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Abstract
Purpose Time-of-flight (TOF)-MR angiography (MRA) is an important imaging sequence for the surveillance and analysis of
cerebral arteriovenous shunt (AVS), including arteriovenous malformation (AVM) and arteriovenous fistula (AVF). However, this
technique has the disadvantage of a relatively long scan time. The aim of this study was to compare diagnostic accuracy between
compressed sensing (CS)-TOF and conventional parallel imaging (PI)-TOF-MRA for detecting and characterizing AVS.
Methods This study was approved by the institutional review board for human studies. Participants comprised 56 patients who
underwent both CS-TOF-MRA and PI-TOF-MRA on a 3-T MR unit with or without cerebral AVS between June 2016 and
September 2018. Imaging parameters for both sequences were almost identical, except the acceleration factor of 3× for PI-TOF-
MRA and 6.5× for CS-TOF-MRA, and the scan time of 5 min 19 s for PI-TOF-MRA and 2 min 26 s for CS-TOF-MRA. Two
neuroradiologists assessed the accuracy of AVS detection on each sequence and analyzed AVS angioarchitecture. Concordance
between CS-TOF, PI-TOF, and digital subtraction angiography was calculated using unweighted and weighted kappa statistics.
Results Both CS-TOF-MRA and PI-TOF-MRA yielded excellent sensitivity and specificity for detecting intracranial AVS
(reviewer 1, 97.3%, 94.7%; reviewer 2, 100%, 100%, respectively). Interrater agreement on the angioarchitectural features of
intracranial AVS on CS-MRA and PI-MRA was moderate to good.
Conclusion The diagnostic performance of CS-TOF-MRA is comparable to that of PI-TOF-MRA in detecting and classifying
AVS with a reduced scan time under 2.5 min.
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Abbreviations
CS Compressed sensing
PI Parallel imaging
MRA MR angiography

AVM Arteriovenous malformation
AVF Arterial venous fistula
DSA Digital subtraction angiography
AVS Arteriovenous shunt
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SM grade Spetzler-Martin grade
CVR Cortical venous reflux
PPV Positive predictive value
NPV Negative predictive value

Introduction

Cerebral arteriovenous malformations (AVMs) and arteriove-
nous fistulas (AVFs) are congenital or acquired diseases char-
acterized by arteriovenous shunt (AVS), which is a direct
communication between the arterial and venous circulation
without the capillary bed [1, 2]. Patients with AVS carry cer-
tain risks of hemorrhagic complications [3, 4]. Moreover,
AVS may present with other serious neurological complica-
tions such as venous infarction [5, 6]. Delayed diagnosis can
thus lead to significant morbidity and mortality [7].

Imaging has played a pivotal role in the management of pa-
tientswithAVS, since detailed information about the architecture
and flow dynamics of AVS is essential for establishing an ade-
quate diagnosis and selecting appropriate therapeutic approaches.
Spetzler-Martin (SM) grade is a commonly used classification
system for AVM based on eloquence, size, and venous drainage
pattern in patients with AVM [8]. Surgery is the treatment of
choice for patients with grade 1 or 2 AVM, whereas patients
with a higher grade generally undergo multimodal therapy or
watchful waiting [9]; either option requires frequent follow-up.
Borden proposed a classification for AVF based on the site of
venous drainage and the presence or absence of cortical venous
drainage [10]. Type I AVF usually shows clinically benign be-
havior, being either identified incidentally or from minimal
symptoms. This type of AVF can be treated conservatively.
However, AVFswith cortical venous reflux (type II or III) should
receive treatment because they carry an increased risk of hemor-
rhage or non-hemorrhagic neurological deficit [11].

Digital subtraction angiography (DSA) remains the gold
standard in the evaluation of AVS, thanks to its high spatial
and temporal resolutions and high interobserver agreement.
However, this invasive technique carries a risk of neurological
complications and adverse reactions associated with the con-
trast agent as well as the exposure to ionizing radiation during
the procedure. Various non- or less-invasive imaging tech-
niques have thus been applied to the evaluation of AVS
[12–22]. Time-of-flight (TOF)-MRA has been the most wide-
ly used of these in clinical practice. Past studies have identi-
fied TOF-MRA as a sensitive tool for detecting AVS without
contrast material [23–28]. Even with parallel imaging (PI), a
widely used method for k-space undersampling, TOF-MRA
requires a long scanning time, since both wide scan coverage
and high resolution are required in the assessment of AVS due
to its complex angioarchitecture and hemodynamics.
Acceleration factors in PI are limited to low numbers (typical-
ly to 2–3×) by the associated increase in noise.

Recently, compressed sensing (CS) has been introduced to
clinical settings [29–33]. This technique provides an innovative
approach to undersampling k-space, through exploitation of the
underlying sparsity in the appropriate transform domain, prom-
ising higher acceleration. The source image of TOF-MRAmost-
ly consists of scattered “white” arteries and “black” brain paren-
chyma, which are thus considered mathematically sparse. In ad-
dition, wavelet transformation ofMR imagesmakes the resulting
image sparse in the wavelet transform domain [34]. The utility of
CS has been demonstrated in various MR imaging applications,
including TOF-MRA. Previous studies have shown that CS-
TOF-MRA provides a clinically acceptable quality of maximum
intensity projection images, even with 5× acceleration [33].With
the advantage of this accelerated sequence, an increase of spatial
coverage (for example, whole-brain coverage) can be achieved
within a clinically acceptable scan time.

CS-TOF-MRA has been successfully applied to the evalu-
ation of different kinds of vascular pathologies, including in-
tracranial aneurysm [33], moyamoya disease [31], and arterial
stenosis [35–37]. However, to the best of our knowledge, the
utility of CS-TOF-MRA in the evaluation of AVS has not
been well investigated. In addition, few studies have referred
to the concordance between CS-TOF-MRA and other imag-
ing modalities, such as DSA [36]. The current study aimed to
determine whether CS-TOF-MRA is useful for AVS in com-
parison with PI-TOF-MRA andDSA by focusing on detection
and evaluation of the angioarchitectural features of AVS.

Methods

Patients

This retrospective study was approved by the local institution-
al review board, and the need to obtain written informed con-
sent was waived. A total of 153 patients who had undergone
both CS-TOF-MRA and PI-TOF-MRA in another prospec-
tive study between June 2016 and September 2018 were en-
rolled in this study (Fig. 1). No subsets of this patient popula-
tion have not been published in the past with a research focus
not presented in the current article. Patients who underwent
any treatment during the interval between DSA and MRI (n =
2), or who had scalp AVM (n = 1) or AVF (n = 1) were ex-
cluded. We then excluded 1 patient with AVF diagnosed
based solely on MRI findings from the following analyses
because no DSA was performed for this patient. We also ex-
cluded 92 patients without evidence of AVS who did not
undergo DSA or CTA within 1 year of the MRI examination.

Analysis 1, detection of intracranial AVS First, we assessed the
accuracy of CS-TOF-MRA and PI-TOF-MRA to detect intracra-
nial AVS. We chose negative controls, which consisted of pa-
tients without any evidence of AVS confirmed on DSA or CTA
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(n= 19) which were performed within 1 year of MRI examina-
tion. We then also chose patients with known intracranial AVS
confirmed by DSA (n = 37: AVM, n = 28; AVF, n= 9) (Fig. 1).

Analysis 2, angioarchitecture analysis of AVS For further anal-
ysis of the angioarchitecture of AVS, we included 13 patients
with AVM and 7 patients with AVF who underwent MRI
examination and DSA within 1 year (Fig. 1) [38]. The median
interval between DSA and MRA was 4 days (range, 1–
272 days) for patients with AVM and 2 days (range, 1–
363 days) for patients with AVF.

MR angiography

We performed all MRA examinations using a 3-T MR imag-
ing system (MAGNETOM Skyra; Siemens Healthcare,
Erlangen, Germany) with a 32-channel head coil. Imaging
parameters for PI-TOF-MRA were as follows: TR/TE, 20–
21/3.7 ms; flip angle, 18–20°; FOV 187.3 × 220 mm2; matrix
size, 328 × 384; slice thickness, 0.7 mm; phase partial Fourier
factor, 7/8; number of slabs, 4–5; total slab thickness, 10.2–
12.6 cm; acceleration factor, generalized autocalibrating par-
tially parallel acquisition (GRAPPA) 3×; integrated reference
scan. Scan time was 4 min 15 s–5 min 19 s, depending on the
head and lesion size. Imaging parameters for the prototype
CS-TOF-MRA were as follows: TR/TE = 20/3.7 ms; flip an-
gle, 18°; field of view, 187.3 × 220 mm; matrix size, 328 ×
384 slice thickness, 0.7 mm; slice resolution, 50%; slice per
slab, 44; number of slabs, 5, 180 slices; total slab thickness,
12.6 cm; acceleration factor, 6.5×; and integrated reference
scan. Images were automatically interpolated to a 652 × 768
matrix, and final resolution became 0.29 × 0.29 mm. Scan
time was 2 min 26 s, while the CS reconstruction time was
5 min 32 s for 10 iterations at an online main console.

DSA examination

All DSA examinations were obtained using an AXIOM-Artis
biplane system for conventional angiography (Siemens
Healthcare) with Iohexol 300 (Fuji Pharma, Tokyo, Japan).
Selective angiographies were acquired using 6–8 ml of the
contrast agent at a rate of 2.5–4 ml/s. The images were obtain-
ed with 1024 × 1024 matrix and FOV of 29.7 cm. All biplane
DSA acquisitions were obtained with temporal resolution
ranging from a minimum of 2 to 6 frames/s in standard pro-
jections with injection in both ICAs and at least one vertebral
artery.

Interpretation of DSA (reference standard)

DSA examinations were interpreted by two board-
certified neurosurgeons (K.Y., H.K.) together, both with
26 years of experience. The reported results of those
examinations regarding the presence, location, and clas-
sification of the AVM and AVF were used as the ref-
erence standard.

Detection of AVS (analysis 1)

MRI examinations were interpreted by two board-
certified radiologists (Y.F., S.N., with 23 years and
14 years of experiences in neuroradiology, respectively).
The readers were asked to identify the presence or ab-
sence of AVS in analysis 1. With the source image of
TOF-MRA, an AVS was defined as enlarged and dilat-
ed serpiginous vessels and/or direct visualization of the
fistulous point/nidus [27].

Fig. 1 Flow diagram for
inclusion in and exclusion from
this study. Note that analysis 1
represents detection of AVS, and
analysis 2 represents analysis for
AVS angioarchitecture
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Angioarchitecture analysis of AVS (analysis 2)

The same reviewers evaluated the angioarchitecture of
the AVS based on the following criteria: (1) eloquence
of adjacent brain, (2) size of nidus, (3) pattern of ve-
nous drainage, and (4) SM grade for AVM or Borden
grade for AVF based on the pattern of cortical venous
reflux (CVR) [10]. If asymmetric dilatation and/or flow-
related signal of deep venous structures were observed
on TOF-MRA, deep venous drainage was categorized as
positive. CVR on TOF-MRA was evaluated based on
findings including abnormal dilatation, flow-related en-
hancement, and presence of medullary or pial veins
[16].

Statistical analysis

Sex and age were compared using Fisher’s exact test and
Wilcoxon ranked sum test between patients with AVS and
without AVS.

We calculated standard diagnostic accuracy parame-
ters (sensitivity, specificity, and positive and negative
predictive values) for the detection of AVS in analysis
1 and venous reflux of AVM in analysis 2. These prob-
abilities are listed for each reader either on CS-TOF-
MRA or on PI-TOF-MRA.

Concordance of the angioarchitectures of AVMs and
AVFs between CS-TOF, PI-TOF, and DSA was calculated
with unweighted and weighted kappa statistics [13, 14, 25].
Concordance values were interpreted as follows: κ value of
0, poor agreement; κ values of 0.01–0.20, minor agreement;
κ values of 0.21–0.40, fair agreement;κ values of 0.41–0.60,
moderate agreement; κ values of 0.61–0.80, good agree-
ment; and κ values of 0.81–1, excellent agreement. Values
of p < 0.05 were considered statistically significant.
Statistical analyses were performed using STATA version
13 software (StataCorp, College Station, TX, USA).

Results

Detection of AVS (analysis 1)

Table 1 summarizes the patient characteristics of analysis 1.
Nidus size ranges from 13 to 90 mm (median size, 35 mm).
Thirty-six of the 37 cases with AVS were correctly identified
by reader 1 on both CS-TOF and PI-TOF. All cases with AVS
were correctly identified by reader 2 on both CS-TOF and PI-
TOF. All 19 cases without AVS were correctly identified as
negative for AVS by both readers on each type of MRA. The
sensitivity and specificity per image sequence per reader are
summarized in Table 2.

Angioarchitecture analysis of AVS (analysis 2)

Tables 3 and 4 summarize the patient characteristics of
analysis 2.

AVM

Reader 1 correctly detects 4 of the 6 cases with venous reflux,
while reader 2 detects 5 out of the 6 cases on CS-TOF and PI-
TOF. The sensitivity and specificity of venous reflux per im-
age sequence per reader are summarized in Supplementary
Table. As for SM classification, reader 1 correctly classified
8 cases of AVM on CS-TOF and 9 cases on PI-TOF, while
reader 2 correctly classified 10 out of 13 cases of AVM on
both sequences. The interrater concordance of CS-TOF and
PI-TOF for AVM evaluation is shown in Table 5. Intra-rater
concordance between CS-TOF-MRA and PI-TOF-MRA for
agreement on the SM classification was excellent for both
readers (0.84 for reader 1; 1 for reader 2). Interrater reproduc-
ibility was also excellent for agreement on the SM classifica-
tion between both readers. Weighted kappa statistics revealed
values of 0.49 (CS-TOF-MRA) and 0.59 (PI-TOF-MRA) for
agreement on SM grade between reader 1 and DSA.Weighted
kappa statistics revealed a value of 0.68 for agreement on SM
grade between reader 2 and DSA. Representative cases are
shown in Figs. 2 and 3.

AVF

Intra-rater concordance between CS-TOF-MRA and PI-TOF-
MRA was perfect (κ = 1) for both readers. Both readers cor-
rectly classified 6 of the 7 cases of AVF. Interimage sequence
reproducibility was moderate (κ = 0.58, p = 0.04) for agree-
ment on Borden classification TOF-MRA and DSA for both
readers. A representative case is shown in Fig. 4.

Table 1 Participant characteristics (analysis 1)

AVS (+) AVS (−)

Number of patients 37 19

Mean age (years) 46.6 ± 20.6 55.9 ± 13.4 p = 0.19

Female/male F 17, M 20 F 12, M 7 p = 0.26

Diagnosis
AVMs 28 0

AVFs 9 0

Aneurysms untreated 11 10

Aneurysms treated 0 3

Stenosis 1 1

None of the above 0 5
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Discussion

The current study evaluated the diagnostic accuracy of whole-
brain CS-TOF-MRA 6.5× for detecting AVS in comparison
with PI-TOF-MRA, using DSA as the reference standard. Our
results showed that CS-TOF-MRA is an effective tool for
detecting and classifying intracranial AVS, even within the
reduced scan time under 2.5 min.

We demonstrated excellent performance of CS-TOF-MRA
for delineating AVS with high sensitivity and specificity. This
was in line with past studies showing TOF-MRA as a versatile
tool for detecting AVS. Past studies have reported that clinical
MRA including TOF-MRA was useful in the detection of
AVS with 90–91.7% sensitivity and 94.4–100% specificity
[25, 27]. Regarding the fact that extracranial vessels, such as
the occipital and middle meningeal arteries, often feed intra-
cranial AVF, MRA of the whole brain at high resolution
would be optimal for assessing AVF. In clinical practice, how-
ever, TOF-MRA usually provides limited spatial coverage
due to the long scan time, which may hinder the detection of
AVS. In fact, evaluation of AVF was inadequate in 9% of
patients because the shunt site was outside the image volume

on TOF-MRA [24]. On the other hand, CS-TOF-MRA has its
own advantage of a wide-scan volume coverage within a short
scan time. In the current study with CS-TOF-MRA, whole-
brain coverage can be achieved within 2.5 min, making this
totally feasible as a clinical routine. CS-TOF-MRA has be-
come a clinically useful image sequence thanks to this short
scan time, and the large scanning coverage would be particu-
larly beneficial in screening for AVS.

Our study also demonstrated that the intermodality agree-
ment of CS-TOF-MRA with DSA as the reference standard
was moderate to good in evaluating the SM grade of AVM.
Our result was in accordance with a past study that reported
intermodality agreement on AVM characteristics between
TOF-MRA and DSA as moderate when rated by an experi-
enced neuroradiologist [13]. We also found that CS-TOF-
MRAwas useful not only for detection but also for evaluation
of AVF in terms of Borden classification, which is based upon
the site of venous drainage and the presence or absence of
cortical venous drainage [10]. Schubert et al. found that
intermodality agreement of the Borden classification between
clinical MRA and DSA varied from 0.2 to 0.58 in 6 patients
with AVF [25], consistent with our results. The good

Table 3 Characteristics of patients with AVM (analysis 2)

Sex Age Location Eloquence Venous Reflux SM grade History of ICH Size (mm)

M 16 Hypothalamus 1 1 3 (+) 13

F 36 Right parietooccipital 1 0 2 (−) 24

M 50 Left temporal 1 1 4 (−) 48

M 54 Left frontal 0 0 1 (+) 18

M 70 Cerebellar vermian 0 1 2 (+) 16

F 19 Left parietal 0 0 1 (−) 23

F 46 Right frontal 0 1 4 (−) 34

M 30 Right temporal 0 0 3 (+) 62

M 43 Right frontal 0 0 1 (+) 15

F 11 Right parietooccipital 1 0 3 (−) 36

M 16 Left occipital 1 1 4 (−) 58

F 43 Right frontal 0 1 2 (−) 26

M 34 Right temporo-occipital 0 0 1 (+) 28

SM Spetzler-Martin, ICH intracranial hemorrhage

Table 2 Detection of AVS in CS-TOF-MRA and PI-TOF-MRA (95% CI) (analysis 1)

Shunting No shunting Sensitivity Specificity PPV NPV AUC

Reader 1 CS-TOF positive 36 0 97.3% (85.8–99.9%) 100% (82.4. -100%) 100% (90.3–100%) 94.7% (75.1–99.9%) 0.99 (0.96–1.00)
CS-TOF negative 1 19
PI-TOF positive 36 0 97.3% (85.8–99.9%) 100% (82.4–100%) 100% (90.3–100%) 94.7% (75.1–99.9%) 0.99 (0.96–1.00)
PI-TOF negative 1 19

Reader 2 CS-TOF positive 37 0 100% (90.5–100%) 100% (82.4–100%) 100% (90.5–100%) 100% (82.4–100%) 1
CS-TOF negative 0 19
PI-TOF positive 37 0 100% (90.5–100%) 100% (82.4–100%) 100% (90.5–100%) 100% (82.4–100%) 1
PI-TOF negative 0 19

PPV positive predictive value, NPV negative predictive value
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intermodality agreement in our study was partly due to the
relatively high spatial resolution of CS-TOF-MRA, which
can facilitate the anatomical assessment of AVS, such as size
of the nidus. Previous studies have suggested that CS-TOF-
MRA offers a better signal-to-noise ratio [33, 37], which may
also help the readers’ evaluation of AVS consisted of small-
caliber feeders or drainers.

This study has several limitations that warrant consider-
ation. First, this was a retrospective study at a single center,
and the number of patients was relatively small, so the results

might be skewed. It should be noted that we did not included
patients with micro AVM (i.e., nidus size ≦ 10 mm), which
may be difficult to detect with TOF-MRA [14]. Second, anal-
ysis 1 included patients with intracranial pathologies other
than AVS as controls, which represent a source of selection
bias. Third, there are minor differences in imaging parameters
between CS-TOF-MRA and PI-TOF-MRA in some patients,
which may be a weakness of this study. Fourth, no optimiza-
tion was performed for the current CS-TOF-MRA 6.5×. The
current prototype CS-TOF-MRA had been developed after the

Table 5 Interrater reproducibility
of CS-TOF-MRA and PI-TOF-
MRA for characterization of
AVM (95% CI)

CS-TOF vs PI-TOF CS-TOF vs DSA PI-TOF vs DSA

Rater 1 Eloquence 1 1 1

Nidus size 0.84 (0.55–1.00) 0.71 (0.58–0.83) 0.85 (0.68–1.00)

Deep venous return 1 0.68 (0.3–1.00) 0.68 (0.3–1.00)

SM grade 0.9 (0.78–1.00) 0.49 (0.35–0.78) 0.59 (0.35–0.86)

Rater 2 Eloquence 1 1 1

Nidus size 1 0.85 (0.71–1.00) 0.85 (0.73–1.00)

Deep venous return 1 0.84 (0.55–1.00) 0.84 (0.55–1.00)

SM grade 1 0.69 (0.47–0.90) 0.69 (0.47–0.90)

SM Spetzler-Martin

Table 4 Patient characteristics of
AVF (analysis 2) Sex Age Location Venous reflux Borden classification

M 68 Left anterior condylar confluence 0 1

M 70 Right cavernous sinus 0 1

M 73 Tentorial 1 3

M 74 Anterior cranial base 1 3

F 51 Left TSSJ 0 1

F 71 Left anterior condylar confluence 0 1

F 77 Left TSSJ 0 1

TSSJ transverse sinus-sigmoid sinus junction

Fig. 2 A 50-year-old man with temporal AVM. DSA (a) of the left
internal artery shows a large AVM (arrow) in the left temporal lobe.
Frontal maximum intensity projection of PI-TOF-MR angiography (b)

and CS-TOF-MR angiography (c) successfully visualize feeders, nidus,
and drainer of AVM (arrow)
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first prototype of CS-TOF-MRA used in the previous article
[39], and the image quality had been interpreted as acceptable
internally. Fifth, CS- and PI-TOF-MRA demonstrated moder-
ate to good agreement with DSA in terms of venous reflux and
SM grade of AVM. As shown in this study, it should be noted
that TOF-MRA alone can be sometimes insufficient to evalu-
ate cerebrovascular lesions, because TOF-MRA offers limited
information about hemodynamics. TOF-MRA poorly delin-
eates venous reflux, especially when the pattern is complex,
that is, in any direction other than inferior to superior. TOF-
MRA offers limited sensitivity and specificity for detecting
drainage veins of AVM or venous reflux of AVF. Miyasaka
et al. demonstrated that 6 of 27 drainage veins remained

undetected on conventional TOF-MRA [18]. This may be
due to the slow speed and complex directions of flow, leading
to less inflow enhancement. In fact, several studies have
shown the advantages of other advanced imaging techniques
such as 4D-MRA, susceptibility-weighted imaging, and arte-
rial spin labeling over TOF-MRA in the evaluation of AVS
[13, 14, 18, 25, 27], at least in terms of concordance with DSA
findings. These advanced sequences have specific advantages
such as little effect of T1 shortening and detailed hemodynam-
ic information. However, these advanced sequences also show
limitations such as longer scanning time or limited availabil-
ity, depending on vendors and research sites. Moreover, some
techniques require contrast injection to evaluate flow

Fig. 3 A 19-year-old woman with left parietal AVM. Dyna-CT angiography (a), MIP images of PI-TOF-MRA (b), and CS-TOF-MRA (c) successfully
delineate abnormal feeders from the left MCA and PCA, and nidus (arrow)

Fig. 4 A 68-year-old man with left anterior condylar confluence dural
AVF. Volume rendering image of DSA (a), frontal maximum intensity
projection of PI-TOF-MR angiography (b), and CS-TOF-MR angiogra-
phy (c) visualize the dural AVF (arrow). Dyna-CT angiography (d) of the

left VA demonstrates arteriovenous shunt from the dural branch of the left
VA. Source images of PI-TOF-MRA (e) and CS-TOF-MRA (f) success-
fully delineate abnormal flow-related enhancement (arrow) surrounding
the left internal jugular vein
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dynamics [19, 21, 40]. Taking these characteristics into ac-
count, we believe these advanced image sequences should
be used for selected patients with a high suspicion of AVS.
On the other hand, regarding the reduced scanning time and
large volume coverage, CS-TOF-MRA can be an efficient
screening or monitoring tool for AVS with a reasonable con-
cordance rate with DSA. Furthermore, the CS technique is
used to either shorten the temporal footprint [30] or to increase
spatial resolution within the same scan time [37], which may
be applicable to further characterization of AVS.

In conclusion, CS-TOF-MRA yields comparable diagnos-
tic performance in the detection and classification of AVM
and AVS to that of PI-TOF-MRA, while reducing the scan
time of under 2.5 min, without any degradation of image
quality.
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