q)(p1, . . . , pm) = β′(ζ[yj ← pj | j ∈ [m]]),

where β′ is the following extension of β to trees over 〈Q, {downi | i ∈
[k]}〉 ∪ ∆ ∪ {p(0) | p ∈ P}. For every 〈q′, downi〉 ∈ 〈Q, {downi | i ∈
[k]}〉(m′), m′ ≥ 0, and p′

1, . . . , p
′
m′ , let

β′
〈q′,downi〉(p

′
1, . . . , p

′
m′) = di(q′)(p′

1, . . . , p
′
m′),

and let β′
p() = p for p ∈ P . This ends the construction of A.

Intuitively, the idea of A is to run the dbfta B on the right-hand sides
of the rules of M . In order to do this, B has to be extended appropriately,
because the right-hand side ζ of a q-rule of M might contain parameters yj

or instructions of the form 〈q, downi〉. Since the state pj in which B arrives
after processing the actual parameter tree tj of yj is not determined, a state
d of A will contain all possible choices of states of B for the parameters,
i.e., d(q) is a function from Pm to P and d(q)(p1, . . . , pm) = pmeans that,
assuming state pµ for tµ, µ ∈ [m],B will arrive in p after processing ζ. The
〈q′, downi〉 in ζ are handled by applying di(q′), where di is the state in which

694 J. Engelfriet, S. Maneth

A arrives at the ith input subtree. In fact, for s ∈ TΣ , δ(s)(q)(p1, . . . , pm)
is the state in P in which B arrives on the output tree generated by q on
input s assuming that it arrives in pµ for the parameter yµ. More precisely,
if 〈q, h0〉(y1, . . . , ym) ⇒∗

M,s t ∈ T∆(Ym) then δ(s)(q)(p1, . . . , pm) =
β(t[yµ ← tµ]) where, for µ ∈ [m], tµ is an arbitrary tree in T∆ with
β(tµ) = pµ. From this it should be clear that indeed

L(A) = {s ∈ TΣ | τM (s) ∩Rout
= ∅} = τ−1
M (Rout).

This concludes the construction of the dbfta A and our inverse type
inference algorithm.

8 Conclusions and problems

In this paper we have shown that n-ptts can be decomposed into com-
positions of 0-ptts and compositions of mtts, respectively: (1) n-PTT ⊆
0-PTTn+1 and n-DPTT ⊆ 0-DPTTn+1 and (2) n-PTT ⊆ sMTTn+1 and
n-DPTT ⊆ DMTTn+1. It was shown that (3) PTT∗ = 0-PTT∗ = sMTT∗
and DPTT∗ = 0-DPTT∗ = DMTT∗, i.e., as query languages all three mod-
els,n-ptt, mtt, and 0-ptt, have the same expressiveness. The output languages
of dptts form a proper hierarchy with respect to the number of pebbles: (4)
n-DPTT(REGT) � (n+1)-DPTT(REGT) which even holds for the yields
of these tree languages. Finally, (5) almost always type checking for n-ptts
is decidable.

We now discuss some topics for further research. It was shown in Sect. 3.2
that (deterministic) zero-pebble tree transducers are, essentially, attribute
grammars. This implies that the implementation techniques known for at-
tribute grammars (see, e.g., [11,1,52]) carry over to zero-pebble tree trans-
ducers. The question arises, whether and how these techniques can be gen-
eralized to the n-pebble case.

In Sect. 6 it was proved that the output languages of deterministic n-ptts
form a proper hierarchy with respect to n, see (4) above. The proof is similar
to (and uses parts of) the proof in [16] of the fact that the output languages
of n-fold compositions of deterministic macro tree transducers give rise to a
proper hierarchy, with respect to n. As observed in Sect. 6, the exact Hasse
diagram for these hierarchies (see Fig. 6) has not yet been determined. It
would also be interesting to know whether or not the hierarchy of output
languages of nondeterministic n-pebble tree transducers is proper. Note that
also for output languages of macro tree transducers the properness of the
nondeterministic hierarchy is an open problem (stated in [16]).

In Sect. 5 the n-pebble macro tree transducer was defined, but not inves-
tigated. It is straightforward to extend the decomposition result of Sect. 4 to

A comparison of pebble tree transducers with macro tree transducers 695

the macro case, in the following way:

n-PMTT ⊆ 0-PTTn ◦ 0-PMTT.

For the deterministic case a similar result can be proved. Now note that
the translation τM of the 0-dpmtt M of Example 13 is equal to the com-
position τM1 ◦ τM2 of the two deterministic 0-ptts M1 and M2 of Exam-
ple 4. We suspect that every (deterministic) 0-pebble macro tree transducer
can be realized by the composition of two (deterministic) 0-ptts. In fact,
by Sect. 3.2, 0-ptts are essentially attributed tree transducers; the addition
of parameters to the attributes of the attributed tree transducer gives the
macro attributed tree transducer of [44] which can be simulated by the
composition of two attributed tree transducers (to be precise, the class of
translations realized by macro attributed tree transducers equals the class
of two-fold compositions of attributed tree transducers; cf. Corollary 7.30
of [31]). For the pebble formalism this suggests that 0-PMTT ⊆ 0-PTT2

and 0-DPMTT ⊆ 0-DPTT2 ; does this actually hold? As a special case
of Corollary 3.27 of [25] (viz. the case that S = Tree-walk) we obtain
that 0-PMTT ⊆ 0-PTT ◦ MTT and hence n-PMTT ⊆ sMTTn+2 and
PMTT∗ = PTT∗. Is it true that 0-DPMTT ⊆ DMTT2? If so, then we
would obtain that n-DPMTT ⊆ DMTTn+2 and DPMTT∗ = DPTT∗. Using
the results of [25] it can be shown that the total functions in 0-DPMTT are
also in DMTT2.

Furthermore, it can probably be shown that n-PTT ⊆ (n − 1)-PMTT,
i.e., a pebble can be avoided by the addition of parameters, in a similar way
as the removal of the tree-walk facility of the reading-head (which can be
seen as a pebble), in the proof of Lemma 34.

Last but not least, we conjecture that the class DPTT of deterministic
pebble tree translations can be characterized inside the class DPTT∗ as
those translations for which the number of different subtrees in the output
tree is polynomial in the size of the input tree (cf. [15], where the MSO
definable tree translations are characterized inside the class DMTT as those
translations for which the size of the output tree is linear in the size of the
input tree).

Acknowledgements. We are grateful to Frank Neven for drawing our attention to the pebble
tree transducer model of [50,58], and for asking us about its relationship to the macro tree
transducer. We thank an anonymous referee for carefully reading the manuscript of this
paper.

696 J. Engelfriet, S. Maneth

References

1. Alblas H., Melichar B. (eds.) International Summer School on Attribute grammars,
applications and systems, vol. 545 of LNCS. Springer-Verlag, 1991

2. Alon N., Milo T., Neven F., Suciu D., Vianu V. Typechecking XML views of relational
databases. In Proceedings of the 16th Annual IEEE Symposium on Logic in Computer
Science – (LICS’2001). IEEE, 2001

3. Alon N., Milo T., Neven F., Suciu D., Vianu V. XML with data values: Typechecking
revisited. In Proceedings of the 20th ACM Symposium on Principles of Database
Systems (PODS’2001), pp. 138 – 149. ACM Press, 2001

4. Aho A.V., Ullman J.D. Translations on a context-free grammar. Inform. and Control
19: 439–475, 1971

5. Bex G.J., Maneth S., Neven F. A formal model for an expressive fragment of XSLT.
Information Systems 27: 21–39, 2002

6. Courcelle B., Franchi-Zannettacci P. Attribute grammars and recursive program
schemes. Theoret. Comput. Sci. 17: 163–191 and 235–257, 1982

7. Chytil M.P., Jákl V. Serial composition of 2-way finite-state transducers and simple
programs on strings. In: Salomaa A., Steinby M. (eds.) Proceedings of the 15th In-
ternational Colloquium on Automata, Languages and Programming – (ICALP’77),
volume 52 of LNCS, pp. 135–147. Springer-Verlag, 1977

8. Courcelle B. Fundamental properties of infinite trees. Theoret. Comput. Sci. 25: 95–
169, 1983

9. Drewes F., Engelfriet J. Decidability of finiteness of ranges of tree transductions.
Inform. and Comput. 145: 1–50, 1998

10. Dershowitz N., Jouannaud J.P. Rewrite systems. In: van Leeuwen J. (ed.) Handbook
of Theoretical Computer Science, vol. B, chapt. 6, pp. 243–320. Elsevier, 1990

11. Deransart P., Jourdan M., Lorho B. Attribute Grammars, Definitions and Bibliography,
vol. 323 of LNCS. Springer-Verlag, 1988

12. Engelfriet J., Filè G. The formal power of one-visit attribute grammars. Acta Infor-
matica 16: 275–302, 1981

13. Engelfriet J., Hoogeboom H.J. Tree-walking pebble automata. In: Karhumäki J.,
Maurer H., Păun, Gh., Rozenberg G. (eds.) Jewels are forever, contributions to The-
oretical Computer Science in honor of Arto Salomaa, vol. 1644 of LNCS, pp. 72–83.
Springer-Verlag, 1999

14. Engelfriet J., Maneth S. Macro tree transducers, attribute grammars, and MSO definable
tree translations. Inform. and Comput. 154: 34–91, 1999

15. Engelfriet J., Maneth S. Macro tree translations of linear size increase are MSO defin-
able. Technical Report 01-08, Leiden University, 2001. To appear in SIAM J. Comput.

16. Engelfriet J., Maneth S. Output string languages of compositions of deterministic
macro tree transducers. J. of Comp. Syst. Sci. 64: 350–395, 2002

17. Engelfriet J., Maneth S. Two-way finite state transducers with nested pebbles. In: Diks
K., Rytter W. (eds.) Proceedings of the 27th International Symposium on Mathematical
Foundations of Computer Science – (MFCS’2002), vol. 2430 of LNCS, pp. 234–244.
Springer-Verlag, 2002

18. Engelfriet J. Some open questions and recent results on tree transducers and tree lan-
guages. In: Book R.V. (ed.) Formal language theory; perspectives and open problems.
New York, Academic Press, 1980

19. Engelfriet J. Tree transducers and syntax-directed semantics. Technical Report Mem-
orandum 363, Technische Hogeschool Twente, 1981. Also in: Proceedings of 7th
Colloquium on Trees in Algebra and Programming (CAAP 1982), Lille, France, 1982

A comparison of pebble tree transducers with macro tree transducers 697

20. Engelfriet J. Three hierarchies of transducers. Math. Systems Theory 15: 95–125, 1982
21. Engelfriet J. Context-free grammars with storage. Technical Report 86-11, University

of Leiden, 1986
22. Engelfriet J., Rozenberg G., Slutzki G. Tree transducers, L systems, and two-way

machines. J. of Comp. Syst. Sci. 20: 150–202, 1980
23. Engelfriet J., Schmidt E.M. IO and OI, Part I. J. of Comp. Syst. Sci. 15: 328–353, 1977.

And Part II, J. of Comp. Syst. Sci. 16: 67–99, 1978
24. Engelfriet J., Vogler H. Macro tree transducers. J. of Comp. Syst. Sci. 31: 71–146, 1985
25. Engelfriet J., Vogler H. Pushdown machines for the macro tree transducer. Theoret.

Comput. Sci. 42: 251–368, 1986
26. Engelfriet J., Vogler H. High level tree transducers and iterated pushdown tree trans-

ducers. Acta Informatica 26: 131–192, 1988
27. Fischer M.J. Grammars with macro-like productions. PhD thesis, Harvard University,

Massachusetts, 1968
28. Fülöp Z., Maneth S. Domains of partial attributed tree transducers. Inform. Proc.

Letters 73: 175–180, 2000
29. Franchi-Zannettacci P. Attributes semantiques et schemas de programmes. PhD thesis,

Université de Bordeaux I, 1982. Thèse d’Etat
30. Fülöp Z. On attributed tree transducers. Acta Cybernetica 5: 261–279, 1981
31. Fülöp Z., Vogler H. Syntax-Directed Semantics – Formal Models based on Tree Trans-

ducers. EATCS Monographs on Theoretical Computer Science (Brauer W., Rozenberg
G., Salomaa A. (eds.) Springer-Verlag, 1998

32. Fülöp Z., Vogler H. A characterization of attributed tree transformations by a subclass
of macro tree transducers. Theory Comput. Systems 32: 649–676, 1999

33. Globerman N., Harel D. Complexity results for two-way and multi-pebble automata
and their logics. Theoret. Comput. Sci. 169: 161–184, 1996

34. Ginsburg S. Algebraic and Automata-Theoretic Properties of Formal Languages.
North-Holland, Amsterdam, 1975

35. Gécseg F., Steinby M. Tree Automata. Akadémiai Kiadó, Budapest, 1984
36. Gécseg F., Steinby M. Tree automata. In: Rozenberg G., Salomaa A. (eds.) Handbook

of Formal Languages, vol. 3, chapt. 1. Springer-Verlag, 1997
37. Goguen J.A., Thatcher J.W., Wagner E.G., Wright J.B. Initial algebra semantics and

continuous algebras. J. ACM 24: 68–95, 1977
38. Irons E.T. A syntax directed compiler for ALGOL 60. Comm. Assoc. Comput. Mach.

4: 51–55, 1961
39. Kamimura T. Tree automata and attribute grammars. Inform. and Control 57: 1–20,

1983
40. Klop J.W. Term rewrite systems. In: Abramsky S., Gabbay D.M., Maibaum T.S.E.

(eds.) Handbook of Logic in Computer Science, vol. 2. Oxford Science Publications,
1992

41. Kolb H.-P., Michaelis J., Mönnich U., Morawietz F. An operational and denotational
approach to non-context-freeness. To appear in Theoret. Comput. Sci.

42. Knuth D.E. Semantics of context-free languages. Math. Systems Theory 2: 127–145,
1968. (Corrections in Math. Systems Theory 5: 95-96, 1971)

43. Kühnemann A. Benefits of tree transducers for optimizing functional programs. In:
Arvind V., Ramanujam R. (eds.) Proceedings of the 18th Conference on Foundations
of Software Technology and Theoretical Computer Science (FST&TCS’98), vol. 1530
of LNCS, pp. 146–157. Springer-Verlag, 1998

44. Kühnemann A., Vogler H. Synthesized and inherited functions — a new computational
model for syntax-directed semantics. Acta Informatica 31: 431–477, 1994

698 J. Engelfriet, S. Maneth

45. Kühnemann A., Vogler H. Attributgrammatiken. Vieweg-Verlag, 1997
46. Maneth S. The complexity of compositions of deterministic tree transducers. In:

Agrawal M., Seth A. (eds.) Proceedings of the 22nd Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2002), vol. 2556 of
LNCS, pp. 265–276. Springer-Verlag, 2002.

47. Michaelis J., Mönnich U., Morawietz F. On minimalist attribute grammars and macro
tree transducers. In: Rohrer C., Rossdeutscher A., Kamp H. (eds.) Linguistic Form and
its Computation, pp. 287–326. CSLI Publications, Stanford, 2001

48. Maneth S., Neven F. Recursive structured document transformations. In: Connor
R., Mendelzon A. (eds.) Research Issues in Structured and Semistructured Database
Programming – Revised Papers DBPL’99, vol. 1949 of LNCS, pp. 80–98. Springer-
Verlag, 2000

49. Milo T., Suciu D., Vianu V. Typechecking for XML transformers. J. of Comp. Syst.
Sci. 66: 66–97, 2003

50. Milo T., Suciu D., Vianu V. Typechecking for XML transformers. In Proceedings of the
19th ACM Symposium on Principles of Database Systems (PODS’2000), pp. 11–22.
ACM Press, 2000

51. Neven F., Schwentick T., Vianu V. Towards regular languages over infinite alpha-
bets. In Proceedings of 26th International Symposium on Mathematical Foundations
of Computer Science (MFCS’01), vol. 2136 of LNCS. Springer-Verlag, 2001

52. Paakki J. Attribute grammar paradigms – a high-level methodology in language im-
plementation. ACM Computing Surveys 27: 196–255, 1995

53. Papakonstantinou Y., Vianu V. DTD inference for views of XML data. In Proceedings
of the 19th ACM Symposium on Principles of Database Systems (PODS’2000), pp.
35–46, ACM Press 2000

54. Rounds W.C. Mappings and grammars on trees. Math. Systems Theory 4: 257–287,
1970

55. Suciu D. The XML typechecking problem. SIGMOD Record 31: 89–96, 2002
56. Thatcher J.W. Generalized2 sequential machine maps. J. of Comp. Syst. Sci. 4: 339–367,

1970
57. Tozawa A. Towards static type checking for XSLT. In Proceeding of the ACM Sym-

posium on Document Engineering, pp. 18 – 27. ACM Press, 2001
58. Vianu V. A Web Odyssey: From Codd to XML. In Proceedings of the 20th ACM

Symposium on Principles of Database Systems (PODS’2001), pp. 1–15. ACM Press,
2001

59. Vogler H. Functional description of the contextual analysis in block-structured pro-
gramming languages: a case study of tree transducers. Science of Computer Program-
ming 16: 251–275, 1991

60. Voigtländer J. Conditions for efficiency improvement by tree transducer composition.
In Proceedings of the 13th International Conference on Rewriting Techniques and
Applications (RTA 2002), vol. 2378 of LNCS, pp. 222–236. Springer-Verlag, 2002

61. Wilhelm R., Maurer D. Compiler Design. Addison-Wesley, 1995

