
DIAGNOSTIC NEURORADIOLOGY

Comparison of deep learning models for natural language
processing-based classification of non-English head CT reports

Yiftach Barash1,2
& Gennadiy Guralnik3 & Noam Tau1

& Shelly Soffer1,2,4 & Tal Levy2,3 & Orit Shimon3
& Eyal Zimlichman4

&

Eli Konen1
& Eyal Klang1,2

Received: 27 January 2020 /Accepted: 26 March 2020
# Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Purpose Natural language processing (NLP) can be used for automatic flagging of radiology reports. We assessed deep learning
models for classifying non-English head CT reports.
Methods We retrospectively collected head CT reports (2011–2018). Reports were signed in Hebrew. Emergency department
(ED) reports of adult patients from January to February for each year (2013–2018) were manually labeled. All other reports were
used to pre-train an embedding layer. We explored two use cases: (1) general labeling use case, in which reports were labeled as
normal vs. pathological; (2) specific labeling use case, in which reports were labeled as with and without intra-cranial hemor-
rhage. We tested long short-term memory (LSTM) and LSTM-attention (LSTM-ATN) networks for classifying reports. We also
evaluated the improvement of adding Word2Vec word embedding. Deep learning models were compared with a bag-of-words
(BOW) model.
Results We retrieved 176,988 head CT reports for pre-training. We manually labeled 7784 reports as normal (46.3%) or
pathological (53.7%), and 7.1% with intra-cranial hemorrhage. For the general labeling, LSTM-ATN-Word2Vec showed the
best results (AUC = 0.967 ± 0.006, accuracy 90.8% ± 0.01). For the specific labeling, all methods showed similar accuracies
between 95.0 and 95.9%. Both LSTM-ATN-Word2Vec and BOW had the highest AUC (0.970).
Conclusion For a general use case, word embedding using a large cohort of non-English head CT reports and ATN improves NLP
performance. For a more specific task, BOWand deep learning showed similar results. Models should be explored and tailored to
the NLP task.
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Introduction

Hospital emergency departments (ED) are increasingly
being overwhelmed [1]. Non-contrast head computed to-

mography (CT) is the most frequently performed CT scan
in the ED [2–4]. Flagging of reports could help prioritize
patient care. Radiological reports are usually stored as
unstructured free-text. This makes the extraction of data
difficult [5–10]. NLP algorithms are designed to structure
such free-text. The role of NLP in structuring electronic
medical records (EMR) has been previously discussed in
the medical literature [11–15]. In radiology, NLP has var-
ious applications: flagging and categorization of imaging
findings, patient prioritization, generation of imaging pro-
tocols and research [9, 10].

Different algorithms have been developed for NLP
tasks. Previous studies have reported very good results
for rule-based NLP systems and, in this respect, they
may be considered highly successful, but they are diffi-
cult to develop and maintain [16].
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BOW is a known machine learning NLP model which has
shown promising results within various radiological domains,
including head CT [6].

In recent years, deep learning algorithms have made a large
impact on industry and academia. These algorithms have pre-
sented tremendous abilities in image analysis [17]. The num-
ber of publications employing deep learning techniques for
medical images is exponentially increasing [18–23]. These
algorithms are already being used for commercial applica-
tions, such as automatic analysis of head CT scans [24]. It
should be noted that computer vision deep learning models
require large research cohorts for training. Flagging of radiol-
ogy reports using NLP can help create large research cohorts
for computer vision tasks.

Recently, deep learning methods have also shown
promising results in performing various NLP tasks
[25–29]. These methods include, among others, LSTM
which is an algorithm designed to analyze sequential
data such as sentences [30]; ATN algorithms which
have recently shown state-of-the-art results for NLP
tasks [31]; and word embedding which is a technique
for representing words in a multi-dimensional space
[32]. These technological innovations make deep learn-
ing feasible for medical tasks other than image analysis.

In this study, we aimed to assess the potential of using state-
of-the-art deep learning models for classifying non-English
head CT reports.

Materials and methods

Study design

This retrospective study was granted an institutional review
board (IRB) approval.

We obtained head CT reports of all patients who
underwent a head CT in our hospital. The reports were
performed in the ED, inpatient, and outpatient settings
between January 2011 and December 2018. All reports
were signed by board-certified radiologists in a non-
English language (Hebrew).

Reports of adult ED patients from January to February
for each year between 2013 and 2018 were manually la-
beled. The rest of the reports were used to pre-train an
embedding layer.

We evaluated deep learning models (LSTM, ATN) with
and without pre-training a word embedding layer. We also
compared deep learning models with a BOW model.

Data preprocessing

Reports were manually labeled by two residents (YB and SS)
supervised by a senior radiologist (EK). Each report was

labeled by one resident. The supervising radiologist adjusted
the labeling in 341 reports.

We explored two use cases: (1) general labeling use case, in
which reports were labeled as normal vs. pathological; (2)
specific labeling use case, in which reports were labeled as
with and without intra-cranial hemorrhage.

General labeling use case

Pathological reports were defined as those containing acute or
chronic findings: brain infarction, dense artery sign, intra-
cranial hemorrhage, brain or bone space-occupying lesion,
brain edema, pneumocephalus, fractures, sinusitis or post-
surgical findings, hydrocephalus.

The following findings were labeled as normal: vascular
calcifications, old lacunar infarcts, chronic white-matter ische-
mic changes, and other incidental findings deemed as having
no clinical significance.

Specific labeling use case

Reports were labeled as either with intra-cranial hemorrhage
(intra- or extra-axial) or without intra-cranial hemorrhage.

Text cleaning included removing punctuations and low-
frequency words (appearing in less than three reports). This
was done separately for each training fold. We also limited
texts to 1500 characters.

Data exploration—word importance

We evaluated the association of words with pathological la-
beling. We used the mutual information formula to measure
the joint mutual information between the pathology class (C)
and the word (W). Chi-square test evaluated the significance
(p < 0.05) of the associations.

Mutual Information ¼ ∑∑P C;Wð Þ � Log
P C;Wð Þ
P Cð ÞP Wð Þ

NLP models

Experiments were written in Python (version 3.7). The
deep learning models were written using the Keras li-
brary (version 2.2.4) and TensorFlow module (version
1.13.1) as backend. The Word2Vec model was written
using the Gensim library (version 3.8.1). The BOW
model was written using the scikit-learn package (ver-
sion 0.19.1). Computations were done on an Intel i7
CPU and two NVIDIA GeForce GTX 1080Ti GPUs.
Models were evaluated using tenfold cross-validation. In

each experiment, nine folds were used for training and one
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held-out fold was used for testing. The results of the ten ex-
periments were averaged.
For the specific use case, we have up-sampled the positive

cases to a rate of 1:1. Up-sampling was done exclusively in the
training folds.
We used the area under the curve (AUC), accuracy, sensitiv-

ity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) metrics. A default probability of 0.5
was used to determine the measures other than AUC.

Accuracy ¼ True Positiveþ True Negative

Total Examples
;

Sensitivity ¼ True Positive

True Positiveþ False Negative:

Specificity ¼ True Negative

True Negativeþ False Positive
;

PPV ¼ True Positive

True Positiveþ False Positive

NPV ¼ True Negative

True Negativeþ False Negative

Student’s t test evaluated statistical differences between
models’ metrics. Figure 1 shows a schematic representation
of the deep learning models in the study.

BOW model

In the BOW model, reports are represented as an unordered
collection (bag) of its words. Then, a classifier (such as logis-
tic regression) is trained to classify the paragraphs based on
the frequency of words in the bags.

We employed term frequency–inverse document frequency
(tf-idf) approach on the BOW collections. tf-idf balances be-
tween how important a word is to a document (tf), to how
common it is in the corpus (idf). The tf-idf formula for each
word (w) in one document is:

w score ¼ tf � idf

tf ¼ Number of w in the document

Total number of words in the document

idf ¼ log
Total number of documents

Number of documents containing w

The tf-idf has been computed separately for each training
fold.

Word2Vec model

Word embedding represents words as multi-dimensional vec-
tors. In the embedding process, the algorithm tries to map
relations between words. By that, similar words will have
similar vectors. For instance, for head CT reports, words such
as hematoma and bleed will have similar vectors. The most
common word embedding algorithms are Word2vec and
Glove. We employed the Word2Vec model.

LSTM model

LSTM are networks that take chronological order into account
[30]. This differs fromBOW, inwhich the order of words is of no
importance. Chronological awareness makes LSTM a good fit
for NLP as the order of words in a sentence is meaningful.

Attention model

During LSTM encoding of a data sequence, intermediate cal-
culations (states) are conducted. The ATN algorithm [33] uti-
lizes these states to add context to the words in the sequence.
The context of the word comes from the surrounding words in
the sentence. Giving context to words augments the represen-
tation of the embedding layer.

Models’ hyper-parameters

BOW For the logistic regression classifier, we have used l2
regularization with inverse of regularization strength = 1.0.

We have also conducted the following experiments for the
BOW approach:

1) We used gradient boosting (XGBoost) as a classifier.
Default XGBoost hyper-parameters were used, with

Fig. 1 Study design: head CT reports were classified by LSTM and
LSTM-ATN. The deep learning models were trained first using a
randomly initialized embedding layer and then using pre-training of
word embedding on a large cohort. LSTM, long short-term memory;
ATN, attention; FCN
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n_estimators = 1000. Tree-based methods are unaffected
by normalization (in each node they cut above and below
the desired value). This is why we used a CountVectorizer
instead of tf-idf vectorizer for the XGBoost experiments.

2) We have assessed the added value of using unigrams and
bigrams (sequences of one and two words) as tokens.

Word2Vec We used 200-dimensional vectors for the embed-
ding layer. The model was trained using a continuous bag-of-
words (CBOW) with a window size of 5.

LSTM The bidirectional LSTM encoder consisted of 128 hid-
den units.

LSTM-ATN On top of the LSTM layer, we stacked an attention
layer and, on top of that, a 64-neuron fully connected layer.

Deep learning models The LSTM and LSTM-ATN models
were trained twice: first, by using a randomly assigned em-
bedding layer and then by using a pre-trained embedding lay-
er. The deep learning models were optimized using Adam
optimizer [34]. We employed an early stopping criterion on
the training set [35].

Fig. 2 Distribution plot
presenting the number of
characters in head CT reports in
the cohort

Table 1 Data exploration with
word importance for the general
use case. The table shows the ten
words with the highest mutual
information score for association
between class (pathological) and
terms (words). The table presents
the translation of the words from
Hebrew to English

Word Mutual
information

Frequency in pathological
reports (%)

Frequency in normal
reports (%)

p value

With 0.116 57.6 29.1 < 0.001

Seen 0.096 24.2 3.3 < 0.001

Of 0.089 65.3 42.5 < 0.001

Right 0.083 23.6 5.0 < 0.001

Post 0.078 36.6 17.6 < 0.001

Left 0.072 20.8 4.5 < 0.001

Infarct 0.069 26.2 9.9 < 0.001

On 0.069 26.4 10.0 < 0.001

Compared 0.068 47.0 29.6 < 0.001

Examination 0.064 31.6 15.8 < 0.001
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Results

We retrieved 176,988 head CT reports conducted in our hos-
pital to pre-train an embedding layer. The embedding layer
contained 30,002 vectors, corresponding to the number of
unique words in all CT reports.

We manually labeled 7784 ED CT reports. The number of
unique words in the manually labeled group was 5141. There
were no words that appeared in the manually labeled group
but did not appear in the non-labeled cohort. Examples of low-
frequency terms included words with typos, words that de-
scribe specific patients’ comorbidities such as “ovary,” in a
woman with ovarian cancer, and unique anatomical terms
such as “Galen.”

The reports in the manually labeled group were signed by 30
different board-certified radiologists (average reports per radi-
ologist 259.5 ± 418.7). Of the 7784 reports, 3604 (46.3%) were
labeled as normal and 4180 (53.7%) were labeled as patholog-
ical. 7.1% of the reports described intra-cranial hemorrhage.

The distribution of the number of characters in each docu-
ment is presented in Fig. 2.

Data exploration—word importance

Tables 1 and 2 present data exploration results. Table 1 shows
words (tokens) with a high affinity to the pathological report
group. Table 2 shows words with high affinity to the intra-
cranial hemorrhage group. This is reflected by the highmutual
information score of these words.

For the general use case, the word “seen” is part of
sentences describing lesions. The words “right” and “left”
relate to the lesions’ location. The words “examination” and
“compared” relate to comparison to previous examinations.
The word “post” relates to previous surgeries.

For the specific use case, words with high affinity include
words related to hemorrhage (“parenchymal”), and location
(e.g., “lateral”).

Performance of model BOW approach

Table 3 presents the results of the experiments with BOW
models for the general use case and the specific use case.
Using both unigrams and bigrams showed a small improve-
ment in accuracy both in the general use case and in the spe-
cific use case. This was true both for logistic regression and
for XGBoost classifiers.

Deep learning general use case

The results of the models are presented in Table 4 which
shows the means of the metrics in the study. The best
performing model was LSTM-ATN with Word2Vec
(AUC= 0.967 ± 0.006, accuracy 90.8% ± 0.01) (Fig. 3a).

Deep learning models were more accurate than the BOW
model (for gradient boosting unigrams/bigrams BOWaccuracy
88.9%). This was significant for LSTM-ATN (accuracy 90.2%,
p < 0.01), LSTM-Word2Vec (accuracy 90.5%, p < 0.01), and
LSTM-ATN-Word2Vec (accuracy 90.8%, p < 0.01) but not
for LSTM alone (accuracy 89.0%, p = 0.879).

Table 3 Results of the BOW
models for the general and
specific use cases

LR unigrams LR unigrams +
bigrams

GB unigrams GB unigrams +
bigrams

General use case AUC 0.955 ± 0.001 0.955 ± 0.01 0.955 ± 0.004 0.955 ± 0.007

General use case
accuracy

88.2% ± 0.01 88.6% ± 0.01 86.2% ± 0.01 88.9% ± 0.007

Specific use case AUC 0.970 ± 0.009 0.970 ± 0.009 0.967 ± 0.012 0.967 ± 0.01

Specific use case
accuracy

95.1% ± 0.01 95.5% ± 0.01 95.9% ± 0.01 95.9% ± 0.01

LR, logistic regression; GB, gradient boosting; AUC, area under the curve

Table 2 Data exploration with word importance for the specific use
case. The table shows the ten words with the highest mutual
information score for association between class (pathological) and terms
(words). The table presents the translation of the words from Hebrew to
English

Word Mutual
information

Frequency in
reports with
intra-cranial
hemorrhage
(%)

Frequency in
reports without
intra-cranial
hemorrhage (%)

p value

Hemorrhage 0.065 77.9 31.6 < 0.001

Shows 0.058 47.8 12.4 < 0.001

Parenchymal 0.043 17.4 0.4 < 0.001

Surrounds 0.035 23.7 3.3 < 0.001

Right 0.031 55.3 30.2 < 0.001

With 0.030 66.1 41.2 < 0.001

Lateral 0.270 18.8 3.7 < 0.001

On 0.027 40.2 19.8 < 0.001

Ventricle 0.025 17.4 3.4 < 0.001

Left 0.024 48.9 29.3 < 0.001
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Adding an ATN layer to LSTM improved the accuracy
(LSTM accuracy 89.0% vs. LSTM-ATN accuracy 90.2%,
p = 0.02). This improvement was not significant after pre-
training with Word2Vec (LSTM-Word2Vec accuracy 90.5%
vs. LSTM-ATN-Word2Vec accuracy 90.8%, p = 0.54).

Finally, adding a pre-trained embedding layer significantly
improved the accuracy of both LSTM (LSTM accuracy
89.0% vs. LSTM-Word2Vec accuracy 90.5%, p < 0.01) and
LSTM-ATN (LSTM-ATN accuracy 90.2% vs. LSTM-ATN-
Word2Vec accuracy 90.8%, p < 0.01).

Some examples of false negative cases include the follow-
ing: a case of “nasal bones fracture,” a case of “bilateral
hygromas,” and a wrongly positively labeled case.

Deep learning specific use case

The results of the specific use case (intra-cranial hemorrhage
vs. no intra-cranial hemorrhage) are presented in Table 5.
Unlike the general use case, in the specific use case, all models
showed quite similar accuracies. The best AUCs were shown
for the unigrams and the unigrams/bigrams logistic regression
BOW models and the LSTM-ATN-Word2Vec model (for all
these models, AUC of 0.970).

Discussion

In this work, we employed state-of-the-art neural networks for
flagging ED head CT reports. For the general labeling use
case, the best model was an LSTM-ATN with an embedding
layer pre-trained on a large cohort. Learning the dictionary
from a large cohort of similar documents improves NLP per-
formance. The ATN layer adds context to the words in the
sentence and thus further improves the LSTM accuracy. For
the specific labeling use case, BOWand deep learning showed
similar results.

The evolution of biomedical technology has increased the
amount of healthcare data [36]. NLP research is needed for
advancing the structuring of this accumulated data. In the ED
setting, there is a need for optimized patient triage [1]. By

classifying the reports according to the presence of findings,
“red flags” can be raised in the EMR. This is like systems that
are already implemented in the EMR that raise “red flags” for
pathological blood tests, for instance, alerting on abnormal
potassium levels and the like. Moreover, in systems that give
the reports back as a list, sorting can be performed. “Normal”
reports can be pushed down, and reports with specific findings
(such as intra-cranial hemorrhage) can be pushed up.

While radiologists should communicate directly the refer-
ring physicians to convey critical imaging findings, and some
PACS systems have an option for manual flagging of reports,
an automatic system can be used as a backup.

In recent years, deep learning has made an impact on the
way free-text can be processed. Several previous studies
employed LSTM for radiology NLP tasks [37]. Carrodeguas
et al. compared LSTM with support vector machine, random
forest, and logistic regression for assessing follow-up recom-
mendations in radiology reports. Their dataset consisted of
1000 randomly chosen reports. In their study, support vector
machines, random forest, and logistic regression
outperformed LSTM [38]. Yuan et al. studied models for de-
tection and classification of changes in the description of pul-
monary nodules in reports. They compared machine learning,
convolutional neural networks (CNN), and LSTM for this
task. CNN and LSTM showed similar results and
outperformed the machine learning methods. In their work,
they used word embedding with Word2Vec trained on a large
cohort of approximately 1.5 million reports [39].

Zech et al. evaluated different classic machine learning
models for classifying head CT reports. They used BOW
with averaged word embedding vectors trained on 100,000
reports. This model showed a 0.966 AUC across all head
CT findings, which is comparable with the results of our
study [6].

ATN models have recently shown state-of-the-art results in
different NLP tasks [31]. Recently, Zhang et al. described
using the ATN-based pre-trained BERT model for extracting
clinical information from clinical and radiological notes of
breast cancer patients [40]. We evaluated LSTM-ATN algo-
rithms’ ability to flag head CT reports with pathological

Table 4 Metrics results for the
study models for the general use
case. A tenfold cross-validation
(train/test ration of 90%/10%)
was used for all models. The nor-
mal to pathological ratio was
0.46/0.54

BOW LSTM LSTM-ATN LSTM +
Word2Vec

LSTM-ATN +
Word2Vec

AUC 0.955 ± 0.001 0.961 ± 0.006 0.964 ± 0.004 0.966 ± 0.006 0.967 ± 0.006

Accuracy 88.2% ± 0.01 89.0% ± 0.01 90.2% ± 0.01 90.5% ± 0.01 90.8% ± 0.01

Sensitivity 88.3% ± 0.02 92.4% ± 0.03 91.8% ± 0.03 91.2% ± 0.02 93.1% ± 0.02

Specificity 88.2% ± 0.01 85.0% ± 0.03 88.4% ± 0.03 89.8% ± 0.01 88.1% ± 0.03

PPV 89.7% ± 0.01 87.8% ± 0.02 90.2% ± 0.02 91.2% ± 0.01 90.2% ± 0.02

NPV 86.6% ± 0.02 90.8% ± 0.03 90.5% ± 0.03 89.8% ± 0.02 91.7% ± 0.02

BOW, bag-of-words; LSTM, long short-term memory; ATN, attention; AUC, area under the curve; PPV, positive
predictive value; NPV, negative predictive value
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Fig. 3 a Presentation of the top
receiver operating curve (ROC)
of each model for the general use
case, with its area under the curve
(AUC). b Presentation of the top
receiver operating curve (ROC)
of each model for the specific use
case, with its area under the curve
(AUC)
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findings.We have shown that, for a general labeling task, deep
learning methods outperformed the machine learning BOW
method. We have also demonstrated that pre-training using a
large cohort and the ATN layer improves the accuracy of
LSTM for this task. For a specific use case, deep learning
and BOW showed similar results. This signifies a common
saying in the data science world, “there is no such thing as a
free lunch”—NLP models should be explored and specified
depending on the task.

We conducted our research with reports written in a non-
English (Hebrew) language. Although pre-trained language
models exist, they are usually more attuned to English texts.
Moreover, radiology reports have many domain specific
words, which may be further specific for the originating insti-
tution. Our results suggest that other non-English datasets may
benefit from a similar design and usage of a local large cohort
of texts.

It should be noted that the BOW model showed high per-
formance, especially for the specific task. BOW is a simpler
and faster model and easier to implement. This should be
taken into consideration for deployment decisions.

Our study has several limitations. It is a retrospective
single-center study performed on a large cohort of digitally
stored data. Second, neural networks can have a complex
structure. We attempted to limit the complexity to one
LSTM layer, one ATN layer, and one fully connected layer.
Some decisions on hyper-parameter selection can be further
explored. For example, we have limited the length of reports
to 1500 characters. Although arbitrary, only 1.2% of the co-
hort had more than 1500 characters. In this study, we have
explored one general labeling use case (with vs. without pa-
thology) and one specific labeling use case (with vs. without
intra-cranial hemorrhage). Other use cases can be explored,
acute vs. non-acute, with vs. without ischemic infarct, etc.
Moreover, hyper-parameters were optimized using a random
search. Although the dataset was randomized between tuning
of hyper-parameters and training, this can still cause over-
fitting. Finally, accuracies around 90% may not be enough
when considering medico-legal implications. Thus, for

clinical implementation, further studies must be performed
to augment on these proof-of-concept results.

Conclusion

For a general use case, word embedding using a large cohort
of non-English head CT reports and ATN improves NLP per-
formance. For a more specific task, deep learning and BOW
showed similar results. Models should be explored and tai-
lored to the NLP task.
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