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Abstract
Purpose One out of three migraine patients might have accompanying restless legs syndrome (RLS). In our study, we aimed to
compare the volumes of the brain structures of migraineurs with and without RLS.
Methods We had 37 female patients with migraine and 17 females as the control group. Nineteen migraineurs had no RLS
(RLS0) and 18 migraineurs had comorbidity of RLS (RLS1). The volumes of the brain structures were obtained by manual
measurements, volBrain, and voxel-based morphometry (VBM). Manually, we measured caudate and putamen volumes. We
used age, years of education, depression, anxiety scores, and total intracranial volume as covariates.
Results According to VBM analyses, the volumes of the left superior occipital gyrus and precuneus were increased, and the
substantia nigra and cuneus were decreased in the RLS1 group compared with the RLS0 group. RLS1 patients had larger superior
temporal gyrus, Brodmann area 38, and left insula, and RLS0 patients had larger Brodmann area 22, right superior temporal
gyrus, and Heschl gyrus compared with controls. Migraine and RLS0 patients had a smaller corpus callosum anteriorly, whereas
RLS1 patients had a smaller splenium. Caudate volumes were larger in migraine patients via the three techniques. There was a
positive relation between the caudate and putamen volumes and attack frequency.
Conclusions Comorbidity of RLS might be a confounding factor in structural neuroimaging studies in migraine. Deficits in the
visual network seem to be related to accompanying RLS; deficits in the auditory network are particularly related to migraine.
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Comorbidity

Introduction

Migraine is a common primary headache characterized by
throbbing severe pain with a series of several symptoms such

as yawning, fatigue, sensitivity to light, sound, and odor [1].
Migraine has a prevalence of 15%, and almost one-third to
one-half of all patients, predominantly females, consulted by
neurologists have migraine [2–3]. Along with low back pain,
migraine is the main cause of years with disability, constitut-
ing 64% of the total cost for headache disorders in Europe
[4–5]. One of the reasons that make migraine a complex dis-
order is the long list of comorbidities. In addition to migraine,
patients might have stroke, anxiety, depression, epilepsy, irri-
table bowel syndrome, pain disorders, and restless legs syn-
drome (RLS) which probably shares common pathophysiolo-
gy with migraine [6].

RLS is characterized by an uncomfortable sensation at rest
or close to bedtime, particularly in the lower extremities [7].
The prevalence of RLS ranges between 6 and 12% in the
general population [8]. One out of three migraineurs might
have accompanying RLS [9]. The pathogenesis underlying
this comorbidity has not been revealed yet; however, common
genetic predisposition [10] and iron accumulation in the brain
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resulting in defects in the dopaminergic system [11] are
among the most popular hypotheses.

In meta-analyses of voxel-based morphometry (VBM)
studies on migraine, gray matter volume (GMV) reductions
were reported in a variety of structures such as the middle and
inferior frontal cortex [12], posterior insular-opercular re-
gions, prefrontal cortex, anterior cingulate cortex [13], lateral
inferior frontal gyri, right precentral gyrus, left middle frontal
gyrus, and left cingulate gyrus [14]. When it comes to RLS,
there have been several studies reporting no volume changes
relative to controls [15–18]. On the other hand, volume in-
creases in the pulvinar bilaterally, hippocampus, and middle
orbitofrontal gyrus, and decreases in volumes of the bilateral
primary somatosensory cortex, left primary motor area, pari-
etal lobes, medial frontal areas, and cerebellum have been
reported [19]. Headache and sleep disorders such as RLS have
a common neurophysiological and neuroanatomical back-
ground with shared chemical and neuroanatomical processes
in the pathophysiology. Dysfunction in the dopaminergic sys-
tem has been postulated as an underlying mechanism for both
migraine and RLS [20].

Comorbidities with migraine might be confounding factors
for the heterogeneity in volumetric findings. There has been
only one volumetric study where the brains of migraineurs
with and without comorbid RLS were compared with patients
with RLS and a control group [21]. Yang et al. [21] found
changed GMV in the right medial frontal gyrus in migraineurs
with RLS compared with the control group, which also corre-
lated with sleep quality. In another study, Yang et al. [22] also
reported changes in the functional connectivity in attentional
nociceptive control and sensory-related networks between the
migraineurs with and without RLS.

In this study, we compared volumetric measurements
among migraineurs with and without RLS and controls by
using three techniques: manual stereological measurements
of the caudate and putamen, volBrain, and VBM. Based on
the “dopaminergic link” hypothesis, we sought to investigate
whether the basal ganglia, besides other brain structures,
would be affected by RLS as a comorbidity of migraine.

Methods

Participants

The study included 37 right-handed females who were
diagnosed as having migraine according to the
International Classification of Headache Disorders
(ICHD) criteria [23] and 17 healthy right-handed female
volunteers as a control group. The patient group was
divided into two subgroups: 19 migraineurs with no
RLS (RLS0) and 18 migraineurs with comorbid RLS
(RLS1). Subjects with a history of chronic pain,

systemic diseases, and psychiatric diseases were exclud-
ed from the study. The control group was evaluated for
the presence of RLS and headache according to diag-
nostic criteria and subjects diagnosed with any of them
were not included. Patients had no history of neurolog-
ical disorder other than migraine or RLS and medication
except non-steroidal anti-inflammatory drugs, paraceta-
mol, and acetylsalicylic acid. Patients who had a head-
ache within the last 72 h prior to the magnetic reso-
nance imaging (MRI) scan were also excluded from
the study. The demographic characteristics of the sub-
jects, including hand dominance as determined using the
Edinburgh Hand Preference Inventory, years of educa-
tion and features of the disease in migraineurs such as
age at onset of disease, disease duration, headache fre-
quency, headache duration, and the presence of aura,
were all recorded. The Beck Depression Inventory
(BDI) and Beck Anxiety Inventory (BAI) were used to
evaluate depression and anxiety symptoms in all partic-
ipants of the study.

The presence and severity of RLS were assessed using
2012 Revised IRLSSG Diagnostic Criteria for RLS [24]
and RLS rating scale [25], respectively. The diagnosis of
RLS depended on the existence of these five criteria: an
urge to move the legs (1) usually but not always with
abnormal sensation in the legs, (2) with any accompany-
ing unpleasant sensations beginning or worsening during
periods of rest or inactivity, (3) with any accompanying
unpleasant sensations, partially or totally relieving by
movement, such as walking or stretching, at least as long
as the activity continues, (4) during rest or inactivity only
occurring or is worse in the evening or night than during
the day, (5) the occurrence of these features is not solely
accounted for as symptoms primary to another medical or
a behavioral condition [24]. The RLS rating scale includes
a total of ten questions; the scaling of RLS severity is as
follows: mild severity, 0–10; moderate severity, 11–20;
severe, 21–30; very severe, 31–40 [25]. Among
migraineurs, only patients with a diagnosis of RLS for
at least a year were included.

MRI acquisition parameters

MRI examinations were performed on a 1.5 Tesla Philips
Achiva (Philips Medical Systems, Eindhoven, Netherlands)
using an 8–channel sense head coil with the subjects in the
supine position, lasting approximately 8–10 min for each sub-
ject. Survey images, T2-weighted transverse slices (TR, 4000
ms; TE, 90 ms; slice thickness, 5 mm), and 140 three-
dimensional (3D) T1-weighted gradient-echo contiguous cor-
onal slices (slice thickness, 1.2 mm; TE, 4.6 ms; TR, 30 ms;
flip angle, 30°; field of view, 256 mm; voxel size, 1 × 1) were
obtained.
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Volumetric MRI measurements (manual, VBM, and
volBrain measurements)

Manual measurements

The manual volumetric measurements of the bilateral
caudate nucleus and putamen were performed by using
the software program AFNI (Analysis of Functional
Neuroimaging) developed by the National Institutes of
Health. Although AFNI was developed as a functional
MRI (fMRI) tool, it also has the feature of manual
volumetric measurements, which enables the simulta-
neous tracing of brain structures on the three planes
(i.e., sagittal, axial, and coronal). Tracings were made
on T1-weighted MRIs following a particular protocol
for each structure (Fig. 1). AFNI calculated the volume
of the structure by multiplying the pixels by the voxel
volume. Each structure was traced through the slices
between the first slice and the last slice where it was
seen based on the medial, lateral, superior, and inferior
boundaries determined for the given structure.

Total intracranial volume

The superior edge of the foramenmagnumwas considered the
inferior border. The cerebrospinal fluid (CSF) surrounding the
brain parenchyma was not included in the tracings. The brain
was measured in every other slice.

Caudate volume measurement

The coronal plane was used as the gold standard plane, al-
though tracings were made on the three planes.
Measurements started from the last slice chosen as the slice
where the caudate was seen on the lateral part of the anterior
horn of the lateral ventricle. The caudate was traced every
other three slices until the slice where the nucleus accumbens
was first seen. The internal capsule was the lateral and inferior
boundary between caudate and putamen until the slice where
the nucleus accumbens emerged. The anterior horn of the
lateral ventricle was the medial boundary, and the white mat-
ter was the superior boundary in these slices (Fig. 1a). Starting
from the slice where the nucleus accumbens was first seen, the

Fig. 1 Caudate tracings on T1-weighted MRI images via AFNI (green
area shows caudate nucleus). a Caudate tracings in the posterior coronal
slices: the manual delineation of the caudate started from the very most
posterior slice where it was first seen. In these posterior slices, the internal
capsule (1) was the lateral and inferior boundary, the anterior (frontal)
horn of the lateral ventricle (2) was the medial boundary, and the sur-
rounding white matter was set as the superior boundary. (3) Putamen. b
Caudate tracings in the slices where the nucleus accumbens was seen: in

these slices, the inferior border (i.e., separation of the caudate from the
nucleus accumbens) was determined by the line drawn from the most
inferior point of the anterior horn of the lateral ventricle to the most
inferomedial point of the internal capsule. The lower part of this line
was considered nucleus accumbens and not included in the
measurement. (1) Internal capsule, (2) anterior (frontal) horn of the lateral
ventricle, (3) putamen, (4) nucleus accumbens. c Caudate tracings were
completed in the sagittal plane
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inferior border (i.e., separation of the caudate from the nucleus
accumbens) was determined by the line drawn from the most
inferior point of the anterior horn of the lateral ventricle to the
most inferomedial point of the internal capsule. The lower part
of this line was considered nucleus accumbens and not includ-
ed in the measurement (Fig. 1b). Following the coronal trac-
ings as a guide, the tracing was completed on the sagittal plane
(Fig. 1c). The axial plane was used to review and adjust the
tracings where necessary.\

Putamen volume measurement

The tracings for the putamen volumetry started on the coronal
plane. The first slice was the slice where the putamen was first
seen as lateral and inferior to the caudate. The boundaries were
as follows: medially internal capsule, laterally external cap-
sule, superiorly, and inferiorly white matter (Fig. 2a). In the
coronal slices where nucleus accumbens disappears and the
globus pallidus is seen, sometimes, it becomes difficult to
delineate the lateral border of the putamen. Therefore, we
traced putamen every three-four slices where the lateral border
was more distinct in the posterior slices. The separation of

putamen from the nucleus accumbens was made the way as
it wasmade in the caudate volumetry protocol, by a line drawn
between the most inferior point of the anterior horn of the
lateral ventricle and the most inferomedial point of the internal
capsule (Fig. 2b). The lateral border of the putamen is partic-
ularly more distinct on the axial plane. Therefore, following
the guiding tracings made on the coronal plane, the putamen
was traced every other three to four slices on the axial plane
(Fig. 2c). Finally, using the tracings made on the coronal and
axial planes as a guide, the tracing was completed on the
sagittal plane (Fig. 2d). The tracings were checked on the axial
and coronal planes for the lateral border (external capsule) and
medial border (globus pallidus) before the finalization of the
tracing process.

The TIVs were measured by four medical students (O.C.,
M.Ü., O.U.T., and E.S) whose inter-rater reliabilities were
determined on 10 brains, and the intra-class correlation coef-
ficients (ICCs) according to the measurements of K.Y. were
all above 0.98, and the intra-rater reliability for each rater of
the ICC was above 0.97. The caudate and putamen volumes
were measured by K.Y. who was blinded to each subject’s
group. The intra-rater reliabilities using ICCs, determined in

Fig. 2 Putamen tracings on T1-weighted MRI images via AFNI (green
area shows caudate nucleus and orange area shows putamen). a Putamen
tracings in the anterior coronal slices: the manual delineation of the pu-
tamen started from the very most anterior slice where it was first seen. In
these anterior coronal slices, the internal capsule was the medial bound-
ary; the external capsule was the lateral boundary. The superior and infe-
rior boundaries were set as the surrounding white matter. b Putamen

tracings in the posterior coronal slices: the putamen and nucleus accum-
bens were separated by the same way with caudate. c Putamen tracings in
the axial plane: the lateral boundary of putamen is particularly more
distinct in the axial plane. The coronal tracings were corrected according-
ly in the axial plane. d Putamen tracings in the sagittal plane: the tracings
were completed in the sagittal plane as we did for the caudate tracings
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ten brains, for the right caudate and left caudate, were 0.95 and
0.98, respectively. The ICCs for the right and left putamen
were 0.95 and 0.89, respectively.

Voxel-based morphometry analysis

VBM is one of the morphometric methods. It became popular
owing to its easiness of use and credible results. By using
statistical parametric mapping, VBM enables the characteri-
zation of small-scale differences in brain anatomy. It is a sim-
ple and objective tool that makes a voxel-wise comparison of
the local concentration of GM between two groups of subjects
possible throughout the entire brain on MR images with high
regional specificity [26–27].

This study used the CAT12 (Computational Anatomy
Toolbox) which uses and extends the new unified segmenta-
tion approach implemented in Statistical Parametric Mapping
(SPM12), executed in Matlab 7.10.0 (R2010a) for the whole-
brain volumetric analysis. The sagittal T1 DICOM (Digital
Imaging and Communications in Medicine) files were con-
verted to NIFTI-1 (Neuroimaging Informatics Technology
Initiative) format. The converted files were then segmented
into gray and white matter and normalized using the unified
model cited above. Three tissue components, namely the gray
matter (GM), white matter (WM), and CSF, were obtained to
calculate the overall tissue volume (GM, WM, and CSF vol-
ume) and TIV in the native space. The Automated Anatomical
Labeling (AAL) atlas delivered as part of the SPM toolboxes
was used for calculating the lobar GM volumes. This atlas
does not map the nucleus accumbens.

To identify the brain morphological changes in the
groups, we performed two whole-brain VBM analyses
using the CAT12 toolbox. Whole-brain statistical analy-
ses were performed in CAT12 using the spatially nor-
malized and smoothed GM maps to assess whole-brain
effects. Second-level general linear models were speci-
fied including the following two groups: control and
migraine. First, a two-sample t test was performed to
compare the GM volume between the two groups. For
all analyses, we included TIV, age, BDI score, BAI
score, and years of education as covariates. Finally,
the normalized GM images were smoothed using a
Gaussian filter (8 mm full-width half-maximum,
FWHM). Statistical significance was defined at p <
0.05 after cluster-level family-wise error correction
(cFWE).

volBrain analysis

Unlike many other automated or semi-automated volumetric
packages such as FreeSurfer, VolBrain does not require any
installation, configuration, and training [28]. It is free, user-
friendly, works fast (in few minutes), and gives more

reproducible and accurate results compared with similar soft-
ware packages such as FreeSurfer and FIRST [28–31] with
lower segmentation failure rates [29].

The whole-brain volumetric analysis was also performed
by uploading the anonymized compressed T1-weighted im-
ages in NIFTI format to the online “volBrain” MRI brain
volumetry system. volBrain is a pipeline of processes aimed
at automatically analyzingMRI brain data and producing PDF
reports with the volumes of the total intracranial cavity tissues
(CSF, GM, andWM) with the bilateral volumes of the follow-
ing structures: caudate, putamen, globus pallidus, nucleus ac-
cumbens, thalamus, hippocampus, amygdala, cerebellum,
brainstem, and label maps after an average processing time
of 12 min.

Statistical analysis

The statistical analyses of the clinical data were performed
using the IBM SPSS 22.0 program. Chi-square and Fisher’s
exact test were used for the analysis of categorical data. One-
way analysis of variance (ANOVA) was used to determine
differences in group categories when the p value from the
ANOVA test statistics is statistically significant, post hoc mul-
tiple comparisons (Tukey’s HSD) were used to know which
group differ from which others. The statistical analyses of the
neuroimaging data were performed as follows: the Shapiro-
Wilk test was used, and histograms and q-q plots were formed
to assess the normality of data distribution. The Levene test
was used to test variance homogeneity. Volumes were ana-
lyzed by using one-way ANOVA, for the groups, RLS1,
RLS0, and control groups. ANCOVA was performed to ad-
just for the effect of age, years of education, TIV, BDI scores,
and BAI scores. Following significant group main effects,
post hoc analyses were conducted using Tukey’s honestly
significant difference (HSD) and the Bonferroni correction
for ANOVAs and ANCOVAs, respectively. The degree of
association between continuous variables, such as frequency
per month and caudate and putamen volumes, was calculated
by Pearson’s correlation coefficient and summarized by
Pearson’s rho and related p values.

Results

There were 37 right-handed female patients in the study group
and 17 healthy right-handed females in the control group. The
mean ages of the patients and controls were 33.18 ± 1.23
(range, 19–44) years and 31.9 ± 1.6 (range, 20–45) years,
respectively. The demographic data are presented in Table 1.
The migraine group as a whole, RLS0 and RLS1 subgroups of
patients, had fewer years of education than the control group
(p < 0.05). The migraine group as a whole and RLS1 group of
patients had higher BDI scores than the control group (p <
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0.05). The RLS1 group had higher BAI scores than the mi-
graine group as a whole, RLS0 group, and the control group (p
< 0.05). The RLS1 group had lower TIV values compared
with migraine group as a whole, RLS0, and control groups
(p < 0.05). There were no differences in the ratios of patients
with and without aura between the RLS1 and RLS0 groups (p
> 0.05). No differences were found between the RLS1 and
RLS0 groups in terms of the duration of migraine disease,
frequency of attacks per month, duration of headache, and
age at disease onset (p > 0.05). According to the RLS rating
scale, most of the patients had moderate or severe RLS (n = 9,
50% and n = 6, 33.3%, respectively), whereas two patients
showed mild (11.1%) and one patient showed very severe
(5.5%) symptoms. The RLS1 group patients had a mean
RLS scale rating score of 19.39 ± 7.171.

Migraineurs with/without RLS vs controls

The results of the statistical analyses in the manual and
volBrain measurements via variance analysis (one-way
ANOVA) among the three groups (RLS1, RLS0, and control
group) are shown in Table 2. Following the post hoc analyses,
we found larger left caudate sizes in the RLS0 group compared
with the control group (p = 0.047). We found no other statis-
tical differences after covarying for these variables among the
three groups.

In our VBM analyses, the RLS1 patients had larger left
superior occipital gyrus and precuneus when compared with
the RLS0 patients. The GMVs of the substantia nigra (SN),
mammillary bodies, and cuneus were decreased in the RLS1
group when compared with the RLS0 group (Fig. 3). Patients
in the RLS1 group had increased GMVs of the superior tem-
poral gyrus (STG), Brodmann area 38, and left insula com-
pared with the control group, whereas there were decreases in
the volumes of the splenium of corpus callosum (CC) and
bilateral cerebrum sub-lobar white matter regions in this pa-
tient group compared with the controls (Fig. 3). The RLS0
group had increased volumes of the Brodmann area 22, right
STG, and Heschl gyrus compared with the controls. The vol-
umes of the frontal sub-gyral white matter and genu of CC
were decreased in the RLS0 group compared with the control
group (Fig. 3).

Migraineurs vs controls

The total caudate, right caudate, and left caudate vol-
umes were larger in migraineurs than in the controls
(adjusted p = 0.019, p = 0.009, and p = 0.008, respec-
tively) in volBrain measurements. The right caudate vol-
ume was also larger in migraineurs compared with con-
trols when measured manually (adjusted p = 0.016).
There were positive and moderate relations between

Table 1 Demographic and clinical characteristics of the patient groups and the control group

Demographic and clinical data Migraineurs (n = 37) RLS1 (n = 18) RLS0 (n = 19) Control group (n = 17) p value

Age, years (mean ± SD) 33.18 ± 1.23 34.5 ± 1.8 31.9 ± 1.6 31.9 ± 1.6 0.460a

BDI score (mean ± SD) 19.18 ± 1.95 22.33 ± 2.77 15.84 ± 2.67 11.7 ± 2.42 0.024a*

BAI score (mean ± SD) 17.16 ± 2.23 22.66 ± 3.32 11.94 ± 2.55 7.64 ± 1.82 0.001a*

Years of education (mean ± SD) 8.97 ± 0.87 9.89 ± 1.23 8.00 ± 1.21 14.58 ± 1.47 0.003a*

TIV, mm3 (mean ± SD) 1278.49 ± 16.10 1234.57 ± 20.18 1320.10 ± 21.17 1329.10 ± 25.74 0.007a*

Duration of migraine disease, months (mean ± SD) 106.45 ± 14.92 82.89 ± 14.01 131.33 ± 26.05 0.106b

Frequency of migraine attack per month (mean ± SD) 10.21 ± 1.72 9.84 ± 2.31 10.61 ± 2.64 0.827b

Duration of headache, hours (mean ± SD) 29.81 ± 4.32 29.57 ± 5.96 30.05 ± 6.46 0.957b

Age at onset, years (mean ± SD) 24.29 ± 1.44 24.94 ± 1.91 23.61 ± 2.22 0.651b

Presence of aura migraineurs

With aura (n) 22 (100%) 13 (59.1%) 9 (40.9%) 0.124c

Without aura (n) 15 (100%) 5 (33.3%) 10 (66.7%)

Severity of RLS Mild (n) 2 (11.1%)

Moderate (n) 9 (50%)

Severe (n) 6 (33.3%)

Very severe (n) 1 (5.5%)

RLS0, migraine patients without RLS; RLS1, migraine patients with comorbid RLS; SD, standard deviation; BDI, Beck Depression Inventory; BAI, Beck
Anxiety Inventory; TIV, total intracranial volume
aOne-way analysis of variance test
b Independent samples t test
c Chi-square test

*p < 0.05
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Table 2 Comparison of volumes among RLS1, RLS0, and control groups

Volumes (mm3) Groups pa Pairwise comparisons pb Adjusted
pc

Control (n = 17)
Mean ± SD

RLS0 (n = 19)
Mean ± SD

RLS1 (n = 18)
Mean ± SD

RLS1 vs.
RLS0

RLS1 vs.
Control

RLS0 vs.
Control

Manual measurements
R caudate 3732.39 ± 402.29 4049.61 ± 578.49 3787.00 ± 542.16 0.149 (1.000) (0.055) (0.072) 0.031*
L caudate 3919.13 ± 493.17 4071.14 ± 473.03 3809.35 ± 608.45 0.325 0.579
R putamen 4469.41 ± 375.95 4747.16 ± 525.44 4587.91 ± 565.98 0.253 0.227
L putamen 4406.51 ± 377.30 4602.04 ± 474.90 4561.50 ± 654.52 0.500 0.271
volBrain measurements
Total WM 524.09 ± 77.36a 517.66 ± 54.470a 466.95 ± 48.21b 0.013* 0.038x 0.021x 0.946 0.861
Total GM 656.02 ± 54.63 661.34 ± 63.28 617.62 ± 60.93 0.066 0.852
Intracranial cavity 1329.11 ± 106.13a 1320.11 ± 92.29a 1234.58 ± 85.64b 0.007* 0.022x 0.013x 0.956 0.997
Total cerebrum GM 558.55 ± 48.25 563.83 ± 56.01 524.44 ± 52.88 0.059 0.786
Total cerebrum WM 468.19 ± 67.55a 465.09 ± 47.67a 419.08 ± 43.33b 0.013* 0.031x 0.024x 0.984 0.926
Total R cerebrum GM 279.57 ± 24.39ab 282.09 ± 27.87a 261.85 ± 26.38b 0.050* 0.060 0.125 0.956 0.772
Total R cerebrum WM 235.94 ± 34.24a 233.35 ± 23.74a 210.18 ± 21.93b 0.011* 0.031x 0.018x 0.955 0.863
Total L cerebrum GM 278.97 ± 23.98 281.74 ± 28.24 262.59 ± 26.54 0.071 0.797
Total L cerebrum WM 232.25 ± 33.38a 231.73 ± 23.98a 208.90 ± 21.48b 0.016* 0.031x 0.032x 0.998 0.967
Total cerebellum 130.94 ± 9.88a 128.40 ± 7.18a 120.59 ± 10.94b 0.005* 0.039x 0.006x 0.700 0.359
R cerebellum 65.63 ± 4.89a 64.35 ± 4.02a 60.35 ± 5.48b 0.005* 0.039x 0.006x 0.709 0.311
L cerebellum 65.31 ± 5.09a 64.05 ± 3.40a 60.23 ± 5.62b 0.007* 0.048x 0.008x 0.709 0.449
Total cerebellum GM 91.60 ± 9.67 91.81 ± 7.84 87.63 ± 10.16 0.318 0.966
Total cerebellum WM 42.87 ± 17.78a 36.59 ± 7.20ab 32.95 ± 6.07b 0.042* 0.599 0.034x 0.234 0.064
R cerebellum GM 44.81 ± 4.94 45.02 ± 4.00 43.11 ± 5.36 0.425 0.988
R cerebellum WM 20.82 ± 5.49a 19.33 ± 3.87ab 17.24 ± 3.03b 0.050* 0.297 0.040x 0.547 0.433
L cerebellum GM 46.79 ± 4.84 46.79 ± 4.01 44.52 ± 4.92 0.241 0.925
L cerebellum WM 18.52 ± 5.18 17.26 ± 3.40 15.71 ± 3.13 0.120 0.720
Brainstem 22.49 ± 2.47a 21.74 ± 2.04ab 20.51 ± 1.62b 0.022* 0.177 0.018x 0.525 0.163
Total caudate 6.43 ± 0.54 6.78 ± 0.72 6.39 ± 0.86 0.204 0.060
R caudate 3.24 ± 0.26 3.43 ± 0.36 3.23 ± 0.44 0.191 (1.000) (0.083) (0.111) 0.049*
L caudate 3.02 ± 0.81 3.36 ± 0.36 3.16 ± 0.42 0.205 (1.000) (0.073) (0.047y) 0.028*
Total putamen 7.72 ± 0.77 7.95 ± 0.76 7.63 ± 0.89 0.473 0.235
R putamen 3.84 ± 0.36 3.96 ± 0.35 3.80 ± 0.43 0.409 0.378
L putamen 3.88 ± 0.42 3.99 ± 0.42 3.83 ± 0.46 0.545 0.158
Thalamus 10.82 ± 1.09 10.79 ± 1.01 10.18 ± 1.04 0.126 0.960
R thalamus 5.35 ± 0.53 5.36 ± 0.53 5.09 ± 0.50 0.212 0.776
L thalamus 5.47 ± 0.62 5.43 ± 0.50 5.09 ± 0.58 0.101 0.981
Total globus pallidus 1.76 ± 0.20 1.84 ± 0.33 1.86 ± 0.27 0.568 0.273
R globus pallidus 0.89 ± 0.10 0.89 ± 0.19 0.91 ± 0.13 0.869 0.562
L globus pallidus 0.87 ± 0.13 0.95 ± 0.16 0.94 ± 0.15 0.242 0.124
Hippocampus 7.50 ± 0.62 7.59 ± 0.54 7.39 ± 0.68 0.620 0.625
R hippocampus 3.81 ± 0.33 3.82 ± 0.31 3.71 ± 0.35 0.557 0.805
L hippocampus 3.69 ± 0.32 3.76 ± 0.29 3.68 ± 0.35 0.671 0.556
Amygdala 1.22 ± 0.13 1.22 ± 0.23 1.23 ± 0.23 0.987 0.271
R amygdala 0.62 ± 0.07 0.62 ± 0.14 0.61 ± 0.14 0.967 0.604
L amygdala 0.60 ± 0.07 0.60 ± 0.10 0.62 ± 0.10 0.826 0.100
Nucleus accumbens 0.58 ± 0.09 0.61 ± 0.11 0.56 ± 0.09 0.227 0.624
R nucleus accumbens 0.27 ± 0.04 0.28 ± 0.04 0.26 ± 0.05 0.189 0.772
L nucleus accumbens 0.31 ± 0.05 0.32 ± 0.07 0.30 ± 0.05 0.388 0.605

RLS0, migraine patients without RLS; RLS1, migraine patients with comorbid RLS; SD, standard deviation; R, right; L, left;WM, white matter;GM, gray
matter
a p value of one-way analysis of variance (ANOVA) test
b p value of Tukey’s HSD test and the Bonferroni correction
c p value of one-way analysis of covariance (ANCOVA) test
x Significant values for Tukey’s HSD (values outside of parentheses are p values)
y Significant values for the Bonferroni correction (values in parentheses are normalized p values)

*p < 0.05
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attack frequency per month and caudate and putamen
volumes (right caudate measured manually: r = 0.579,
p < 0.001; left caudate measured manually: r = 0.476,
p = 0.003; right putamen measured manually: r = 0.397,
p = 0.015; left putamen measured manually: r = 0.389,
p = 0.017; total caudate via VolBrain: r = 0.391, p =
0.017; right caudate via volBrain: r = 0.400, p = 0.014;
and left caudate via volBrain: r = 0.380, p = 0.020;
data not shown). The total cerebellum WM was smaller
in migraineurs relative to the control group in volBrain
measurements (adjusted p = 0.020).

Based on the VBM analyses, in comparison with controls,
migraineurs had increased GMVs in the right STG, right su-
perior frontal gyrus, Brodmann area 10, body of the caudate,
and left inferior parietal gyrus. On the other hand, migraineurs

showed GMV reductions in the pons and genu of CC when
compared with the control group (Fig. 3).

Discussion

The primary goal of our study was to compare the vol-
umes of brain structures between migraine patients with
and without RLS by using three measurement techniques:
manual measurements, volBrain, and VBM. The manual
measurements did not result in any volumetric differences
in caudate and putamen volumes between the RLS0 and
RLS1 groups. volBrain analyses revealed that the RLS0
group had increased left caudate volumes compared with
controls. Based on the VBM analyses, we found increased

Fig. 3 Brain morphological changes in migraine patients, RLS1, RLS0,
and control groups in single T1-weighted MRI images (p < 0.001,
uncorrected) via VBM. a Altered structural volumes in migraine and
control groups. Yellow area shows volume increase; red area shows
volume decrease in the migraine group. FSR, frontal superior right;
TSR, temporal superior right; CC, corpus callosum; PIL, parietal
inferior left; CaB, caudate body. b Altered structural volumes in RLS1
and RLS0 groups. Blue area shows volume increase; red area shows
volume decrease in the RLS1 group. MIDB, midbrain; OSL, occipital

superior left; OML, occipital middle left; SN, substantia nigra. c Altered
structural volumes in RLS1 and control groups. Yellow area shows
volume increase; red area shows volume decrease in the RLS1 group.
SUB, sub-lobar; STG, superior temporal gyrus; INS, insula. d Altered
structural volumes in RLS0 and control groups. Red area shows volume
increase; yellow area shows volume decrease in the RLS0 group. FSWM,
frontal sub-gyral white matter; HES, Heschl gyrus; BA 22, Brodmann
area 22. L, left; R, right
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left superior occipital gyrus and precuneus volumes and
decreased volumes of SN, mammillary bodies, and cuneus
in the RLS1 group compared with the RLS0 group. The
RLS1 group had more GMV in the STG, Brodmann area
38, and left insula, and less GMV in the splenium of CC
and cerebral sub-lobar WM regions compared with the
control group. On the other hand, the RLS0 group had
larger volumes of Brodmann area 22, right STG, and
Heschl gyrus, and smaller volumes of the genu of CC
and frontal sub-gyral WM compared with the control
group.

Overall, the migraineurs had larger total caudate volumes
based on the volBrain measurements and right caudate vol-
ume based on the manual measurements. Altogether, the
migraineurs had increased GMVs of the right STG, right su-
perior frontal gyrus, Brodmann area 10, body of the caudate,
and left inferior parietal gyrus compared with the control
group, whereas there were decreases in the volumes of the
pons and CC (anteriorly) in this patient group compared with
the controls.

Volumetric findings between RLS1 group and RLS0
group

Volumetric changes in several brain structures have been
referred to different features of migraine, e.g., treatment
response [32], frequency of migraine attacks [33, 34], dis-
ease duration [35], and genetic profile [36]. Disorders
accompanying migraine might act as confounding factors
for the volumetric findings reported in this population.
For instance, migraineurs with depression had smaller
GM and WM volumes compared with those without de-
pression [37]. The functional connectivity between the
hippocampus and medial prefrontal cortex was found to
correlate negatively with anxiety scores in migraine pa-
tients [36]. RLS, on the other hand, is the focus of our
attention because both migraine and RLS share common
pathophysiologic pathways throughout the dopaminergic
system [16]. The risk of developing RLS among migraine
patients is high (up to five times) in relation to dopami-
nergic symptoms (e.g., yawning, nausea, food cravings)
[38].

Until today, volumetric changes in migraine patients
with RLS have been investigated only in one VBM study
by Yang et al. [17]. The design of their study differed
from ours because they also included patients with RLS
in addition to migraineurs with and without RLS and a
control group. The authors reported an increased volume
of the right middle frontal gyrus in migraine patients with
comorbid RLS. The analyses of brain volumes in our
study via three different techniques resulted in a wider
spectrum of volumetric changes among migraine patients
with and without RLS and controls.

We found a decrease in SN size only in migraineurs with
RLS. The SN is the source of the nigrostriatal dopaminergic
pathway. A popular theory on the pathophysiology of RLS is
that the dopamine-containing neurons in the SN, which pro-
ject to the striatum, have low iron levels [11] resulting in the
disruption of dopaminergic function by limiting either tyro-
sine hydroxylase activity or the expression of dopamine trans-
porters and receptors. The SN has been reported to have de-
creased iron stores in migraine patients, which may contribute
to an increase in the risk of developing RLS [39]. It seems that
SN pathology accompanies migraine under the existence of
comorbidity of RLS.

Both the RLS1 and RLS0 groups had decreased CC vol-
umes compared with the controls. This defect, however, dif-
fered topographically between these two patient groups. With
the comorbidity of RLS, the deficit in the CC shifted more
dorsally to the splenium region, whereas all migraineurs and
the RLS0 group had decreases in CC volumes anteriorly, i.e.,
in the genu of the CC. Consistent with our findings, diffusion
tensor imaging (DTI) studies showed reduced white matter
integrity in the genu of the CC in patients with migraine
[40–41]. Deficits in the splenium and the body of the CC in
addition to the genu have also been reported [40]. Genu has
the highest density of myelinated axons and connects the pre-
frontal cortex and higher-order sensory areas [42]. The pre-
frontal cortex, with its connections with the basal ganglia,
periaqueductal GM, and thalamus, is important in pain pro-
cessing. Depending on the dopamine activation, it can induce
pain chronification through frontostriatal pathways [43], em-
phasizing the critical role of this part of CC in the pathophys-
iology of pain disorders.

The posterior deficit in the CC might be related to the
comorbidity of RLS according to our results. Rizzo et al.
[17] reported a positive correlation with RLS rating scale
scores and axial and mean diffusivity values in the splenium
which might mean more space between axons in relation to
disease severity. Chang et al. [44] reported decreased WM
integrity in the genu of CC, rather than the splenium in pa-
tients with RLS. The splenium regulates thalamocortical in-
puts to the visual cortex [45]. The splenium has two groups of
fibers. The thick fibers on the posterior part are derived from
primary and secondary visual areas, and its anterior part con-
tains fibers originating from the parietal and medial temporal
association areas [46]. We also found increased left superior
occipital gyrus volume and decreased cuneus volume in RLS1
patients compared with RLS0 patients. The superior occipital
gyrus and cuneus are important structures in visual process-
ing. Decreased functional connectivity in the sensorimotor
and visual processing networks has been described in patients
with RLS, which was attributed to dopaminergic hypoactivity
and cortical deafferentation of the basal ganglia [47–48].
Visual information processing in the occipital lobes plays a
critical role in the sensorimotor network because motor
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responses are highly associatedwith visual stimuli. The results
of our study indicate pathology in the visual processing net-
work specific to migraineurs with RLS.

Yang et al. [18] reported decreased functional connectivity
in both the visual and auditory networks, regardless of the
comorbidity of RLS. Our volumetric findings differed from
their functional neuroimaging findings. We found volumetric
changes in structures related to visual processing only in the
migraine patient group with accompanying RLS. On the other
hand, we found volumetric increases in structures related to
auditory processing (i.e., Brodmann area 22 and the Heschl
gyrus) only in the RLS0 group. It is hard to come to a conclu-
sion as to whether increases in GM density reflect an increase
in neurons or glial cells, synapses, and capillaries leading to
overfunction or malfunction [49]. Migraine patients are re-
ported to have deficits with central auditory processing with
sound hypersensitivity between migraine attacks [50].

In our study, there was an increase in left insula volume in
the RLS1 group compared with the control group. Increased
functional plasticity has been demonstrated in the insula bilat-
erally in patients with RLS [51]. Another fMRI study also
showed higher functional activity in the insula in patients with
RLS [48].

Volumetric findings between migraine patients and
controls

The STG seems to be affected regardless of whether RLS
accompanies migraine because we found increases in STG
volumes in migraineurs, both RLS1 and RLS0 patients com-
pared with controls. We have two explanations for this find-
ing. The STG is actually a neglected area regarding its role in
pain. Accordingly, there are few studies on STG pathology in
the migraine literature. In a VBM study, volume reduction,
rather than an increase in the right STG as we found in our
study, was observed in patients with migraine compared with
controls [52]. Decreased STG activation following induction
of pain by a heat stimulus in patients with migraine was ob-
served in an fMRI study [53]. STG is a multimodal structure
with heterogeneity in its functions. It is involved in pain pro-
cessing by monitoring mismatches between pain expectation
and pain perception [54], pain anticipation [55], and execution
of pain expression [56]. Based on the significant role of the
STG in pain processing and STG deficits observed in func-
tional and structural neuroimaging studies in a list of condi-
tions related to pain such as fibromyalgia [57], somatoform
pain disorder [58], and chronic idiopathic neck pain [54], we
think that our finding might not be related to migraine patho-
physiology but rather related to deficits in pain processing
itself. Another possibility is that the response to treatment
might affect STG size in patients with migraine. Hubbard
et al. [19] found the increased cortical thickness of the STG
in migraineurs who responded to treatment compared with

non-responders. However, their study had a total of only 24
patients and lacked a control group. We do not have informa-
tion on treatment response in our patient sample; therefore, we
could not take into consideration the effect of this parameter
when analyzing the data.

After comparing the volumetric data of the migraine group
as a whole with that of the control group, we found larger
caudate volumes in the migraine group via the three modalities
used in our study. The more migraine attacks meant a larger
caudate, which is consistent with the findings of Maleki et al.
[34]. Yuan et al. [35], however, found no relation between
attack frequency and caudate volumes. On the other hand,
the authors demonstrated a relation between increased monthly
frequency of migraine attack and increased functional connec-
tivity between the bilateral caudate and left insula. We also
found a moderate positive relation between putamen volumes
and attack frequency. Neeb et al. [33] reported increased puta-
men volumes in patients with episodic migraine and a positive
correlation between putamen volumes and attack frequency in
patients with episodic and chronic migraine. Rocca et al. [59]
also reported larger putamen volumes in migraine patients
compared with the controls in a pediatric population showing
early involvement of putamen in the disorder.

Magon et al. [60] found decreased striatal volume (caudate
+ putamen) in patients with migraine. The mean monthly at-
tack frequency was three times more in our sample than in the
study of Magon et al. (10.2 vs. 3.2) [60]. Provided that more
attacks result in larger caudate and putamen, both structures
might increase in size as the number of attacks increase. Basal
ganglia structures are considered to play different roles in pain
processing, i.e., sensory, emotional/cognitive, and modulatory
[38]. As proposed by Neeb et al. [33], increases in the sizes of
these two structures might be the result of plasticity as an
adaptive response to repetitive migraine attacks.

Although our study is not a technical report and it is beyond
the scope of this article to compare the accuracy of different
volumetric modalities, it might worth discussing the different
results gathered by the three different modalities in our study.
We found caudate volumes larger only on the right side by the
manual segmentation, and on both sides and total volumes as
larger via volBrain in migraine patients compared with the
controls. VBM analyses revealed a larger body of caudate in
the patient group compared with the controls. The finding of
larger left caudate in the RLS0 group compared with the con-
trol group was a finding revealed by the volBrain analyses.
We found correlations between attack frequency and caudate
volumes based on both manual segmentation and volBrain
methods but between attack frequency and putamen volumes
obtained with manual segmentation only.

So far, the manual segmentation method has been consid-
ered the gold standard when comparing different neuroimag-
ing quantitative modalities [28–30, 61]. VBM has been the
most popular automated tool in structural MRI literature. It
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gives us information on the GM density of all the structures in
the brain. It is logical not to expect more than what volBrain
offers in terms of volumetry of the brain structures as it only
gives a restricted amount of brain structures, for the time be-
ing, a list of which was given in the “Methods” section.
Ciampi et al. [62] found volumetric loss in the thalamus, hip-
pocampus, and cerebellum in patients receiving natalizumab
via FreeSurfer, a semi-automated volumetric software pack-
age, and these findings were not replicated in the VBM anal-
yses. Lu et al. [63] found different findings on thalamus vol-
umes with manual segmentation and FreeSurfer when com-
paring cirrhotic patients with the control group and inconsis-
tent results on thalamus volume between FreeSurfer and VBM
analyses. They explained this issue by referring to the exis-
tence of a mixture of white matter and gray matter in some
voxels of the thalamus. It might be possible that volBrain, just
like FreeSurfer does, might bring detailed information on the
volumetric changes of the subcortical structures to the table
than VBM does. The reasons beyond this exceed the aim of
this study and require further investigation in the future.

A limitation of our study is its cross-sectional design.
Another limitation is the small sample size, particularly in
the migraine subgroups of patients with or without RLS.
Unlike the study of Yang et al. [17], we had no isolated
RLS patient group, which would have given us a deeper per-
spective. Another limitation, as mentioned before, is the med-
ication status. We are unaware of either the response to the
treatment status of our patient sample or the effects of these
medications in the brain including medication overuse.
Coppola et al. [64] reported a positive relation between the
sizes of cerebellar hemispheres and the number of tablets tak-
en per month. Additionally, medication overuse has been re-
lated to changes in brain structures [40]. As another limitation,
we did not collect data on the duration of RLS in our study.

In conclusion, care should be given to the existence of
comorbidity of RLS when planning quantitative neuroimag-
ing studies with migraine patients. The deficits in the visual
network in migraine seem to be related to the accompanying
RLS, and deficits in the auditory network are particularly re-
lated to migraine pathology. STG is one of the important
structures in pain-related disorders. More studies are required
to further explore the relation of CC and its sub-regions in the
pathophysiology of migraine and RLS because this structure’s
data are sparse in both disorders. Finally, we have replicated
the relation between attack frequency and an increase in cau-
date and putamen volumes in migraine. The effective treat-
ment of migraine is highly critical for the prevention of struc-
tural changes in the brains of migraine patients.
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