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Abstract
Artificial intelligence (AI)-based tools are gradually blending into the clinical neuroradiology practice. Due to increasing 
complexity and diversity of such AI tools, it is not always obvious for the clinical neuroradiologist to capture the technical 
specifications of these applications, notably as commercial tools very rarely provide full details. The clinical neuroradiologist 
is thus confronted with the increasing dilemma to base clinical decisions on the output of AI tools without knowing in detail 
what is happening inside the “black box” of those AI applications. This dilemma is aggravated by the fact that currently, 
no established and generally accepted rules exist concerning best clinical practice and scientific and clinical validation nor 
for the medico-legal consequences in cases of wrong diagnoses. The current review article provides a practical checklist of 
essential points, intended to aid the user to identify and double-check necessary aspects, although we are aware that not all 
this information may be readily available at this stage, even for certified and commercially available AI tools. Furthermore, 
we therefore suggest that the developers of AI applications provide this information.
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DICOM	� Digital Imaging and Communications in 
Medicine

DL	� Deep learning
GDPR	� General Data Protection Regulation
MPRAGE	� Magnetization prepared rapid gradient-echo
MR	� Magnetic resonance
MS	� Multiple sclerosis
PHI	� Personal health information
RANO	� Response assessment in neurooncology
SaMD	� Software as a medical device
SL	� Supervised learning
SLE	� Systemic lupus erythematosus
SVD	� Small vessel disease
USL	� Unsupervised learning

Introduction

Artificial intelligence (AI) and big data analyses are consid-
ered the driving forces of the fourth industrial revolution and 
many hopes have been raised regarding the application of AI 
in healthcare, particularly medical imaging [1]. The com-
plex, multidimensional, and often multimodal information in 
medical images is a challenging, yet attractive starting point 
for AI-based technology, e.g., aiming at automation of image 
analysis and interpretation. It is the potential shift from a 
subjective and qualitative image assessment by the radiolo-
gist susceptible to fatigue or distraction to a more objective 
and quantitative approach by the “machine” that opens the 
horizon for an improved diagnostic process.

After an exponential increase of scientific publications 
regarding AI in (neuro)radiology in the last decade, AI-
based applications for clinical use have been developed and 
cleared for clinical purposes [2–4]. However, their clini-
cal implementation is still lagging behind, which may—at 
least in part—be due to a lack of training and knowledge of 
neuroradiologists with respect to these emerging tools and 
implications of their use in clinical practice [5]. A study 
by Huisman et al. demonstrated that radiologists who had 
limited knowledge regarding AI were more likely to fear 
AI. However, those with knowledge of AI were more likely 
to view the technology positively [6]. This underscores the 
importance of training curricula and continuing education 
of medical professionals in order to facilitate the adoption 
of AI in clinical practice. Providing clear and transparent 
product-specific information to the radiologist might addi-
tionally help adoption of such techniques in clinical routine.

Adopting AI-based tools into clinical practice could 
potentially help to mitigate an important dilemma in neu-
roradiology. On the one hand, medicine in general and 
especially radiology has become more and more complex, 
leading to the need for detailed reports of subspecialized 
neuroradiologists. On the other hand, the neuroradiologist 

is confronted with an ever-increasing number of radiological 
exams [7] and oftentimes increased financial pressure due 
to reduced reimbursement in most countries. Furthermore, 
the complexity of AI-based tools has also increased, which 
makes it challenging for the clinical neuroradiologists to vet 
applications for practical clinical use in a time-efficient, yet 
thorough way.

To fill this gap, we want to give a practical overview of 
ten essential checkpoints, which will help neuroradiologists 
to evaluate an AI tool for clinical use in neuroradiology.

Fundamentals of AI tools

In the following, we explain and define some of the main 
concepts and terminology, which are needed to understand 
modern and clinically available AI tools for neuroradiology, 
prior to their use in our daily routine Focusing on the pre-
sented clinical checklist, we did not aim to replicate already 
existing excellent review articles concerning in particular 
deep learning, included here for examples [8, 9].

Artificial intelligence, machine learning, deep 
learning

The term artificial intelligence (AI) has been used abun-
dantly in the last years but was initially coined in the 
1950s, describing an operation performed by a machine 
or an algorithm to solve a task that would otherwise 
have required human intervention [10]. Thus, it can be 
considered a very broad term, comprising, for example, 
robotics, natural language processing, and machine learn-
ing. Machine learning, in turn, makes use of statistical 
approaches to learn from data and evidently aims at mak-
ing predictions with respect to an outcome of interest. 
Thanks to increasing computational power and algorith-
mic developments, machine learning has more and more 
been applied to the analysis of medical imaging. One of 
these latest developments is called “deep learning” (DL), 
which is based on different algorithms. The so-called con-
volutional neural networks (CNN) are currently frequently 
used algorithms in the domain of imaging, yet alternative 
algorithms exist and new algorithms will likely be devel-
oped. CNNs consist of several network layers with one (or 
in most cases many more) hidden or “deep” layers. The 
number of deep layers correlates with the computational 
complexity that an algorithm can tackle. Increased com-
putational complexity in deep CNNs has enabled them to 
directly learn from image information as an input with-
out the need for prior definition of task-specific, pertinent 
image information (feature engineering).
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Supervised versus unsupervised AI tools

AI can be classified along several axes. One very important 
distinction is between supervised and unsupervised tools.

Most current AI tools use a supervised approach. This 
means that a “ground truth” labeled/annotated dataset exists 
with respect to the problem that needs to be solved by the 
algorithm, e.g., detection or segmentation of confirmed brain 
tumors or MS lesions or flagging intracranial hemorrhage. In 
general, special medical expertise is needed for annotating 
the dataset, which requires medical professionals to perform 
ground truth labeling. This can be rather time-consuming 
and tedious due to the generally large amount of input data 
needed. An important advantage of supervised learning is 
that it incorporates medical knowledge and that in general a 

relatively smaller dataset is sufficient. An important disad-
vantage is that supervised learning predominantly produces 
“narrow” AI that directly addresses a medical question, i.e., 
an algorithm which can solve one particular task only (e.g., 
stroke or hemorrhage detection). However, this algorithm 
will be weak in case of unexpected input data, for example, 
detecting ongoing seizure as stroke mimic or a brain tumor 
manifesting brain perfusion changes (Figs. 1, 2).

An unsupervised tool is about the opposite and may be 
an approach to tackle the wide variety of medical imag-
ing diagnoses and tasks. In an unsupervised tool, there 
is no prior knowledge or labeling of datasets/cases. The 
advantage is that no expert labeling of the training data is 
required, and the tool might detect unexpected or novel 
diseases/disease patterns. The disadvantage is that in 

Fig. 1   Male patient, 67 years old, presented in the emergency room 
with disturbed consciousness and a left hemiparesis, last well seen the 
night before. Acute stroke workup was initiated with unremarkable 
non-contrast head CT and CT angiography (not demonstrated). CT 
perfusion analyzed by AI-based software did not show a core (defined 
as cerebral blood flow (CBF) values lower than 30%) nor penumbra 
(defined as a time to the maximum of the residue function (Tmax) 

over 6 s) (panel A). Visual inspection of the perfusion maps demon-
strates a general cortical hyper perfusion on cerebral blood volume 
(CBV) and CBF maps in the right hemisphere and decreased mean 
transit time (MTT), compatible with ongoing non-convulsive seizure. 
In this example, the AI tool provides a true negative diagnosis for 
stroke, but misses the significant diagnosis of non-convulsive seizure
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general even larger datasets are required for training (big 
data). Moreover, the tool will detect clusters/patterns in 
the data, yet this does not necessarily directly correspond 
to a given medical question, disease or lesion type. Con-
sequently, it must be shown post hoc whether a discovered 
pattern corresponds, e.g., to a specific brain tumor.

Why it is important

When the radiologist must base clinical decisions or can 
choose between several AI tools for the same clinical 
purpose, it is important to be aware how the underlying 
method of the AI tool might impact the clinical results.

Number of input datasets versus number 
of features—feature selection

In general, CT and MR input datasets are very large. For 
example, a simple 3D T1 brain scan of 256 × 256 × 176 
voxels includes 11,534,336 input voxels. This is much 
higher than the typical number of participants available 
used for training and testing of AI tools (typically in the 
range of tens or at most hundreds). In the terminology 
of AI tools, input datapoints are considered features. To 
avoid this imbalance between input features and cases, 
and to improve the AI tool, AI tools may include a fea-
ture preselection or feature pre-processing including, e.g., 
tools that detect edges or shapes or approaches such as 
independent component analyses to reduce the number of 
input features.

Why it is important

In addition to the type of AI method per se discussed above, 
also the type of input feature pre-processing may influence 
the clinical results of AI tools.

Assessment of algorithmic performance: 
the importance of datasets and how they are 
created

In order to critically assess algorithmic performance, it 
is crucial to understand how the data is being used and 
assigned to certain distinct datasets. The terminology of 
those datasets may be confusing due to the sometimes incon-
sistent nomenclature across different areas or publications. 
In the following, we explain the most commonly used termi-
nology of datasets, which is also used in this review article.

Training dataset  The main dataset used to train the AI 
tool. As mentioned above, this dataset can be labeled/anno-
tated (notably for supervised models) or not (notably for 
unsupervised models).

Validation dataset/tuning dataset  Usually, an additional 
dataset is used during the training procedure to monitor 
algorithmic performance and adapt algorithmic parameters 
including hyperparameters if necessary. The term validation 
dataset is potentially confusing since it is not meant to “vali-
date” the algorithm, neither in a technical nor in a medical 
sense, but rather to tune its performance during the training 
process. Therefore, this dataset is sometimes also referred 
to as “tuning dataset.”

Fig. 2   Male patient, 54 years old, presented in the emergency room 
with a subacute onset of right hemiparesis. Stroke workup was ini-
tiated. Automatic stroke detection software of CT angiography 
detected an asymmetry in arborization of the arteria cerebri media 
with reduced amount of detected vessels on the right side (panel A). 
This did not match with his symptomatology of right-sided hemipare-

sis. Inspection of the patient’s medical file demonstrated that he was 
known with a treated low-grade glioma in the left parietal region. His 
clinical presentation was explained by tumor progression to a glio-
blastoma with a distinct neovascularisation (panel B), explaining the 
asymmetry by a relative dominance of vessels on the left side. In this 
example, the AI tool provides a false positive diagnosis for stroke
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Testing dataset  Dataset used to test the performance of the 
AI tool after training and tuning on unseen, new data. Ideally, 
the testing dataset should be rigorously separated and dis-
tinct from the data used during the algorithm development in 
order to avoid several degrees of “data leakage.” However, this 
depends on the used validation approach, usually described 
as cross-validation, internal validation or external validation.

Cross‑validation  As oftentimes the number of data-
points/cases is limited, many AI tools use a cross-validation 
approach for testing of the tool, typically tenfold or fivefold 
cross-validation. In a tenfold approach, the training dataset is 
split into 10 parts (“folds”); then, 9 parts are used for train-
ing and tuning and the remaining part is used for testing. 
This is repeated 10 times until each part was used once for 
testing. While this approach is scientifically correct, it has to 
be noted that the same dataset is used for model selection or 
hyperparameter tuning and cross-validation; thus, the ability 
to assess algorithmic performance on truly unseen data is 
impaired when cross-validation is used.

Internal validation  Following this approach, data used dur-
ing training/validation and testing has been clearly separated, 
i.e., split before experiments have been started. However, data 
stem from the same source, e.g., have been acquired in the 
same center or on the same scanner. Using this approach, it 
is important to prevent subtle causes of data leakage, e.g., 
by including a patient’s scan in the training procedure and a 
follow-up scan from the same patient in the testing dataset.

External validation  This approach represents the most rig-
orous way of assessing algorithmic performance on unseen 
data. As in internal validation, data have been split before 
starting the experiments and testing data have never been 
seen by the algorithm during training and validation. In addi-
tion, testing data stems from a different source, e.g., a differ-
ent medical center or hospital.

Reference dataset  The reference dataset is not specific to 
AI tools, but a general term. The reference dataset defines 
the range of normal values, for example, the classic growth 
curves for children of brain volumes for MR volumetry. This 
dataset may or may not be identical or overlapping with the 
training dataset, i.e., it is in principle possible to train the AI 
tool using the reference dataset. However, it is also possible 
to train the AI tool using a completely or partially different 
training dataset, and then apply the trained AI tool to the 
reference dataset to create the normative values.

Why it is important

Vetting the chances how useful an algorithm might be in 
clinical practice, we need to estimate how well it has been 

shown to work on new, unseen data. In order to do so, we 
need to assess how data was used and whether there could 
be any source of data leakage during algorithm develop-
ment and testing, since this might impact the output of the 
AI tool and thus potentially also the clinical decision might 
have lower reported performance values than another tool 
using a cross-validation approach, yet in clinical use the true 
performance might actually be higher.

Single versus multiple scanners/sites

As a general rule, one can say that it is already difficult to 
generalize even basic data parameters (e.g., basic T1w or 
T2w volumes) between different scanners/sites. The more 
complex and advanced the dataset (e.g., complex diffusion 
or perfusion MR parameters), and the smaller the expected 
effect size, the more difficult yet at the same time the more 
important it is to make sure that data and results can be 
generalized between different scanners/sites.

Why it is important

If an AI tool is developed and tested on a single CT or MR 
scanner from a single site, the results will in general be more 
optimistic and it will be less evident to generalize this tool in 
different CT or MR systems at different sites—as compared 
to an AI tool which was tested and validated on datasets 
from multiple CT or MR systems and multiple sites.

Single versus multi contrast

Most currently available AI tools use a single MR sequence 
as input. However, in clinical routine, in almost all MR 
exams, multiple sequences/contrasts are acquired and ana-
lyzed by the radiologist.

Why it is important

The typical scientific evaluation of an AI tool compares the AI 
tool using a single MR sequence versus the human reader using 
the same dataset—as this is the direct comparison from a scien-
tific perspective. However, in clinical routine, the radiologist ana-
lyzes and integrates multiple MR sequences. Forcing the radiolo-
gist to analyze only one MR sequence is not the typical situation 
and will in most cases reduce the accuracy of the human rater.

The 10‑point checklist

Checkpoint 1: Disease application—domain shift

Most current applications of AI for medical imaging rely 
on supervised learning (SL) approaches. This means that an 
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algorithm needs to learn from “training data” which were 
labeled according to a ground truth or reference standard. As 
the purpose of clinical AI tools is to provide accurate results at 
an individual patient level, generalizability to new, unseen data 
is of utmost importance. The performance of AI algorithms 
may be hindered by the so-called domain shift, which is rooted 
in differences between training data used during algorithm 
development and test data used either in a clinical study or in 
clinical practice [11]. This incongruity can be manifold and 
includes, e.g., disease characteristics of a patient group used 
for algorithm development [12]. Since perfect generalization of 
AI-based algorithms has not been achieved yet, it is important 
to keep differences between patient characteristics used during 
the development and faced when applying the algorithm as low 
as possible. It is therefore essential to vet evidence that a given 
AI tool was approved for use in the desired disease.

Why it is important

Newly developed AI algorithms are capable of directly learning 
from image information. Thus, the training data of the algorithm 
influence the domain and type of images on which it can be applied.

Neuroradiology examples

Automated segmentation of WMLs on FLAIR imaging has been 
a popular application for algorithms and fills a clinical need since 

counting WML is a notoriously tedious and time-consuming task 
prone to human error, for example, in patients with multiple scle-
rosis (MS). However, domain shift with respect to the patients’ 
disease may occur in clinical practice if an algorithm developed 
on training data from MS patients is being used in WMLs of 
other type of distribution, such as small vessel disease (SVD) or 
less common diseases as CADASIL (cerebral autosomal domi-
nant arteriopathy with subcortical infarcts and leukoencephalopa-
thy), SLE (systemic lupus erythematosus), or Susac syndrome. 
For example, it might be that an AI tool for segmentation of WM 
lesions trained and optimized for MS also works for SLE, but 
we cannot assume this as a given, and therefore, such disease or 
domain shifts should be re-evaluated (Fig. 3).

Checkpoint 2: Preselection of cases and reference 
dataset

We have previously seen that domain shift occurs due to dif-
ferences in patients’ diseases between training data and real-
world application. The distribution of patient data within a 
specific disease spectrum also matters. This is commonly 
referred to as spectrum bias or reference dataset bias, which 
results from an unrealistic distribution of disease severity 
in a training dataset [13, 14]. It is therefore important to 
understand which cases were used in the development of the 
AI tool and how they differ from the patient population the 
AI tool will potentially be applied to.

Fig. 3   Female patient, 23 years old, presented with diffuse paresthe-
sia. An MRI was requested to rule out demyelination. The scan was 
accidentally processed by AI-based software for lesion segmentation 
in MS patients. The software algorithm annotates the periventricular 
white matter erroneously as lesions (panel A). The MRI exam was 

normal. The discrete FLAIR hyperintense signal near the ependyma, 
especially visible around the frontal horns, is a physiological phe-
nomenon (panel B, arrows). In this example, the AI tool provides a 
false positive segmentation of “MS lesions”
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Why it is important

In order to design an algorithm for disease classification, 
it is desirable to have highly accurate labels as the ref-
erence standard for algorithm training (e.g., disease yes/
no). However, enriching training data with clearly sick 
patients and clearly healthy controls, i.e., increasing train-
ing data at both tails of the distribution spectrum, might 
increase algorithmic performance on an external test set 
of a similar distribution spectrum, but may harm the use 
of an algorithm in clinical practice. There are mainly two 
reasons for this. First, the contribution to the clinical deci-
sion process, e.g., for a classification task is negligible 
in cases of overt disease or absence of disease because 
they can be easily identified by visual inspection. Help is 
especially needed for borderline cases. Second, differences 
in disease severity between training data and real-world 
data hamper the diagnostic accuracy in clinical practice. 
The selection of the ideal training dataset is complex, and 
currently, no generally accepted rules or recommenda-
tions exist. For some algorithms, it is probably better to 
have a disease spectrum that is “narrow” and similar to the 
subsequent clinical application. For other algorithms, a 
“broader” disease spectrum including extreme cases might 
be beneficial. Ideally, the spectrum of the dataset used 
to validate the AI tool should match the spectrum of the 
clinical patients for which the AI tool is used.

Neuroradiology example

One commonly addressed image classification task is the 
identification of patients with or without Alzheimer’s disease 
(AD). The accuracy of such an algorithm can be increased 
during the training and validation process by enriching the 
data with cases of overt dementia and cognitively normal 
controls. However, this hardly contributes to clinical prob-
lem solving, since diagnostic support will mostly be needed 
for ambiguous cases, which are neither clear on clinical 
exam nor clear on imaging, e.g., using semiquantitative rat-
ing scales. Elaborating on the potential impact of spectrum 
bias, AI algorithms for disease classification should also be 
adapted to the incidence of specific diseases in the institution 
where the algorithm will be deployed. This could mean that 
algorithmic recalibration is needed depending on whether an 
algorithm will be used in a highly specialized memory clinic 
or in a primary care setting.

Checkpoint 3: Data parameters

Even if the focus is only on MR image parameters, vary-
ing manufacturer types, magnetic field strengths, different 
acquisition settings (2D or 3D acquisitions), variability of 
sequence parameters (spatial resolution, voxel size, TE, TR 

value, etc.) give a large variability in terms of resulting MR 
images. This compromises the pooling and the reproducibil-
ity of published data, when using independent imaging sets 
[15]. Currently, most AI tools (notably for scientific publica-
tions) are developed using only high-quality research data-
sets, with imposed and strict imaging acquisition parameters. 
In contrast, in real-world clinical environment, a large vari-
ability of image acquisitions exists leading to inter-patient 
and intra-patient variability. This potentially affects the per-
formance of AI tools. An interesting approach to overcome 
this limitation is transfer learning [16], which can apply 
knowledge from one domain (e.g., medical imaging modality 
or scanner) and one task (e.g., segmentation, classification) 
to another related domain and/or another task. A subform 
of transfer learning with special importance in the medical 
imaging field is domain adaptation. Here, the source domain 
(training data) is different from the target domain (test data), 
a situation which is commonly described as “domain shift.” 
Approximating these two data distributions can be tackled 
by domain adaptation, which represents a machine learning 
tasks in itself and can be executed in various forms. Although 
this approach may be promising to overcome high data vari-
ability between the site of development and the site of appli-
cation, it can currently not be used in clinically practice since 
it cannot be performed after CE marking.

Why it is important

Several studies have shown the variation in results secondary 
to the application of an AI tool by just a modification in the 
image parameters. It is therefore important to check which 
input data is required for the given AI tool, and to adapt 
imaging parameters accordingly.

Neuroradiology example

Most MR volumetry tools are developed and trained with 
high-quality research datasets, e.g., the ADNI (Alzheimer 
Disease Neuroimaging Initiative). Even modest modifica-
tion of image contrast in the same MR scanner and same 
head coil may lead to 5% change in estimated volume 
using standard segmentation tools (without AI) [17]. Like-
wise, different scanners impact brain volumetric measure-
ments in multiple sclerosis patients [18]. It can be assumed 
that even more variable clinical datasets will have even 
stronger effects also when using AI tools, yet this remains 
to be elucidated.

Another example is the reliability of segmentation 
of brain tumors in neuro-oncology, as new methods are 
being published trying to improve accuracy and reproduc-
ibility [19]. Those new methods might confound the accur-
racy of AI tools, which were developed and tested on older 
datasets.
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Checkpoint 4: Data quality check (motion artifacts, 
metal artifact)

It is evident and trivial that medical imaging can be affected 
by unintended artifacts such as motion artifacts or metal arti-
facts (e.g., dental implants, piercings). A neuroradiologist 
automatically and intrinsically checks image quality before 
making a diagnosis. Basically, quality check should be an 
integral part of any processing of images. Most scientific 
publications of AI tools exclude images with artifacts. But 
in reality, imaging artifacts exist. Some, but not all AI tools 
have an initial data quality check. Those tools without data 
quality check can still process the data in the “black box,” 
yet this might result potentially erroneous outputs and pre-
dictions [20]. Data quality check is fundamental to be able 
to rely on output of AI tools and to avoid errors.

Why it is important

Rather than assuming that input data quality is adequate, an 
AI tool should first check data quality to guarantee a correct 
application of the AI tool avoiding, for example, false clas-
sifications or wrong segmentation results.

Neuroradiology example

If a 3D T1-weighted sequence is used to process gray matter 
segmentation, and if there is motion artifact, the final volume 
will not have a valid value. But unless the AI tool has a first 
quality check level prior to the segmentation procedure, one 
may not notice that there has been an error linked to the quality 
of the data. This is also true with respect to other types of imag-
ing tasks such as AI applied to perfusion imaging, for which 
motion artifact will not prevent perfusion maps reconstructions 
and AI application, leading to inappropriate conclusions [21].

Checkpoint 5: Anonymization, pseudonymization, 
coding, and de‑identification of patient data

The protection of personal health information (PHI) with 
regard to processing of data and free movement of such 
information has been established by law. The European 
Union adopted the General Data Protection Regulation 
(GDPR) on 14 April 2016 and it became enforceable on 25 
May 2018. Other countries have other regulations, and those 
rules might be changed and adapted over time.

A medical image (typically in DICOM format) file not 
only contains a viewable image, but it also contains a header 
with a large variety of data elements that can lead to the iden-
tification of the patient [22]. In handling any data, not just 
medical data, GDPR requires removal of any information that 

can lead to the identification of an individual person. In this 
view, it is crucial to use a clear terminology and distinction 
between anonymization or pseudo-anonymization or coding. 
Anonymization is the process of irreversibly altering classi-
fied data, to make re-identification of the patient impossible. 
Anonymization in the strict sense is completely impracti-
cal for clinical use, as the results cannot be reconnected to 
the case. Pseudonymization or coding does not remove all 
identifying information but reduces the obviously evident 
identity of an individual. The patient’s identifiers are replaced 
by artificial identifiers (codes or pseudonyms) that are kept 
separately and are subject to technical measures for safety. 
Coded data still allow for re-identification, which is neces-
sary in the clinical context where imaging data processed 
by an AI algorithm should be linked back to the original 
patient. In many cases, the term anonymization is colloqui-
ally yet imprecisely used for coding. Coded data are accepted 
by GDPR but are still considered sensitive data and should be 
protected accordingly. In clinical practice, this implies that 
either data are processed on site or rigorous requirements 
regarding the security of the VPN connection are met.

Of particular concern are 3D datasets of the head, which are 
routinely used, as they might allow for surface recognition of the 
individual face. Even if the text of, e.g., name and date of birth is 
removed, uploading a 3D dataset without removing the face area 
may be problematic regarding patient’s privacy [23, 24]. Before 
de-facing, 97% of case were correctly identified by face recogni-
tion tools. Of note, even after de-facing with popular software, 
28–38% of individuals were still successfully identified [24]. 
Importantly, in some instances, the de-facing may introduce sub-
sequent brain segmentation errors, which are not present without 
the de-facing [24]. It is not always clearly indicated if and how 
AI tools anonymize (more precisely code) data, and whether or 
not face removal (“defacing”) is included for 3D datasets.

Informing patients that AI will be used to assist in the 
interpretation of their images is part of the obligation to 
obtain inform consent, which may vary between countries, 
yet currently there is no standard how such information is 
documented and illustrated.

Why is this important?

In current practice, there is often a delicate balance between 
the protection of the patient’s individual privacy and still 
ensuring that the data are of sufficient quality to make ana-
lytics useful and meaningful. Of note, regulations vary 
between countries and may change over time.

Neuroradiology example

Data anonymization is an important issue that should be 
considered in every AI tool. The neuroradiologist should be 
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aware which patient information is sent to the AI provider, 
how the data are decoded, and how patient information is 
restored to provide the final results.

Checkpoint 6: Data storage and processing

Data storage and management can be done on a local plat-
form in the hospital or the medical imaging department (on-
premise server) or via cloud-based services.

Local platforms have the advantage of data availability 
and safety. On the other hand, in case of technical issues or 
upgrade, timely support may be hampered by lack of locally 
based technicians familiar with the system and maintenance 
costs are often substantial.

Many AI applications in medical imaging offer cloud-
based services, making data easily and ubiquitously acces-
sible and reducing processing times by making data handling 
and running applications independent of local computer 
power availability. The cloud-based systems used in AI solu-
tions for neuroradiology should be entirely private. Public or 
hybrid clouds in this context are not acceptable due to data 
privacy. Evidently, data protection rules must be respected, 
as discussed above. Processing speed and turnaround times 
are other factors to be considered and may potentially differ 
between local and distant solutions.

Why is this important?

The policy regarding data security varies between centers and 
countries. Before opting for a cloud-based AI application, one 
should check with the local IT department if patient data are 
allowed to leave the imaging center environment to an external 
cloud environment. Multiple companies provide in-between solu-
tions with in-hospital cloud-like systems that are only accessible 
by the company providing the AI application on specific demand.

When opting for a cloud-based solution, turnaround times 
should be taken into account and considered appropriate for 
the given application.

Lastly, it may be of interest to be aware of how patient 
data are handled after passing the AI algorithm. According 
to GDPR, companies are allowed to store the de-identified 
data after use.

Neuroradiology example

The method of data storage and processing should be known 
before adopting any AI application and should be compat-
ible with the local regulatory framework. Acceptable turna-
round times may differ between applications. For example, 
AI-based applications concerning stroke require faster turna-
round times than volumetry-based methods in the context of 
neurodegeneration [25–27].

Checkpoint 7: Integration in the radiologist’s 
workflow and patient information

The integration of AI tools in the neuroradiologist’s work-
flow is very important for daily routine, but is challenging 
for several reasons. The main current medical image (typi-
cally DICOM format) visualization software packages were 
developed before the emergence of AI tools. The integration 
of AI tools might require significant rewriting of the under-
lying code and such changes might require regulatory re-
certification. Moreover, there is currently no clear standard 
interface how, e.g., AI tools could be integrated into existing 
software packages, concerning both input into the AI tool 
and output of the report. The output of AI tools typically 
takes the form of a DICOM file, a standalone report in text 
or pdf format, or an integrated report to the RIS system, but 
usually lacks interactive features.

Why it is important

Neuroradiologists need and want a smooth workflow and AI 
tools should be seen as a great opportunity to improve the 
workflow in many aspects. In light on increasing pressure 
on cost and time, AI tools should be seamlessly integrated 
into the clinical radiological workflow.

Neuroradiology example

An increasing number of AI tools are available on the 
market and can be purchased and adapted to the radiolo-
gist’s workflow. However, for a smoother workflow, it is 
important to anticipate one’s need. Working with different 
AI tools in daily clinical practice may potentially compli-
cate the daily clinical workflow, for example, if different 
tools/graphical user interfaces must be opened for different 
applications (for example, one tool for volumetry, one for 
T2 lesion segmentation, one for microbleed detection). 
Some vendors therefore work on the idea of a unique plat-
form focusing on the simplicity for the user’s need, to only 
open one interface.

Especially in case of disagreement between the result of 
the AI tool and the final decision of the radiologist, the rea-
sons of disagreement should be kept in the final report.

Checkpoint 8: Update

AI tools are a rapidly emerging field, with new algorithms 
and optimizations appearing every day. Consequently, it is 
likely that an AI tool will also be updated in the future, and 
it is important to know how this update strategy is handled. 
Updates might be due to new or optimized algorithms, but 
also to new or updated reference datasets.
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Why is this important?

A new software version, which is presumably intended to 
improve the tool, might change the results. In other words, 
the results of the analysis of the same dataset might differ 
depending on the software version. The user should be aware 
which version of software was used for data analysis, and 
this should be clearly stated on the report of the AI tool.

Neuroradiology example

A dementia patient undergoes longitudinal follow-up MRI 
including MR volumetry. If different versions of the AI tool 
are used for the analysis of the previous and current MR 
volumetry, there might be a systematic technical bias in the 
estimated volumes which might be mis-interpreted as dis-
ease progression (Fig. 4).

Checkpoint 9: Validation and labels

For a clinical application of AI tools, it is important to realize 
that several stages of validation exist. While the terminol-
ogy is sometimes not clear, in general, one can discriminate 
at least two stages: technical/methodological validation and 
clinical validation. The technical/methodological validation 
refers to the fact that a given AI tool is technically valid and 
consistently reproduces a given output, for example, it relia-
bly estimates the same brain atrophy in a MR volumetry tool. 
The clinical validation refers to a rigorous clinical evaluation 
of the AI tool, for example, it evaluates whether the estimated 
atrophy impacts diagnosis, workflow or patient outcome.

It is important to note that within the respective cer-
tification framework leading to either CE marking in the 
European Union or FDA clearance in the USA, different 
risk classes exist according to the type and intended use of 
a medical device. In the European Union, CE risk classes 
I, IIa, IIb, and III exist and represent an increasing inherent 
risk of decisions based on the medical device in principal, 
without considering the probability of these risks. Accord-
ing to the Medical Device Regulation (MDR) which came 
into force on 26th May 2021, any medical device intended 
to be used in therapeutic or diagnostic decision-making or 
for monitoring physiological processes is at least assigned 
the risk class of IIa [28]. This is an example of how the 
MDR tends to increase the assigned risk classes for SaMD 
in contrast to the former medical device directive (MDD) 
since it is very hard to think of any SaMD which would 
still be risk class I. Practically, any AI tool will be at least 
risk class IIa under MDR and could be classified as risk 
class IIb (if the derived decision impact can cause seri-
ous deterioration of health or surgical intervention or in 
case of SaMD monitoring physiological processes, where 
the nature of the physiological processes could result in 

immediate danger to the patient) or even risk class III (if 
the derived decision impact can cause death or irreversible 
deterioration of health) [29].

During the certification process in the EU, a clinical 
evaluation of the medical device has to be created, and 
for CE risk classes IIa and higher, an external entity, the 
so-called notified body, has to be involved. Of note, this 
clinical evaluation usually does not contain data from 
clinical studies executed according to rigorous standards; 
in addition, it is commonly not openly accessible to the 
public or interest potential users.

The FDA distinguishes three device classes I, II, and 
III based on the regulatory controls necessary to provide 
a reasonable assurance of safety and effectiveness and 
depending on the risk the device poses on the patient 
and/or the user. Device classes range from I (lowest risk) 
to III (highest risk) and the assigned risk class largely 
determines, among other factors, the type of premarketing 
submission/application needed for FDA clearance to mar-
ket [30]. These regulatory pathways comprise premarket 

Fig. 4   By means of example, a random 3D T1-weighted gradient-
echo sequence (MPRAGE) was analyzed by an AI algorithm which 
normally has strict requisites for its purpose of whole brain segmen-
tation and brain structure quantification. The results show erroneous 
segmentation of the infratemporal fossa (circles), the occipital bone 
(long arrows), the deep muscles of the occipital region (arrowheads), 
and the dura in the region of the foramen magnum (short arrows). In 
this example, the AI tool provides a false (positive) segmentation of 
brain tissue
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approval (the most stringent regulatory pathway for class 
III devices), the 510(k) pathway, where submitters com-
pare their device to an already legally marketed, similar 
product, or de novo premarket review (for low-risk, class 
I or II medical devices). In contrary to the EU where CE 
marking is issued decentralized, private organizations, 
the FDA is a centralized agency for medical device regu-
lation in the USA. As another difference with respect to 
the regulations in the EU, the FDA issues a continuously 
updated list of approved software as a medical device 
(SaMD) which makes use of AI and the accompanying 
documentation [31]. Very recently, the FDA has issued an 
action plan for AI-/ML-enabled SaMD in order to account 
for the potentially continuously adapting nature of such 
algorithms by designing a framework, which evaluates 
both premarket development and post-market perfor-
mance [32]. Although not particularly focused on AI-/
ML-enabled SaMD, this aspect has also been picked up 
in the EU, since the MDR also emphasizes the need for 
post-market clinical follow-up studies in order to monitor 
the performance of medical devices in clinical practice.

Investigating the scientific evidence of 100 CE-marked 
and commercially available AI tools in radiology, the 
authors found that for the majority of tools (64/100), peer-
reviewed evidence on its efficacy is lacking and only the 
minority (18/100) have demonstrated (potential) clinical 
impact [33]. Another recent study reviewed technical 
and clinical validation of brain morphometry for demen-
tia and found that from 17 products, 11 companies pub-
lished some form of technical validation, but only 4 used 
a dementia population [34]. The authors conclude that 
there is a significant gap between legal certification in the 
EU and clinical validation, workflow integration, and in-
use evaluation of these tools in dementia MRI diagnosis.

Why is this important?

If a neuroradiologist buys a commercially available AI tool 
with a CE label, the neuroradiologist might have the intrinsic 
assumption that this AI tool is also validated for clinical use. 
Consequently, the radiologist might use this AI tool in clini-
cal routine with a good intention. However, in most cases, 
there is currently not sufficient clinical validation to justify 
the clinical use of the given AI tool.

Neuroradiology example

Let’s take an example of a radiologist who uses an AI tool 
for automatic detection of brain hemorrhage in CT for tri-
age of cases. The AI tool makes a mistake and does not 
recognize the presence of an intracranial hematoma, put-
ting the case low on the reading list (Fig. 5). By the time 

the radiologist reads the case, a complication has occurred. 
In the absence of a strict clinical validation of the tool and 
in the absence of commonly accepted medico-legal situa-
tion of AI tools, such an error will not only have negative 
consequences for the patient (and relatives), but may also 
imply consequences for the radiologist and institution who/
which use AI tools in the absence of a clinical validation. Of 
note, the CE certification of such products typically states 
that they should be used alongside the usual standard of 
care. From a practical clinical point of view, it is however 
not evident to understand how such tools should be used 
alongside clinical care, e.g., for prioritization of cases, and 
if the standard of care is not changed by AI tools, what is the 
point of using them?

Clear criteria for clinical evaluation of AI tools in radiol-
ogy (but also medicine in general) and clarification of the 
medico-legal situation are urgently needed, yet currently not 
available in most countries. The discussion of the complex 
medico-legal situation is beyond the scope of this article and 
shall be addressed elsewhere.

Checkpoint 10: Ground truth and reference

Concerning the validation and evaluation of AI tools (see 
above), a ground truth or reference standard is required. 
This is however not always obvious and might depend on 
the task of the AI tool. Eventually, medical imaging is per-
formed with the intention of obtaining a medical diagnosis 
or therapy response, so, for example, the diagnosis would 
be the ground truth. However, oftentimes in clinical routine, 
there is no definite diagnosis, and one can only use the cur-
rent clinical diagnosis as best approximation knowing that 
the best current clinical diagnosis is not always the definite 
correct diagnosis. Concerning volumetry or lesion segmen-
tation tools, the estimated volume should be compared to a 
reference standard, yet this is not obvious and even manually 
segmented images have inter-rater disagreement. Concerning 
image enhancement tools, a gold standard of image quality 
is generally lacking and oftentimes signal to noise of the 
resulting enhanced image is used. However, unlike photog-
raphy which is done with the purpose of creating beautiful 
images, medical imaging is done with the purpose of pro-
viding diagnostic images. It might be that a post-processed 
image looks nicer with better signal to noise, yet a small but 
relevant pathology such as micro-metastasis or enhancing 
MS lesion might be “smoothed” away.

Why is this important?

If there is a choice of several tools performing the same 
task, it is not obvious for the user how to compare the 
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tools notably there is no standard for the evaluation of AI 
tools. One solution could be that the scientific and clini-
cal community provides sample datasets, for example, for 
volumetry, tumor segmentation of MS lesion segmentation 
and standards of evaluation, similar to, for example, crash 
tests for cars. It is obvious that no “artificial” evaluation 
procedure can reflect the complexity of real life, similar 
to car crash tests that are evidently not a real accident 

situation. Nevertheless, a standardized reference dataset 
and evaluation procedure would represent a simplified but 
reproducible and comparable evaluation of AI tools.

Neuroradiology example

In the example of AI tools to enhance image quality, the 
resulting image oftentimes looks smoother than the initial 

Fig. 5   Three examples of the 
results of an algorithm for 
automatic detection of brain 
hemorrhage, respectively a false 
positive case (panel A), a true 
positive case (panel B), and a 
false negative case (panel C). 
In the false positive case, the 
algorithm erroneously detected 
calcifications in a granuloma 
due to TBC as hemorrhage. In 
the true positive case, the radi-
ologist missed the diagnosis of a 
small subdural hematoma along 
the falx and in the left parietal 
region. This was annotated by 
the algorithm and shown in red 
color. In the false negative case, 
the algorithm picked up a small 
subdural hematoma in the right 
temporal region but missed the 
subarachnoid hemorrhage in the 
ambient cistern (arrow on the 
native CT images)

Table 1   The R-AI-DIOLOGY checklist for clinical use of AI tools in neuroradiology

1 Disease/domain For which disease/domain was the tool developed and tested? Cleared for use in other 
diseases?

2 Preselection of cases and reference dataset Is there a preselection of cases (use for tool development) or preselection of control dataset 
cases? If yes, is it clearly stated how preselection must be done?

Which dataset was used to develop the tool?
Definition of controls and patients?

3 Data parameters Which data acquisition parameters were used?
Is there a check that the input data matches the training/reference dataset?

4 Data quality check Is there a check of the input dataset (e.g. motion, metal or technical artifacts etc..)?
5 Anonymization, coding and de-identification How are patient data anonymized or more precisely coded?

In 3D datasets of the head, is a face removal performed?
6 Data storage and processing Is the data processing local or on a cloud? Does data processing take place in the same or 

in a third-party country? 
7 Integration in the radiologist’s workflow How is the data transfer into the AI tool?

How is the output, and how is this integrated into PACS and/or RIS?
8 Update Are there automatic or manual software updates? How is the user informed? What if the 

updated versions provides different results than previous versions (e.g. different reference 
dataset, different algorithm)

9 Validation and labels Are there scientific and clinical studies that validate the AI tool for the intended use?
Are there regulatory labels?

10 Ground truth and reference How are ground truth and reference datasets defined?
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image. Oftentimes, output measures include signal to noise 
ratio. However, a smoother image is not necessarily the 
better image for diagnosis as there is a risk that small but 
significant lesions are less obvious and “smoothed” away. 
Different AI tool providers might evaluate their tools in 
different ways. Standardized criteria for image evaluation 
of enhanced images are therefore needed.

Another example could be lesion segmentation of MS. 
Here, oftentimes, some measures of overlap (e.g., DICE 
score) are provided for the AI tool versus standard clinical 
evaluation. While such scores are typically used in image 
analysis evaluation, they are less relevant, e.g., for MS 
patients. If there is one new lesion, this might indicate a 
change in treatment even though this lesion might be small 
and not significantly impact the overall lesion volume. 
Increase in lesion volume is only beginning to be a marker 
of disease modification in MS. In contrast, concerning evalu-
ation of brain tumors, increase in lesion volume is typically 
clinically very relevant and a standard parameter for poten-
tial treatment change—although current RANO (response 
assessment in neurooncology) criteria are based on simple 
two-dimensional measures. The ground truth and reference 
criteria of evaluation should therefore be adapted to the clini-
cal needs of different diseases in a standardized way.

Conclusions

The ever-increasing complexity and diversity of available 
AI tools for clinical neuroradiology make it difficult for the 
neuroradiologist to capture what is happening inside the 
“black box”. This practical checklist Table 1 is intended 
to aid the clinical neuroradiologist to evaluate available AI 
tools, notably in light of currently unsatisfactorily clarified 
rules regarding best clinical practice, scientific and clinical 
validation as well as the medico-legal setting.
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