
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00234-022-03019-3

CONTINUING EDUCATION

Recent advances in the longitudinal segmentation of multiple 
sclerosis lesions on magnetic resonance imaging: a review

Marcos Diaz‑Hurtado1  · Eloy Martínez‑Heras2  · Elisabeth Solana2  · Jordi Casas‑Roma1  · Sara Llufriu2  · 
Baris Kanber3,4,5  · Ferran Prados1,3,4,5 

Received: 29 March 2022 / Accepted: 12 July 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by demyelinating lesions that are often visible on 
magnetic resonance imaging (MRI). Segmentation of these lesions can provide imaging biomarkers of disease burden that 
can help monitor disease progression and the imaging response to treatment. Manual delineation of MRI lesions is tedious 
and prone to subjective bias, while automated lesion segmentation methods offer objectivity and speed, the latter being 
particularly important when analysing large datasets. Lesion segmentation can be broadly categorised into two groups: 
cross-sectional methods, which use imaging data acquired at a single time-point to characterise MRI lesions; and longitu-
dinal methods, which use imaging data from the same subject acquired at two or more different time-points to characterise 
lesions over time. The main objective of longitudinal segmentation approaches is to more accurately detect the presence of 
new MS lesions and the growth or remission of existing lesions, which may be effective biomarkers of disease progression 
and treatment response. This paper reviews articles on longitudinal MS lesion segmentation methods published over the 
past 10 years. These are divided into traditional machine learning methods and deep learning techniques. PubMed articles 
using longitudinal information and comparing fully automatic two time point segmentations in any step of the process were 
selected. Nineteen articles were reviewed. There is an increasing number of deep learning techniques for longitudinal MS 
lesion segmentation that are promising to help better understand disease progression.
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Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease of 
unknown aetiology and is characterized by demyelination 
of the central nervous system (CNS), often visible by mag-
netic resonance imaging (MRI). MS can be diagnosed after 
a single clinical episode if lesions are visible on MRI [1–3]. 
Lesions may appear anywhere in the CNS parenchyma, for 
example, the brain, the spinal cord or the optic nerve. The 
latest McDonald criteria emphasize the importance of dis-
semination of the lesions in both time and space, shortening 
MS diagnosis time [2]. Dissemination in space (DIS) means 
new T2 lesions, which can be within the brain, optic nerve or 
the spinal cord. Dissemination in time (DIT) is proven when 
asymptomatic gadolinium-enhancing lesions appear together 
with non-enhancing lesions or new lesions appear in follow-
up studies. Lesion load quantification on serial MRI provides 
a sensitive and objective measure of disease activity and 
is a surrogate marker in treatment trials [4]. Clinical and 
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anatomical reality supports the usefulness of using serial 
MRI studies to delineate and characterise lesions; however, 
very few approaches exploit the consistency of this longi-
tudinal data to define new [5], enlarging [6] and shrinking 
lesions [7]. Increasing the number of neuroradiologists in 
order to cope with increasing numbers of MRIs and the time-
consuming task of looking for new, enlarging or shrinking 
lesions puts hospital radiology departments under consider-
able pressure. Hence, the importance of translating auto-
mated methods for detecting new or enlarging lesions into 
clinical practice enables neuroradiologists to simply verify 
lesions and amend existing delineations if necessary, rather 
than having to visually inspect or, in the case of clinical tri-
als, manually delineate all lesions. It is expected that these 
automated methods will increase the sensitivity of measures 
used to detect changes (better confidence in findings), reduce 
inter-rater variability and decrease assessment time.

MRI lesion segmentation enables us to extract imaging 
biomarkers of disease burden and can assist in MS diagno-
sis and monitoring disease progression, as well as imag-
ing treatment response. MRI lesion segmentation consists 
of a set of techniques focused on differentiating focal MS 
lesions from normal appearing tissues. Until recently, MRI 
lesion segmentation was primarily performed manually [8, 
9] or with the help of semi-automated tools such as JIM soft-
ware (Xinapse Systems, Northans, UK; http:// www. xinap 
se. com). However, new advances in machine learning (ML) 
algorithms and the improved quality of MRI acquisition 
have enabled automatic segmentation techniques to achieve 
remarkable performance across a wide range of medical 
applications, including more accurate MRI automatic MS 
lesion segmentation.

Over the past decade, several attempts have been made to 
improve MS lesion segmentation using fully automatic algo-
rithms. One example is cross-sectional methods, which take 
a single MRI time-point. The majority of studies in the lit-
erature use this method on the brain [5, 10–16], a few use it 
on the spinal cord [11, 17], and a semi-automatic method is 
used on the optic nerve region [18]. Cross-sectional methods 
have been widely used to analyse longitudinal data, includ-
ing most teams in the ISBI 2015 longitudinal lesion segmen-
tation challenge [12]. However, the main disadvantage of 
using this method to analyse longitudinal data is the lack of 
consistency in timing between consecutive scans. Further-
more, longitudinal approaches specifically use the biological 
temporal consistency from two or more images of the same 
subject acquired at different time-points to detect changes 
in size or appearance of new lesions more accurately (see 
Fig. 1 for an example of new and enlarging MS lesions). 
Recently, longitudinal MS lesion segmentation methods 
have become a very active field of research, and several lon-
gitudinal segmentation challenges have been organized such 
as the ISBI 2015 [12], and more recently, the MICCAI21 
MS new lesions segmentation challenge (MSSEG-2- https:// 
portal. fli- iam. irisa. fr/ msseg-2/). Two of the main challenges 
of using longitudinal MRI segmentation methods are their 
effectiveness in the registration procedure in highly patho-
logical brains and the differing image acquisition protocols 
in diverse MRI machines. Evaluating longitudinal segmenta-
tion methods can be addressed in two ways: (1) according 
to the number of new or enlarging lesions detected or (2) by 
assessing the whole volumetric lesion segmentation. From 
a clinical perspective, the detection of two or more new MS 
lesions, separated in time, is used as diagnostic criteria [2]. 

Fig. 1  Example of new and 
enlarging MS lesions in a MS 
patient (ISBI 2015 dataset [12]). 
First row (a) axial view of the 
baseline and follow-up FLAIR 
MR images; in the last column, 
new or enlarging lesions super-
imposed in red. Second row (b) 
shows the sagittal view
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On the other hand, the precise segmentation and the volume 
change derived over time are of interest for clinical trials, 
as outcomes can be used to assess treatment response [19].

This article reviews published research on fully auto-
matic longitudinal MS lesion segmentation on MRI over 
the past decade. This study expands on the previous longi-
tudinal lesion segmentation review by Llado et al. [20] in 
2012. Our review includes only fully automated longitudinal 
approaches, and these have been classified according to their 
core architectures into either deep learning or traditional 
machine learning techniques.

Material and methods

Searches on PubMed were made to identify relevant peer-
reviewed papers. Search terms combined “image segmen-
tation” and “multiple sclerosis”, with “longitudinal” or 
"serial" with and without “MR” or “magnetic resonance” 
keywords. Bibliographic references cited on the papers 
found were also reviewed if they included these keywords. 
All articles using longitudinal data to automatically com-
pare two time-points for new, enlarging or shrinking 
MS lesion segmentation in any step of the process were 

selected. The only limit applied was to only select articles 
published after Llado et al. (2012) review [20], as this 
exhaustive review reflected the current state of the art at 
that time. Papers focusing on other areas were excluded. 
The flowchart (Fig. 2) summarizes the steps taken to refine 
the search and obtain the papers included in this review. 
Non-peer-reviewed works (i.e. ArXiV) or conference pro-
ceedings were excluded, unless they appeared in the bib-
liographic references of the PubMed search results.

Results

Since the review by Llado et al. in 2012 [20], only 19 
papers met our research criteria for fully automatic lon-
gitudinal MS lesion segmentation. The results section 
divides findings into four subsections: the common pre-
processing steps used in these methods; the validation met-
rics used to analyse performance; the datasets included 
in each study; and finally, a chronological summary of 
the techniques used, categorised into traditional machine 
learning techniques and deep learning based methods.

Fig. 2  Schematic representation of the search strategy used to select the papers included in this review
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Preprocessing steps for longitudinal lesion 
segmentation

It is not usually possible to make comparisons between MRI 
studies directly. All studies require pre-processing steps to 
homogenize the distinct MRI patterns so different image 
acquisitions can be accurately compared across time. Indeed, 
the pre-processing steps are a critical procedure that plays a 
key role in identifying new or enlarging lesions. In this sec-
tion, we number the most common pre-processing steps used 
in the reviewed articles on improving longitudinal lesion 
segmentation. Whether these pre-processing steps are used 
or not may vary and will depend on the method and dataset 
selected.

1. Bias field correction
  Bias inhomogeneity corrupts MRI images, espe-

cially in older MRI scanners, and also presents similar 
regions with different intensity values [21]. The most 
commonly used pre-processing techniques for counter-
acting the effect of the intensity inhomogeneity are N3 
or N4 (nonparametric nonuniform intensity normaliza-
tion) techniques [22]. The nonparametric nonuniform 
intensity normalization algorithm corrects the bias field 
without any pre-segmentation of the image and is robust 
to the presence of pathologies [23]. Uncorrected MRI 
bias field signals could be problematic in longitudinal 
lesion segmentation procedures based on intensity dif-
ferences across timepoints.

2. Noise reduction
  The primary source of noise that needs to be filtered 

in MRI images is thermal noise from the patient’s body. 
A widely used approach is the non-local means (NLM) 
technique, which smooths small intensity variations 
[23]. Noise reduction often affects the accuracy of brain 
tissue segmentation methods and plays an important 
role in the processing pipeline by distinguishing new or 
enlarged lesions.

3. Image registration
  This is a mandatory step in any longitudinal lesion 

segmentation method. To compare MRI images across 
time, the longitudinal acquisitions need to be aligned 
in the same coordinate system. A rigid linear transfor-
mation is employed to register all the MRI modalities 
acquired from the same subject at different scan times. 
Specifically, it has been proven that registration needs to 
be in a halfway position between baseline and follow-up 
images in order to avoid any potential bias caused by the 
transformation being applied to a single image [24–26]. 
Registration can also be made to a standard space such 
as the MNI (Montreal Neurological Institute) [27] or to 
a within-subject template [25].

4. Skull stripping

  This refers to the process of removing extra-menin-
geal tissue from the brain MRI image to subtract all non-
brain signals from the image. There are five methods: 
morphology-based, intensity-based, deformable surface 
with templates, atlas-based and hybrid. One of the most 
frequently used methods is the Brain Extraction Tool 
(FSL-BET), which uses a deformable surface model that 
evolves until it locates the brain’s boundary [28]. How-
ever, this approach can introduce bias and false positives 
[29, 30]. Recently, newer and more robust techniques 
such as the HD-BET algorithm [31] have been devel-
oped.

5. Longitudinal intensity normalization
  Longitudinal intensity normalization by applying 

linear intensity correction functions is mandatory to 
compensate for global intensity changes [32]. This step 
is crucial for homogenising serial MRI image signal 
intensity and to avoid the appearance of false positives 
caused by the distinct acquisition parameters or changes 
in the scanner hardware settings.

6. Priors

This widely used step applies anatomical prior constraints 
from predefined atlases in order to define areas where the 
targeted lesions could not be presented [14] (i.e. white mat-
ter (WM) lesions in the cortical grey matter (CGM)). These 
priors are commonly propagated using registration methods 
and can include cerebrospinal fluid (CSF) or CGM regions 
in cases where MS lesion segmentation solely centres on 
detecting WM lesions.

Validation metrics for longitudinal lesion 
segmentation methods

A number of measures are used to calculate goodness of 
fit. Some are used at segmentation level (the overall voxel 
mask is considered, which means lesion segmentation) and 
others at regional level (one lesion overlap if there is at least 
one voxel overlapping, which means lesion detection) [16]. 
These two different approaches to presenting results make 
it difficult to compare methods as there is no agreement on 
which method and measure best reflects each algorithm’s 
performance, and each study uses them to their own con-
venience. Also, it is important to note that we can report the 
metrics over the new lesion only or over the whole lesion 
load at follow-up.

The most frequently used measures evaluate the relation-
ships between true positives (TP), false negatives (FN) and 
true negatives (TN) at voxel and lesional level. These can be 
summarized as follows:

– Sensitivity (also known as recall, or true positive rate, or 
fraction when it is a percentage), is the proportion of 
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those with a positive test result (correctly identified) out 
of those having the condition: TP

TP+FN
 , the best value being 

100%, as there are no false positives.
– Specificity (also known as true negative rate or fraction, 

or 1-false positive rate), is the proportion of those with a 
negative test result (correctly identified) out of those not 
having the condition: TN

TN+FP
 , the best value being 100%, 

as tests identify all non-lesional voxels as negative.
– Accuracy, degree of the result of a measurement con-

forms to the correct value given by the formula 
TP+TN

TP+TN+FP+FN
 , the best value being 1, as there are no false 

positives nor false negatives.
– Positive predictive value (PPV), also known as precision, 

is the proportion of predicted positives actually being 
positive: TP

TP+FP

– Sorensen-Dice similarity coefficient (DSC or DICE 
score) is a statistic of similarity between two sam-
ples:DSC =

(2xTP)

(2xTP+FP+FN)
 . Its values range between 0 (no 

overlap) and 1 (perfect agreement).
– Area under ROC curve (AUC) and receiver operat-

ing characteristic (ROC): ROC is a probability curve 
obtained by plotting true positive rate (TPR) against false 
positive rate (FPR), and its area under the curve rep-
resents the measurement separating and distinguishing 
between two classes, where a higher AUC value means 
better performance.

– Kappa (K) index: statistic to measure inter-rater reliabil-
ity. Given pe (expected ratio if raters gave a random pre-
diction) and po (observed prediction of inter-rater agree-
ment). The formula is K =

(po−pe)

(1−pe)
.

– False discovery rate: the ratio of false positive discover-
ies over the sum of true positives and false positives, then 
FDR =

FP

FP+TP
.

Table 1 shows a meta-comparison of published methods 
for detecting new or enlarging lesions at longitudinal level 
over the past decade. As each method has been validated 
with different input data and different gold standards that 
include whole lesion segmentation at follow-up, it is not 
possible to make a direct comparison. Moreover, not all the 
methods used are publicly available. However, the overall 
results point in the same direction: at segmentation level 
mean DSC is 0.59 with 95% CI [0.53–0.64]: and at lesional 
level, mean DSC increases to 0.69 with 95% CI [0.59–0.80].

In 2015 and 2021, two longitudinal MS segmentation 
challenges were organised: ISBI 2015 (https:// smart- stats- 
tools. org/ lesion- chall enge) and MSSEG2 (https:// portal. 
fli- iam. irisa. fr/ msseg-2/). Most of the proposed measures 
were similar, and the organisers of these challenges made 
a website and/or the code available so the metrics explored 
could be computed automatically. We therefore encourage 
researchers working in this field to use these measures in 

the coming years to better understand the outcomes of each 
new method.

Datasets

The design of test datasets directly affects results. However, 
in recent years, little effort has been made to homogenise or 
release a common longitudinal, rich dataset, in comparison 
to work carried out on cross-sectional datasets [33]. Key 
aspects of conceptualising a dataset are number of subjects, 
MS phenotype, length of follow-ups, scan strength, and 
which MRI modalities to include. Furthermore, during the 
first half of the last decade, in-house datasets were widely 
used as publicly available datasets were scarce. However, 
the 2015 ISBI challenge and the release of subsequent data-
sets and associated labels meant that the methods published 
began to include both in-house and ISBI 2015 challenge 
datasets. In 2016, Lesjak et al. [34] released a dataset with 
twenty subjects imaged twice, which covered different MS 
phenotypes and variable length between scans. In 2021, a 
new public dataset was released following the MSSEG-2 
new lesion segmentation challenge.

In the studies reviewed, the ISBI dataset is the most 
widely used public MR image set. The dataset comprises 
twenty-one studies from five subjects and includes T1, T2, 
proton density (PD) and fluid-attenuated inversion recovery 
(FLAIR) with the ground-truth segmentations and is known 
as the training dataset. There is also a test dataset without 
segmentations. All the images were skull-stripped using the 
Brain Extraction Tool (BET) [28], rigidly registered to the 1 
 mm3 MNI-ICBM152 template [28, 35, 36] using FMRIB’s 
Linear Image Registration tool (FLIRT) [37] and N3 inten-
sity normalization [38]. Two experts manually detected and 
delineated all the MS lesions in the longitudinal data.

Similarly, Lesjak et al.’s dataset [34] also has conven-
tional MRI images (T1w, T2w, FLAIR and post gadolinium 
enhancement image), which are co-registered to the FLAIR 
image, and the N4 bias correction was performed. The raw, 
pre-processed images are available here: https:// github. com/ 
musch ellij2/ open_ ms_ data.

Methods included

In 2012, Lladó et al. [20] provided the last comprehensive 
review on using longitudinal methods in MRI segmen-
tation in MS in 2012. This exhaustive review examined 
34 longitudinal image segmentation papers published up 
to that date. The authors proposed classifying techniques 
into two categories: a first lesion detection and change 
detection methods. Lesion detection methods could be fur-
ther classified as supervised or unsupervised; and change 
detection methods could be further classified as intensity 
and deformation, the latter including vector displacement 
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field and deformation field morphometry. The largest 
group from the reviewed models used subtraction of base-
line and follow-up images. Associated techniques, ordered 
by frequency, were expectation–maximization algorithms, 
K-nearest neighbours, Bayesian classifiers and artificial 
neural networks.

Since 2012, nineteen new studies have been published 
(see Fig. 3). The emergence of deep learning methods has 
had an enormous impact over the last decade; hence, the 
various methods have been classified into either traditional 
machine learning techniques or deep learning methods.

Traditional machine learning techniques

This group includes methods based on the latest advances in 
image analysis techniques.

In 2013, Sweeny et al. [5] developed SuBLIME, an unsu-
pervised fully automated and computationally fast method 
to identify lesion incidence between two voxels from dif-
ferent time-points. The validation was performed using an 
in-house dataset from 10 patients with longitudinal MRI 
studies. The gold standard was a manual segmentation by 
neuroradiologists between consecutive studies. This was 

Table 1  Summary of the published results for each multiple sclero-
sis longitudinal lesion segmentation method included in this review at 
segmentation (voxel by voxel) and lesional (whole mask) level. Only 

the most common measures and the best results have been included. 
Results were obtained using different datasets

YEAR REFER-
ENCE

Segmentation level Lesional level Others

DSC Sensitivity/
TPR

Specificity/
TNR

DSC Sensitivity/
TPR

Specificity/
TNR

1 2013 [5] – 0.95 0.99 – – - AUC = 0.99
2 2013 [39] – – 0.84 0.80 - FDR = 0.08
3 2014 [40] – – – – 0.91 – Kappa = 0.82 

[95%CI: 
0.77–0.87]

Spearman’s 
R = 0.92

4a/12 M 2014 [14] 0.51 0.91 – 0.64 – – FDR = 0.5
4b/48 M 2014 [14] 0.58 0.80 – 0.63 – – FDR = 0.48
5 2015 [41] 0.50 0.46 0.42 – – – VD = 0.03
6 2016 [34] 0.58 – 0.91 – – – –
7 2016 [43] 0.52 0.91 – 0.68 – – Average surface 

distance = 7.89
8 2016 [15] 0.63 0.57 0.75 – – – Pearson cor-

relation coef-
ficient = 0.96

Absolute 
volume differ-
ence = 1.48 ml

9 2017 [12] 0.64 - - - - - -
10 2017 [45] 0.73 – – – – – -
11 2018 [16] 0.56 0.74 0.89 0.77 – – -
12 2019 [44] 0.72 0.74 – – – – FDR = 0.08
13 2019 [46] – 0.87 – – – – -
14 2020 [47] 0.55 0.83 0.91 0.83 - – -
15 2020 [52] – – – 0.45 0.60 0.59 -
16 2020 [49] – – – 0.70 0.68 0.80 ISBI 

score = 92.12
PPV = 0.77
Volume differ-

ence = 0.22
17 2020 [51] 0.45 0.60 0.59 – – – -
18 2020 [13] 0.57 0.42 - - - - -
19 2020 [55] 0.64 – – - 0.77 0.75 -
Summary Mean 0.58 0.73 0.78 0.69 0.75 0.71

95% CI [0.54–0.63] [0.620.85] [0.59–0.97] [0.59–0.80] [0.61–0.90] [0.44–0.99]
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an intensity-based approach that used logistic regression 
coefficients to identify possible changing voxels. After nor-
malizing and registering the images, the T2 hyperintense 
candidate voxel selection was made. FLAIR, PD, T2 and 
T1-weighted voxels were subtracted using logistic regres-
sion coefficients obtained from the modelled probability of 
a voxel being part of a lesion. Model performance had 95% 
sensitivity and 99% specificity with AUC on the ROC curve 
was 99%. The main weakness of the proposed model was 
sensitivity to registration errors. In 2013, Elliot et al. [39] 
also proposed a two-stage automated probabilistic frame-
work to identify new MS lesions, providing a multimodal 
MRI baseline and follow-up images. A generative Bayesian 
model was used to infer classes at each voxel, and those 
identified as possible new lesions were assigned a confi-
dence value using a random forest classifier. There were 
four approaches to developing the Bayesian model, and that 
gave the probability of each voxel a random variable, which 
defined class label. Bayes’ model was intended to define the 
probability of a voxel being a lesion and the probability of a 
new lesion appearing.

The following year, Battaglini et al. [40] published a 
paper using intensity thresholding over the subtracted image 
from the baseline and follow-up PD MR images. After pre-
processing input images of brain extraction, spatial align-
ment and intensity normalization, the subtraction image 
was generated. The authors applied 30% intensity threshold 
over the voxels within the WM mask and then filtered the 
clusters using shape, extent and intensity constraints. Model 
segmentation was tested on healthy volunteer datasets and 
two MS patient datasets. In 2014, Ganiler et al. [14] pro-
posed a fully unsupervised automated subtraction pipeline 
based on a thresholding intensity strategy for detecting new 
MS lesions. After normalization and pre-processing, images 

were subtracted and differences selected using an atlas-based 
WM tissue mask. Two types of thresholding were used: 
intensity values larger than mean-plus-five standard devia-
tion and volume lesions occupying three or more voxels.

In 2015, Roy et al. [41] proposed a supervised 4D image 
segmentation from serial MPRAGE and FLAIR images from 
a relapsing remitting MS patients’ dataset, each with three 
time points 1 year apart. Taking a new approach, and instead 
of using differences between time points, the authors used 
features from all the time-points simultaneously, building 
patches that contained information about the temporal tra-
jectories of every lesion. Using norm minimization and other 
algebraic techniques, the authors developed several atlases 
of brain characteristics for lesion segmentation.

In 2016, the work of Lesjak et al. [34] validated three pre-
viously published strategies: confidence level thresholding 
(CLT) by Ganiler et al. [14]; change vector angular thresh-
olding (CVAHT) by Simoes and Slump [42] and manual 
thresholding based on logistic regression by Sweeney et al. 
[5]. Although all three are intensity subtraction-based stud-
ies, they differ in the way they compute dissimilarity maps 
between baseline and follow-up images. In order to avoid 
false positives, Ganiler et al. used a threshold of mean-plus-
five standard deviations, Simoes and Slump used the gen-
eralized likelihood ratio, and Sweeney et al. used logistic 
regression. Ground truth data, dissimilarity map segmenta-
tion and postprocessing varied among models, which made 
precise comparison between methods extremely difficult. 
Surprisingly, the authors were unable to reproduce results 
comparable to the original authors, arguing that this may be 
due to data overfitting or a different rater accuracy defining 
ground truth.

In 2016 Cabezas et al. [43] developed a deformation 
field-based approach to longitudinal segmentation using 

Fig. 3  Bar plot showing the 
number of papers included in 
this review (y-axis) for each 
publication year (x-axis)
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non-rigid registration of baseline and follow-up images 
to obtain a deformation field between images. Only can-
didates with WM lesions were selected, and an intensity 
threshold used. The deformation vectors around a can-
didate’s lesion were used to detect lesions by employing 
three metrics: divergence, Jacobian and concentricity.

Finally, also in 2016, Jain et al. [15] also presented a 
framework for MSmetrix-long, an iterative WM lesion 
segmentation based on a joint expectation–maximization 
(EM) framework, taking 3D T1 and FLAIR of two time 
points as input. Step one of the segmentation process is 
a cross-sectional segmentation of the two time-points 
into WM, GM, CSF and lesions. Step two differentiates 
between an image subtracting baseline and follow-up 
FLAIR after bias correction, co-registration and intensity 
normalization. Step three is joint EM and uses the output 
of steps one and two. Step four is a pruning process to 
eliminate non-lesion candidates.

In 2017, Carass et al. [12] published the ISBI 2015 con-
ference longitudinal lesion segmentation challenge out-
comes, comprising the eleven approaches presented in the 
challenge. Since the dataset was made publicly available, it 
has been the most widely used longitudinal MS dataset for 
testing longitudinal and cross-sectional lesion segmenta-
tion methods. Moreover, the challenge site remains open 
to submissions to enable method comparison.

In 2018, Salem et al. [16] published their first paper 
on longitudinal segmentation using non-rigid registra-
tion between baseline and follow-up. At each voxel of 
the deformation field, Jacobian, divergence and NormDiv 
operators were computed. A logistic regression model 
was computed at voxel level, and several model configu-
rations explored using four image densities T1, T2, PD 
and FLAIR, both from baseline and follow-up, in order 
to decide if a voxel belongs to a lesion or not. Schmidt 
et al. [44], also used this approach to apply a lesion growth 
algorithm, also published by the same author, to segmen-
tate the baseline and follow-up images individually, first 
using T1-weighted images to map CSF, GM and WM and 
then combining this information with FLAIR to obtain a 
lesion probability map. After registering both images to 
the within-subject common space, each voxel was classi-
fied one by one as lesion containing or not, both in base-
line and follow-up giving six patterns of lesion evolution.

Research by Cerri et al. work [13] expands on a cross-
sectional generative Bayesian model with prior segmenta-
tion for longitudinal tissue and lesion segmentation. This 
method can be used longitudinally by computing an unbi-
ased within-subject template to estimate the initial model, 
which is then propagated to the different time points. The 
intensity probability segmentation approach uses a Gauss-
ian intensity model for each structure.

Deep learning‑based methods

In 2016, developments in machine learning techniques and 
their dissemination drove research in this field towards 
advanced deep learning models.

In 2017, Birenbaum et al. [45] published the first study 
on applying convolutional neural networks (CNN) to lon-
gitudinal data for MS lesion segmentation. This segmenta-
tion method involves three phases: pre-processing, candi-
date extraction and CNN prediction. Candidate voxels were 
selected from hyperintense FLAIR lesions. A probabilistic 
WM template was used to locate lesions in WM only or 
near the union of GM and WM, helping to reduce the CNN 
computation load. The input was an image voxel, and the 
output a lesion probability value. Four types of CNN archi-
tecture were used: SCSTP (single contrast image single time 
point), MCSTP (multiple contrast images, single time point), 
SCMTP (single contrast image, multiple time points) and 
MCMTP (multiple contrast images, multiple time points). 
All models used Single View V-Net of convolution and max 
pool layers. For longitudinal models (SCMTP and MCMTP), 
a longitudinal net (L-Net) was made from a V-Net, with 
input for each time point and output then concatenated. 
In turn, this output was convoluted, and its output fed to a 
fully connected layer. The multi-view longitudinal network 
processes the input axial, coronal and sagittal views sepa-
rately using a different L-Net for each concatenated view 
and finally connecting them to two fully connected layers 
with final binary output. Several techniques were used to 
avoid overfitting: weight sharing using identical weights in 
all V-Nets, dropout layer and data augmentation. The authors 
performed cross-validation (four patients for training and 
one as a test) to evaluate the model. Best Dice score was 
obtained using MCMTP. Using all contrast images and two 
consecutive time points improves segmentation accuracy 
with close to human rater performance. CNNs that make use 
of longitudinal information can produce better segmentation 
than standard CNNs.

In 2019, Fartaria et al. [46] also presented two models 
to differentiate WM and GM: LeMan-PV, a Bayesian par-
tial volume estimation algorithm, and LeMan, a supervised 
KNN classifier using features from images with an atlas for 
prior probability maps.

In 2020, the number of publications increased, and convo-
lutional neural networks (CNN) became, as still is, the domi-
nant technique. Salem et al. [47] published a model inspired 
by the VoxelMorph method developed by Balakrishnan et al. 
[48]. Using voxel-type patches of paired images at consecu-
tive time points from T1, T2, PD and FLAIR, their deforma-
tion field was obtained during a registration process. Two 
fully convolutional neural networks (FCNN), U-Nets, are 
used, and although the authors defined various models, their 
main model trains all registration and deformation blocks 
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end to end simultaneously. The first segmentation U-Net 
learns the nonlinear deformation between baseline and fol-
low-up time point. The second U-Net takes as input baseline 
and follow-up voxels together with its deformation field and 
outputs the new T2 lesion segmentation mask. In 2020, Den-
ner et al. [49] also published a model inspired by the Voxel-
morph method, where concatenating multimodal (FLAIR, 
T1, PD, T2) images are fed to an encoder that carries out a 
segmentation task using a CNN. The non-rigid registration 
task learns deformation fields between the already coregis-
tered images at different time points in order to find what 
has changed (mainly lesions). Segmentation is performed 
on the three orthogonal slices crossing the voxel of interest, 
also called 2.5D approach. A fully convolutional and densely 
connected neural network (known as Tiramisu) was used 
for each slide image segmentation [50]. The authors of this 
study developed a multitask learning framework that joined 
segmentation and non-rigid registration tasks sharing the 
same encoder, but using separate decoders. A combination 
of techniques enabled the use of different methods: longi-
tudinal network, multitask longitudinal network and longi-
tudinal network with pretraining. In another study, Krüger 
et al. [51] developed a two-path 3D CNN in a U-Net-like 
architecture. This included a fully convolutional network 
with residual blocks and deep supervision, and Leaky ReLU, 
instance normalization, Adam optimizer and data augmenta-
tion were used to increase performance. In the same year, 
2020, McKinley et al. [52] introduced DeepSCAN MS, 
which was a hybrid of U-net [53] and Densenet [54], a CNN-
based architecture with pooling and upscaling replaced by 
dilated convolutions for automatic lesion load change detec-
tion. Here, a new loss function called label-flip was used, 
where the probability of containing a certain tissue class 
and the probability of corresponding to the ground-truth 
annotation was calculated at each voxel. Given the baseline 
image, baseline and follow-up segmentations and the label-
flip probability, each voxel was classified as a new lesion 
with segmentation confidence. In 2020 Gessert et al. [55] 
proposed the ResNet-based multiencoder-decoder 3D CNN 
using convolutional recurrent units (convGRUs) to address 
longitudinal segmentation of new and enlarged lesions. The 
authors transformed the single path CNN U-Net [55] into a 
two-path architecture, where baseline and follow-up volumes 
are first processed individually, and then jointly, combining 
convolution down, ResBlock and fusion blocks. The authors 
then introduced an attention-guided interaction block to con-
trol the flow of information between the two paths.

Finally, results from the recent MSSEG-2 challenge are 
still pending. This extremely well-organised challenge was 
attended by 20 international teams and is yet further proof 
of the interest this topic is currently drawing.

Table 2 summarises the methods published on longitudi-
nal MS lesion segmentation over the past decade.

Discussion

A reliable method for assessing the presence of new MS 
lesions and evidence of no new disease activity is key to 
evaluating the efficacy of disease-modifying therapies 
[56]. MRI is a biomarker of MS progression and useful 
for both diagnosis and monitoring disease activity, as 
well as treatment response. Radiological MS progression 
is defined as the appearance of new or enlarging lesions 
in T2-weighted imaging and new enhancing lesions on 
T1-weighted imaging with gadolinium-based contrast 
[2]. Conventional MRI provides reliable markers of acute 
inflammatory activity but has low specificity and sensitiv-
ity for those tissue changes that characterize the chronic 
phase of MS. Sometimes lesions do not show intensity 
changes but can affect surrounding tissues. Noise and 
residual MRI artefacts must also be taken into account, 
and this can be evaluated by comparing baseline and fol-
low-up scans [43, 49]. Manual delineation is the highest 
sensitivity technique and provides higher reliability in the 
detection of enlarging lesions and new lesions close to 
areas with large lesion accumulation (such as periven-
tricular regions) when performed by a single rater. How-
ever, manual expert segmentation is time-consuming and 
is subject to inter-observer variability [15]. Furthermore, 
automatic lesion segmentation has three advantages over 
manual segmentation in that it offers more consistent 
segmentations, especially in longitudinal studies; it dis-
plays more reproducible results between datasets; and 
it improves processing speed. Numerous cross-sectional 
automatic image segmentation methods have been pub-
lished, but few focus on longitudinal approaches, which 
appear to obtain better results [12]. The main advantage of 
lesion segmentation methods is the precise quantification 
of the volume of the brain lesion, which is extremely use-
ful for lesion filling and therefore improving brain atrophy 
quantification [57, 58].

Over the past decade, comparing methods has been an 
impossible task because this requires using the same data-
set, but the data used in each paper is highly heterogene-
ous. Two issues hinder making comparisons: firstly, using 
in-house vs publicly available datasets, and secondly, the 
different MRI modalities needed for each method. In addi-
tion to this, further issues have appeared, some of which 
are related to the disease or others to the ground truth 
design. The main issue associated with the disease is that 
the methods are focused on detecting new and enlarging 
lesions. However, disease activity varies across pheno-
types; for example, the number of new or enlarging lesions 
will differ in CIS, SPMS or PPMS subjects; hence, results 
may vary. It is therefore important to choose a large data-
set with subjects from all the phenotypes and different 
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Table 2  Longitudinal multiple sclerosis lesion segmentation methods summary in chronological order. Publication year, reference, descriptive 
summary of the method, combination of used MRI modalities and segmented lesion type for each method are provided

Year Reference Approach MRI modalities Lesion type

0 2012 [20] Latest review on longitudinal multiple sclerosis lesion segmentation 
techniques, it divides them into intensity-based and deformation-
based methods

Depending on 
paper: T1, T2, 
PD, FLAIR

Mainly WM, also GM and 
gadolinium-enhancing 
lesions

1 2013 [5] SuBLIME (subtraction-based logistic inference for modelling and 
estimation): lesion incidence in a voxel as a probability map calcu-
lated by a logistic regression model

T1, T2, PD, FLAIR WM

2 2013 [39] Bayesian classifier and random forest classifier T1, T2, PD, 
FLAIR, some T1 
with Gadolinium

WM and GM

3 2014 [40] Subtraction and threshold using PD images PD WM
4 2014 [14] Fully automated subtraction pipeline based on threshold strategy T1, T2, PD WM
5 2015 [41] Supervised 4D image segmentation using features from all the time 

points simultaneously
T1, FLAIR WM

6 2016 [34] Validation of approaches proposed by Ganiler et al., Simoes and 
Slump and Seeney et al

T1, T2, FLAIR WM

7 2016 [43] Mask obtained by image subtraction and thresholding. Then, around 
each lesion a deformation field is calculated. The lesion mask is 
refined applying divergence, Jacobian and concentricity metrics

T2, PD, FLAIR WM

8 2016 [15] Used MSmetrix-long an expectation maximization (EM) frame-
work. First cross-sectional, after subtraction, next joint EM, next 
pruning non-lesions candidates

T1, FLAIR WM and GM

9 2017 [12] ISBI Longitudinal MS lesion segmentation challenge. Several meth-
ods that segment longitudinal lesions in a cross-sectional fashion

T1, T2, PD, FLAIR WM

10 2017 [45] First CNN applied to longitudinal data, different architecture, longi-
tudinal net (L-Net) made from V-Net

FLAIR WM

11 2018 [16] At every Jacobian voxel, the divergence and NormDiv operators 
were computed. Baseline and follow-up voxels were subtracted, 
and the deformation field calculated. A logistic regression model 
at voxel level was computed using these features

T1, T2, PD, FLAIR WM

12 2019 [44] Baseline and follow-up images were individually segmented using 
a lesion growth algorithm and after a probabilistic map was 
obtained. After registration of both images is done, six patterns of 
lesion evolution at every voxel are determined

T1, FLAIR WM and GM

13 2019 [46] LeMAN (KNN plus atlas approach to differentiate WM from GM)
LeMAn-PV (Bayesian partial volume estimation with spatial GM 

constraints)

T1, FLAIR, DIR WM and GM

14 2020 [47] U-Net to learn deformation fields and registering. The U-Net has 
as input a deformation field, baseline and follow-up images and it 
outputs final segmentation

T1, T2, PD, FLAIR WM

15 2020 [52] 2.5D approach (3 orthogonal slices over voxel) CNN adapted to 
2D inputs using Tiramisu architecture (fully convolutional and 
densely connected neural network)

a) Early multimodal fusion as input to network
b) Adding structural changes to a first model with deformable 

registration

T1, T2, PD, FLAIR WM

16 2020 [49] The main model is a two-path 3D CNN in a U-Net- like architecture FLAIR WM
17 2020 [51] Fully convolutional encoder-decoder U-Net using residual blocks 

and deep supervision, and leaky ReLU as activation function. 
Instance normalization, Adam optimizer and data augmentation 
were used

FLAIR WM

18 2020 [13] Bayesian generative model T1, FLAIR WM
19 2020 [55] Multiple sclerosis lesion activity segmentation with attention-

guided by two-path CNNs
FLAIR WM
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levels of disease activity. Another issue is labelling or 
creating ground truth. Some methods have used a single 
rater as ground truth; however, labelling new and enlarg-
ing lesions has proven to be extremely difficult, with con-
siderable variability between experts [12]. Using a small 
number of experts has failed to reach a good agreement; 
hence, including a large number of experts and under-
standing inter-method variability (e.g. automatic methods 
vs manual labelling) will be helpful in showing a better 
performance for any method.

Using a common dataset across the papers would help 
estimate the proposed methods more accurately. Therefore, 
in coming years, it will be useful for all new methods to use 
the publicly available datasets and their labels, such as those 
released by the ISBI 2015 and MSSEG-2 organisers. The 
inclusion of these datasets, along with other in-house data-
sets, will benefit the entire MS research community. How-
ever, ISBI 2015 and MSSEG-2 are small datasets and have 
been labelled by only a small number of experts. Therefore, 
it would be advantageous in the near future to organise a 
national or international consortium to gather and release 
a bigger, multi-centre, labelled (ideally by a large number 
of experts) dataset that could boost the development of this 
key research field.

This review has incorporated papers published on longi-
tudinal MS lesion segmentation between 2012 to January 
2022. The techniques that stand out, from older to newer, are 
as follows: image subtraction and thresholding, pure math-
ematical image differences, Bayesian generative models and 
deep neural network-based methods.

Chronologically, the main features of the first articles 
published used baseline and follow-up image segmenta-
tion subtraction, with thresholds on image intensity values 
being this a trade-off between sensitivity and specificity [5]. 
Bayesian-inspired models are a very powerful method as 
their effectiveness rests on the anatomical probability distri-
bution of finding a lesion in a tissue, which is supported by 
the pathophysiology of the disease. Mathematical techniques 
based on the matrix comparison of the intensity values   of 
the images have given way to more powerful techniques such 
as deformation fields, which have also been used with CNN 
successfully [47]. Deep learning U-Nets and other CNN-
based architectures comprise the majority of more recent 
articles on cross-sectional and longitudinal approaches to 
MRI image segmentation and can be classified into patch-
wise, semantic and cascaded CNNs [59]. However, CNNs 
still have challenges that limit their potential. One is data 
class imbalance when the number of voxels with lesions is 
much smaller than those without, which is a common MS 
segmentation problem that causes overfitting. A special loss 
function based on the Tversky index is used to mitigate the 
issue of MS data imbalance [60], and transfer learning is 
used for small datasets.

As stated above, direct comparison between the tech-
niques reviewed is difficult because they use different 
datasets. We only found one article comparing different 
longitudinal models using a common dataset [34], and that 
most datasets are private with implementation codes that 
are not usually published. Nevertheless, some authors offer 
resources in public code repositories such as Github [43, 
49], and some procedures are available in software suites 
such as FreeSurfer (http:// surfer. nmr. mgh. harva rd. edu/)) 
[13]. Table 3 summarises the code and data availability for 
each method. Several initiatives have been launched to keep 
track of the accuracy of different methods and enable direct 
comparison between them. For example, the organizers of 
the ISBI 2015 challenge have made their dataset publicly 
available and its website continues to accept submissions. 
However, detailed descriptions of the models submitted to 
the website are not always provided.

Our literature search results show that there is an increas-
ing interest in finding automated methods to enable the 
detection of new or enlarging lesions and ways to compare 
the effectiveness of current longitudinal models (Fig. 3). 
Most studies in this review used FLAIR acquisitions (clini-
cal settings being the most common), and when additional 
MRI modalities are used (e.g. T1, T2, PD), the models 
become more accurate. This requires more computational 
resources and is more difficult to translate to clinical prac-
tice, as some image modalities may not be routinely avail-
able at all healthcare centres [61]. The methods reviewed 
could also be classified under the categories “supervised” 
and “unsupervised”. The main drawback of unsupervised 
approaches is that they assume perfect registration and inten-
sity normalization [15], while supervised approaches often 
require large training datasets. As demonstrated, longitudi-
nal image segmentation is a very active research field that 
has shifted from image analysis to machine learning and 
AI techniques, which are mainly CNN-based architectures. 
Future challenges cover both domain shifting (i.e. enabling 
a change in input MRI modality) and domain adaptation (i.e. 
performing to the same level, regardless of the MR scanner 
used) and the introduction of attention mechanisms such as 
transformer architectures, as proposed by Gessert for MS 
brain MR segmentation [55].

Recently, the MSSEG-2 challenge has only focused on 
new lesions, but for an effective translation to clinical prac-
tice, and to draw up precise patient prognosis, the meth-
ods employed will not only need to detect new MS lesions, 
but also lesion changes between time-points, such as lesion 
growth or shrinkage. New and enlarging lesions have been 
widely explored in recent years; however, research on 
shrinking lesions is still lacking and is an area that needs to 
be carefully examined in the future. Accomplishing auto-
mated segmentation of new and changing MS lesions would 
be beneficial for disease and care management programs. 
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Table 3  Brief dataset description, data and code availability for each longitudinal multiple sclerosis lesion segmentation method included in this 
review

Year Reference Dataset Dataset availability Code availability

1 2013 [5] 10 MS patients, 11 scans each 
separated a mean of about 2 months 
between them

Not available Only web interface: https:// smart- stats- 
tools. org/ subli me- inter face

2 2013 [39] a) Dataset A: 95 RRMS patients, 2–7 
scans separated 3–12 months apart

b) Dataset B: 160 MS patients, 2 
scans separated 2–7 months

Not available Not available

3 2014 [40] a) 10 healthy volunteers, 2 scans 
separated 24 months

b) 19 MS patients, 2 scans separated 
9 months

c) 103 MS patients, 2 scans separated 
18 months

Not available Not available

4 2014 [14] a) 10 MS patients, 2 scans separated 
12 months

b) 10 MS patients, 2 scans separated 
48 months

Not available Not available

5 2015 [41] 10 MS patients, 3 scans separated 
12 months

Not available Not available

6 2016 [34] 20 MS patients, 2 scans separated by 
different follow-up lengths

https:// johnm usche lli. com/ open_ ms_ 
data/

Not available

7 2016 [43] 36 CIS patients, 2 scans separated 
12 months

Not available https:// github. com/ NIC- VICOR OB/ 
brain tools

8 2016 [15] a) 12 RRMS patients, 2 scans sepa-
rated 12 months

b) 10 MS patients, 2 scans with 
repositioning (5–10 min) using 3 
different scanners

Not available Not available

9 2017 [12] ISBI Challenge dataset https:// smart- stats- tools. org/ lesion- 
chall enge

Not available

10 2017 [45] ISBI Challenge dataset https:// smart- stats- tools. org/ lesion- 
chall enge

Not available

11 2018 [16] 60 MS patients, 2 scans separated 
12 months

Not available https:// github. com/ NIC- VICOR OB/ LR- 
T2-w- Lesio ns

12 2019 [44] 55 MS patients from different hospi-
tals in the National cohort study of 
the German Competence Network 
Multiple Sclerosis

Not available Lesion Segmentation Tool (LST): 
https:// www. appli ed- stati stics. de/ lst. 
html

13 2019 [46] 32 RRMS patients, 2 scans separated 
12 months

Not available Not available

14 2020 [47] 60 MS patients, 2 scans separated 
12 months

Not available Not available

15 2020 [52] a) 26 MS patients, 4–5 scans 
separated a mean of about 4 months 
(Bernese MS bank dataset)

b) 8 MS patients, 4 scans separated 
without specifying length of the 
follow-ups (Zurich dataset)

c) 53 MS patients, 2 scans separated 
without specifying length of the 
follow-ups (Munich dataset)

Not available Not available

16 2020 [49] a) 70 MS patients, 2 scans separated 
without specifying length of the 
follow-ups

b) ISBI Challenge dataset

Not available https:// github. com/ Stefa nDenn 3r/ 
Spatio- tempo ral- MS- Lesion- Segme 
ntati on
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Hence, implementing and adopting automated aid systems to 
assist radiologists and neurologists is key to leveraging read-
ing time and ensuring similar diagnoses by different radiolo-
gists. Adopting quantitative image-based biomarkers in the 
clinic addresses these issues [62] and is a process with three 
main steps. Firstly, a credibility study is carried out, which 
involves a technical validation and a limited clinical inspec-
tion by an expert clinician who confirms usability and find-
ings. Secondly, the tool needs to undergo an accuracy study 
to confirm its beneficial impact on clinical routine. A large 
multi-centre dataset with clinical MRI quality is used to do 
this. Thirdly, the methods developed need to meet safety, 
health and environmental protection requirements in order to 
get approval from regulatory bodies prior to final integration 
into care centre workflows.

The main limitation of this review is that it only includes 
peer-reviewed publications and not preprints works that 
might be published in the near future or other types of non-
peer review publications or not indexed works by PubMed.

Conclusions

In MS, longitudinal MR image segmentation is key to 
assessing disease progression and response to treatment. 
This review describes approaches published on longitudi-
nal MRI lesion segmentation in MS patients over the past 
10 years. Over this period, we have seen an increasing inter-
est in automatically detecting new and enlarging or shrink-
ing MS lesions and a transition from image-processing-
based techniques towards mainly machine learning-based 
methods. To boost this research field, gathering and making 

available a larger, longitudinal, multicentre MS dataset with 
the associated labelling should be mandatory. Finally, these 
new methods need to be validated through clinical trials 
to increase automatisation and then transferred to a clini-
cal setting by integrating them into automatic quantitative 
reports. In coming years, this important endeavour will have 
a significant positive impact on patient care and the overall 
healthcare system.

Author contribution All authors contributed to the study conception 
and design. Material preparation, data collection and analysis were per-
formed by M. D.-H., J. C.-R. and F.P. The first draft of the manuscript 
was written by M.D.-H., E. M.-H. and F.P., and all authors commented 
on previous versions of the manuscript. All authors read and approved 
the final manuscript.

Funding This research received no specific grant from any funding 
agency in the public, commercial, or not-for-profit sectors.

Data availability Data sharing is not applicable to this article as no 
new data were created or analysed in this study just reviewing previous 
literature research.

Code availability This publication does not have any code related to its 
development and no code has been published.

Declarations 

Conflict of interest M.D.-H., E.M.-H., J.C.-R., B.K. and F.P. have 
nothing to disclose. E.S received travel reimbursement from Sanofi. 
S.L. received compensation for consulting services and speaker hono-
raria from Biogen Idec, Novartis, TEVA, Genzyme, Sanofi and Merck.

Ethical approval This study has been approved by the Ethics Com-
mittee of the University Oberta de Catalunya (UOC) stating that this 

Table 3  (continued)

Year Reference Dataset Dataset availability Code availability

17 2020 [51] a) 1574 MS patients, 2 scans sepa-
rated a mean of about 12 months 
(Rou2 and PhIng datasets)

b) 89 MS patients, 2 scans separated 
a mean of about 27 months (Zurich 
dataset)

c) 32 MS patients, 4 scans separated a 
mean of about 12 months (Dresden 
dataset)

Not available Not available

18 2020 [13] a) 2 MS patients, 6 scans in 3 different 
scanners within 3 weeks

b) 86 RRMS patients, 3–6 scans sepa-
rated 6–12 months

c) 135 non-MS patients 2–6 scans 
separated 6–12 months

“a” and “b” are not available; “c” can 
be found at: http:// adni. loni. usc. edu

Available through FreeSurfer software 
package

19 2020 [55] a) 89 MS patients, 2 scans separated 
a mean of about 27 months (Zurich 
dataset)

b) 33 MS patients, 3 scans separated 
12 months

Not available Not available
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