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Abstract
Purpose  Artificial intelligence (AI) is playing an ever-increasing role in Neuroradiology.
Methods  When designing AI-based research in neuroradiology and appreciating the literature, it is important to under-
stand the fundamental principles of AI. Training, validation, and test datasets must be defined and set apart as priorities. 
External validation and testing datasets are preferable, when feasible. The specific type of learning process (supervised vs. 
unsupervised) and the machine learning model also require definition. Deep learning (DL) is an AI-based approach that is 
modelled on the structure of neurons of the brain; convolutional neural networks (CNN) are a commonly used example in 
neuroradiology.
Results  Radiomics is a frequently used approach in which a multitude of imaging features are extracted from a region of 
interest and subsequently reduced and selected to convey diagnostic or prognostic information. Deep radiomics uses CNNs 
to directly extract features and obviate the need for predefined features.
Conclusion  Common limitations and pitfalls in AI-based research in neuroradiology are limited sample sizes (“small-n-
large-p problem”), selection bias, as well as overfitting and underfitting.
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Abbreviations
AI	� Artificial intelligence
AUC​	� Area under the ROC curve
CNN	� Convolutional neural networks
CT	� Computed tomography
GAN	� Generative adversarial networks
LASSO	� Least absolute shrinkage and selection operator
ML	� Machine learning
MRI	� Magnetic resonance imaging
mRMR	� Maximum relevance-minimum redundancy 

(mRMR)
PCA	� Principal component analysis
ROC	� Receiver operating characteristic

ROI	� Region of interest
SVM	� Support vector machine
VAE	� Variational auto-encoders

Introduction

In recent years, artificial intelligence (AI) and machine 
learning (ML) have become widely used terms that evoke 
mixed feelings among neuroradiologists. Provocative state-
ments by data scientists and politicians that radiology will 
become obsolete as a specialty within the next five years 
and that radiologists should no longer be trained sent shock 
waves through the field in the middle of the last decade. 
More than five years later, however, neuroradiologists are far 
from being replaced by algorithms and aside from tempo-
rary decreases due to the COVID pandemic, workloads have 
continued to rise. The overall attitude toward a mutually 
beneficial role of AI in radiology has become more favorable 
among both radiologists and data scientists in the last years.

A recent survey of chest radiologists and data scientists 
revealed that only a minority expect an obsolescence of 
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radiology, while the majority predict that AI will have a 
positive impact on radiology in terms of job satisfaction, 
salaries, and the role of radiologists in society [1]. A survey 
by the European Society of Radiology of its members dem-
onstrated that the biggest impact of AI was expected in the 
fields of breast, oncologic, thoracic, and neuroimaging [2]. 
This survey demonstrates an overall positive attitude of radi-
ologists toward AI. Nevertheless, the current time frame of 
AI experience in neuroradiology is still limited, and further 
studies into the impact of AI on the field of neuroradiology 
will be needed in the future. These may also include analyses 
of the amounts and potential impact of capital investments 
and the respective financial projections on neuroradiology.

Accounting for this limited time frame, the impact of AI 
and ML on everyday clinical practice in neuroradiology has 
so far been modest. There are several reasons for this lim-
ited clinical translation. While AI and ML provide power-
ful tools for image analysis, most of these methods have 
initially been developed in the nonmedical field. The trans-
lation of these algorithms into the medical context has not 
been as straightforward as initially anticipated. Commonly, 
the infrastructure of radiological departments cannot accom-
modate the implementation of newly developed algorithms 
[3]. Nevertheless, there are endeavors to increasingly bridge 
this gap by developing platforms that allow for a more rapid 
integration of new AI algorithms into the clinical-neurora-
diological workflow. In addition, data scientists and clini-
cal neuroradiologists tend to speak a different professional 
language and misunderstandings often arise where different 
jargons are used.

Terminology

Artificial intelligence is a broad term denoting the branch 
of science that deals with machines performing tasks that 
otherwise require human intelligence. From the perspective 
of computer science, AI algorithms are not provided with 
direct instructions on how to perform a task. Using a seg-
mentation task as an example, a conventional model would 
be explicitly instructed with a threshold to classify pixels of 
an input image. An AI model, on the other hand, can learn 
the threshold (or patterns) through examination of a large 
number of images using parts or the whole image and con-
textual information depending on the technique used.

Radiomics refers to a quantitative approach to medical 
imaging utilizing spatial distribution of signal intensities, 
such as entropy patterns, and other inherent imaging-based 
data that are not perceptible to the human eye. The under-
lying rationale for the use of radiomics is the assumption 
that electronic medical images contain information beyond 
visual perception that better reflect tissue properties and may 
improve diagnostic or prognostic accuracy [4, 5].

Machine learning is a field of AI in which algorithms 
are trained using known datasets, from which the machine 
“learns.” The developed algorithm then applies this knowl-
edge to perform diagnostic tasks in unknown datasets [6].

Deep learning is a form of AI that is modelled on the 
structure of neurons of the brain. It utilizes artificial neural 
networks with multiple “hidden” layers to solve complex 
problems [7]. These “hidden layers” enable the machine to 
continually learn and incorporate newly acquired knowledge 
to improve its performance [7, 8]. Deep Learning can be 
unsupervised, semi-supervised, or supervised.

It is important to remember that radiomics, machine 
learning, and deep learning are not separate entities, but are 
often intricately intertwined. Methods of deep learning are, 
for example, commonly used in radiomics pipelines.

History of artificial intelligence in radiology

The field of AI in science and research can be traced as far 
back as 1950, when Alan Turing (considered by many to 
be the “father of AI”), questioned in his landmark paper: 
“Can machines think?” [9] This prompted researchers like 
John McCarthy to engage in a summer research project, to 
answer whether a machine can simulate human intelligence. 
McCarthy is credited with coining the term “artificial intel-
ligence.” [9] In the same decade, pioneering work done by 
Frank Rosenblatt led to the construction of the “perceptron,” 
a machine intended for image recognition, built on principles 
of ML and neural networks [10]. The term “machine learn-
ing” was coined by Arthur Samuel in 1959 [11]. Several lim-
itations of the perceptron were highlighted in the 1969 book 
(updated in 1988) by fellow AI scientists, Marvin Minsky 
and Seymour Papert, which purportedly led to a decrease 
in funding for AI research in the 1970s and 1980s—the so-
called AI winter [12].

However, by this time, the potential for machine or com-
puter-assisted diagnosis in radiology had already begun to 
be recognized. In their seminal paper highlighting the role 
that logic and probability play in physicians’ reasoning and 
approach to a patient’s case, Ledley et al. state that “errors in 
differential diagnosis result more frequently from errors of 
omission than from other sources” and proposed that com-
puters may especially be suited to process information to 
aid the physician and avoid errors of omission [13]. In the 
early 1960s, the idea that computers could aid radiologists in 
image interpretation gained further traction when Lodwick 
et al. presented a method of digitizing plain radiographs as 
a basis for future exploration of computer-aided detection in 
lung cancer and also in prediction of disease activity [14]. 
The concepts of computer-aided detection (CAD) systems 
were introduced to radiology literature in the 1960s [15, 
16]. The 1980s saw the introduction of image segmentation 
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[17]. It was not until access to big data and an exponential 
increase in computational power in the 1990s and 2000s, 
however, that advanced artificial neural networks were able 
to “learn” and provide more diagnostic information beyond 
detection and segmentation alone. Over the last decade, 
publications in the field of AI in radiology has increased 
7–eightfold when compared to the 2000s [18].

Study design for AI‑based research 
in neuroradiology

When designing an AI-based study in neuroradiology, it 
is important to formulate a goal that is both relevant and 
feasible. The study team should be multi-disciplinary and 
include both neuroradiologists and data scientists [19, 20]. 
The aims of the study should be thoroughly discussed among 
the members of the study team. Generally, the neuroradiolo-
gist/clinician should provide input on the clinical relevance 
of the study, and the data scientist should comment on the 
feasibility of the project and the methods needed to reach the 
proposed goals. Members of the study team should reflect 
the specific needs of the project: While clinical expertise 
is required to select the patient cohort and provide relevant 
clinical information (e.g., date of diagnosis, type and dura-
tion of therapy, response to therapy), neuroradiologists 
are needed to select the appropriate imaging examinations 
and to define the regions of interest. Technical expertise is 
required for data de-identification and/or anonymization 
and other important steps throughout the project [21]. Data 
scientists are crucial to select the correct models and algo-
rithms to ascertain that the developed algorithms will be 
robust and generalizable. From the study team, a project lead 
should be nominated who plans, coordinates, and supervises 
the project with the rest of the team.

Following the definition of the scope of the study, the 
study team must seek approval from the respective institu-
tional review boards (IRB) or ethics committees according 
to local/national regulations. Regional, national, or trans-
national regulations such as the Health Insurance Port-
ability and Accountability Act (HIPAA) in the USA or 
the General Data Protection Regulation in the European 
Union and European Economic Area must be adhered to 
[22]. Following IRB approval, the study cohort and (if 
needed) a control cohort must be defined using appropriate 
inclusion and exclusion criteria. The study cohort usu-
ally shares common features including demographic or 
disease characteristics and availability of imaging exams 
and the respective “ground truth.” This can be, for exam-
ple, a tumor type, a molecular subtype, a laboratory value, 
response to therapy, progression-free survival, or overall 
survival. Following data de-identification, imaging data 
can often be made accessible from the local picture and 

archiving communication system (PACS). Imaging studies 
need to be explored, and a quality control needs to be per-
formed to ensure sufficient image quality, and availability 
of the necessary images, e.g., CT contrast phases or MRI 
sequences needed for the particular study.

After verification of the available clinical and imaging 
data and ground truth, the study team must begin the labe-
ling process (image annotation or delineation of lesion), 
which is a crucial step in the study. Depending on the 
scope of the study, neuroradiologists and other qualified 
members of the study team may need to:

•	 Provide segmentation for a lesion
•	 Annotate images with abnormal findings
•	 Classify abnormalities according to radiological crite-

ria [20, 23]

The type of label may vary depending on the scope of 
the study, but usually requires neuroradiological expertise. 
The labeled imaging data are then used as input for the 
machine learning model, while the ground truth serves 
as the reference that the model is expected to learn. The 
ground truth can be defined by pathologic, clinical, or 
imaging criteria [20]. Pathologic criteria may be derived 
from histopathology or molecular pathology. Clinical ref-
erences may consist of follow-up exams, recurrent disease, 
or survival. Imaging ground truth may include alternative 
imaging modalities, follow-up imaging exams, response to 
therapy, or neuroradiologic reports. After data annotation, 
training, validation, and test datasets must be defined. The 
training dataset is used to optimize the machine learn-
ing model through minimizing loss (the error of predicted 
results compared to ground truth). Once the model is 
trained, a test dataset is used to test the performance of 
the model. The validation dataset is a separate cohort that 
is used to fine tune the model. In conventional machine 
learning algorithms such as SVM and RFs, the hyperpa-
rameters (e.g., number of trees in RF) must be fine-tuned 
using a validation dataset to maximize the performance 
on the test set. In deep learning, the validation cohort 
is used to determine the stoppage point for the training 
(optimization) of the model. If the optimization process 
is not stopped at a proper point, the model will overfit the 
training data meaning that it will memorize the training 
dataset and thus will be unable to perform well on the test 
dataset (poor generalizability). With large study cohorts, 
commonly used ratios are 80% of the dataset for the train-
ing cohort, 10% of the dataset for the validation cohort, 
and 10% of the dataset for the test cohort [20]. The vali-
dation and test datasets are set aside, while the algorithm 
is being trained. When there is only a limited sample size 
available, k-fold cross-validation is often applied [24]. 
When possible, external validation and testing datasets, 
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i.e., datasets acquired at a different institution, are pref-
erable as they allow for a more robust evaluation of the 
developed algorithm.

Together with data scientists, the specific type of learning 
process (supervised vs. unsupervised) and machine learning 
model (CNN, recurrent neural network (RNN), random for-
est (RF), among others) is then selected. Depending on the 
model type and available data, hyperparameter fine tuning 
can be conducted using the validation cohort to improve the 
model’s prediction. Eventually, several performance met-
rics assess the model’s performance using the prediction 
on the test dataset. These metrics commonly include sensi-
tivity, specificity, accuracy, precision, recall, and F1 score. 
For classification tasks, the receiver operating characteristic 
(ROC) curve graphically illustrates the diagnostic perfor-
mance at various thresholds, while the numeric value of the 
area under the ROC curve (AUC) can be used to compare 
the performance of different machine learning models [20, 
25]. For segmentation tasks, Dice or Jaccard coefficients 
are calculated as a similarity metric at the pixel level [26].

Radiomics and deep radiomics

Radiomics is a frequently used analytic methodology in neu-
roradiological research. The general workflow in radiomics 
typically involves the following steps [4, 27]:

•	 Image acquisition or retrieval
•	 Identification of a region or volume of interest through 

manual, semi-automated, or automated delineation or 
segmentation

•	 Extraction of quantitative image features from this region 
of interest, e.g., the size or shape or texture parameters 
within the region of interest

•	 Statistical analyses of the image features
•	 Assessment for a potential association between the radi-

omic features and a clinically relevant endpoint

A typical radiomics pipeline is shown in Fig. 1. As with 
any other research project, IRB/ethics committee approval 
must be obtained, and endpoints and inclusion and exclu-
sion criteria need to be defined. Subsequently, the first 
step in a radiomics project in neuroradiology is to acquire 
images or, more frequently, to retrospectively identify image 
datasets that satisfy the inclusion and exclusion criteria. 
These images can, in principle, be any medical images. In 
neuroradiological radiomics, CT or MR images are most 
commonly used. It is important to avoid selection bias to 
ascertain generalizability of the results. To avoid selection 
bias, the included patients/datasets should not be “cherry-
picked.” Clear inclusion and exclusion criteria need to be 
defined, and consecutive patients meeting these criteria 

should be included. It needs to be clear how the final sam-
ple was defined for the different datasets. The next step is to 
identify the region or volume of interest. In neuroradiology, 
this region of interest can, for example, be a brain tumor or 
even just a component of a brain tumor (e.g., the contrast-
enhancing part of a brain tumor). As feature extraction yields 
data as continuous variables, radiomics provides a wider 
scope to capture detailed features of tumors when compared 
to subjective visual assessment alone [28]. The boundaries 
of the pre-specified region of interest must be defined [29]. 
Most commonly, this is done manually by a team member 
adept at interpreting these images. In neuroradiological pro-
jects, this is usually a neuroradiologist or neuroradiology 
fellow/trainee. When the radiomics research is published, 
the individuals who defined the regions of interest should be 

Fig. 1   Example of a typical radiomics pipeline. Regions of inter-
ests (ROI) are created based on the neuroradiological images and 
binary masks are created. The corresponding radiomics features are 
extracted through applying predefined formulae to ROI numerical 
representations. A model is used to infer the output based on the input 
radiomics. The task for which the pipeline is implemented determines 
type of output. Classification, risk score assessment (regression), and 
survival analysis are the most common purposes of radiomics-based 
pipelines
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specified, including their levels of experience. This is also 
important when interpreting the results of a radiomics study, 
as the definition of boundaries can decisively influence the 
results and generalizability.

Next, quantitative imaging features, i.e., radiomic fea-
tures, are extracted and computed from the regions of inter-
est. Traditionally, predefined radiomic features have been 
used to capture different traits of the regions of interest, 
such as texture, size, and shape, which may characterize the 
phenotype and potentially genotype of the tissue. Radiomic 
features usually include first and second-order statistical fea-
tures. Standard libraries such as PyRadiomics are frequently 
used by the radiomics scientific community [30]. Once the 
features are calculated and prognostic features are selected, 
a predictive model such as binary classification (e.g., sup-
port vector machine (SVM) or a survival model (e.g., Cox 
regression) is developed for a given endpoint. Endpoints in 
neuroradiology are commonly the classification into differ-
ent tumor types or molecular subtypes, or the prediction 
of response to therapy, progression-free survival, or overall 
survival. Recently, CNNs have been used to directly extract 
(deep radiomic) features from ROIs and, thus, forego the 
need for predefined features, a process which is also referred 
to as deep radiomics [31].

The main difference between radiomics and deep radiom-
ics lies in how the features are calculated. In a radiomics 
pipeline, features are extracted based on predefined math-
ematical equations, designed by image analysis experts. 
Deep radiomics, on the other hand, are in fact weights of 
CNNs that are automatically set during the training phase 
and tailored to the specific task (e.g., molecular subtype of 
a brain tumor).

Preprocessing and feature selection

As specified by the Quantitative Imaging Biomarkers Alli-
ance (QIBA), reproducibility of radiomic features is defined 
as repeat measurements in different settings, including at 
different locations, or with different operators or scanners 
[32, 33]. Imaging data irreproducibility is one of the main 
reasons for a significant variability in radiomic biomarkers, 
which may lead to unreliable and inaccurate predictive mod-
els based on radiomics [33]. Preprocessing is an important 
step to maximize the reproducibility of radiomic features. 
Most radiomic studies use conventional intensity normali-
zation methods such as Gaussian, Z-score, and histogram 
matching in MR and CT images and bias field correction in 
MR images [34]. Normalization methods, such as Z-score, 
can be applied to the images, the extracted radiomic features, 
or both of these.

There are usually hundreds, if not thousands, of radi-
omic features that can be calculated for each region of 

interest. A large of number of these feature may be highly 
correlated with other features and thus be redundant. 
In addition, not all features carry predictive value with 
respect to the endpoint and may therefore lead to poor pre-
dictive performance. Having a large number of features for 
a relatively small number of regions of interest is referred 
to as the small-n-large-p problem, which occurs commonly 
in neuroradiological AI-based research and may lead to 
underfitting or overfitting.

Two main classes of feature reduction methods are used:

•	 Unsupervised methods
•	 Supervised methods

In unsupervised methods, features are removed based 
on their relationship (e.g., correlation) with other features 
independent of predictive value. Examples for unsupervised 
methods include principal component analysis (PCA), cor-
relation matrix, and zero variance and near-zero variance.

In supervised methods, features are reduced based on the 
target variable. Least absolute shrinkage and selection opera-
tor (LASSO) and maximum relevance-minimum redundancy 
(mRMR) are popular supervised methods for feature reduc-
tion. LASSO employs a regression analysis on training data 
and removes features whose coefficients are zero. mRMR 
methods include a similar mechanism to add a feature into 
the selected set of features if it contributes to the outcome. 
However, the feature will not be appended to the set if it cre-
ates redundancy in conjunction with another feature in the 
set. In this context, linear correlation is the simplest form 
of redundancy.

Radiomics pipelines are used for a broad range of applica-
tions such as diagnosis, e.g., of brain tumor types or molecu-
lar subtypes, and prognosis, e.g., progression-free survival 
or overall survival. Consequently, the output might be a 
class label (e.g., tumor subtype), a risk score (e.g., treatment 
response), a time to event (in survival analysis pipelines), or 
even features which are aimed to be used in a hybrid pipeline 
(i.e., where other features such as clinical variables or deep 
features are combined).

A wide variety of models can be utilized in radiomic pipe-
lines. For classification purposes, support vector machines 
(SVM), random forests, XGBoost, and feed-forward neural 
networks are the typical options. Cox regression has been 
widely used in survival analysis projects; however, other 
models such as survival trees do exist.

SVM models are large margin classifiers. They try to 
draw a border to classify data points into different classes, 
while the data points are in furthest possible distance from 
the border. Basic SVM models are linear, but if they are 
equipped with kernels, they become nonlinear. Kernels rep-
resent a means of mapping the data to a higher-dimensional 
space.
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Decision trees are building blocks of random forests. 
Decisions trees are in fact nested if-else conditions. They 
repeatedly divide the data based on a threshold and value of 
one feature. Decision trees often suffer from overfitting. To 
tackle their overfitting problem, random forests ensemble 
multiple decision trees. As the naming implies, XGboost is 
a boosting-based algorithm. It iteratively adds decision trees 
in a way that each tree lowers the error of its previous trees. 
Tree-based models are popular options for classification of 
tabular data, such as radiomics.

A perceptron is a linear classifier which is capable of 
finding a line such that it separates different classes of data, 
assuming such a line exists. An activation function is a map-
ping which is applied to output of a perceptron and makes 
it nonlinear. Multiple perceptrons and their activation func-
tions form a layer. Stack of layers makes a feed-forward 
neural network, sometimes called artificial neural network 
(ANN). Hence, ANNs are highly nonlinear classifiers.

Survival analysis is a distinct domain for machine learn-
ing models. It deals with censored data which can be imag-
ined as a combination of an event’s occurrence (binary 
outcome) and its expected duration (time to event). Sur-
vival trees utilize a thresholding approach to fulfil the task, 
whereas cox regression establishes a baseline hazard and 
provides estimated hazard ratios at different times [35].

Machine learning

Machine learning algorithms can be divided into three areas:

•	 Supervised learning
•	 Unsupervised learning
•	 Reinforcement learning

Supervised learning is the most prevalent approach in dif-
ferent application areas of AI including neuroradiology [36]. 
Supervised learning relies on labeled datasets. Depending 
on the task, the label might be a class, a continuous score, 
or even an entire image (e.g., pixel-wise labels or contours 
for segmentation pipelines). Unlike supervised techniques, 
unsupervised learning does not need labeled data [37, 38]. 
These techniques aim to uncover hidden structures of the 
dataset which makes them well suited for clustering, dimen-
sionality reduction, and data visualization tasks. Examples 
of unsupervised techniques include superpixels, k-nearest 
neighbors (kNN), principal component analysis (PCA), 
t-distributed stochastic neighbor embedding (t-SNE), and 
UMAP. Superpixels and kNN are utilized to cluster pixels 
of an image and have potential for segmentation tasks. PCA, 
t-SNE, and UMAP are dimensionality reduction techniques 
which are often used for feature fusion or data visualization 
goals.

Real-world machine learning has not necessarily con-
formed to the classical definitions. To battle existing limita-
tions and to satiate application-specific demands, multiple 
machine learning branches have been formed. Semi-super-
vised learning is an established field where the model is 
trained on examples of a single class, i.e., to learn the distri-
bution of healthy or abnormal cases [39]. Anomaly detec-
tion, normalization, and distribution mapping are typi-
cal use-cases of semi-supervised algorithms. Generative 
adversarial networks (GANs) and Gaussian mixture model 
(GMM) are two examples of semi-supervised methods. In 
comparison to supervised approaches, semi-supervised clas-
sifiers often land at a lower level in terms of performance. 
Nonetheless, when annotating the data is not feasible, semi-
supervised models are often helpful. Active learning is 
another branch of ML where the model attempts to identify 
and exploit informative examples of the training dataset to 
reduce the size of the required training cohort and avoid 
being misled by outliers [40]. The informativeness of data in 
neuroradiology may be negatively influenced by factors such 
as high level of noise, scanner inconsistencies, and multi-
institutional datasets. Therefore, active learning has great 
potential for neuroimaging applications. Dynamic learning 
refers to fine-tuning the model over time. Dynamic learning 
can help AI models to be continuously augmented based on 
expert’s feedback. Transfer learning is where a model trained 
with another dataset is fine-tuned over the target dataset [41, 
42]. Transfer learning is an effective approach when suf-
ficient data is not available to train the model from scratch.

Convolutional neural networks

Convolutional neural networks (CNNs) are the basis of 
deep learning methods which excel at pattern recognition. 
They are useful for solving complex patterns from imag-
ing data and are considered more robust when compared to 
conventional algorithms. Data-driven approaches based on 
CNNs do not require prior image interpretation or definition 
by human experts [43]. Figure 2 demonstrates a schematic 
drawing of a typical CNN. Kernel methods are frequently 
used for image processing. From a mathematical standpoint, 
kernels are matrices which are applied to images through 
convolution operation. The original image is separated and 
simplified into different feature representations by apply-
ing different kernels. In the training phase, the model learns 
how to weigh these feature representations in order to make 
the correct classification. Predefined kernels are available 
for different image processing operations such as blurring, 
sharpening, darkening, brightening, and edge detection. 
Examples of kernels are shown in Fig. 3. The core idea 
of CNNs is to learn advanced kernels from their training 
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dataset. This has helped CNNs to surpass conventional neu-
ral networks in terms of performance in two ways:

•	 CNNs have lower numbers of trainable parameters and 
thus are less prone to overfitting.

•	 CNNs are not sensitive to location of the driving objects 
or patterns within the image.

Multiple variations of CNNs have been devised to per-
form different tasks. AlexNet, ResNet, and DenseNet are 

three well-known architectures for classification ends. U-Net 
belongs to the family of models called variational auto-
encoders (VAE) which is a popular option for segmentation. 
While a classifier such as AlexNet converts the input image 
into a set of probabilities that indicate the category (class or 
label) of the image (e.g., cancer vs. benign), U-Net gener-
ates a new image that highlights the ROI. The architecture 
of classifiers often includes down-sampling blocks whereas 
U-Net features both down-sampling and up-sampling ele-
ments to construct an image as output. Generative adver-
sarial networks (GANs) comprise two main parts: generator 

Fig. 2   Schematic of a convolu-
tional neural network. Convo-
lutional neural networks consist 
of convolution layers and fully 
connected layers, also known as 
dense layers. The convolution 
layers serve as feature extrac-
tors, and the fully connected 
layers are classifiers. Output 
of the network depends on the 
target task. For an N-class clas-
sification scenario, the network 
has N nodes in its output layer. 
Each of these will generate the 
probability of the input image 
belonging to their correspond-
ing class

Fig. 3   Utilizing kernels to 
manipulate images. Kernels are 
the essence of convolutional 
neural networks. These are 
predefined matrices customized 
for specific tasks such as sharp-
ening and blurring images. In 
convolutional neural networks, 
the idea is to learn multiple ker-
nels and utilize them to extract 
informative features from the 
input images (images were 
created using https://​github.​
com/​gener​ic-​github-​user/​Image-​
Convo​lution-​Playg​round)
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and discriminator that are trained simultaneously to learn 
the distribution of the training dataset and generate never-
before-seen images that lie within the same distribution as 
the training images. This enables them to be utilized for 
anomaly detection, image normalization, and distribution 
transformation.

It is an area of discussion whether CNNs or radiomics 
are preferable in the field of medical imaging and neuro-
radiology. A major incentive for favoring radiomics is the 
black-box nature of CNNs—the basis of the output of the 
CNN is not always readily explicable. However, not every 
radiomics pipeline is easily comprehensible either. The 
interpretation of second and higher-order radiomics features 
can be quite challenging. Some feature reduction methods 
such as PCA, on the other hand, may fuse different features 
in a non-reversible way. Finally, the model itself may not 
be transparent. If a feed-forward neural network is used, for 
example, it can be difficult to determine how much each 
feature contributed to the output.

Potential pitfalls in artificial intelligence–
based studies in neuroradiology

There are multiple potential pitfalls that need to be consid-
ered not only when designing an AI-based study in neurora-
diology, but also when interpreting the literature.

First and foremost, the research question must be impor-
tant and address a relevant unsolved question and/or an 
unmet need. Sufficient data must be available to address the 
chosen question, and it must be kept in mind that AI-based 
research is generally “data-hungry.”

AI-based algorithms in neuroradiology must be repeat-
able and generalizable. There are multiple factors, how-
ever, that can limit the generalizability to another setting. 
For example, recently, Hoebel et al. found that normaliza-
tion and intensity quantization have a significant effect on 
repeatability and redundancy of radiomic features [44]. 
Others found that certain radiomics feature classes were 
not equally robust across various acquired sequences and 
that classification accuracy is strongly influenced by image 
resolution [45, 46]. The lack of standardization of sequence 
acquisition, radiomic features extraction, and normalization 
is one of the main reasons why translation of this research 
into the real-world clinical and neuroradiological scenario is 
still hampered [46]. From the initial phases of devising the 
study design, it is important to avoid selection bias. Inclu-
sion and exclusion criteria need to be clearly defined and 
adhered to, and it is imperative that these criteria lead to an 
unbiased study sample that can be generalized beyond one’s 
own institution. When feasible, external validation and test 
datasets are ideal to demonstrate the robustness and gener-
alizability of the algorithm outside one’s own institution.

When placing the boundaries of the region or volume 
of interest, it needs to be ascertained that these boundaries 
are drawn correctly, consistently, and in a fashion that is 
appropriate for the research question that is to be addressed. 
Regions of interest should be placed by individuals well-
versed in image interpretation.

The small-n-large-p problem inherent to most neuroradio-
logical research projects and almost all AI-based neuroradio-
logical research necessitates the need to employ strategies to 
mitigate the effects of limited sample sizes. It is important 
to avoid overfitting and underfitting of the model as much 
as feasible. In overfitting, the model has “overlearned and 
memorized” the specifics of the training dataset and does 
not perform well with previously unseen datasets, i.e., with 
the validation and test datasets. This means that it will likely 
not perform well in a real-world scenario. When underfitting 
occurs, the model has not learned enough with the train-
ing and is still in need to learn further with additional data. 
Figure 4 demonstrates a schematic for an optimum point in 
training, validation, and test cohorts in relation to the num-
ber of iterations. In retrospective studies, the ideal case is 
to have separate training, validation, and test cohorts repre-
senting the true distribution (in statistical language, repre-
sentative independent samples of the population). A capable 
machine learning model will overfit to the training cohort 
as the number of iterations grows. It is translated to train-
ing error being converged to zero. During the training pro-
cess, the validation cohort is monitored, and the training is 
stopped where the validation loss is minimized. Underfitting 
refers to the situation in which the model can still perform 
better on the validation set. Overfitting, on the other hand, 
is where the model is performing well on the training cohort 

Fig. 4   Schematic for an optimum point in training, validation, and 
test cohorts in relation to the number of iterations
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and poor on the validation. The test cohort is kept unseen 
until the final evaluation of the model. If the cohorts are 
representative, minimum points of test and validation errors 
will correspond to each other. In the real world, especially 
in the domain of medical imaging, training, validation, and 
test errors are noisy. There might be a residual error in the 
training cohort, and validation error may fluctuate around its 
optimal point. Furthermore, optimum points of validation 
and test cohorts may not correspond to each other.

Perhaps one of the best examples of pitfalls in AI-based 
studies in general are machine learning studies of chest CTs 
and radiographs to detect and prognosticate the coronavirus 
disease 2019 (COVID-19). In a recent meta-analysis of 2,212 
studies published between January 1 and October 3, 2020, 
no machine learning model was found to be of potential 
clinical use due to methodological flaws and/or underlying 
biases [47]. A common shortcoming was failure to adhere to 
the mandatory criteria from the checklist for artificial intel-
ligence in medical imaging (CLAIM) [48]. CLAIM serves as 
a guide to authors in presenting AI research in medical imag-
ing and provides a framework addressing key concerns when 
reviewing manuscripts [48]. Further shortcomings were lack 
of external validation; missing sensitivity analysis of the 
reported model; failure to report demographics in data parti-
tions; statistical tests used to assess significance of results 
or determine confidence intervals; and insufficient reporting 
of limitations, biases, or generalizability [48]. While this 
meta-analysis was targeted to evaluate AI-based studies of 
the chest for the prediction and prognosis of COVID-19, the 
issues and shortcomings reported apply in principle also to 
neuroimaging and underline the points made above. And 
last but not least, the ease of use and integration into the 
neuroradiologist’s workflow is an important prerequisite for 
a successful clinical translation. Algorithms that are not user 
friendly and require cumbersome offline processing usually 
fail to bridge the translational gap into the clinical realm.

Conclusion

Artificial intelligence has highlighted unprecedented oppor-
tunities in neuroradiological research. Imaging features 
beyond visual perception are used to generate diagnostic 
and prognostic information. There currently is a translational 
gap between AI-based research and clinical applications in 
the real-world neuroradiological setting, which will need be 
increasingly bridged in the future.
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