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Abstract
Purpose To compare the image quality of brain computed tomography (CT) images reconstructed with deep learning–based
image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V).
Methods Sixty-two patients underwent routine noncontrast brain CT scans and datasets were reconstructed with 30% ASIR-V
and DLIR with three selectable reconstruction strength levels (low, medium, high). Objective parameters including CT attenu-
ation, noise, noise reduction rate, artifact index of the posterior cranial fossa, and contrast-to-noise ratio (CNR) were measured at
the levels of the centrum semiovale and basal ganglia. Subjective parameters including gray matter-white matter differentiation,
sharpness, and overall diagnostic quality were also assessed and compared with the interobserver agreement.
Results There was a gradual reduction in the image noise and artifact index of the posterior cranial fossa as the strength levels of
DLIR increased (all P < 0.001) compared with that of ASIR-V. CNR in both the centrum semiovale and basal ganglia levels also
improved from the low to high strength levels of DLIR compared with that of ASIR-V (all P < 0.001). DLIR images with
medium and high strength levels demonstrated the best subjective image quality scores among the reconstruction datasets. There
was moderate to good interobserver agreement for the subjective image quality assessments with ASIR-V and DLIR.
Conclusion On routine brain CT scans, optimized protocols with DLIR allowed significant reduction of noise and artifacts with
improved subjective image quality compared with ASIR-V.
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Introduction

Noncontrast brain computed tomography (CT) is widely used
as a first-line imaging study to evaluate patients suspected of
central nervous system disease due to its speedy image acqui-
sition, easy accessibility, and low cost compared with mag-
netic resonance imaging. But image noise is still a problem for
brain CT that hinders the detection of subtle changes in
Hounsfield units (HUs) seen in pathologic conditions [1, 2].
In addition, beam hardening, streak, and partial volume

artifacts observed in the posterior cranial fossa are other chal-
lenges for brain CT [3, 4].

For the past 30 years, filtered back-projection (FBP) has
been the dominant method of reconstruction because of its
computational efficiency and accuracy. FBP requires a great
number of high-quality projection data to obtain accurate re-
constructions [5]. But at low dose settings, challenges arise
with higher image noise and artifacts. Consequently, iterative
reconstruction (IR) was introduced to overcome these limita-
tions of FBP. IR showed significant reduction in radiation
dose and improvement in image quality [6, 7]. However, im-
ages with high reconstruction strength levels have a waxy,
plastic look or simply unnatural appearance, which is another
limitation [8, 9].

Deep learning (DL), a subset of machine learning and arti-
ficial intelligence, has recently shown the potential for im-
proving image reconstruction in CT, because it can handle a
higher number of models and parameters far better than
statistics-based reconstruction methods [10, 11]. With high
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expectations, new technology for DL-based image reconstruc-
tion (DLIR; TrueFidelity, GE Healthcare) has been devel-
oped. This reconstruction engine has been applied to phantom
and coronary CT angiography studies and has shown greater
noise reduction and superior image quality compared with
adaptive statistical iterative reconstruction-Veo (ASIR-V)
[12, 13]. As far as we know, no previous studies have yet
applied DLIR to routine noncontrast brain CT protocols.
Thus, the aim of this study was to compare the objective and
subjective image quality of brain CT images obtained with
DLIR and ASIR-V, and to determine the strength of the
DLIR algorithms needed to achieve reconstruction images of
the highest quality.

Materials and methods

The institutional review board approved the study protocol
(Veterans Health Service Medical Center, IRB file No.
2020-03-018) and the requirement for written informed con-
sent was waived.

Subjects

Initially 104 patients who underwent noncontrast brain CT
scans (Revolution CT, GE Healthcare) between December
2019 and January 2020 were enrolled. Among them, 42 pa-
tients with definite neuropathological CT findings such as
hematoma (n = 6), edema (n = 3), neoplasm (n = 4), and
encephalomalacia (n = 17) or foreign bodies such as surgical
clips (n = 3), coils (n = 4), and drainage catheters (n = 5) were
excluded to avoid confounding effects on image interpreta-
tion. But, patients with CT findings such as mildly enlarged
ventricles and widened cortical sulci, physiologic calcifica-
tions in the medial basal ganglia, and a few scattered patchy
white matter hypodensities which can be seen in normal aging
brains [14] were included in this study. Finally, 62 patients
were included in this study.

CT acquisition and image reconstruction

All patients underwent noncontrast brain CT scans on a latest-
generation 512-slice CT scanner (Revolution CT, GE
Healthcare). Scan parameters were as follows: tube voltage,
120 kV; tube current, 100~300 mA depending on automatic
modulation; beam collimation, 64 × 0.625 mm; rotation time,
0.5 s; pitch factor, 0.516; field of view, 250 mm; matrix,
512 × 512.

CT datasets were reconstructed using ASIR-V at a level of
30% and DLIR with three selectable reconstruction strength
levels (low, medium, and high) with 5.0-mm slice thickness as
is done in routine clinical practice. The mean reconstruction
times for ASIR-V and DLIR were 20.51 and 44.39 s,

respectively. Finally, we obtained the following 4 reconstruc-
tion image datasets for each patient: ASIR-V, DLIR at the low
level (DLIR-L), DLIR at the medium level (DLIR-M), and
DLIR at the high level (DLIR-H).

Image quality assessment

Objective image quality analysis All images were evaluated
using a dedicated PACS system (M-viewer; Infinitt
Healthcare). To assess gray matter-white matter (GM-WM)
differentiation, 4 regions of interest (ROIs) were measured:
frontal WM and adjacent cortical GM at the level of the cen-
trum semiovale, and thalamic deep GM and WM of the pos-
terior limb of the internal capsule at the level of the basal
ganglia. To evaluate artifacts in the posterior cranial fossa,
another ROI was drawn in the interpetrous region of the pos-
terior fossa at the level where the most noticeable artifacts
were seen [15, 16]. We used ROIs with sizes ranging from
17 to 20mm2 for all WM locations and the deep thalamic GM,
sizes ranging from 4.5 to 6 mm2 for GM at the level of the
centrum semiovale, and sizes ranging from 190 to 200 mm2

for the posterior cranial fossa. ROIs were measured by an
experienced neuroradiologist (I.K. with 11 years of experi-
ence with CT) and reviewed by another experienced neurora-
diologist (N.Y. S. with 13 years of experience with CT).
Representative images of the five ROIs are shown in Fig. 1.

We defined CT numbers (HU) of the thalamic deep GM at
the level of the basal ganglia as CT attenuation of GM. Image
noise was defined as the standard deviation (SD) of attenua-
tion values measured in the deep WM at the centrum
semiovale level which is relatively free from artifacts. The
artifact index was defined as the SD within the ROI of the
posterior cranial fossa which is prone to beam hardening,
streak, and/or partial volume artifacts. Therefore, the artifact
index may reflect the amount of CT number variations caused
by artifacts in addition to the inherent image noise associated
with scanner- and patient-related factors [17, 18].

We calculated the contrast-to-noise ratio (CNR) at both the
centrum semiovale and basal ganglia levels using the above
values in the following formula: (mean HUGM − mean
HUWM) / [(mean SD HUGM)

2 + (mean SD HUWM)
2]1/2.

The noise reduction rate was calculated as follows: noise
reduction rate (DLIR) (%) = (SDASIR-V − SDDLIR) / SDASIR-V

× 100 (DLIR indicates DLIR-L, DLIR-M, or DLIR-H).

Subjective image quality analysis Subjective image quality
was evaluated by the same two experienced neuroradiologists
who performed the objective image quality analysis. They were
blinded to the reconstruction settings and results from the ob-
jective image quality analysis. Two neuroradiologists indepen-
dently evaluated image quality with three categories: GM-WM
differentiation (ability to distinguish GM fromWM), sharpness
(ability to reproduce the boundaries of the brain clearly and
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distinctly), and overall diagnostic image quality (image texture
and general appearance). We used the following 4-point scale
[19]: 1. poor/non-diagnostic; 2. suboptimal, but diagnostic; 3.
average; and 4. excellent. Interobserver agreement between the
two neuroradiologists was also calculated.

Statistical analysis All statistical analyses were performed
using SPSS version 19.0 (SPSS statistics; IBM). After using
the Kolmogorov–Smirnov test to determine normal distribu-
tion, quantitative data with normal distributions were compared
using the one-way analysis of variance (ANOVA) test.
Quantitative data without normal distributions were compared
using the Kruskal–Wallis test for objective image quality anal-
ysis. Post hoc tests were also performed using Tukey’s honestly
significant difference test or the Mann–WhitneyU test with the
false discovery rate (FDR) correction for multiple comparisons.

Pearson’s chi-square test was performed to compare sub-
jective image quality scores between different image datasets,
and pairwise comparisons were performed using the FDR
correction. Interobserver agreement was assessed using kappa
statistics with the linear weighted method. A two-tailed P
value < 0.05 was considered significant.

Results

Baseline characteristics and radiation dose

Patient age and gender are listed in Table 1. A total of 62
consecutive patients made up the study population and

consisted of 50 men and 12 women with a median age of 74
(range 43–91 years).

The mean volume CT dose index (CTDIvol) was
35.90 mGy and mean dose-length product (DLP) was
768.38 mGy∗cm, respectively.

Objective image quality analysis

Compared with ASIR-V, the image noise and artifact index of
the posterior cranial fossa were gradually reduced as the
strength levels of DLIR increased (P < 0.001). As the recon-
struction strength of DLIR increased from low to high, the
image noise reduction rate increased from 23.6 to 51.1%, re-
spectively. CNRs in both the centrum semiovale and basal
ganglia levels also improved as the strength levels of DLIR
increased from low to high, compared with ASIR-V

Table 1 Basic characteristics and radiation doses of 62 subjects

Characteristics Findings

Age [range] 74 [43–91]

Gender (%)

Male 50 (80.6)

Female 12 (19.4)

CTDIvol (mGy) 35.90 ± 3.36

Dose-length product (mGy*cm) 768.38 ± 86.61

Data represented as means ± standard deviations, medians [ranges], or
numbers (percentages)

Fig. 1 Axial CT images at the level of the centrum semiovale (a) and
basal ganglia (b). Regions of interest (ROI) were drawn in gray matter
and white matter at both levels for objective image quality analysis. Axial

CT image at the posterior cranial fossa (c). ROI was drawn in the
interpetrous region to analyze the artifact index

907Neuroradiology (2021) 63:905–912



(P < 0.001). Post hoc pairwise comparisons found statistically
significant differences for image noise, artifact index, and
CNR in both levels (ASIR-V vs DLIR-L, ASIR-V vs DLIR-
M, ASIR-V vs DLIR-H, DLIR-L vs DLIR-M, DLIR-L vs
DLIR-H, DLIR-M vs DLIR-H). There were no significant
differences in CT attenuation of GM among the 4 datasets
(P = 0.978). Results of the objective image quality analysis
are summarized in Table 2 and Fig. 2.

Subjective image quality analysis

Subjective parameters showed a similar pattern for ob-
jective parameters. Scores in the three categories gradu-
ally increased as the strength levels of DLIR increased
from low to high.

Compared with ASIR-V images, one radiologist found all
three DLIR images to have significantly better GM-WM

Table 2 Comparison of objective image quality among the four image datasets

Datasets ASIR-V DLIR-L DLIR-M DLIR-H P value

CT attenuation of GM, HU 33.79 ± 2.52 33.75 ± 2.14 33.80 ± 2.22 33.92 ± 2.24 0.978

Image noise, HU 3.33 ± 0.64 2.50 ± 0.44* 2.01 ± 0.35*° 1.59 ± 0.32*°+ < 0.001

Artifact index, HU 5.03 ± 0.55 4.17 ± 0.49* 3.64 ± 0.53*° 3.09 ± 0.53*°+ < 0.001

CNR

Basal ganglia level 1.93 ± 0.562.28 2.47 ± 0.62* 3.01 ± 0.78*° 3.85 ± 0.91*°+ < 0.001

Centrum semiovale level 2.28 [1.25–4.46] 2.89 [1.00–5.45]* 3.35 [1.42–6.99]*° 4.27 [1.81–8.71] *°+ < 0.001

ASIR-V adaptive statistical iterative reconstruction-Veo, DLIR-L deep learning–based image reconstruction at low level, DLIR-M deep learning–based
image reconstruction at medium level, DLIR-H deep learning–based image reconstruction at high level, GM gray matter, HU Hounsfield units, CNR
contrast-to-noise ratio. Data represented as means ± standard deviations or medians [range]

Post hoc pairwise comparison with Tukey’s honestly significant difference test or Mann–Whitney U test showed significant mean differences with
ASIR-V (*), DLIR-L (°), and DLIR-M (+ ) (P < 0.05)

Fig. 2 Noise reduction rate
according to the strength levels of
DLIR (a). Artifact index (b).
CNR in both the basal ganglia (c)
and centrum semiovale (d) levels
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differentiation (ASIR-V vs DLIR-L, P = 0.004; ASIR-V vs
DLIR-M, P < 0.001; ASIR-V vs DLIR-H, P < 0.001) and
sharpness (ASIR-V vs DLIR-L, P = 0.001; ASIR-V vs
DLIR-M, P < 0.001; ASIR-V vs DLIR-H, P < 0.001). On
the other hand, the other radiologist found DLIR-M and
DLIR-H images to have significantly higher GM-WM differ-
entiation (ASIR-V vs DLIR-M, P < 0.001; ASIR-V vs DLIR-
H, P < 0.001) and sharpness (ASIR-V vs DLIR-M, P = 0.002;
ASIR-V vs DLIR-H, P < 0.001), but ASIR-V and DLIR-L
images did not significantly differ in GM-WM differentiation
(P = 0.087) and sharpness (P = 0.405).

DLIR-M and DLIR-H images showed significantly better
overall diagnostic quality compared with ASIR-V and DLIR-
L images (both radiologists, P < 0.001). But the overall diag-
nostic quality did not significantly differ between DLIR-M
and DLIR-H (radiologist 1, P = 0.427; radiologist 2, P =
0.440). Also, the overall diagnostic quality did not significant-
ly differ between ASIR-V and DLIR-L (radiologist 1, P =
0.703; radiologist 2, P = 0.414) (Fig. 3).

Interobserver agreement was moderate for gray-white dif-
ferentiation (κ = 0.585) and good for sharpness (κ = 0.765)
and overall diagnostic quality (κ = 0.717).

Fig. 3 Axial CT images of a 75-year-old male patient at the level of the
centrum semiovale (a–d) and basal ganglia (e–h) and through the
posterior cranial fossa (i–l), using ASIR-V (a, e, i), DLIR-L (b, f, j),
DLIR-M (c, g, k), and DLIR-H (d, h, l). Compared with ASIR-V and

DLIR-L images, DLIR-M and DLIR-H images showed significantly bet-
ter gray-white matter differentiation, sharpness, and overall diagnostic
quality
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Results of the subjective image quality analysis are sum-
marized in Table 3.

Discussion

This study assessed the objective and subjective image quality
of two reconstruction algorithms (ASIR-V and DLIR) for im-
ages obtained with routine clinical brain CT. We found that
brain CT images with DLIR showed better objective image
quality in terms of noise and artifact reduction compared with
ASIR-V images. Also, DLIR images with medium and high
strength levels demonstrated the best subjective image quality
scores among the reconstruction datasets.

The conventional modeling approaches of IR face funda-
mental challenges because the growing number of parameters
makes it more difficult to retain the necessary convergence
properties of algorithms. On the other hand, DLIR can deal with
complex models and a huge number of parameters through
training processes, overcoming the modeling limitations of IR
[20]. Recently, CT image reconstruction with a deep neural
network (DNN) has shown promising performance for improv-
ing image quality with favorable noise texture for anatomical
and pathological structures [12, 13, 21–23]. Even though these
previous studies focus on different body organs for CT, the
results of our study are still in line with their findings. When
compared with the most recent generation of the IR algorithm
available from the same manufacturer (ASIR-V), our results
showed that the new DLIR (TrueFidelity™) significantly re-
duces noise and artifacts. Given that the difference in HU is
very subtle between GM and WM (typically from 5 to 10 HU)
in brain CT images [24], improvements in noise reduction with
DLIR could greatly benefit the interpretation of CT images.
Although we could not evaluate improvements in diagnostic
accuracy in this study, we expect better diagnostic accuracy in
the posterior cranial fossa region with DLIR as it shows

superior capability for noise and artifact reduction in our results,
and we infer that DLIR will be especially advantageous when
diagnosing posterior fossa infarction. Further studies are re-
quired to analyze how DLIR will impact diagnostic accuracy
and its ability to detect lesions under various pathologic condi-
tions and at diverse locations.

As expected, we found that subjective image quality pa-
rameters also significantly improved after adapting DLIRwith
increased strength levels. Our results demonstrated a similar
pattern in both objective and subjective parameters, which
were used to verify noise reduction. In theory, reduced sharp-
ness and contrast can occur followed by noise reduction, as
reported in previous studies using IR [25, 26]. Previous stud-
ies also reported that the visual impression of reconstructed
images with highest iterative levels differs from images gen-
erated with FBP. This plastic-looking unfamiliar noise texture
limits the use of high-level iterative reconstruction in routine
clinical practice [9, 27]. On the other hand, the results of our
study show that DLIR improved the sharpness of the structur-
al margins and produced favorable image appearances even
when the highest level of reconstruction strength was applied.
DLIR incorporates a DNN trained with high-quality FBP
datasets of ground truth images. Through rigorous validation
and extensive testing to reduce the difference between recon-
struction outputs and ground truth images, DLIR can generate
images that accurately match ground truth images [20]. Thus,
we thought that DLIR with fine-tuned DNN would enable the
generation of more appealing image appearances in clinical
brain CT imaging compared with ASIR-V.

Our study has several limitations. This is a retrospective
study with a relatively small number of patients. Although
the number of patients included in our study was larger than
that of recent comparison studies with DLIR and IR [12, 23],
further research involving a larger number of patients is re-
quired to confirm our findings. Also, our study subjects were
limited to patients without definite neuropathological findings

Table 3 Comparison of subjective image quality among the four image datasets

ASIR-V DLIR-L DLIR-M DLIR-H P value

Radiologist 1

Gray-white differentiation 2.98 ± 0.46 3.24 ± 0.43* 3.58 ± 0.49*° 3.74 ± 0.44*° < 0.001

Sharpness 2.82 ± 0.38 3.08 ± 0.37* 3.26 ± 0.54*° 3.58 ± 0.49*°+ < 0.001

Overall diagnostic quality 3.02 ± 0.38 3.05 ± 0.33 3.45 ± 0.56*° 3.48 ± 0.50*° < 0.001

Radiologist 2

Gray-white differentiation 2.89 ± 0.54 3.10 ± 0.62 3.34 ± 0.54* 3.68 ± 0.47*°+ < 0.001

Sharpness 3.08 ± 0.37 3.18 ± 0.42 3.39 ± 0.49*° 3.60 ± 0.49*°+ < 0.001

Overall diagnostic quality 2.92 ± 0.41 2.98 ± 0.49 3.40 ± .052*° 3.52 ± 0.50*° < 0.001

ASIR-V adaptive statistical iterative reconstruction-Veo, DLIR-L deep learning–based image reconstruction at low level, DLIR-M deep learning–based
image reconstruction at medium level, DLIR-H deep learning–based image reconstruction at high level

Multiple comparisons correctedwith the false discovery rate (FDR) showed significantmean differences fromASIR-V (*), DLIR-L (°), andDLIR-M (+ )
(P < 0.05)
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or foreign bodies and we were unable to evaluate improve-
ments in diagnostic accuracy. While our results show that
DLIR enables superior image quality in subjects with normal
aging brains, further studies involving patients with various
clinical conditions are required to evaluate the impact of DLIR
on lesion detection and diagnostic accuracy. Furthermore, we
only investigated CT images under a routine radiation dose
protocol which was adapted to the clinical specifics of our
institution. Considering that radiation dose reduction is possi-
ble by altering the reconstruction mechanism, the impact of
DLIR on reduced radiation dose protocols needs to be evalu-
ated in the future. Lastly, subjective image quality evaluations
were performed by only two radiologists in this study.
Extended research with more neuroradiologists is needed to
generalize the subjective outcomes of our study.

In conclusion, brain CT images with DLIR demonstrated
better performance in reducing image noise and artifacts com-
pared with ASIR-V, and DLIR images with medium and high
reconstruction strength levels provided the highest subjective
image quality scores. DLIR shows great potential as an ad-
vanced reconstruction method that improves the image quality
of clinical brain CT images.
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