
DIAGNOSTIC NEURORADIOLOGY

Use of quantitative angiographic methods with a data-driven model
to evaluate reperfusion status (mTICI) during thrombectomy

Mohammad Mahdi Shiraz Bhurwani1,2 & Kenneth V. Snyder2,3 & Muhammad Waqas2,3 & Maxim Mokin4
&

Ryan A. Rava1,2 & Alexander R. Podgorsak1,2 & Felix Chin2,3
& Jason M. Davies2,3 & Elad I. Levy2,3 & Adnan H. Siddiqui2,3 &

Ciprian N. Ionita1,2,3

Received: 3 September 2020 /Accepted: 3 November 2020
# Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Purpose Intra-procedural assessment of reperfusion during mechanical thrombectomy (MT) for emergent large vessel occlusion
(LVO) stroke is traditionally based on subjective evaluation of digital subtraction angiography (DSA). However, semi-
quantitative diagnostic tools which encode hemodynamic properties in DSAs, such as angiographic parametric imaging (API),
exist and may be used for evaluation of reperfusion during MT. The objective of this study was to use data-driven approaches,
such as convolutional neural networks (CNNs) with API maps, to automatically assess reperfusion in the neuro-vasculature
during MT procedures based on the modified thrombolysis in cerebral infarction (mTICI) scale.
Methods DSAs from patients undergoing MTs of anterior circulation LVOs were collected, temporally cropped to isolate late
arterial and capillary phases, and quantified using API peak height (PH) maps. PH maps were normalized to reduce injection
variability. A CNN was developed, trained, and tested to classify PH maps into 2 outcomes (mTICI 0,1,2a/mTICI 2b,2c,3) or 3
outcomes (mTICI 0,1,2a/mTICI 2b/mTICI 2c,3), respectively. Ensembled networks were used to combine information from
multiple views (anteroposterior and lateral).
Results The study included 383 DSAs. For the 2-outcome classification, average accuracy was 81.0% (95% CI, 79.0–82.9%),
and the area under the receiver operating characteristic curve (AUROC) was 0.86 (0.84–0.88). For the 3-outcome classification,
average accuracy was 64.0% (62.0–66.0), and AUROC values were 0.85 (0.83–0.87), 0.74 (0.71–0.77), and 0.78 (0.76–0.81) for
the mTICI 0,1,2a, mTICI 2b, and mTICI 2c,3 classes, respectively.
Conclusion This study demonstrated the feasibility of using hemodynamic information in API maps with data-driven models to
autonomously assess intra-procedural reperfusion during MT.

Keywords Angiographic parametric imaging . Convolutional neural network . Mechanical thrombectomy . Acute ischemic
stroke . Large vessel occlusion

Abbreviations
AIS Acute ischemic stroke
AP Anteroposterior
API Angiographic parametric imaging
AUROC Area under the ROC curve
CAM Class activation map
CNN Convolutional neural network
CT Computed tomography
DSA Digital subtraction angiography
ICA Internal carotid artery
LVO Large vessel occlusion
MCA Middle cerebral artery
MCCV Monte Carlo cross-validation
MCC Matthews correlation coefficient
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MT Mechanical thrombectomy
mTICI Modified TICI
NIHSS NIH stroke score
TDC Time density curve
TICI Thrombolysis in cerebral infarction
PH Peak height
ROC Receiver operating characteristic

Introduction

Patients with emergent large vessel occlusion (LVO) acute
ischemic strokes (AIS) account for 24–46% of all AIS cases
[1–3]. While there are many confounding factors, timely re-
canalization of such blockages is essential for optimal patient
outcomes [4]. Mechanical thrombectomies (MTs) aim at
endovascular clot retrieval to restore blood flow to ischemic
territories [5, 6]. MTs are reported to have successful reperfu-
sion rates between 75 and 80% [7] compared to the 30% early
recanalization rate when using intravenous thrombolysis with
recombinant tissue-type plasminogen activators (thrombus
length < 7 mm) [8]. Thus, MTs have markedly reduced severe
disability and mortality compared to intravenous thrombolysis
[8] and have been established as the standard care for LVO
AIS.

Patients with LVOs undergo computed tomography (CT),
magnetic resonance imaging (MRI), CT angiogram, CT per-
fusion, or MR angiogram (MRA) imaging to determine eligi-
bility for the MT procedure, followed by the procedure itself.
While preprocedural AIS imaging has undergone major ad-
vancements [9], intra-procedural imaging still lags behind.
Currently, intra-procedural MT success is assessed primarily
by grading intracranial reperfusion using cerebral digital sub-
traction angiography (DSA). This is done using the thrombol-
ysis in cerebral infarction (TICI) scale as proposed by
Higashida and Furlan [10] or the modified TICI (mTICI) scale
[11]. mTICI grading systems have received criticisms due to
confusing internal inconsistencies [12] as well as the inclusion
of bias due to grading being conducted solely through direct
visual estimations of operators [13]. Clinical trials compared
operator-scored mTICIs with core lab–scored mTICIs and
found only a 56% proportion of agreement between the two.
In 33% of these, the operator-scored mTICIs were
overestimated compared to those from the core lab [14–16].

Intra-procedural assessment of such endovascular proce-
dures could be improved using quantitative tools similar to
CTP. However, such implementation is limited due to the
2D nature of DSA and variability caused by hand injection
of contrast. Angiographic parametric imaging (API) has been
proposed as an alternative solution. This form of image anal-
ysis uses a DSA sequence to semi-quantitatively analyze
blood flow through the vasculature and angioarchitectures.
Intensity at each pixel across the DSA sequence is measured,

resulting in a time density curve (TDC) at each pixel. TDCs’
parameterization enables the extraction of various parameters
such as mean transit time, time to peak, time to arrival, peak
height (PH), and area under the TDC. This allows API map
generation for each parameter which can be analyzed to un-
derstand the nature of flow through different vessels and
phases in DSAs [17, 18]. Each map encodes one hemodynam-
ic parameter derived from each X-ray pathway, thus making
maps less sensitive to subtle flow differences. This suboptimal
sensitivity could be improved using a hybrid approach where
hemodynamics encoded in API are combined with a data-
driven model.

Data-driven models such as convolutional neural net-
works (CNNs) and other machine learning tools using CT
or MRI data have been clinically implemented for auto-
mated stroke assessment such as the ASPECT score [19].
Following similar trends, tools have been proposed for
DSA using API to make predictions regarding treatment
success [20]. In this work, we present a study to test the
feasibility of using CNNs with quantitative angiographic
information from API to classify cerebral reperfusion dur-
ing MT procedures. For the data-driven classification, the
reperfusion level was assessed using the mTICI scale.
However, any other outcomes, including post-procedure
MRI or neurologic evaluation, could be used.

Methods

Data collection

Retrospective collection and analysis of patient data was
conducted at a single center and approved by our institu-
tional review board. Inclusion criteria were any patient
with an LVO undergoing a MT. For each patient, base-
line, intra-procedural, and post-MT DSAs were collected.
Anteroposterior (AP) and lateral view DSAs were collect-
ed for every scan. Patients with posterior circulation oc-
clusions were excluded. DSAs with image artifacts caused
by patient motion during the scan, mainly in cases treated
under conscious sedation, were also excluded from the
study.

We included 192 patients with 383 angiographic runs
in our final analysis. Since angiographic runs from the
same patients were taken at different time points during
MT procedures, they have different levels of reperfusion
and can be considered separate cases. Mean patient age
was 68.75 years, initial NIH stroke score (NIHSS) was
12, post-procedure NIHSS was 4, and NIHSS shift was
− 7. Patient demographics, locations of LVOs, and sum-
mary of mTICI scores are displayed in Fig. 1.

Acquisition of DSA sequences for all patients was conduct-
ed using Canon Infinix biplane systems (Canon Medical
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Systems Corporation, Otawara, Japan). DSAs were acquired
at an average tube voltage of 84.3 ± 5.0 kVp (average ± stan-
dard deviation), tube current of 149.4 ± 42.7 mA, pulse width
of 84.0 ± 12.1 ms, and frame rate of 3 frames per second.
Contrast used during acquisitions was iohexol (Omnipaque
350; GE Healthcare, Piscataway, NJ).

The overall study workflow is displayed in Fig. 2. For
each DSA included in the analysis, an mTICI label was
assigned by two experienced operators (qualified neuro-
interventionalists) independently of each other. The oper-
ators graded every case and used the AP and lateral full
DSA sequences. Operators were not involved in the pro-
cedure and were blinded to clinical outcomes and PH
maps. Grading was performed according to the following
6 categories: no perfusion (grade 0), partial perfusion be-
yond initial occlusion but not in distal arteries (grade 1),
partial perfusion less than 50% (grade 2a), partial perfu-
sion more than 50% but less than full (grade 2b), com-
plete but delayed perfusion (grade 2c), and complete per-
fusion (grade 3) (Fig. 2) [21]. Cases with disagreements in
mTICI labels were resolved by consensus decision. This
was done to remove any bias in labels used for training
the network.

API map generation

Reperfusion evaluation with mTICI scores was done based on
the extent of tissue perfusion as represented by the capillary
blush in DSAs [10, 22]. Each DSA was cropped to only

include frames where contrast was in the late arterial and cap-
illary phases. Thus, API maps contained a limited number of
overlapping structures from early arterial or venous phases.
Given the three frames per second acquisitions, arterial struc-
tures were always present in the final API maps. The temporal
cropping was done by an operator with 3 years of experience
working with DSAs.

TDCs were extracted at each pixel by tracking the flow of
contrast across frames in the cropped DSA sequence. PH
maps were generated by calculating the maximum value from
TDCs at each pixel. For the purpose of this feasibility study,
only PH maps were considered as it reflects maximum con-
trast intensity in each pixel across all frames and is thus most
reflective of perfusion.

Since hand contrast injection was used for these emer-
gent cases, injection parameters such as concentration,
volume, and injection rate were highly heterogeneous be-
tween DSA acquisitions. To account for this variability,
every pixel value in the PH map was divided by the PH
value in the main feeding artery, thus normalizing each
map to contrast concentration in the respective inlet ves-
sel. The location for normalization was manually conduct-
ed by an operator with 3 years of experience working with
DSAs and API. The location was chosen on a straight
portion of the main feeding artery before splitting into
respective branches. Care was taken to avoid tortuous or
overlapping structures that would affect the quantitative
angiographic values as well as any regions of image
artifacts.

Patients 
p = 223

DSAs
n = 525

DSAs
n = 383

Excluded due to motion 
artifacts and posterior 
circulation occlusions

n = 142

Patients 
p = 192

Patient Sex

Male 93 (48.4%)

Female 99 (51.6%)

mTICI Score

0 82 (42.7%)

1 5 (2.6%)

2a 82 (42.7%)

2b 140 (72.9%)

2c 48 (25.0%)

3 26 (13.5%)

Fig. 1 Patient demographic
information. p refers to the
number of patients, n refers to the
number of DSAs. DSA digital
subtraction angiography, ICA
internal carotid artery
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Network development

CNN was developed using Keras [23] to classify PH maps
based on the reperfusion level. CNN architecture develop-
ment was an iterative process based on the optimization of
metrics such as classification accuracy and receiver oper-
ating characteristic (ROC) curves. The final architecture is
displayed in Fig. 2. The optimizer used during training
was the Adam optimizer with an initial learning rate of
10−3. The loss function used was the categorical cross-
entropy. Keras callbacks were used to reduce the learning
rate as training progressed and automatically terminate
training as loss plateaued. In addition, the class imbalance
between classes was accommodated by implementing a
balanced class weighting during training. Thus, the CNN
balanced layer weights to ensure equal penalization of
under- or overrepresented classes in the training set.
CNNs were trained and tested on a single NVIDIA
(Nvidia Corporation, Santa Clara, CA) Tesla V100
graphics processing unit.

Following guidelines proposed by Radiology [24] and
in order to prevent network overfitting, we split the
dataset with 70% (268 cases) reserved for training, 10%
(39 cases) reserved as a validation set used for
hyperparameter tuning during training, and 20% (77
cases) reserved for testing. Hyperparameter tuning during
training was done by tracking loss on the validation set.
To test network robustness and ensure that results were
not based on specific training-testing splits, a 20-fold
Monte Carlo cross-validation (MCCV) [25] was conduct-
ed. This approach involved randomly splitting the total
dataset into training and testing sets 20 times.

In order to combine information contained in both the
AP and lateral PH maps, we used ensembled networks.
This method involves a combination of predictions from
multiple networks to give a final prediction by assigning a
weight to predictions from each network. One network
was trained on AP PH maps, and another network with
the same architecture was trained on lateral PH maps.
Weights to assign to predictions from individual networks

      

Full run DSA

Capillary phase frames extracted

PH map generatedPH map normalized

Level of 
reperfusion 

classification

- 0.6

- 0.0

- 1.0

- 0.0
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Fig. 2 Workflow of the study. DSA digital subtraction angiography, PH peak height
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were calculated using a differential evolution optimization
algorithm [26] implemented using SciPy [27]. Once the
weights were calculated, they were used to combine pre-
dictions from the AP and lateral networks to give weight-
ed ensembled predictions.

CNNs can automate outcome predictions and quantita-
tive assessment of lesions such as intracranial aneurysms
[20]; however, as a self-controlling minimization tech-
nique, they do not allow users to oversee which image
features are most important and thus how to improve net-
work predictions. We investigated the use of class activa-
tion maps (CAMs) to visualize regions of PH maps that
trigger the trained algorithm, thus lending insight to
whether the CNN makes decisions based on flow or using
some other portion of the image which may not be as
predictive of reperfusion. CAMs were generated using a
method described by Zhou et al. [28]. They are obtained
by taking outputs from the final convolutional layer and
passing it through a global average pooling layer. CAMs
are heatmaps where high-intensity pixels are features
highly weighted towards network classification output.

Statistical analysis

The CNN was evaluated using five quantitative metrics
including classification accuracy, ROC curves, area under
the ROC curves (AUROC), sensitivity, specificity, and
Matthews correlation coefficient (MCC). Each of these
metrics was averaged using results over the 20-fold
MCCV. MCC is used in machine learning models to eval-
uate the quality of binary classifications [29]. It has prov-
en to be advantageous as it takes into account class im-
balance and uses every factor in the confusion matrix
(true positives, false positives, true negatives, and false
negatives) [30].

Currently, when classifying intra-procedural DSAs as
having sufficient or insufficient reperfusion to determine
the need for further treatment, clinicians use either a 2-
outcome grouping where mTICI 0,1,2a is clinically insuf-
ficient reperfusion and mTICI 2b,2c,3 is sufficient reper-
fusion [31] or a 3-outcome grouping where mTICI 0,1,2a
is insufficient reperfusion, mTICI 2c,3 is sufficient reper-
fusion, and mTICI 2b is either sufficient or insufficient
reperfusion, and the need for further treatment is decided
based on other factors [32]. Thus, in addition to a 2-
outcome classification between mTICI 0,1,2a and mTICI
2b,2c,3, we also investigated a 3-outcome classification
between mTICI 0,1,2a, mTICI 2b, and mTICI 2c,3. In
addition, subgroup analysis was conducted for using AP
and lateral view networks independently and for using
both views combined using the ensembled network.
Two-tailed McNemar’s p test values were calculated in
order to evaluate the significance of any performance

differences (p < 0.05). McNemar’s p test values were also
calculated between networks using temporally cropped
DSAs and networks using uncropped DSAs in order to
test the effect of temporally cropping out arterial and ve-
nous phases from the DSAs prior to PH map generation.

Results

Network performance

The algorithm takes 0.25 s to create and normalize each API
map, the AP network took 9.2 min to train, the lateral network
took 9.3 min to train, the ensembled weights were calculated
in 0.65 s and a single case can be classified using the network
in 0.6 ms. Average values for each evaluation metric along
with their standard deviations and 95% confidence intervals
are displayed in Table 1. Peak network performance was
achieved when making a 2-outcome classification using an
ensembled network that combined classifications from both
the AP and lateral view networks. While better performance
was achieved in terms of accuracy, AUROC, MCC, and sen-
sitivity for 2-outcome classifications, better specificity was
observed for 3-outcome classifications.

Performance was also evaluated with ROC curves that are
displayed in Fig. 3. The highest AUROC values were
achieved when using ensembled networks. In each plot,
ROC curves for each subgroup are similar with the overlap
of standard deviations, and McNemar’s p test values indicate
significant advantage towards using lateral view over AP view
(p value < 0.05) and towards using ensembled networks over
AP or lateral view networks independently (p < 0.05) for both
the 2-outcome and 3-outcome classifications.

McNemar’s p test values between the temporally cropped
and uncropped AP, lateral, and ensembled networks were
0.16, 0.23, and 0.05. Since these values are above or equal
to the 0.05 threshold, there is no significant advantage towards
using temporally cropped DSAs.

Class activation maps

CAMs for two different cases were generated to visualize how
the CNN makes its classifications and are displayed in Fig. 4.
The CAMs were able to display what PH map regions were
being used by the CNN to make the classification decision.
The contrast in the vasculature activated the network, with
larger vessels having a higher activation. Thus, the network
is looking at the presence of the contrast and vasculature to
make classification decisions. The internal carotid artery
(ICA) terminus, middle cerebral artery (MCA) presence, and
MCA territory seemed to be the greatest contributors towards
network classification tasks.
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Discussion

An objective and unbiased assessment of reperfusion status dur-
ing MT is critical for the estimation of clinical prognosis and
documentation for research purposes. In this study, we investi-
gated the technical feasibility of using a CNN with quantitative
angiographic information to assess the level of cerebral perfusion
for patients undergoing a MT to treat an LVO AIS. We success-
fully classified PH maps generated from DSAs during an MT
into 2-outcome categories (mTICI 0,1,2a and mTICI 2b,2c,3) or
3-outcome categories (mTICI 0,1,2a, mTICI 2b, and mTICI
2c,3). This indicates that data-driven models such as CNNs can
be used to derive hemodynamic information encoded in API and
make decisions regarding the nature of cerebral blood flow.

Numerical results for five evaluation metrics used are
displayed in Table 1, and ROC curves are displayed in Fig. 3.
Peak performance was observedwhenmaking a 2-outcome clas-
sification using ensembled networks where information from
both the AP and lateral view networks were used to provide a
final classification. This was observed considering high average
values for each metric along with small standard deviations and
tight confidence intervals. The numerical results, intersecting
ROC curves, and overlapping standard deviations may indicate

similar performance between each subgroup; however,
McNemar’s t test p values (p< 0.05) indicate significant advan-
tage to using ensembled networks over AP and lateral networks
independently. In addition to commonly used evaluationmetrics,
we also calculated MCC. Since MCC is an application of the
Pearson correlation coefficient [33], it follows the same patterns
in terms of inferring correlation strength between classifications
and ground truth [34]. MCC values indicate strong positive rela-
tionships for 2-outcome classifications and moderate positive
relationships for 3-outcome classifications. Network perfor-
mance on 3-outcome classifications is lower for each subgroup;
however, it is still within an acceptable range given this is a
feasibility study. The lower performance on 3-outcome classifi-
cations can be attributed to the lower number of cases in each
outcome (169 cases:140 cases:74 cases) compared to 2-outcome
classification (169 cases:214 cases) and to the increased task
complexity of creating a finer classification. Increasing dataset
size and increasing the number of cases in each specific class will
allow us to achieve higher performance on 3-outcome
classifications.

In order to understand which PH map features the CNN uses
to make decisions, we generated CAMs. Two specific cases,
including input PH maps, CAMs, and final classification

Table 1 Convolutional neural network performance in classifying
DSAs based on their level of reperfusion based on the mTICI scale.
Performance is displayed in the form of average accuracies, area under
the receiver operating characteristic curves (AUROC), Matthews
correlation coefficients (MCC), sensitivities, and specificities along with
their standard deviations and 95% confidence intervals (CI). (A) Two-
outcome classification (mTICI grade 0,1,2a versus mTICI grade 2b,2c,3).

(B) Three-outcome classification (mTICI grade 0,1,2a versus mTICI
grade 2b versus mTICI grade 2c,3). The 3-outcome classification requires
a ROC curve for each outcome; thus, there is an AUROC for each out-
come in (B). The best results are in italic. The results indicate that the best
performance is achieved when making a 2-outcome classification using
an ensembled network

Metric (A) 2 class: mTICI 0,1,2a versus mTICI 2b,2c,3

Only AP Only lateral AP and lateral ensembled

Accuracy (%) 74.2 ± 3.3 (72.8, 75.7) 76.9 ± 5.9 (74.4, 79.5) 81.0 ± 4.5 (79.0, 82.9)

AUROC 0.83 ± 0.04 (0.81, 0.84) 0.84 ± 0.05 (0.82, 0.87) 0.86 ± 0.04 (0.84, 0.88)

MCC 0.49 ± 0.07 (0.46, 0.52) 0.54 ± 0.11 (0.49, 0.59) 0.62 ± 0.09 (0.58, 0.66)

Sensitivity 0.78 ± 0.1 (0.74, 0.83) 0.84 ± 0.1 (0.79, 0.88) 0.88 ± 0.08 (0.85, 0.92)

Specificity 0.69 ± 0.12 (0.64, 0.75) 0.68 ± 0.14 (0.62, 0.75) 0.72 ± 0.11 (0.67, 0.76)

Metric (B) 3 class: mTICI 0,1,2a versus mTICI 2b versus mTICI 2c,3

Only AP Only lateral AP and lateral ensembled

Accuracy (%) 56.0 ± 4.9 (53.9, 58.2) 61.8 ± 4.1 (60, 63.6) 64.0 ± 5.0 (62.0, 66.0)

AUROC-mTICI 0,1,2a 0.81 ± 0.04 (0.79, 0.83) 0.84 ± 0.05 (0.82, 0.86) 0.85 ± 0.04 (0.83, 0.87)

AUROC-mTICI 2b 0.67 ± 0.06 (0.64, 0.70) 0.74 ± 0.06 (0.72, 0.77) 0.74 ± 0.06 (0.71, 0.77)

AUROC-mTICI 2c,3 0.74 ± 0.05 (0.71, 0.76) 0.75 ± 0.08 (0.72, 0.79) 0.78 ± 0.06 (0.76, 0.81)

MCC 0.30 ± 0.09 (0.26, 0.34) 0.40 ± 0.07 (0.37, 0.43) 0.43 ± 0.08 (0.40, 0.47)

Sensitivity 0.66 ± 0.16 (0.59, 0.73) 0.74 ± 0.08 (0.70, 0.77) 0.80 ± 0.1 (0.75, 0.84)

Specificity 0.73 ± 0.08 (0.69, 0.76) 0.74 ± 0.08 (0.70, 0.77) 0.76 ± 0.07 (0.73, 0.79)
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probabilities from the CNN for those cases, are analyzed and
displayed in Fig. 4. In both cases, the network was able to cor-
rectly classify the input map into mTICI 0,1,2a or mTICI 2b,2c,3
outcomes. In all 4 maps, we observed that image regions that
were activated were vessels, with higher activations in larger
vessels. Thus, the network is making its decision based on image
intensities in the vasculature. Using this method, we are able to
interpret the CNN output and accept or reject the result if the
salient features do not match the clinical experience. CAMs
could also be used to optimize input data to improve network
performance [35]. For instance, in Fig. 4, the activation of some
extracranial regions is observed. Since common sense dictates
that those regions should have no contribution to classification,
cropping the regions should improve the data-driven model per-
formance. Figure 4 also displays the advantages of using an
ensembled network which combines information from both the
AP and lateral view networks. The figure shows that misclassi-
fications can occur when either the AP or lateral view networks
are used independently; however, when information from both

networks are combined using an ensembledmethod, the PHmap
is correctly classified into the appropriate group.

The level of reperfusion was classified based on the
mTICI scale which has its drawbacks [12, 13]. In addi-
tion, neuro-interventionalists can currently perform the
classification themselves by visual assessment of the
DSAs. However, an automated process trained using
labels provided by a core lab or experts in the field
could provide an objective tool across many institutions
and users. This study is useful as it can be replicated
for any other outcome scale such as post-op MRI or
neurological evaluations; however, these are not intra-
procedurally acquired. Further investigations need to be
conducted using other outcome scales to classify reper-
fusion levels.

There are some limitations to this study. First, we are only
using 383 angiograms (268 for training, 39 for in-training
hyperparameter tuning or validation, and 77 for testing) that
were all collected from the same center. Thus, we are currently

McNemar’s p-values 
AP and Lateral: 2.1e-02 
AP and Ensembled: 6.4e-14 
Lateral and Ensembled: 8.9e-09 

AP = 0.832  
Lateral = 0.847 
Ensembled = 0.867 

McNemar’s p-values 
AP and Lateral: 7.1e-06 
AP and Ensembled: 1.7e-12 
Lateral and Ensembled: 4.9-03 
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Fig. 3 Receiver operating characteristic (ROC) curves generated from the
classifications of the convolutional neural network (CNN). a The ROC
curves obtained for each subgroup when making a 2-class classification.
b The ROC curves for each subgroup for the mTICI 0,1,2a class when
making a 3-class classification. c The ROC curves for each subgroup for
the mTICI 2b class when making a 3-class classification. d The ROC
curves for each subgroup for the mTICI 2c,3 class when making a 3-class

classification. The shaded region around the ROC curve depicts the stan-
dard deviations at each point. High AUROC values and thin spread of
standard deviations in a indicate that the best performance is achieved
when making a 2-class classification. In all 4 subplots, while the ROC
curves and the standard deviations overlap between the three subgroups,
McNemar’s p test values indicate significant improvement in the perfor-
mance of ensembled networks over AP and lateral view networks
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limited to demonstrating only a technical feasibility study of
using CNNs to assess the reperfusion level. Second, we are
currently only using PH maps for this feasibility study; other
API maps such as mean transit time, time to peak, and area
under the TDC can also be derived and may be used in con-
junction with PH maps to boost the performance of the net-
work. Third, we are currently doing only a 2- or 3-outcome
classification instead of a full-range mTICI scale. This is due
to the low number of cases per outcome (mTICI 0, 82; mTICI
1, 5; mTICI 2a, 82; mTICI 2b, 140; mTICI 2c, 48; and mTICI

3, 26) which leads to a decrease in performance, as seen when
going from a 2- to 3-outcome classification. Fourth, we are
currently not identifying the location of LVOs, rather just the
reperfusion status. Fifth, preprocessing methods such as
cropping of DSAs to exclude early arterial and venous phases
and identifying inlet vessels for normalization of PH maps are
currently not automated. Lastly, the current normalization pro-
cess only uses one point from the main feeding artery; we will
investigate averaging over multiple points from the main feed-
ing artery; this may provide a more effective normalization.
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CNN for 

both views
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view

CNN Classification

Classification Probability (%)

mTICI 0,1 or 2a 41.4

mTICI 2b, 2c or 3 58.6

CNN Classification

Classification Probability (%)

mTICI 0,1 or 2a 66.8

mTICI 2b, 2c or 3 33.2

CNN Classification

Classification Probability (%)

mTICI 0,1 or 2a 59.9

mTICI 2b, 2c or 3 40.1

Ground Truth

mTICI 0,1 or 2a

Incorrect

(A) Correct

Correct

Class Ac�va�on 
Map

Class Ac�va�on 
Map

Normalized Lateral 
PH Map

Normalized AP PH 
Map
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view
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CNN for 

both views

CNN for 
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view

CNN Classification

Classification Probability (%)

mTICI 0,1 or 2a 21.5

mTICI 2b, 2c or 3 78.5

CNN Classification

Classification Probability (%)

mTICI 0,1 or 2a 44.0

mTICI 2b, 2c or 3 56.0

CNN Classification

Classification Probability (%)

mTICI 0,1 or 2a 52.6

mTICI 2b, 2c or 3 47.4
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Correct
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Class Ac�va�on 
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Class Ac�va�on 
Map

Normalized Lateral 
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Normalized AP PH 
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Fig. 4 a, b Two examples showing the anteroposterior (AP) and lateral
digital subtraction angiography (DSA) sequences, the normalized peak
height (PH) maps generated from those sequences, the class activation
maps (CAMs), and the classifications from the convolutional neural net-
work (CNN) for each view and the ensembled CNN for both views. In a,
the AP view CNN incorrectly classifies the PH map as being mTICI
2b,2c,3 while the lateral view CNN and ensembled CNN both correctly
classify the PH map as mTICI 0,1,2a. In b, the lateral view CNN incor-
rectly classifies the PH map as being mTICI 0,1,2a while the AP view

CNN and ensembled CNN both correctly classify the PH map as mTICI
2b,2c,3. This shows that misclassifications can occur when either the AP
or lateral views are used independently; however, when information from
both views are combined using an ensembled network, the tool is able to
correctly classify the DSA into the appropriate group. In each CNN clas-
sification table, the green highlight indicates the network classification.
All the CAMs show that the activation occurs in the vessels with the
larger vessels causing a higher activation
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This study proves the feasibility of using CNNs to extract
encoded hemodynamic information fromAPI by assessing the
level of reperfusion during an MT in patients with an LVO
AIS. While this study provides neuro-interventionalists with a
more robust tool to evaluate the level of reperfusion during
MTs rather than relying solely on subjective assessment of
DSAs, it also proved the feasibility of using CNNs with API
maps and can thus be possibly used for other endovascular
interventions.

Conclusion

This is a novel attempt at using a data-driven approach to
classify DSAs based on the nature of flow in the neuro-
vasculature by extracting hemodynamic information encoded
in quantitative angiographic maps. In this study, we proved
the feasibility of this approach tomake decisions regarding the
reperfusion status of patients undergoing a MT to treat an
emergent LVO AIS. The CNN succeeded in making this as-
sessment with an accuracy of 81.0%, AUROC of 0.86, and
MCC of 0.62 when making a 2-outcome classification. When
making a 3-outcome classification, the network succeeded
with an accuracy of 64.0%, AUROC of 0.85 for mTICI
0,1,2a, AUROC of 0.74 for mTICI 2b, AUROC of 0.78 for
mTICI 2c,3, and an MCC of 0.43.
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