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Abstract
Introduction Deep learning–based MRI reconstruction has recently been introduced to improve image quality. This study 
aimed to evaluate the performance of deep learning reconstruction in pediatric brain MRI.
Methods A total of 107 consecutive children who underwent 3.0 T brain MRI were included in this study. T2-weighted brain 
MRI was reconstructed using the three different reconstruction modes: deep learning reconstruction, conventional reconstruc-
tion with an intensity filter, and original T2 image without a filter. Two pediatric radiologists independently evaluated the 
following image quality parameters of three reconstructed images on a 5-point scale: overall image quality, image noisiness, 
sharpness of gray–white matter differentiation, truncation artifact, motion artifact, cerebrospinal fluid and vascular pulsation 
artifacts, and lesion conspicuity. The subjective image quality parameters were compared among the three reconstruction 
modes. Quantitative analysis of the signal uniformity using the coefficient of variation was performed for each reconstruction.
Results The overall image quality, noisiness, and gray–white matter sharpness were significantly better with deep learning 
reconstruction than with conventional or original reconstruction (all P < 0.001). Deep learning reconstruction had signifi-
cantly fewer truncation artifacts than the other two reconstructions (all P < 0.001). Motion and pulsation artifacts showed no 
significant differences among the three reconstruction modes. For 36 lesions in 107 patients, lesion conspicuity was better 
with deep learning reconstruction than original reconstruction. Deep learning reconstruction showed lower signal variation 
compared to conventional and original reconstructions.
Conclusion Deep learning reconstruction can reduce noise and truncation artifacts and improve lesion conspicuity and overall 
image quality in pediatric T2-weighted brain MRI.
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Introduction

Magnetic resonance imaging (MRI) is increasingly used in 
evaluating children’s brain because, different from computed 
tomography, it entails no radiation exposure and provides 
superior soft tissue contrast. However, MRI is an inherently 
slow technique; therefore, parameters should be adjusted 
to maximize the image quality at a limited scanning time, 
especially in children who cannot stay still for a long time 
and frequently need to be sedated for examinations. Many 
techniques, such as parallel imaging, partial Fourier, and 
compressed sensing, have been developed to reduce scan 
time and are used in practice. However, signal-to-noise and/
or spatial resolution is often compromised [1, 2].

Recently, deep learning techniques have been applied 
in various medical imaging fields. In particular, deep 
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learning–based MRI reconstruction has recently been intro-
duced to improve image quality while decreasing computa-
tional power and reconstruction time. One of the novel deep 
learning–based MRI reconstructions (AIR™ Recon DL, GE 
Healthcare) has become commercially available. Instead of 
traditional reconstructions using the Fourier transform, this 
novel deep learning–based MRI reconstruction takes raw 
k-space data as input and uses a convolutional neural net-
work trained on millions of pairs of low- and high-quality 
images to directly produce high-fidelity images as output. 
Recent clinical studies using the prototype of AIR Recon DL 
have demonstrated improved image quality in brain imaging 
[3, 4] and orthopedic [5, 6], cardiac [7–9], prostate [10, 11], 
and peripheral nerve MRI [12].

However, to the best of our knowledge, all studies have 
been conducted in adults, and no study has been conducted 
regarding the usefulness of DLR in pediatric brain imag-
ing. For children, such image quality improvement tech-
niques are necessary because of their smaller voxel size and 
relatively tight scan times compared to adults.

Therefore, our study aimed to evaluate the performance 
of newly developed deep learning reconstruction (DLR) in 
pediatric brain T2-weighted images by comparing with the 
conventional filtered and original T2-weighted images.

Materials and methods

Our Institutional Review Board approved this retrospective 
study and waived the requirement for informed consent.

Study population

From February 2021 to March 2021, 109 consecutive brain 
MR examinations in the 3.0 T brain MRI (SIGNA Premier, 
GE Healthcare) with axial T2-weighted sequence were used 
in this study. Two children underwent brain MRI twice. 
Therefore, a total of 107 Asian children (51 boys and 56 
girls; mean age, 8.5 years [age range, 2 months–18 years]) 
were included. These patients were imaged for a variety of 
clinical indications: initial work-up for symptoms (seizure 
[n = 9], headache [n = 8], developmental delay [n = 2], focal 
neurologic deficit [n = 2], microcephaly or macrocephaly 
[n = 4], scalp or skull lesions [n = 3], evaluation of multiple 
anomalies [n = 4], miscellaneous [n = 5]) or follow-up for 
tumor (n = 31), or follow-up for Moyamoya disease (n = 12), 
congenital vascular anomaly (n = 3), hypoxic–ischemic brain 
injury (n = 8), metabolic disease (n = 4), congenital brain 
malformation (n = 4), neurocutaneous syndrome (n = 2), and 
other conditions (n = 6).

Of the 107 patients, 36 (33.6%) showed focal abnormali-
ties on MRI. The specific types of neuropathologic abnor-
malities evaluated in the 36 patients were as follows: brain 

tumor (n = 11), focal infarction (n = 10), focal parenchymal 
lesion of metabolic disease (n = 5), focal developmental 
lesion (n = 4), intracranial hemorrhage (n = 2), and miscel-
laneous (n = 4).

All of these lesions were annotated on the Picture Archiv-
ing and Communication System (PACS) by one radiologist 
(L.S.B. with 7 years of experience in radiology) prior to 
subsequent evaluation of lesion conspicuity.

Magnetic resonance imaging acquisition

MRI was performed using a 3-T MRI system (SIGNA 
Premier, GE Healthcare) with a 48-channel head coil. 
Axial T2-weighted sequences were obtained using 
the following parameters: repetition time/echo time, 
3386–5294/102–105 ms; flip angle, 142°; field of view, 
180–220 mm; matrix sizes, 360 × 260 or 416 × 300; slice 
thickness, 3–4 mm; slice spacing, 0–1 mm; number of acqui-
sitions, 1; and echo-train length, 13–15. The scanning time 
was 1 min 50 s, on average.

Axial T2-weighted brain MRI was reconstructed using 
the three different reconstruction modes: DLR (AIR™ 
Recon DL), conventional reconstruction with intensity filter 
A (little sharpening, some smoothing) reconstruction, and 
original T2 image without a filter. In DLR, users can modify 
the noise reduction factor. In this study, we employed a high 
noise reduction factor.

A 50 mg/kg dose of oral chloral hydrate was used to 
sedate uncooperative children in our institution.

Qualitative analysis

To qualitatively compare image quality among the three 
reconstruction modes, two pediatric radiologists (C. Y. 
H. and K. S. H., with 1 and 7 years of experience, respec-
tively) evaluated the following seven image quality param-
eters of the three reconstructed images on a Likert 5-point 
scale: overall image quality, image noisiness, sharpness of 
gray–white matter differentiation, truncation artifact, motion 
artifact, cerebrospinal fluid (CSF) and vascular pulsation 
artifacts, and lesion conspicuity. The reviewers evaluated 
all image series on the PACS database. No restrictions were 
applied to window level setting adjustments regarding time 
or ability to scroll through the images. The two reviewers 
were blinded to patient information, including the patient’s 
disease and scan parameters that would identify the type of 
sequence. Reviewers were also asked to report if artifacts 
that were not present in the conventional or original recon-
structions were observed in DLR.

The overall image quality, image noisiness, and sharp-
ness of gray–white matter differentiation were assessed as 
follows: 1, unacceptable; 2, poor; 3, acceptable; 4, good; and 
5, excellent or ideal.
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Three parameters related to image artifacts (truncation, 
motion, and pulsation artifacts) were evaluated as follows: 1, 
unreadable motion artifact, images of non-diagnostic qual-
ity; 2, severe artifact, images degraded but interpretable; 3, 
moderate artifact with some, but not severe, effect on diag-
nostic quality; 4, minimal artifact, no effect on diagnostic 
quality; and 5, no artifact.

Truncation artifact, also known as Gibbs artifact, refers 
to a series of parallel lines at the interface with abrupt and 
intense signal changes. Motion artifacts are caused by ran-
dom motion during the imaging sequence, resulting in blur-
ring and ghosting of the image. Pulsation artifacts indicate 
ghost images caused by periodic motion, such as pulsating 
flow of the internal carotid artery or venous sinuses and pul-
sating CSF flow [13].

For 36 patients with pre-annotated lesions, the lesion con-
spicuity was scored as follows: 1, unable to see; 2, blurry but 
visualized; 3, acceptable; 4, good; and 5, excellent.

Quantitative analysis

One radiologist (K.S.H. with 7 years of experience in radiol-
ogy) performed a quantitative analysis on the PACS data-
base. An axial brain image at the level of the basal ganglia 
was selected, and 10 regions of interest (ROIs) of the same 
size (5–100  mm2) were placed, with particular attention paid 
to avoid inclusion of adjacent non-parenchymal structures 
(blood vessels, sulci, and cisterns) and patient-to-patient size 
adjustments. Ten ROIs were placed as follows: four in the 
deep gray matter (bilateral putamen and thalami), four in the 
white matter (genu and splenium of the corpus callosum and 
bilateral centrum semiovale), and two in the CSF (bilateral 
frontal horns or body of lateral ventricles). To compare the 
three reconstructions, the mean signal intensity and standard 
deviations (SDs) were measured for each ROI; subsequently, 
the measurements were averaged for each tissue type. Signal 
uniformity was quantified and compared using the coeffi-
cient of variation, which is defined as the ratio of the SD to 
the mean value within the ROIs for each tissue type [14].

Statistical analyses

Continuous variables for the study population are summa-
rized as means and SDs. Categorical variables are summa-
rized as counts and percentages.

Qualitative scores were analyzed statistically using 
the Friedman test, followed by post hoc Dunn’s pairwise 
comparisons.

The interobserver agreement between the two radiologists 
was evaluated using the weighted Cohen kappa (κ) test. A 
κ value ≤ 0.20 indicated slight agreement; 0.21–0.40, fair 
agreement; 0.41–0.60, moderate agreement; 0.61–0.80, sub-
stantial agreement; and 0.81–0.99, almost perfect agreement.

Quantitative signal uniformity values were compared 
using one-way repeated measures analysis of variance fol-
lowed by the Bonferroni post hoc test.

All statistical analyses were performed using SPSS Sta-
tistics for Windows version 25.0 (IBM Corp., Armonk, NY, 
USA). A value of P < 0.05 was considered significant.

Results

The overall image quality, noisiness, and gray–white mat-
ter sharpness were significantly better with DLR than with 
conventional or original reconstructions (all P < 0.001, 
post hoc Dunn’s pairwise comparisons). The conventional 
reconstruction showed better overall image quality, noisi-
ness, and gray–white matter sharpness scores compared 
to the original image (all P < 0.05, except for image noise 
score of radiologist 1, post hoc Dunn’s pairwise compari-
sons) (Fig. 1).

The DLR had significantly fewer truncation artifacts than 
the other two reconstructions (all P < 0.001, post hoc Dunn’s 
pairwise comparisons) for both readers. Truncation artifacts 
showed no significant difference between the conventional 
and original reconstructions (Fig. 2).

Fig. 1  Axial T2-weighted 
images of a 2-month-old boy 
with three different reconstruc-
tions (a original reconstruction; 
b conventional reconstruction; 
c deep learning reconstruction). 
Deep learning reconstruction 
shows lower noise and better 
image quality than the other 
two reconstructions. Motion 
artifacts are unaffected with the 
deep learning reconstruction 
(arrows)

A CB
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Motion and pulsation artifacts showed no significant dif-
ference among three reconstructions (Fig. 1). No identifiable 
artifacts related to DLR were reported.

Regarding lesion conspicuity, both radiologist reported 
that DLR scored significantly higher lesion conspicuity than 
original reconstruction (P = 0.001 and 0.002 for radiologist 1 
and 2, respectively, post hoc Dunn’s pairwise comparisons). 
Lesion conspicuity showed no significant difference between 
the conventional and original reconstructions for both read-
ers (Figs. 3 and 4).

The weighted Cohen kappa values for assessing inter-
observer agreement showed almost perfect agreement 
in overall image quality and moderate agreement in 
gray–white matter sharpness, noisiness, truncation artifact, 
and lesion conspicuity scores between the two reviewers.

Table 1 summarizes the results of qualitative analysis 
and interobserver agreement.

DLR was associated with lower signal variation compared 
with conventional and original reconstructions, respec-
tively, indicating higher signal inhomogeneity (coefficients 

of variation were 0.042, 0.055, and 0.060 in white matter; 
0.035, 0.045, and 0.050 in gray matter; and 0.020, 0.024, and 
0.025 in CSF, for DLR, conventional, and original recon-
structions, respectively, all P < 0.001, Bonferroni post hoc 
test after one-way repeated measures analysis of variance, 
Table 2).

Discussion

Over the past several years, deep learning technique 
has been applied to many studies at the cutting edge 
of MR neuroimaging [15]. The main clinical applica-
tions of deep learning in neuroimaging are (1) auto-
mated detection or diagnosis [16–18], (2) prediction 
of outcome and disease status [19], (3) improving the 
image quality [20], and (4) improving the clinical 
workflow [21]. In particular, MR images often suffer 
from low signal-to-noise-ratio (SNR) and low contrast-
to-noise ratio (CNR) along with image artifacts under 

Fig. 2  Magnified views of 
T2-weighted images of an 
8-year-old girl with a history 
of neonatal meningitis. In the 
periphery of the brain, trunca-
tion artifact (annotated by ovals) 
is significantly reduced with the 
deep learning reconstruction (a 
original reconstruction; b con-
ventional reconstruction; c deep 
learning reconstruction)

A CB

A CB

Fig. 3  Magnified views of axial T2-weighted images obtained from a 
16-year-old girl with recurred atypical teratoid rhabdoid tumor. There 
is a recurred mass in the right parietal lobe with extensive peritu-
moral edema. The margin of the tumor and internal content are more 

clearly depicted with the deep learning reconstruction (c), compared 
to the other two images (a original reconstruction; b conventional 
reconstruction)
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the clinical pressure for faster scanning. Therefore, 
many efforts have been made to improve the image 
quality of MRI [22–26]. As part of such effort, deep 

learning reconstructions like AUTOMAP [26] have 
been proposed to provide a robust image reconstruc-
tion of noisy image acquisitions.

Fig. 4  Magnified views of axial 
T2-weighted images obtained 
from an 18-year-old girl with 
a history of acute myeloid 
leukemia. Multifocal hyperin-
tense white matter lesions are 
more clearly demonstrated with 
the deep learning reconstruc-
tion image (c) than the other 
two reconstructions (a original 
reconstruction; b conventional 
reconstruction)

A CB

Table 1  Comparison of qualitative scores for original, conventional, and deep learning reconstructions

Data in cell indicates mean values with standard deviation in parenthesis. P values with underline in italic indicate statistical significance
† Lesion conspicuity was evaluated in 36 pre-designated lesions
‡ Comparison of the three reconstructions, using Friedman test
* Original vs. conventional reconstruction, post hoc pairwise comparison
** Original vs. deep learning reconstruction, post hoc pairwise comparison
*** Conventional vs. deep learning reconstruction, post hoc pairwise comparison

Reader Reader 1 Reader 2 Inter-
observer 
agreementImage quality

Assessment 
category

Original Conventional Deep learn-
ing

P value Original Conventional Deep learn-
ing

P value

Overall image 
quality

3.14 (0.518) 3.48 (0.554) 4.20 (0.635)  < 0.001‡

0.004*
 < 0.001**
 < 0.001***

3.10 
(0.0.508)

3.47 (0.570) 4.20 (0.664)  < 0.001‡

0.002*
 < 0.001**
 < 0.001***

0.966

Image noise 3.19 (0.601) 3.48 (0.618) 4.42 (0.643)  < 0.001‡

0.053*
 < 0.001**
 < 0.001***

2.93 (0.601) 3.42 (0.684) 4.44 (0.700)  < 0.001‡

 < 0.001*
 < 0.001**
 < 0.001***

0.54

Sharpness of 
gray-white 
matter dif-
ferentiation

3.40 (0.595) 3.80 (0.620) 4.20 (0.620)  < 0.001‡

 < 0.001*
 < 0.001**
 < 0.001***

3.03 (0.480) 3.79 (0.610) 4.35 (0.599)  < 0.001‡

 < 0.001*
 < 0.001**
 < 0.001***

0.442

Truncation 
artifact

2.95 (0.644) 3.01 (0.645) 4.28 (0.654)  < 0.001‡

1.000*
 < 0.001**
 < 0.001***

2.72 (0.625) 2.90 (0.666) 4.31 (0.868)  < 0.001‡

0.495*
 < 0.001**
 < 0.001***

0.507

Motion artifact 4.06 (1.039) 4.06 (1.039) 4.05 (1.044) 0.369‡ 3.50 (0.603) 3.50 (0.618) 3.36 (0.634) 0.13‡ 0.264
CSF & vascu-

lar pulsation 
artifact

3.56 (0.726) 3.57 (0.712) 3.52 (0.715) 0.883‡ 3.21 (0.528) 3.24 (0.525) 3.33 (0.510) 0.207‡ 0.247

Lesion 
 conspicuity†

4.14 (0.683) 4.36 (0.723) 4.72 (0.454)  < 0.001‡

0.472*
0.001**
0.065***

4.19 (0.710) 4.31 (0.710) 4.83 (0.447)  < 0.001‡

0.867*
0.002**
0.065***

0.458
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In the conventional MR image reconstruction pipeline, 
the image is mathematically reconstructed from data in 
k-space using Fourier transform. Vendor-provided DLR 
(AIR™ Recon DL, GE Healthcare) of this study uses a 
convolutional neural network (CNN) to reconstruct the 
image directly from k-space data. This CNN reconstruc-
tion algorithm was trained with a supervised learning 
approach, using these pairs of images to generate a high-
quality image from a low-quality image with truncation 
artifacts and noise. The DL reconstruction pipeline uses 
raw k-space data as its input and generates high-fidelity 
images with higher signal-to-noise ratio, reduced trunca-
tion artifacts, and higher spatial resolution as its output 
[27]. Currently, this algorithm is applied to two-dimen-
sional sequences and offers tunable noise reduction factors 
to accommodate the user’s preference.

To date, a few studies using this DLR technique have 
been conducted for evaluating small structures, such as 
the pituitary gland, prostate, and peripheral nerves, in 
adult patients [3, 4, 10–12]. For example, Kim and Lee 
et al. reported that thin section images using DLR show 
enhanced diagnostic accuracy in evaluating the pituitary 
lesions and surrounding small structures in adult patients 
[3, 4]. Therefore, they suggested that DLR could be a 
promising technique for improving the visualization of 
small structures with increased image quality. Similarly, 
other groups applied the DLR to prostate and peripheral 
nerve imaging, where improved visualization of small fine 
structures is critical. Additionally, several preliminary 
studies using DLR have been conducted to improve image 
quality of cardiac MRI of adults [7–9]. This is because 
the image quality of cardiac MRI is often impaired due to 
narrow time window for capturing moving hearts. Those 
preliminary studies of cardiac MRI in adults have shown 
that the image quality of cardiac MRI can be improved 
with DLR. In a similar context, we believed that DLR 
could be ideally applied in pediatric brain imaging to 
improve image quality and diagnostic accuracy. This is 
because brain structures in children are generally smaller 
than in adults and MR image quality in children is often 
impaired due to tighter time window for scanning. As a 
result, our study demonstrated decreased noise, truncation 
artifacts, and improved overall image quality of DLR over 

conventional filtered reconstruction and original images, 
resulting in improved lesion conspicuity in pediatric 
T2-weighted brain imaging.

The DLR pipeline was designed to suppress truncation 
artifacts by estimating truncated high-frequency k-space data 
[27]. Truncation artifacts are more pronounced at a high-
contrast interface. In case of T2-weighted images, truncation 
artifacts are often observed in the peripheral brain due to 
the high contrast between hyperintense CSF and relatively 
hypointense cortex. In conventional reconstruction, software 
filters are applied to mitigate noise and truncation artifacts, 
but they result in reduced effective spatial resolution and 
blurred images. By omitting the software filters, DLR can 
greatly remove truncation artifacts while decreasing image 
noise without compromising the image sharpness and effec-
tive spatial resolution. Our study demonstrated a significant 
reduction in truncation artifacts with DLR without impair-
ment of image sharpness.

Regarding the motion and pulsation artifacts, DLR was 
initially designed to reduce image noise, truncation artifacts, 
and improve edge sharpness and was not designed to remove 
other types of artifacts, such as motion, flow, banding, and 
ghosting. Therefore, there were no significant differences in 
the motion and pulsation artifact scores in our study. To date, 
several studies have reported that deep learning techniques 
could show promising performance in reducing motion arti-
facts [28–30]. Therefore, we hope that the motion and pulsa-
tion artifact reduction function will be incorporated into the 
vendor-provided DLR in the near future.

For practical point of view, one of the promising applica-
tions of DLR would be to reduce the scanning time while 
maintaining MRI image quality in children. The time 
required to perform an MRI is often limited in children. In 
that sense, obtaining quality images in a short time is a very 
necessary task in pediatric MRI. Thus, we believe that fur-
ther studies are needed to validate the benefit of reducing 
scan time with DRL.

Our study has some limitations. First, we had a rela-
tively small number of children with lesions covering a 
wide range of pediatric brain diseases. Nevertheless, our 
data suggest that DLR could provide a higher overall image 
quality and lesion conspicuity for pediatric brain diseases. 
Another limitation was the inability to completely blind the 

Table 2  Comparison of 
quantitative analyses for 
original, conventional, and deep 
learning reconstructions

Data in cell indicates mean values with standard deviation in parenthesis
† Coefficient of variation is defined as the ratio of the standard deviation to the mean value
‡ P values are < 0.001 for all pairwise subgroup comparisons

Coefficient of  variation† Original Conventional Deep learning P value

White matter 0.060 (0.004) 0.055 (0.004) 0.042 (0.003)  < 0.001‡

Gray matter 0.050 (0.004) 0.045 (0.003) 0.035 (0.003)  < 0.001‡

Cerebrospinal fluid 0.025 (0.004) 0.024 (0.004) 0.020 (0.004)  < 0.001‡
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two radiologists to sequence types. During image evalua-
tion, we performed a blind analysis. Despite this, there were 
noticeable differences between DLR and other reconstruc-
tions, which often allowed the blinded readers to distinguish 
between them. Third, we did not evaluate the whole pediat-
ric brain sequences in our study. Instead, we evaluated only 
T2-weighted sequences, because T2-weighted sequences are 
fundamental and representative sequences in brain imaging. 
We decided so, because the results would have been redun-
dant, if other 2d sequences had been included. In our clinical 
experience, the same effects of DLR have been confirmed in 
other applicable 2d brain sequences (e.g., T1-weighted and 
FLAIR sequences).

Conclusion

The vendor-provided deep learning reconstruction could 
reduce noise and truncation artifact and improve lesion con-
spicuity and overall image quality in pediatric T2-weighted 
brain MRI. 
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