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Abstract
Objectives In the neuroradiological work-up of Multiple Sclerosis (MS), the detection of “black holes” (BH) represent an 
information of undeniable importance. Nevertheless, different sequences can be used in clinical practice to evaluate BH in 
MS. Aim of this study was to investigate the possible impact of different sequences, resolutions, and levels of expertise on 
the intra- and inter-rater reliability identification of BH in MS.
Methods Brain MRI scans of 85 MS patients (M/F = 22/63; mean age = 36.0 ± 10.2 years) were evaluated in this prospective 
single-center study. The acquisition protocol included a 3 mm SE-T1w sequence, a 1 mm 3D-GrE-T1w sequence from which 
a resliced 3 mm sequence was also obtained. Images were evaluated independently by two readers of different expertise at 
baseline and after a wash-out period of 30 days. The intraclass correlation coefficient (ICC) was calculated as an index of 
intra and inter-reader reliability.
Results For both readers, the intra-reader ICC analysis showed that the 3 mm SE-T1w and 3 mm resliced GrE-T1w images 
achieved an excellent performance (both with an ICC ≥ 0.95), while 1 mm 3D-GrE-T1w scans achieved a moderate one 
(ICC < 0.90). The inter-reader analysis showed that each of the three sequences achieved a moderate performance (all 
ICCs < 0.90).
Conclusions The 1 mm 3D-GrE-T1w sequence seems to be prone to a greater intra-reader variability compared to the 3 mm 
SE-T1w, with this effect being driven by the higher spatial resolution of the first sequence. To ensure reliability levels compa-
rable with the standard SE-T1w in BH count, an assessment on a 3 mm resliced GrE-T1w sequence should be recommended.
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Abbreviations
MS  Multiple Sclerosis
BH  Black Holes
CSF  Cerebrospinal Fluid
EDSS  Expanded Disability Status Scale
GM  Gray Matter
ICC  Intraclass Correlation Coefficient
GrE  Gradient-Echo
rsGrE  3 mm-resliced Gradient-Echo
SE  Spin-Echo

Introduction

The detection and report of “black holes” (BH) is part of the 
standard neuroradiological evaluation in Multiple Sclerosis 
(MS). Indeed, given the correlation existing between BH 
and clinical disability [1–3], MS international guidelines 
recommend to always include their presence and number 
in neuroradiological reports [4, 5]. Although the presence 
of acute inflammation is related to the detection of transient 
BH [6, 7], the prognostic relevance relies on the presence of 
chronic BH, persisting for at least 6 months [8, 9] in absence 
of contrast-enhancement [7], which represent areas of severe 
tissue destruction, with irreversible axonal and neuronal loss 
[1, 3, 6].

Operationally, BH have been defined, more than 20 years 
ago, as T1-weighted (T1w) hypointense lesions with signal 
intensity comprised between the one of the gray matter (GM) 
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and that of the cerebrospinal fluid (CSF) on Spin-Echo (SE) 
T1w images [10], corresponding to hyperintense lesions on 
T2w images [6, 11, 12]. Nonetheless, the last decades have 
seen the increase in acquisition of 3D T1w sequences not 
only in research settings (i.e., for brain atrophy quantita-
tive assessment), but also in everyday clinical practice [13]. 
These sequences, with the Magnetization-Prepared RApid 
Gradient-Echo (MPRAGE) being the most representative 
among them, lead to a large variety of advantages, such as 
increased spatial resolution and decreased acquisition time, 
but are obviously characterized by a different tissue con-
trast compared to standard SE-T1w sequences [14]. Accord-
ingly, it has been demonstrated that the evaluation of SE-
T1w and 3D-Gradient-Echo (GrE)-T1w sequences leads to 
the identification of a different number of T1w hypointense 
lesions in MS [15]. So far, however, no information about 
intra-reader reproducibility, a crucial point in the evalua-
tion of a condition such as MS in which seriate MRI scans 
are acquired, is available in the literature. Furthermore, no 
previous work has investigated inter-reader reproducibility 
between neuroradiologists with different years of expertise 
in MS. Indeed, it can be hypothesized that new generations 
of neuroradiologists might be more likely trained to evaluate 
3D-GrE-T1w sequences, which are acquired always more 
widely and routinely.

Given this background, aim of this study was to inves-
tigate the possible impact of different sequences (SE-T1w 
or 3D-GrE-T1w), image resolution, and level of training 
on the intra- and inter-rater reliability of BH identifica-
tion in MS. Finally, as different degrees of microstruc-
tural changes have been reported in SE-T1w compared 
to 3D-GrE-T1w hypointense lesions [16], to explore the 
clinical meaningfulness of different assessment approaches 
we tested correlations between BH identified on different 
sequences and disability.

Material and methods

Compliance with ethical standards

This study was approved by the local Ethics Committee, 
in accordance with the ethical standards of the institutional 
research committee and with the 1964 Helsinki Declaration 
and its later amendments. Written informed consent was 
obtained from all patients prior to enrolment.

Participants

In this single center study, MRI data from MS patients 
prospectively acquired from January 2019 to December 
2021 in the context of a larger prospective MRI study were 
selected. To be included in this study, patients had to fulfill 

the following inclusion criteria: age ≥ 18 or ≤ 70 years; MS 
diagnosis according to the 2017 revision of the McDonald’s 
criteria [17] absence of any medical conditions associated 
with brain pathology other than MS; an Expanded Disabil-
ity Status Scale (EDSS) obtained within one week from 
the MRI exam; a Relapsing–Remitting (RR-MS) course 
according to Lublin et al. [18]. The following exclusion cri-
teria were then applied: unavailability of a T1w sequence 
acquired after gadolinium administration; unavailability of 
both SE-T1w and 3D-GrE-T1w sequences acquired in the 
same MRI session; images with poor quality (i.e. due to 
motion artifacts) or patients with exclusively large conflu-
ent lesions.

A flowchart showing the number of patients included and 
excluded from the study is available in Fig. 1.

Images acquisition

All brain MRI scans were acquired on the same 3T scan-
ner (Trio, Siemens Medical Systems, Erlangen, Ger-
many) using the same acquisition protocol, that included 
a 3D Fluid-Attenuated Inversion Recovery sequence 

Fig. 1  Flowchart showing inclusion and exclusion criteria. 
Flowchart showing how the sample size of this study was reached 
after the application of inclusion and exclusion criteria. Abbrevia-
tions: MS = Multiple Sclerosis; SE = Spin-Echo; GrE = Gradient-
Echo; T1w = T1-weighted 
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(FLAIR; TR = 6000 ms, TE = 396 ms, TI = 2200 ms, voxel 
size = 1x1x1mm, 176 sagittal slices, no gap), a 2D SE-
T1w sequence acquired before gadolinium administration 
(TR = 615 ms, TE = 8.5 ms, voxel size = 1x1x3mm, number 
of slices = 40, no gap) as well as a 3D-GrE-T1w volume 
(MPRAGE, TR = 2500 ms, TE = 2.8 ms, TI = 900 ms, voxel 
size = 1x1x1mm, 160 axial slices, no gap) before and after 
contrast administration.

All T1w sequences were acquired with the same bicom-
misural orientation along the AC-PC line, to minimize pos-
sible errors in image evaluation due to multiplanar recon-
struction of the 3D-GrE-T1w volume.

MRI data analysis

Three different sequences were evaluated by the readers in 
this study, namely the SE-T1w, the 3D-GrE-T1w (with a 
slice thickness = 1 mm) and the resliced-(rs)GrE-T1w (with 
a slice thickness = 3 mm). Indeed, given the differences in 
resolution between the 2D-SE-T1w and the 3D-GrE-T1w 
volume, the latter was resliced to a 2D-GrE-T1w sequence 
with a slice thickness equal to the one of the SE-T1w 
(3 mm), in order to retain only the effect of different tissue 

contrasts on BH evaluation and evaluate the possible effect 
of the different spatial resolution.

All images were independently evaluated by two read-
ers with different expertise: a neuroradiology fellow with 
4 years of experience in the field of MS (Reader A) and a 
board-certified neuroradiologist with more than 10 years of 
experience in MS field (Reader B).

Both readers evaluated images a first time (T0), and after 
a wash-out period of 30 days (T1).

To provide data in a different order and minimize possible 
learning curve effects, a random alphanumeric identification 
code was assigned to each sequence at T0 and randomly 
changed at T1.

At all steps, images were evaluated with the readers being 
blinded to any clinical or demographic information.

According to the literature [7, 11, 19], BH were defined 
as non-enhancing T1w hypointense lesions, with a mini-
mal diameter of 3 mm and an intensity comprised between 
the CSF and the GM and corresponding to FLAIR hyperin-
tensities. An example of what has been defined as chronic 
BH on both SE-T1w and GrE-T1w sequences is shown in 
Fig. 2. Confluent or poorly defined lesions, as well as acute 
BH (i.e., those showing enhancement after gadolinium 

Fig. 2  Examples of chronic 
BH. In the upper row, SE-T1w 
(A) and 3D-GrE-T1w (B) 
images of a 58-year-old woman 
with MS. In the lower row, 
examples of lesions classified 
as chronic BH by an expert 
neuroradiologist (Reader B) 
on SE-T1w (C, arrows) and 
3D-GrE-T1w (D, arrows), 
respectively
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administration), were excluded from the lesion count. An 
example of confluent periventricular and acute BH lesions 
is shown in Fig. 3.

Statistical analysis

All statistical analyses were performed using R (v. 4.2.1). 
Descriptive statistics are reported for demographics and 
lesion count.

Intraclass correlation coefficient (ICC) and correspond-
ing 95% confidence intervals (CI) were employed to assess 
intra- and inter-reader reliability separately for each of 
the three sequences. Inter-reader reliability was assessed 
between readers’ T0 evaluations to minimize the influence 
of possible learning curve effects. According to the study 
by Koo and colleagues [20], values greater than 0.9 indi-
cated excellent reliability, values ranging from 0.75 to 0.9 
and from 0.5 to 0.75 indicated good and moderate reliability 
respectively, while values of less than 0.5 were indicative of 
poor reliability.

Additionally, these analyses were also replicated using 
Cohen's kappa statistics (Supplementary Materials).

Possible correlations between BH number on each MRI 
sequence at T0 (Reader B) and patients’ clinical status, 
assessed via EDSS, were tested with Pearson correlation 
coefficient analysis.

Results

After the application of the inclusion and exclusion cri-
teria, eighty-five MS patients were included in the analy-
sis (M/F = 22/63; mean age = 36.0 ± 10.2 years; median 
EDSS = 2.0 [range: 2.0 – 3.0]).

Means, standard deviations and medians of BH counts for 
each reader, sequence and assessment session are reported 
in Table 1.

For both readers, the intra-reader ICC analysis showed 
that SE-T1w and rsGrE-T1w images achieved an excel-
lent performance in terms of reliability, whereas 3D-GrE-
T1w scans achieved a moderate one. In particular, when 
evaluating the intra-reader reliability for Reader A, the 
highest reliability was associated with SE-T1w images 
(ICC = 0.98, CI = 0.97—0.99), followed by rsGrE-T1w 
images (ICC = 0.95, CI = 0.92—0.97), while 3D-GrE-T1w 

Fig. 3  Examples of large 
periventricular and active BH. 
In the upper row, SE-T1w (A) 
and 3D-GrE-T1w (B) images of 
a confluent periventricular BH 
in 53-year-old woman with MS 
that were not evaluated in this 
study. In the lower row, pre- (C) 
and post-contrast 3D-GrE-T1w 
(D) images showing an active 
BH in a 28-year-old woman 
with MS
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images presented the lowest ICC value (ICC = 0.86, 
CI = 0.79—0.91) (Fig. 4). On the other hand, when evalu-
ating the intra-reader reliability for reader B, the highest 
reliability was associated to rsGrE-T1w images (ICC = 0.94, 
CI = 0.91—0.96), followed by SE-T1w images (ICC = 0.91, 
CI = 0.86—0.95). 3D-GrE-T1w images presented the lowest 

ICC value also in this case (ICC = 0.86, CI = 0.78—0.91) 
(Fig. 4).

Finally, in the inter-reader ICC analysis between Reader 
A and Reader B assessments at T0, each of the three 
sequences achieved a moderate performance. Indeed, 
despite the highest reliability being associated with SE-T1w 
images (ICC = 0.84, CI = 0.76—0.89), followed by 3D-GrE-
T1w (ICC = 0.83, CI = 0.74—0.89) and rsGrE-T1w images 
(ICC = 0.81, CI = 0.72—0.87), similar ICC values and 
respective confidence intervals were observed. Comparable 
results were also obtained when the Cohen's kappa analysis 
was carried out (Supplementary Materials).

For all sequences, a significant correlation was 
observed between BH number and EDSS score (SE-T1w: 
r = 0.25, p = 0.03, CI = 0.03–0.45; rsGrE-T1w: r = 0.30, 
p < 0.01, CI = 0.08–0.49; 3D-GrE-T1w: r = 0.28, p = 0.01, 
CI = 0.06–0.47).

Discussion

The present study demonstrates that, applying the traditional 
definition of BH, the 3D-GrE-T1w sequence is prone to a 
greater intra-reader variability compared to the SE-T1w, 
with this effect being driven by the higher spatial resolution 
of the 3D-GrE-T1w sequence. Indeed, when evaluating the 
latter sequence but resampled to a resolution comparable to 
the one usually acquired of the SE-T1w acquisitions (thus 
preserving the different contribution to tissue contrast only, 
minimizing the possible effects of voxel resolution), we 

Table 1  Summary of descriptive statistics of the BH assessment

SE = Spin-Echo; GrE = Gradient-Echo; T1w = T1-weighted;  
rs = resliced

Sequence Mean BH 
count

Standard  
deviation

Median

Reader A—T0
  3D-GrE-T1w 5.4 9.9 2
  rsGrE-T1w 2.9 4.7 1
  SE-T1w 1.9 3.2 0

Reader A—T1
  3D-GrE-T1w 4.4 7.2 1
  rsGrE-T1w 3.3 4.7 1
  SE-T1w 2.0 3.3 1

Reader B – T0
  3D-GrE-T1w 4.0 7.6 1
  rsGrE-T1w 3.7 5.1 2
  SE-T1w 1.7 4.1 0

Reader B – T1
  3D-GrE-T1w 2.9 5.7 0
  rsGrE-T1w 3.5 5.8 1
  SE-T1w 2.3 4.2 0

Fig. 4  Results of ICC analysis for intra-reader reliability evalua-
tion. Intraclass correlation coefficient and corresponding confidence 
intervals of BH assessment by the two readers (A and B, with 4 and 

10  years of experience respectively) for the evaluated sequences. 
Abbreviations: ICC = Intraclass Correlation Coefficient; SE = Spin-
Echo; GrE = Gradient-Echo; T1w = T1-weighted; rs = resliced 
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observed a comparable reliability in comparison to the one 
achievable with the SE-T1w.

Over the last years, 3D-GrE-T1w sequences have been 
largely preferred to SE-T1w, allowing for the relatively fast 
acquisition of whole brain volumes indispensable in research 
settings for morphometric segmentation and GM volume 
and thickness quantitative evaluation, but also reducing 
acquisition times with direct impact on the everyday clini-
cal practice [16, 21]. Furthermore, the higher sensitivity 
of these sequences in identifying small lesions and subtle 
differences in tissue contrast is well-known [15, 21], as in 
future they also might be use as inputs in machine-learning 
algorithms that might help improving their detection [22]. 
Regarding BH identification, the issue of reproducibility has 
gained a growing interest over time [15, 23]. Indeed, reli-
ability in BH identification directly affects neuroradiological 
reports, consequently impacting the information provided to 
the neurologists. Our results indicate that, more than image 
contrast, spatial resolution is directly related to reliability. 
As such, the evaluation of a resliced 3D-GrE-T1w   sequence 
in clinical practice could result in higher reproducibility in 
BH assessment, closer if not comparable to the one obtained 
with the SE-T1w images. Interestingly, when assessing the 
inter-observer reliability between a young reader and a more 
experienced neuroradiologist, we observed similar concord-
ance for all sequences, with only a slightly higher agreement 
when the SE-T1w sequence was evaluated, suggesting that 
the different level of expertise could exert a similar influence 
on variability independently form the sequence. A possible 
explanation for this finding could be researched in the above-
mentioned widespread and increasing diffusion of 3D-GrE-
T1w images in clinical practice, which could have led to 
the acquaintance with BH detection on this sequence also 
in less experienced raters. On the other hand, whereas the 
last update of MAGNIMS–CMSC–NAIMS guidelines on 
MRI protocols in MS focuses on acquiring high-resolution 
T1w sequences [13], it is noteworthy to mention that some 
MS centers kept the habit of acquiring SE-T1w sequences. 
Thus, further studies are warranted to explore the reliability 
of these different sequences in BH assessment by readers 
without a specific experience in the MS field, to better simu-
late the daily clinical setting.

When evaluating correlations between BH and disabil-
ity, our results are in line with previous studies showing the 
correlation between BH numbers and EDSS for all three 
sequences [15, 16]. Indeed, we found a weak, although sta-
tistically significant, correlation between these variables, a 
result expected also given the small range of EDSS of our 
MS group. It is noteworthy to remember that while the path-
ological relevance of SE-T1w hypointense lesions is clear 
and well understood, changes underlying hypointense lesions 
on 3D-GrE-T1w sequences do not seem to be univocally 

clarified [24]. Indeed, while more severe microstructural 
changes characterize SE-T1w compared to 3D-GrE-T1w 
hypointense lesions [16], the latter might represent the sum 
of a wide range of pathologic features, part of which could 
be reversible, such as edema and inflammation [15, 25].

This investigation does present some limitations. In the 
first place, being a single center study, the relatively small 
sample size here included could have lowered the sen-
sitivity of our analyses, also considering that our group 
of patients included only RR-MS phenotypes, while it is 
known that the BH are commonly found (although usu-
ally in a confluent manner) in progressive stages of the 
disease [26]. Secondly, we only explored possible corre-
lations between BH number and EDSS, as it would be of 
interest to further confirm their prognostic role by proving 
the correlation with other known prognostic biomarkers 
of the disease. Furthermore, since we have analyzed only 
images acquired on a 3T scanner, this study lacks infor-
mation about the reliability of these sequences at 1.5T. 
Despite the well know limitations in routine acquisitions 
associated with a lower magnetic field strength [27], 1.5T 
scanners are widely used in clinical neuroradiological 
practice and therefore it could be of interest to compare 
the reliability of these different sequences at 1.5T. Moreo-
ver, in this study we could not address the variability in 
BH assessment across the wide range of scanner vendors 
and platforms currently available, also in the light of the 
systematic differences that can be present in studies with 
consistent scanner field strength and manufacturer after 
protocol harmonization [28]: for these reasons, future 
multi-center perspective studies are warranted to evaluate 
whether the results here presented can be generalized to 
different scanner platforms and field strengths.

Despite being characterized by these limitations, our 
study suggests that to ensure reliability levels comparable 
with the standard SE-T1w in BH count, which is crucial in 
the neuroradiological workup of MS patients, an assessment 
on a resliced GrE-T1w sequence should be recommended.

Supplementary information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00234- 024- 03310-5.
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