
DIAGNOSTIC NEURORADIOLOGY

A preliminary study of deep learning-based reconstruction
specialized for denoising in high-frequency domain: usefulness
in high-resolution three-dimensional magnetic resonance
cisternography of the cerebellopontine angle

Hiroyuki Uetani1 & Takeshi Nakaura1 & Mika Kitajima1 & Yuichi Yamashita2 & Tadashi Hamasaki3 & Machiko Tateishi1 &

Kosuke Morita4 & Akira Sasao1
& Seitaro Oda1 & Osamu Ikeda1 & Yasuyuki Yamashita1

Received: 17 June 2020 /Accepted: 4 August 2020
# Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Purpose Deep learning-based reconstruction (DLR) has been developed to reduce image noise and increase the signal-to-noise
ratio (SNR). We aimed to evaluate the efficacy of DLR for high spatial resolution (HR)-MR cisternography.
Methods This retrospective study included 35 patients who underwent HR-MR cisternography. The images were reconstructed
with or without DLR. The SNRs of the CSF and pons, contrast of the CSF and pons, and sharpness of the normal-side trigeminal
nerve using full width at half maximum (FWHM) were compared between the two image types. Noise quality, sharpness,
artifacts, and overall image quality of these two types of images were qualitatively scored.
Results The SNRs of the CSF and pons were significantly higher with DLR than without DLR (CSF 21.81 ± 7.60 vs. 15.33 ±
4.03, p < 0.001; pons 5.96 ± 1.38 vs. 3.99 ± 0.48, p < 0.001). There were no significant differences in the contrast of the CSF and
pons (p = 0.225) and sharpness of the normal-side trigeminal nerve using FWHM (p = 0.185) without and with DLR, respec-
tively. Noise quality and the overall image quality were significantly higher with DLR than without DLR (noise quality 3.95 ±
0.19 vs. 2.53 ± 0.44, p < 0.001; overall image quality 3.97 ± 0.17 vs. 2.97 ± 0.12, p < 0.001). There were no significant differ-
ences in sharpness (p = 0.371) and artifacts (p = 1) without and with DLR.
Conclusion DLR can improve the image quality of HR-MR cisternography by reducing image noise without sacrificing contrast
or sharpness.
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Abbreviations
3D Three-dimensional
DCT Discrete cosine transform

DLR Deep learning-based reconstruction
FASE Fast asymmetric spin-echo
FWHM Full width at half maximum
HR High-spatial resolution
SNR Signal-to-noise ratio
T1WI T1-weighted image
T2WI T2-weighted image
CNR Contrast-to-noise ratio

Introduction

High-spatial resolution (HR) three-dimensional (3D) T2-
weighted images (T2WIs) of the cerebellopontine angle have
been used to evaluate cerebellopontine angle tumors [1], epi-
dermoid cyst [2], neurovascular compression [3], arterial anat-
omy [4], and cranial nerve anatomy [5]. HR 3D T2WIs have
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high diagnostic accuracy and inter-rater agreement for
the evaluation of cerebellopontine angle lesions in pa-
tients with asymmetrical audiovestibular complaints, and
these are comparable with those of contrast-enhanced
3D T1-weighted images (T1WIs) [6]. In addition, HR
3D T2WIs fused with 3D time-of-flight MR angiogra-
phy are a reliable imaging tool with high inter-rater
agreement for neurovascular compression [7]. However,
this imaging technique has some problems, including a
long scan time and decrease in the signal-to-noise ratio
(SNR) [8]. A parallel imaging technique has been wide-
ly used to reduce the scan time [9, 10]; nonetheless,
usage of this technique generally reduces the SNR.
Recently, a compressed sensing technique has been in-
troduced for clinical use to reduce the scan time and
maintain the SNR [11]. In this technique, denoising
methods, such as adoption of a Gaussian smoothing
filter and iterative reconstruction with a wavelet filter,
have been used to reduce noise and improve the SNR.
However, some studies have reported that some se-
quences using this technique may have global ringing
art ifacts and blurring of fine detai ls [12, 13].
Therefore, other techniques may present advantages for
obtaining HR 3D T2WIs.

Recently, machine learning and deep learning techniques
have been applied to radiological images and reported to be
useful for lesion detection [14, 15], segmentation [16, 17], and
classification [18, 19]. Furthermore, the usefulness of deep
learning-based reconstruction (DLR) for denoising MRI im-
ages has been reported [20–22]. DLR denoising is a technol-
ogy based on convolutional neural networks applied to image
denoising and is fundamentally different from ordinary
frequency-based methods in that machine learning is per-
formed using noise and other discrimination factors among
high-frequency components as training data. Therefore,
DLR might reduce image noise without decreasing spatial
resolution. However, to our knowledge, no report has evalu-
ated the efficacy of DLR for HR-MR cisternography.

Therefore, the purpose of this study was to evaluate the
efficacy of DLR for HR-MR cisternography.

Methods

One author (Y.Y.) is an employee of CanonMedical Systems.
The other authors are not employees of or consultants for the
industry. We used a commercial-based denoising technique
with DLR and received no industry support or funding for this
study. H.U. and T. N. had full control of all data and informa-
tion submitted for publication.

This retrospective study was approved by our institutional
review board. Informed consent for this retrospective study
was waived by our institutional ethics committee.

Population

This retrospective study identified 37 consecutive patients
who underwent headMRI, including HR-MR cisternography.
Two patients with cerebellopontine angle tumors were exclud-
ed because we could not evaluate the trigeminal nerve accord-
ing to the mass effect. Finally, we included 35 consecutive
patients (9 men and 26 women; age range, 20–88 years; mean
age, 53.7 ± 17.7 years) (Fig. 1). Of these 35 patients, 25
underwent MRI to evaluate known cerebellopontine angle
tumors and 10 underwent MRI to rule out cerebellopontine
angle tumors. (Seventeen patients [68%] had vestibular nerve
schwannoma, 1 [4%] had trigeminal nerve schwannoma, 1
[4%] had accessory nerve schwannoma, 3 [12%] had menin-
gioma in cerebellopontine angle, 1 [4%] had midbrain glioma,
1 [4%] had external acoustic meatus carcinoma, and 1 [4%]
had cholesteatoma. Seventeen patients [68%] were pre-
operation study, and 8 patients [32%] were post-operation
study. All 25 patients had unilateral lesion. Five [25%] pa-
tients had mass effect on the pons, 14 [56%] had
cerebellopontine angle lesion, and 14 [56%] had internal au-
ditory canal lesion. The mean tumor size was 17 mm [0–
40 mm].) All images were acquired between October 2018
and April 2019.

MRI sequences and parameters

Brain studies were performed using a 3T MRI scanner
(Vantage Galan 3 T ZGO; Canon Medical Systems) with a
32-channel head coil. After generating scout images, we ob-
tained T1WIs, T2WIs, FLAIR images, diffusion-weighted
images, and HR 3D isotropic T2-weighted fast asymmetric
spin-echo (FASE) images of the cerebellopontine angle
(HR-MR cisternography), which were recommended by the
MRI vendor. The imaging parameters of HR-MR
cisternography were as follows: repetition time, 2500ms; ech-
o time, 91.5 ms; inversion time, 180 ms; acquisition voxel
size, 0.46 × 0.45 × 0.5 mm; reconstruction voxel size, 0.23 ×
0.23 × 0.5 mm; number of excitations, 1; field of view, 210 ×
180 mm; flip angle, 90°; number of sections, 100; section
thickness, 0.5 mm; parallel imaging factor (SPEEDER), 2;
and scan time, 5 min 40 s.

We performed HR-MR cisternography with and without
DLR. Denoising DLR using deep convolutional neural net-
works was performed after converting k-space to real space
with inverse fast Fourier transform [23]. DLR derives 49 com-
ponents with a fixed 7 × 7 discrete cosine transform (DCT)
basis. In 49 channels, the zero-frequency component of
DCT follows a separate collateral path, whereas the other 48
high-frequency components are processed as feature maps in
subsequent feature conversion layers. The zero-frequency
component of a 7 × 7 DCT is equivalent to a 7 × 7 unweighted
moving average filter. Separation of this zero-frequency
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component from the feature extraction layer allows the
process to maintain image contrast. However, with the
use of a 7 × 7 moving average filter, the edges of de-
tailed structures are lost, similar to a low-pass image
filter. Conversely, high-frequency components that in-
clude noise and detailed structures pass into the path
of feature conversion layers. DLR with a separated path
of high-frequency components can learn convolutional
neural network parameters to remove noise and maintain
detailed structures. After the denoising process, the
denoised high-pass components and the zero-frequency
component are combined. The architecture and schema
of DLR are shown in Figs. 2 and 3, respectively. The
algorithm of DLR used in this study is completely the
same as the previous report by Kidoh et al. [22]. The
final DLR images can be added to the original images
to change the denoising intensity, and this ratio is called
a DLR blend ratio. We used the blending ratio of 50%
as recommended by the MRI vendor.

Quantitative image analysis

A board-certified neuroradiologist with 29 years of experience
with MRI performed quantitative image analysis on the two
types of HR-MR cisternography images. The slice level of the
pons was selected. Signal intensity and standard deviation
were measured by placing circular ROIs at the CSF and pons.
The ROIs were at least 50 mm2, and they were placed in
homogeneous, artifact-free areas of the tissues. Image noise
was defined as the standard deviation of the same ROIs for
signal intensity because the background noise was too low.
The SNR, contrast, and contrast-to-noise ratio (CNR) for HR-
MR cisternography were calculated with or without DLR.

The SNR of the CSF/pons was calculated using the follow-
ing formula: SNR = mean signal intensity / mean standard
deviation. The contrast between the CSF and pons was deter-
mined using the following formula: contrast ratio = (mean
signal intensityCSF − mean signal intensitypons) / (mean signal
intensityCSF + mean signal intensitypons). The CNR between

Fig. 2 Deep learning-based re-
construction (DLR) architecture.
DLR derives 49 components with
a fixed 7 × 7 discrete cosine
transform (DCT) basis. In 49
channels, the zero-frequency
component of DCT follows a
separate collateral path, whereas
the other 48 high-frequency com-
ponents are processed as feature
maps in subsequent feature con-
version layers. DLR with a sepa-
rated path of high-frequency
components can learn
convolutional neural network pa-
rameters to remove noise and
maintain detailed structures. After
the denoising process, the
denoised high-pass components
and the zero-frequency compo-
nent are combined

Fig. 1 Flow diagram shows
patient inclusion criteria
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the CSF and pons was determined using the following formu-
la: CNR = (mean signal intensityCSF − mean signal intensity-
pons) / (mean standard deviationCSF).

Additionally, we compared the contralateral normal tri-
geminal nerve sharpness using full width at half maximum
(FWHM) between the two types of 3D FASE images. We
measured the FWHM value according to the signal intensity
profile along a line crossing the trigeminal nerve in an axial
image of HR-MR cisternography (Fig. 4).

Qualitative image analysis

Neuroradiologists without knowledge of individual subject
characteristics and reconstructed images were selected to eval-
uate the two types of HR-MR cisternography images. Images
were qualitatively assessed by two neuroradiologists with 11
and 7 years of experience evaluatingMRI images. Noise qual-
ity, sharpness, and overall image quality in the two types of
3D FASE images were scored as follows: 1, poor; 2, fair; 3,
good; and 4, excellent. Additionally, artifacts were scored as
follows: 1, image not diagnostic because of artifacts; 2, major

artifacts without diagnostic relevance; 3, minor artifacts; and
4, no artifacts.

Statistical analysis

Wilcoxon signed-rank tests were performed to compare the
SNR, contrast, FWHM, and qualitative analysis findings be-
tween images with and without DLR. All statistical analyses
were performed using EZR (Saitama Medical Center Jichi
Medical University, Saitama, Japan), which is a graphical user
interface for R (The R Foundation for Statistical Computing,
Vienna, Austria). A p value < 0.01 was considered statistically
significant.

Results

All HR-MR cisternography assessments were completed suc-
cessfully. Quantitative and qualitative data are presented in
Tables 1 and 2, respectively.

Fig. 3 Schema of the denoising process with deep learning-based recon-
struction (DLR). Noisy input images (a) are divided into 49 high (b)- and
low (c)-frequency components with a fixed 7 × 7 discrete cosine trans-
form (DCT) basis. In 49 channels, the zero-frequency component of DCT
(7 × 7 moving average filtered image) follows a separate collateral path,
whereas the other 48 high-frequency components are processed as feature

maps in the subsequent feature conversion layers. DLR with a separated
path of high-frequency components can learn convolutional neural net-
work parameters to remove noise and maintain detailed structures. After
the denoising process, the denoised high-pass components (d) and the
zero-frequency component (e) are combined
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Quantitative image analysis

The results of quantitative image analysis are shown in
Table 1 and Fig. 5. The SNRs and CNRs of the CSF and pons
were significantly higher with DLR than without DLR (SNR
of CSF 21.81 ± 7.60 vs. 15.33 ± 4.03, p < 0.001; SNR of pons

5.96 ± 1.38 vs. 3.99 ± 0.48, p < 0.001; CNR 13.60 ± 7.41 vs.
11.13 ± 3.00, p < 0.001). However, there were no significant
differences between without and with DLR in the contrast of
the CSF and pons (0.54 ± 0.03 vs. 0.55 ± 0.03, p = 0.225) and
the sharpness of the normal-side trigeminal nerve using
FWHM (3.50 ± 4.11 vs. 3.51 ± 0.77; p = 0.185).

Fig. 4 Case of a man in his 40s with a left vestibular schwannoma. a
Conventional reconstructed image without deep learning-based recon-
struction (DLR); b reconstructed image with DLR; c, d profile curve
along a line crossing the right trigeminal nerve. The arrow indicates full
width at half maximum (FWHM). HR-MR cisternography shows a mass

lesion with a cyst in the cerebellopontine angle. Image noise is lower and
the signal-to-noise ratio (SNR) is higher with DLR than without DLR.
The identification of small vessels near the tumor is superior with DLR
than without DLR. FWHM in the profile curve is similar between with
DLR and without DLR

Table 1 Results of quantitative
assessments Conventional without DLR DLR p

SNR CSF 15.33 ± 4.03 21.81 ± 7.60 < 0.001

Pons 3.99 ± 0.48 5.96 ± 1.38 < 0.001

Contrast ratio 0.54 ± 0.03 0.55 ± 0.03 0.225

CNR 11.13 ± 3.00 13.60 ± 7.41 < 0.001

FWHM 3.50 ± 4.11 3.51 ± 0.77 0.185

SNR signal-to-noise ratio

FWHM full width at half maximum

DLR deep learning reconstruction

CNR contrast-to-noise ratio
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Qualitative image analysis

The results of quantitative image analysis are shown in
Table 2. Representative cases are shown in Figs. 4 and 6.
Noise quality and the overall image quality were significantly
higher with DLR than without DLR (noise quality 3.95 ± 0.19
vs. 2.53 ± 0.44, p < 0.001; overall image quality 3.97 ± 0.17
vs. 2.97 ± 0.12, p < 0.001). There were no significant differ-
ences between without and with DLR in sharpness (3.07 ±
0.25 vs. 3.03 ± 0.17, p = 0.371) and artifacts (2.97 ± 0.17 vs.
2.94 ± 0.24, p = 1).

Discussion

Our results demonstrated that DLR increased the SNR and
CNR without sacrificing spatial resolution in HR-MR
cisternography. In qualitative assessment, noise quality was
significantly higher with DLR than without DLR. However,
there was no significant difference in image sharpness.

Some image denoising methods for MRI do not preserve
spatial resolution, and they result in image blurring. MR sig-
nals contain various noises and artifacts, and generally, two
basic methods have been used for image denoising (filtering
method and transform method). The filtering method involves
the adoption of image filters, such as average, median,

Gaussian, adaptive mean/median, principal component analy-
sis based, and non-local means filters [24, 25]. These image
filters remove noise without any attempt to explicitly identify
it by performing a kind of low-pass filtering on groups of
pixels with the assumption that noise is present in the higher
region of the frequency spectrum. The Fourier transform
method, which is a major transform method, in MRI also
involves a kind of low-pass filtering in the frequency domain
(k-space) with a cutoff frequency on the basis that noise com-
ponents are de-correlated from the useful signal in the fre-
quency domain [26]. Recently, another transform method
called wavelet transform has been widely used mainly for
compressed sensing. The standard Fourier transform method
localizes only the frequency components, whereas the wavelet
transform method localizes both time and frequency com-
ponents [27, 28]. The wavelet transform method is more
useful than the Fourier transform method because it can be
applied to non-stationary signals as medical images are
only piecewise smooth and noise distributions are random
in nature. However, the wavelet transform method also
reduces noise by removing high-frequency components
of images according to predefined rules, and it has been
reported that blurring occurs even with this method. This is
not a serious problem for non-HR MRI; however, it is a
serious problem for HR MRI because the rate of high-
frequency objects increases.

Fig. 5 Quantitative assessments. a Signal-to-noise ratio (SNR)-CSF; b
SNR-pons; c contrast; d full width at half maximum (FWHM). The SNRs
of the CSF and pons are significantly higher with deep learning-based

reconstruction (DLR) than without DLR. There are no significant differ-
ences between without and with DLR in the contrast of the CSF and pons
and the sharpness of the normal-side trigeminal nerve using FWHM

Table 2 Results of qualitative
assessments Conventional without DLR DLR p

Noise quality 2.53 ± 0.44 3.95 ± 0.19 < 0.001

Image sharpness 3.03 ± 0.17 3.07 ± 0.25 0.371

Artifact 2.94 ± 0.24 2.97 ± 0.17 1

Overall image quality 2.97 ± 0.12 3.97 ± 0.17 < 0.001

DLR deep learning reconstruction
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We found that DLR could decrease image noise without
sacrificing spatial resolution in HR-MR cisternography. Deep
learning approaches for image noise reduction differ greatly
from non-machine learning methods in that they can learn the
pattern of anatomical structures and image noise from training
data. Our DLR method aimed to remove only noise with pres-
ervation of the comprehensive structure by learning various
noises with training image pairs of a high-SNR image and a
noisy input image. As a specific procedure, input data were
divided into a high-frequency domain and low-frequency do-
main, and the method was trained to generate noise-less data
from noise-containing data in the high-frequency domain
[20]. The adoption of a learning process specialized for the
high-frequency domain might be the reason why our DLR
method can maintain the edges of anatomical structures.
Another advantage of this approach is that MRI contrast is
concentrated in the low-frequency domain; thus, this method
might be easily applied to other sequences. In addition, current
DLR techniques can be used with wavelet denoising tech-
niques in principle, and better denoising can be possible using
a combination of the two techniques in the future. The merits
of the DLR denoising technique used in current study include
the following: (1) the ability to reduce only noise signals with
preservation of the comprehensive structure by learning vari-
ous noise signal, (2) application to many sequences (e.g.,
T1WI, T2WI, FLAIR images, proton-density-weighted im-
ages, and diffusion-weighted images) and any part of the
body; (3) in principle to be used in combination with wavelet
denoising techniques, and (4) easily implemented by many
facilities because this technique is commercially avail-
able. Limitations of this technique are following: (1) It
is not possible to depict small structures that are not
detected in the original images; (2) it has not been ad-
equately validated because of the state-of-the-art tech-
nique; and (3) it is impossible to reduce artifacts (e.g.,
motion artifacts and magnetic susceptibility artifacts) ex-
cept for the Gaussian noise.

The present study has several limitations. First, this study
was designed to evaluate the image quality of DLR in HR-MR
cisternography, and the diagnostic performance of DLR was
not evaluated. Second, we did not compare DLR images with
high number of excitation images without DLR. However,
scanning two long sequences might be uncomfortable and
might increase the rate of a poor study, and it could raise
ethical issues. Third, the small size of our study population
and the limited scope of the dataset, including the use of a
single scanner source, might limit the generalization of our
findings. Fourth, the scan time of HR 3D T2WIs used in our
study was slightly long. We could not use commercial-based
compressed sensing technique in this study. It was necessary
to acquire 3D HR T2WIs with high spatial resolution because
we had to assess the relationship between the cerebellopontine
tumor and cranial nerves (such as the facial, cochlear, and
vestibular nerves) in detail. Fifth, we could not reconstruct
using different DLRs without high-frequency domain because
we used a vendor-specific denoising method. We think that it
may be necessary to compare our method with other vendors’
methods. Finally, we did not compare DLR and the state-of-
the-art denoising technique of compressed sensing because
our MRI scanner was not capable of HR-MR cisternography
with compressed sensing. It may be necessary to compare the
DLR technique with the compressed sensing technique in fu-
ture research.

Conclusion

DLR can improve the image qual i ty of HR-MR
cisternography by reducing image noise without sacrificing
contrast or sharpness.
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