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Abstract
Purpose Hemorrhagic transformation (HT) is an independent predictor of unfavorable outcome in acute ischemic stroke 
(AIS) patients undergoing endovascular thrombectomy (EVT). Its early identification could help tailor AIS management. 
We hypothesize that machine learning (ML) applied to cone-beam computed tomography (CB-CT), immediately after EVT, 
improves performance in 24-h HT prediction.
Methods We prospectively enrolled AIS patients undergoing EVT, post-procedural CB-CT, and 24-h non-contrast CT 
(NCCT). Three raters independently analyzed imaging at four anatomic levels qualitatively and quantitatively selecting 
a region of interest (ROI) < 5  mm2. Each ROI was labeled as “hemorrhagic” or “non-hemorrhagic” depending on 24-h 
NCCT. For each level of CB-CT, Mean Hounsfield Unit (HU), minimum HU, maximum HU, and signal- and contrast-to-
noise ratios were calculated, and the differential HU-ROI value was compared between both hemispheres. The number of 
anatomic levels affected was computed for lesion volume estimation. ML with the best validation performance for 24-h HT 
prediction was selected.
Results One hundred seventy-two ROIs from affected hemispheres of 43 patients were extracted. Ninety-two ROIs were 
classified as unremarkable, whereas 5 as parenchymal contrast staining, 29 as ischemia, 7 as subarachnoid hemorrhages, and 
39 as HT. The Bernoulli Naïve Bayes was the best ML classifier with a good performance for 24-h HT prediction (sensitiv-
ity = 1.00; specificity = 0.75; accuracy = 0.82), though precision was 0.60.
Conclusion ML demonstrates high-sensitivity but low-accuracy 24-h HT prediction in AIS. The automated CB-CT imag-
ing evaluation resizes sensitivity, specificity, and accuracy rates of visual interpretation reported in the literature so far. A 
standardized quantitative interpretation of CB-CT may be warranted to overcome the inter-operator variability.
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Introduction

Hemorrhagic transformation (HT) represents the most severe 
and dreaded complication of acute ischemic stroke (AIS) and 
is an independent predictor of unfavorable outcome. The 
rate of HT is increased by revascularization procedure and 
is estimated to occur as symptomatic in 4.4% in the pooled 
analysis from 5 endovascular thrombectomy (EVT) trials 
[1] and in up to 6–7% of treated patients in both extended 
time window EVT trials [2, 3]. However, other factors might 
drive an increased risk of HT, such as sustained postpro-
cedural hypertension and higher blood pressure variability 
within 24 h after EVT [4].
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Follow-up brain imaging is usually performed within 
24 h, or before in cases of neurological worsening, to detect 
HT, guide antithrombotic treatment regimen, even peri-pro-
cedural, and evaluate final infarct volume [5].

In the last years, the possibility of detecting peri-interven-
tional intracranial hemorrhagic complications directly in the 
angiographic suite, using cone-beam computed tomography 
(CB-CT) scan, has gained increased attention [6]. However, 
most of the studies using CB-CT immediately after EVT 
have applied only a qualitative visual assessment [7, 8] to 
detect HT resulting in a variable predictive performance. 
The diagnostic challenge remains to differentiate abnor-
mal post-EVT contrast staining (mimicking subarachnoid, 
intraventricular, or intracerebral hemorrhage) from actual 
intracranial hematomas [6–10]. Thus, the early detection of 
hemorrhagic outcomes using CB-CT immediately after EVT 
could improve the clinical care management of AIS patients. 
To date, there is only one study using an objective approach 
based on maximum-Hounsfield Unit (HU) measurements 
on CB-CT hyperdense lesions to predict 24-h HT [10]. This 
study showed promising results with an area under the curve 
(AUC), sensitivity, and specificity of 0.805, 96%, and 84%, 
respectively [10].

Machine learning (ML) application has been shown to 
improve the diagnostic accuracy of imaging in many fields, 
including AIS [11–13]. We hypothesize that the automated 
extraction of quantitative data from predefined regions of 
CB-CT immediately after EVT could help predict the 24-h 
HT risk in AIS patients and may implement visual neuroim-
aging assessment in the acute setting of AIS.

Materials and methods

Patient population

Between 15 January and 30 April 2022, all consecutive 
patients admitted at our Comprehensive Tertiary Stroke 
Center (“Tor Vergata” University Hospital of Rome, Italy), 
with a diagnosis of anterior circulation AIS due to large 
vessel occlusion (LVO) confirmed at brain non-contrast-
computed tomography (NCCT) and CT-angiography under-
going EVT, immediate post-procedural CB-CT and 24-h 
post-treatment NCCT, were prospectively enrolled in this 
study and retrospectively reviewed.

We collected relevant demographic data including age, 
race/ethnicity, and sex, as well as clinical data, i.e., site of 
occlusion, stroke severity, pre-treatment modified Rankin 
Scale, time delays, cardiovascular risk factor, and stroke 
etiology, to define the population. Neuroradiological fea-
tures were also collected including baseline Alberta Stroke 
Program Early CT Score (ASPECTS) on NCCT and Clot 
Burden Score (CBS) on CT-angiography. Final reperfusion 

status after EVT was graded according to the modified TICI 
(mTICI) score, in which mTICI 2b, 2c, or 3 was accepted as 
successful recanalization [14]. The pre-written study proto-
col retraced our institutional clinical care routine and was 
conducted following the ethical standards laid down in the 
1964 Declaration of Helsinki and its later amendments. The 
local ethics committee approved prospective data collection 
on patients undergoing EVT (Registro Sperimentazioni, R.S. 
25/18). Informed consent was obtained from all individual 
participants included in the study. Data is available upon rea-
sonable request by the corresponding author.

Image acquisition

Brain NCCT and CT-angiography were performed using 
a GE LightSpeed Plus 256 multislice CT scanner with 
conscious sedation when clinically indicated. CB-CT was 
acquired using a monoplane neuro-angiography X-ray system 
(AlluraClarity FD20; Philips Healthcare, Best, the Nether-
lands). The sensor area of the detector measures 30 × 40 cm 
and consists of 2586 × 1904 pixels. The acquisition protocol 
used was the commercially available “Xper-CT HD” proto-
col using the manufacturer’s default settings. The acquisition 
protocol consists of a rotational trajectory over 200° while 
acquiring 620 projection images at 30 frames per second for 
20.8 s. The X-ray tube voltage was set to 120 kV, the focal 
spot to 0.7 mm, and a copper filter of 0.4 mm was used. The 
associated CT Dose Index measures 45 mGy and the effective 
dose measures 1.6 mSv [15, 16]. Pre-processing steps of the 
projection images include offset correction, gain correction, 
scatter correction, and water beam-hardening correction.

Imaging evaluation

All images including immediate post-EVT CB-CT and 24-h 
NCCT were independently reviewed and graded by three 
raters (one radiology resident [F.P.], one senior neurointer-
ventionalist [V.D.R.], and one senior neurologist [I.M.] with 
more than 5 years of experience) blinded to clinical data.

Images were analyzed on the same workstation with pre-
set window levels. From both CB-CT and 24-h NCCT, four 
slices were selected at the following levels: (i) basal gan-
glia, (ii) insula, (iii) bodies of the lateral ventricles, and (iv) 
semioval centers height.

CB-CTs were read at a slice thickness of 3 mm, to match 
that of the 24-h NCCT. Each set of images was randomly 
and blindly analyzed in both a qualitative and quantitative 
fashion.

Image quality was assessed using a scoring system with 
a scale of 0 to 3, modeled on previously published tech-
niques [17]: 0 — non-diagnostic or severely compromised, 
1 — moderately compromised, 2 — mildly compromised, 
and 3 — excellent. The image quality of CB-CT was 
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further compared with 24-h NCCT and graded as worse 
or equal by the readers in consensus.

On CB-CT, four different patterns of pathology were 
identified: (i) hypodense pattern suggesting ischemic 
area; (ii) highly hyper-dense pattern in the subarachnoid 
space suggesting subarachnoid hemorrhage (SAH); (iii) 
smoothly hyper-dense pattern suggesting “parenchymal 
contrast staining” (PCS) due to the blood–brain barrier 
defect; (iv) highly hyper-dense pattern in the brain paren-
chyma suggesting intraparenchymal HT. All the three 
readers recognized one or more pathological patterns, 
when present, for each of the four slices abovementioned, 
in both CB-CT and 24-h NCCT. The density in HU of the 
pathological area was measured using a region of interest 
(ROI) < 5  mm2. In case more than one pattern was recog-
nized in the same slice, ROIs were placed in the paren-
chymal areas where the density appeared more affected 
(in terms of hyperdensity). The same measurements were 
performed also in the analogous anatomical structures 
of the unaffected hemisphere. The differential HU-ROIs 
value was assessed between affected and unaffected brain 
hemispheres for each selected slice.

At 24-h NCCT, the HT was defined as any hyperdense 
lesion in the context of the infarcted area and then classified 
according to the radiological European Cooperative Acute 
Stroke Study (ECASS) I definition [18] in hemorrhagic 
infarction (HI1 or 2) and parenchymal hematoma (PH1 
or 2). Pure SAH (or mixed to contrast extravasation) was 
defined as subarachnoid hyperdense lesions caused by ves-
sel rupture and was similarly assessed on 24-h NCCT [19]. 
Whenever it was not possible to disentangle the pathological 
pattern at 24-h NCCT, a further follow-up neuroimaging 
performed within 7 days after symptoms’ onset was used to 
define the pattern. As a surrogate measure of lesion volume, 
we computed the number of anatomic levels affected for 
each patient, with a 4-point ordinal scale according to the 
possibility of having from 1 to 4 slices affected.

Figure 1 reports an example of the sampling modality of 
the ROIs in CB-CT and 24-h NCCT slices.

Statistical analysis

We used the Statistical Package for the Social Sciences 
22 for Windows to determine median values, interquartile 

Fig. 1  In the first line, we reported the region of interests (ROIs) 
placed on cone-beam computed tomography (CB-CT) slices at the 
level of the most hyperdense area at four predefined anatomical lev-
els: (A) basal ganglia, (B) insula, (C) bodies of the lateral ventricles, 
and (D) semioval centers. At the bottom, we reported the correspond-

ing ROIs on 24-h non-contrast-enhanced computed tomography 
(NCCT) at the same four levels (A′–D′). CB-CT image quality was 
scored 2 (mildly compromised), and the comparison with the image 
quality of 24-h NCCT was graded as equal
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ranges, and percentages. We compared groups for categori-
cal variables with the χ2 test with Yates’s correction or 
Fisher’s exact test, and for continuous variables with the 
Mann–Whitney U test. p Values lower than 0.05 were con-
sidered significant. Interrater reliability was assessed by 
using κ statistics.

In each ROI, we considered the average [Mean (HU)], 
standard deviation [STD (HU)], minimum [Min (HU)], and 
maximum values of HU [Max (HU)], in both ROIs of the 
pathological and unaffected hemisphere. We calculated the 
signal-to-noise ratio (SNR), and the contrast-to-noise ratio 
(CNR) as follows:

Machine learning analysis

We tested whether mean (HU), SNR, CNR, max (HU), min 
(HU), and the number of anatomic levels affected could 
jointly be used to predict at 24-h follow-up two different 
outcomes: hemorrhagic (HC: HT and SAH) from non-hem-
orrhagic (non-HC: ischemic, PCS or “unremarkable” brain 
parenchyma) complications. Because the sample size was 

SNR =
Mean(HU)path.

STD(HU)path.

CNR =
Mean(HU)path. −Mean(HU)unaff .
√

STD(HU)2
path.

+ STD(HU)2
unaff .

too small (172 dyads of ROIs) to allow for a train-test split 
of the dataset, we adopted the leave-one-out validation tech-
nique, a special class of cross-validation technique, which 
ensures unbiased estimates of accuracy on unseen data. With 
leave-one-out cross-validation, we excluded one observa-
tion from ML training and used it for validation; this was 
repeated with all samples in the dataset. We tested several 
algorithms for ML classification: support vector machines, 
quadratic classifiers, decision trees, and artificial neural net-
works (with either one or two fully connected layers). All 
algorithms have been implemented in Python code with the 
scikit-learn package [20]. Leave-one-out validation was also 
needed to exclude classifiers that overperformed in the train-
ing set but underperformed in the validation set, indicating 
model overfitting resulting in a lack of generalization. The 
ML training was performed by a decision tree method (one 
decision tree per leave-one-out iteration). We selected the 
following figures of merit for model performances: (i) accu-
racy, (ii) specificity (also called selectivity), (iii) precision 
(also called positive predictive value (PPV)), and (iv) sensi-
tivity (also called recall or true positive rate (TPR)) (Fig. 2).

All four figures of merit for performances are functions 
of the working threshold of the classifier, also called the 
“operating point.” The higher the threshold is set, the higher 
the specificity will be obtained but the lower the sensitivity 
will be. The working threshold was chosen based on the 
clinical needs, i.e., whether sensitivity and specificity are 
both equally important, or rather there is a criterion that sug-
gests compromising sensitivity in favor of specificity or vice 

Fig. 2  Figures of merit for model performances: (i) accuracy (ACC); (ii) specificity, also called selectivity, or true negative rate (TNR); (iii) pre-
cision, also called positive predictive value (PPV), and (iv) sensitivity, also called recall or true positive rate (TPR).  Adapted from Ma et al. [24]
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versa. For example, the optimal working threshold is chosen 
maximizing the harmonic mean of the PPV and TPR, with 
additional weights if precision and recall have different clini-
cal importance. For this purpose, the Fβ-score is introduced:

where β is commonly chosen between three values: � = 1 
(unweighted harmonic mean PPV and TPR), � = .5 (which 
weighs recall lower than precision), and � = 2 (which 
weighs recall higher than precision).

Given our need to determine the risk of 24-h hemorrhage, 
the F2-score (� = 2) was chosen as a figure of merit the 
machine learning algorithm was set to maximize.

Results

Population

Out of 50 patients, we enrolled 43 patients with a confirmed 
diagnosis of AIS due to anterior LVO undergoing immedi-
ate post-EVT CB-CT and 24-h NCCT. Seven patients were 
excluded since they did not undergo CB-CT for logisti-
cal issues related to the use of a secondary angio suite not 
equipped with CB-CT. Clinical, demographic, and neurora-
diological characteristics and those related to treatment are 
reported in Table 1. Out of 43 patients, 23 presented HC (6 
SAH and 17 HT). Out of 17 patients who developed HT, 5 
patients presented a PH2 subtype, 9 patients a PH1 subtype, 
2 patients HI2, and 1 patient HI1. For a comparison between 
CB-CT and 24-h NCCT scans, see Fig. 3.

According to clinical and demographic characteristics, 
patients who developed HC at 24 h differed from those non-
HC for age (median age 64.5 years [IQR 56–75.5] versus 81 
[IQR 73–82], respectively), and arterial hypertension (~ 61% 
vs 90%, p = 0.039) (Table 1). Considering neuroradiological 
features, patients with HC compared to those with non-HC 
presented a lower ASPECTS (mean value 9 [IQR 8–10] vs 
10 [IQR 9–10], respectively), and CBS (mean value 6 [IQR 
3–6] vs 7 [IQR 6–8], respectively) on baseline NCCT and a 
higher number of anatomic levels affected on immediately 
post-procedural CB-CT (mean value 3 slices [IQR 1–3] vs 
0 slices [IQR 0–2], respectively). There were no differences 
regarding treatment modalities, delays, mTICI scores, or 
functional outcome except for a higher 24-h NIHSS score 
in HC compared to non-HC patients (mean value 18 [IQR 
13–21] vs 8 [IQR 6–18.5], respectively) (Table 1).

Out of 172 ROIs extracted from affected hemispheres, 
92 ROIs were classified unremarkable, 5 were classified as 
PCS, 29 were classified as ischemia, 7 ROIs were classified 
as SAH, and 39 ROIs were classified as HT. The summary 

F� =
(

1 + �2
) PPV × TPR
(

�2
)

PPV + TPR

statistics for the 172 dyads of ROI extracted from the 43 
patients are reported in Table 2. The degree of agreement in 
image interpretation between the three raters was excellent 
(k = 0.9). We needed to analyze further follow-up imaging 
for 7 patients (16.3%) to disentangle the neuroradiological 
pattern.

Image quality

Mean image quality was significantly lower for CB-CT (1.88 
[IQR 1–3]) than for 24-h NCCT (2.51 [IQR 2–3]; p < 0.001).

Predictive value of CB‑CT metrics for hemorrhagic 
complications

The median values of mean (HU), min (HU), max (HU), 
and CNR were all higher in the HC group (SAH or HT) 
compared to the non-HC group (unremarkable parenchyma, 
PCS, or ischemia). Median SNR showed no statistically sig-
nificant association between”HC vs non-HC” groups.

For summary purposes, Fig. 4 shows the distribution of 
all samples concerning mean (HU) and CNR.

Machine learning analysis

When the F2-score was chosen as a figure of merit (thus 
prioritizing sensitivity over specificity) and when all met-
rics were available, the ML method that best performed on 
the validation was a Bernoulli Naive Bayes Classifier with 
MinMaxScaler (with Additive Laplace/Lidstone) smoothing 
parameter alpha = 1 (one classifier per leave-p-out iteration). 
This latter was elected as the ML method classifier of choice.

In Fig.  5, results from the ML predictor are shown. 
Accuracy for classifying HC from non-HC cases was 
82.0% with an AUC = 0.877, precision = 59.7%, sensitivity 
(recall) = 100%, and specificity = 75.4%.

Discussion

The present study reported our preliminary experience of 
ML application on CB-CT performed immediately after 
EVT in patients with AIS, to predict the risk of 24-h HC. We 
proposed a new methodological approach for automatic early 
image analysis interpretation based on the Bernoulli Naive 
Bayes Classifier with MinMaxScaler with a 100% recall rate. 
We observed specificity of 75% and precision of ~ 60% by 
the trained model in HC prediction on unseen data.

Our methodology presents some strengths of innovation. 
First, the use of the highest HU values average hyperdense 
lesion on a single CB-CT slice compared with the contralat-
eral unremarkable hemisphere resulted in a less time-consum-
ing HC evaluation with an accuracy close to the previously 
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Table 1  Bivariate comparison 
between patients with 
and without hemorrhagic 
complications (HC: 
subarachnoid hemorrhage and 
hemorrhagic transformation) 
according to baseline 
characteristics of the study 
population

Bold values denote statistical significance at the p <0.05 level
mRS modified Rankin Scale, NIHSS National Institute of Health Stroke Scale, SBP systolic blood pressure, 
DBP diastolic blood pressure, ASPECTS Alberta Stroke Program Early Computed Tomography Score, 
CBS clot burden score, MCA middle cerebral artery, ICA internal carotid artery, rt-PA recombinant tissue-
plasminogen activator, CB-CT cone-beam computed tomography, TICI thrombolysis in cerebral infarction
Unless specified, values are the number of patients (%)
a Median (interquartile range)

All (n = 43) HC (n = 23) Non-HC (n = 20) p value

Demographic characteristics and vascular risk factors
  Age a 77 (69–83) 73 (64–80) 80 (74.5–84.5) 0.031
  Male 26 (60.4) 15 (65.2) 11 (55.0) 0.545
  Arterial hypertension 32 (74.4) 14 (60.9) 18 (90.0) 0.039
  Hypercholesterolemia 15 (34.9) 9 (39.1) 6 (30.0) 0.749
  Diabetes mellitus 10 (23.2) 4 (17.4) 6 (30.0) 0.473
  Smoking habit 12 (27.9) 6 (26.1) 6 (30.0) 0.998
  Atrial fibrillation 10 (23.2) 5 (21.7) 5 (25.0) 0.997
  Ongoing antiplatelet therapy 22 (51.2) 9 (39.1) 13 (65.0) 0.129
  Ongoing anticoagulant therapy 3 (7.0) 1 (4.3) 2 (10.0) 0.590
  mRS before stroke 1 (0–1) 1 (0–1) 1 (1–1) 0.052

Clinical presentation
  Baseline NIHSS  scorea 18 (15–20) 18 (15–21) 17.5 (10–20) 0.212
  Baseline SBP,  mmHga 150 (125–165) 150 (120–165) 147.5 (130–167.5) 0.599
  Baseline DBP,  mmHga 80 (75–90) 90 (77–100) 80 (75–85) 0.901
  Blood glucose concentration, mg/dla 130 (105–153) 124 (103–140) 141.5 (107–168.5) 0.318
  Wake-up stroke on unknown onset 17 (39.5) 8 (34.8) 9 (45.0) 0.545
  TOAST classification 0.279
     Undetermined origin 16 (37.2) 11 (47.8) 5 (25.0)
     Cardioembolic 24 (55.8) 11 (47.8) 13 (65.0)
     Large vessel occlusion 3 (7.0) 1 (4.3) 2 (10.0)

Neuroradiological features
  Baseline  ASPECTSa 9 (9–10) 9 (8–10) 10 (9–10) 0.035
  Baseline CBS  scorea 6 (6–8) 6 (3–6) 7 (6–8) 0.029
  Levels affected in CB-CT,  nra 1 (0–3) 3 (1–3) 0 (0–2) 0.001
  Site of occlusion 0.351
     Isolated MCA-M1 26 (60.5) 14 (60.9) 12 (60.0)
     Isolated MCA-M2 5 (11.6) 1 (4.3) 4 (20.0)
     Tandem 2 (4.6) 2 (8.7) –
     Terminal ICA L-type 6 (13.9) 4 (17.4) 2 (10.0)
     Terminal ICA T-type 4 (9.3) 2 (8.7) 2 (10.0)

Revascularization treatment
  Rt-PA 21 (48.8) 12 (52.2) 9 (45.0) 0.763
  1st admission to telestroke spoke center 16 (37.2) 10 (43.5) 6 (30.0) 0.528
  Onset-to-groin time,  mina 298 (242–410) 288 (174–410) 304 (249–407) 0.733
  Onset-to-recanalization time,  mina 310 (260–418) 297 (240–421) 327 (271–418) 0.761
  Onset-to-CB-CT time,  mina 324 (285–430) 324 (289–430) 340.5 (277.5–435) 0.817
  Device passages,  nra 2 (1–3) 2 (1–3) 1 (1–2) 0.051
  Procedure duration,  mina 20 (14–30) 22 (15–31) 18.5 (14–28) 0.770
  Orotracheal intubation 5 (11.6) 1 (4.3) 4 (20.0) 0.167

Outcome
  TICI score ≥ 2b 36 (83.7) 20 (87.0) 16 (80.0) 0.687
  Mortality rate 4 (9.3) 4 (17.4) – 0.111
  24-h NIHSS  scorea 14 (7–20) 18 (13–21) 8 (6–18.5) 0.047
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proposed whole lesion(s) average HU evaluation, proposed 
by Chen et al. [10]. Moreover, the differential HU-ROI meas-
urements between affected (ROIs placed in the most hyper-
dense parenchymal area) and unaffected brain hemisphere 
performed at four different anatomic levels provide a panel 

of data related to HU distribution in ROIs (Mean, Min, Max, 
SNR, and CNR). This last was used to train the ML algorithm 
and can potentially provide its further training.

Second, the ML analysis allows unbiased estimation of 
statistical metrics (accuracy, AUC, precision, recall) perfor-
mances of the model trained on most of the data (i.e., 80%) 
in predicting an outcome on unseen data (i.e., 20%). In this 
way, the selection of classifiers overperformed in the training 
but underperformed in the validation set was avoided, testing 
the real validity and reproducibility of the model selected.

Third, by choosing the F2-score as a training learning 
goal, we explicitly searched for a ML model biased toward 
a higher recall supported by the need for a more conservative 
clinical approach, indulgent with type I errors (false positive 
rate), which minimizes type II errors (false-negative rate). In 
other words, we admitted the possibility to overestimate the 
rate of HC rather than underestimate it. Our results reflect 
this approach: in leave-p-out cross-validation, we obtained 
the highest possible sensitivity of 100%, corresponding to an 
ML algorithm that would report all HC, at the expense of a 
sub-optimal specificity (75%), which result in falsely reporting 
as “perspective hemorrhagic case” approximately one-fourth 
of patients with benignant outcomes. We considered this per-
formance acceptable from a clinical perspective. Indeed, the 
objective interpretation of CB-CT with the use of ML in the 
angio suite immediately after or during EVT could be retrans-
lated not only in a safer and tailored medical management in an 
acute setting (i.e., in the case of antiplatelet therapy adminis-
tration during emergent stenting for AIS due to tandem occlu-
sions) but also to eventually redefine a stricter neuroimaging 
follow-up (i.e., before the “standard” 24 h) in selected patients.

Despite these encouraging results, our study showed a 
roughly 60% precision for HC prediction. Although our 
model was trained by operator-defined ROI, this perfor-
mance significantly differs from the sensitivity, specificity, 
and accuracy rates (often over 90%) of visual CB-CT assess-
ment reported in the literature so far [7, 8, 10]. We may spec-
ulate that the low ML precision resizes the post-treatment 
CB-CT visual subjective performance, highlighting the need 
for a more standardized quantitative one, to overcome the 
operator variability interpretation.

Moreover, our ML method still has room for improvement 
as well. In fact, despite our good experience with the routine 
evaluation of CB-CT post-thrombectomy images, our ML 
approach is mainly based on the manually performed input 
we used, hampering the translation of complex disease pat-
terns into a finite number of feature descriptors.

The use of a more sophisticated ML framework such as 
deep learning, based on deep convolutional neural networks, 
most used for pattern recognition tasks in images, automati-
cally extracts relevant features from the training samples 
without manually designed features required as input. This 
artificial intelligence approach, when adequately trained, is 

Fig. 3  (A) The machine learning (ML) evaluation of the cone-beam 
computed tomography (CB-CT) slice at the level of the bodies of the 
lateral ventricles performed immediately after successful endovas-
cular thrombectomy (EVT) of the left MCA-M1 occlusion, and (B) 
24-h non-contrast-enhanced computed tomography (NCCT) of the 
same patients detected a PH2 hemorrhagic transformation (HT); (C) 
the ML evaluation of the CB-CT slice at the level of the basal gan-
glia performed immediately after MT detected with good accuracy 
the PH1-HT but, less sharply the surrounding area of ischemic core 
hypodensity, and (D) 24-h NCCT of the same patients confirmed the 
PH1-HT with better delineation of the final ischemic core. (E) ML 
evaluation of the CB-CT slice at the level of the insula performed 
immediately after MT demonstrates with low-accuracy differences in 
hypodensity between the right affected insula and the left unaffected 
area, while the 24-h NCCT (F) of the same patient better delineates 
the final ischemic core at the level of the right insula secondary to 
unsuccessful right MCA-M2 occlusion
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expected to be more robust and accurate to the wide range of 
variations in features between different hemorrhagic/classes 
of hyper-densities on CB-CT.

Importantly, since the deep learning process is automated, 
as long as the training set is much larger and more diverse, 

it can easily analyze thousands of cases that even human 
experts may not be able to see and memorize in their lifetime 
[21]. If properly developed, validated, and implemented, this 
more sophisticated approach can be expected to be a more 
efficient data analytics artificial intelligence tool that might 
complement the experience of clinicians and improve patient 
care in terms of accuracy and workflow.

Our study presents three main limitations. First, the 
sample size was small due to the exploratory nature of the 
hypothesis. Nevertheless, the methodological procedure cho-
sen, allowed us to extract data from 344 regions to perform 
an ML analysis.

Second, after the post-procedural CB-CT, HC was 
assessed only with 24-h NCCT with no systematically addi-
tional imaging follow-up, if not deemed necessary. The main 
reason is that our center represents a Comprehensive Stroke 
Center, so follow-up imaging was frequently performed 
in the Primary Stroke Centers where patients were further 
addressed. However, we specifically designed the study to 
assess the predictive value of CB-CT related to 24-h NCCT 
patterns, which is the most relevant question in clinical 

Table 2  The median value within each pattern at the evaluation of 
the cone-beam computed tomography slice: mean HU [Mean (HU)], 
the minimum HU inside the ROI [Min (HU)], the maximum HU 

inside the ROI [Max (HU)], SNR, and CNR on the affected side. 
Differences in median values (Δ) of mean (HU) within each pattern 
between the two sides (affected and unaffected)

HC hemorrhagic complications, ROI region of interest, PCS parenchymal contrast staining, HT hemorrhagic transformation, SAH subarachnoid 
hemorrhage, SNR signal-to-noise ratio, CNR contrast-to-noise ratio

Affected side Δ values 
between 2 
sides

Outcome ROIs (n) Mean (HU) Min (HU) Max (HU) SNR CNR Mean (HU)

Non-HC Unremarkable 92 51.5 41.0 61.9 18.2  − 0.25  − 0.7
PCS 5 111.8 95.4 126.6 12.6 9.2 28.5
Ischemia 29 84.6 74.5 98.2 51.8 9.8 28.4

HC SAH 7 167.7 153.6 168.6 155.1 47.1 110.4
HT 39 111.7 97.1 124.9 43.5 22.5 70.0

Fig. 4  Scatter plot of contrast-to-noise ratio (CNR) vs mean (HU) in 
five groups

Fig. 5  Left: area under the 
curve (AUC) obtained by clas-
sification of hemorrhagic com-
plications vs. non-hemorrhagic 
complications as obtained by 
a Bernoulli Naive Bayes Clas-
sifier trained over the whole 
dataset. Right: confusion matrix 
of the final classification
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practice. Moreover, the persistence of hyper-densities at 
NCCT performed after 19 to 24 h has been demonstrated 
to strongly predict HT (specificity 100%, sensitivity 62.5%) 
and to be the only reliable method to differentiate PCS from 
HT [22]. Finally, in our population, symptomatic intracra-
nial hemorrhage occurred in ~ 11% of cases, which is higher 
than classically reported rates of clinical trials and prospec-
tive stroke registries [1–3]. We could not exclude a selec-
tion bias due to the exclusion of a little share of patients for 
the already mentioned unavailability of the CB-CT in the 
secondary AIS angio suite. In fact, the percentage of symp-
tomatic intracranial hemorrhage reported elsewhere in our 
population was 3.7%, which is close to the known clinical 
trial and stroke registries [23]. Nonetheless, this bias did not 
affect the study quality or the results’ generalizability, since 
our research question concerns the discriminative capability 
of CB-CT in predicting HC.

Conclusions

To the best of our knowledge, this is the first study apply-
ing ML to CB-CT performed immediately after EVT. The 
proposed approach seems to resize the few results available 
so far in the literature regarding the visual qualitative inter-
pretation of the CB-CT images after EVT. Despite our pre-
liminary data with ML being suboptimal, this tool could be 
adequately implemented, and this novel standardized quan-
titative CB-CT imaging analysis is warranted to overcome 
the inter-operator variability of interpretation, representing 
a further step towards a more precise and personalized medi-
cine for our patients.
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