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Abstract
Purpose Pituitary adenomas are among the most frequent intracranial tumors. They may exhibit clinically aggressive behavior,
with recurrent disease and resistance to multimodal therapy. The ki-67 labeling index represents a proliferative marker which
correlates with pituitary adenoma aggressiveness. Aim of our study was to assess the accuracy of machine learning analysis of
texture-derived parameters from pituitary adenomas preoperative MRI for the prediction of ki-67 proliferation index class.
Methods A total of 89 patients who underwent an endoscopic endonasal procedure for pituitary adenoma removal with available
ki-67 labeling index were included. From T2wMR images, 1128 quantitative imaging features were extracted. To select the most
informative features, different supervised feature selection methods were employed. Subsequently, a k-nearest neighbors (k-NN)
classifier was employed to predict macroadenoma high or low proliferation index. Algorithm validation was performed with a
train-test approach.
Results Of the 12 subsets derived from feature selection, the best performing one was constituted by the 4 highest correlating
parameters at Pearson’s test. These all showed very good (ICC ≥ 0.85) inter-observer reproducibility. The overall accuracy of the
k-NN in the test group was of 91.67% (33/36) of correctly classified patients.
Conclusions Machine learning analysis of texture-derived parameters from preoperative T2 MRI has proven to be effective for
the prediction of pituitary macroadenomas ki-67 proliferation index class. This might aid the surgical strategy making a more
accurate preoperative lesion classification and allow for a more focused and cost-effective follow-up and long-termmanagement.
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Introduction

Pituitary adenomas are among the most frequent intracranial
tumors, with a 1/1500 prevalence [1]. They are mostly benign
and typically presents with hormone hypersecretion syn-
dromes and/or mass effect signs. Small intrasellar tumors

can be clinically silent and diagnosed only as incidental
MRI findings. Nonetheless, some entities among the different
subtypes of adenoma showmore aggressive and unpredictable
behavior: these—such as sparsely granulated somatotroph ad-
enomas, Crooke cell adenomas, and plurihormonal Pit-1-
positive adenomas—tend to disclose local invasiveness and
high-recurrence risk and rarely present features of highly ag-
gressive cancer. Surgery is considered the first line of treat-
ment in most cases but in this latter group, multimodality
management therapy—as per neuro-oncologica l
guidelines—is mandatory. The possibility of predicting pitui-
tary tumor behavior at the preoperative stage cannot be
yet considered reliable as no valid factor has been identified,
and though it remains the critical groundwork of the
pathologists.

The 2017 WHO classification revealed that former catego-
ries of typical adenomas, atypical adenomas, and pituitary
carcinomas have no relevance from a clinical standpoint, in-
troducing the definition of “high-risk” adenomas in reference
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to tumors with rapid growth, radiological invasion, and high
Ki-67 proliferation index [2–4].

Considering the above, early identification of any radiolog-
ical feature defining such behavior can be crucial in order to
allow timely diagnosis and treatment. In this regard,
radiomics, consisting of conversion of images into mineable
data and subsequent analysis for decision support, has been
emerging [5]. In particular, texture analysis is a post-processing
technique for quantitative parameter extraction from pixel gray
level heterogeneity. More recently, texture analysis-derived fea-
tures have been used in association with data mining machine
learning algorithms, aiding in the interpretation of a large
amount of information produced. Machine learning is the
branch of artificial intelligence dealing with computer algo-
rithms capable of learning and improving in accuracy by ana-
lyzing datasets, without prior explicit programming [6]. It leads
to the creation of automated predictive models to solve classi-
fication problems. The usefulness of the radiomics approach is
being assessed in different fields of radiology [7–14].

The aim of our study was to assess the accuracy of machine
learning analysis of texture-derived parameters from preoper-
ative MRI of pituitary macroadenomas for the prediction of
ki-67 proliferation index class.

Materials and methods

This study was approved by the local institutional review
board, which waived the necessity for informed consent due
to the retrospective nature of the study.

Subjects

We retrospectively reviewed data of 108 consecutive patients,
who underwent endoscopic endonasal procedures for pituitary
adenoma removal between January 2013 and December 2017,
at the University of Naples “Federico II” Neurosurgery Unit.

Only patients with available ki-67 labeling index in the
histopathological report were included (n = 106). Exclusion
criteria were as follows: any previous treatment for pituitary
adenoma (radiation or medical therapy) (n = 9), extensively
necrotic or hemorrhagic lesions (n = 6), significant artifacts
on the images used for the analysis (n = 2).

Demographic data, preoperative assessment, tumor fea-
tures, and histopathological characteristics were retrieved
from our electronic database (Filemaker Pro 11—File Maker
Inc., Santa Clara, CA, USA).

Surgical approach

Endonasal surgical procedures were performed using a rigid
0-degree endoscope, 18 cm in length, and 4 mm in diameter
(Karl Storz Endoscopy, Tuttlingen, Germany), as the sole

visualizing tool. The use of 30–45° angled endoscopes was
reserved to explore large intrasuprasellar post-surgical tumor
cavities. They were run according to techniques already de-
scribed in previous publications [15–19].

Pathological data

Specimens were obtained as formalin-fixed tissue. For the
evaluation of the proliferation index ki-67 (labeling index
(LI)), “hotspot” areas were chosen at low magnification and
an average of the values on 5 adjacent fields (at least 500
neoplastic cells) was calculated (Fig. 1).

MRI acquisition data

Imaging studies were performed either on a 1.5-Tesla scanner
(Gyroscan Intera, Philips, Eindhoven, The Netherlands) or 3T
MR scanner (Magnetom Trio, Siemens Medical Solutions,
Erlangen, Germany). Both protocols included a coronal T2-
w TSE sequence (TR/TE, 2600/89 ms; FOV, 180 × 180 mm;
matrix, 288 × 288; thk, 3 mm, at 1.5 T; TR/TE, 3000/98 ms
FOV, 200 × 200 mm; matrix, 384 × 384; thk, 3 mm, at 3 T).

Image analysis

Tumors were identified by an expert neuroradiologist who
proceeded to manual segmentation using a bidimensional po-
lygonal ROI on the slice of lesion maximum extension with
further editing with a brush tool, when needed. This process
was carried on using freely available segmentation software
(ITKSnap v3.6.0) [20] (Fig. 1). A second segmentation on a
sample of 35 patients was performed by another neuroradiol-
ogist, blinded to the prior annotations and clinical data, to
assess inter-operator reproducibility of the selected features.

Image pre-processing and feature extraction were per-
formed in an open-source Python radiomics software
(Pyradiomics v2.1.2) [21]. In particular, as two MRI scanners
by different vendors and with distinct acquisition parameters
were employed, image voxels were first normalized by
subtracting the mean intensity and dividing by the standard
deviation with an expected resulting range [− 3, 3], a mean of
0 and standard deviation of 1 in the normalized image. Then, a
scale of 100 was applied, resulting in an intensity range main-
ly within [− 300, 300]. This would have been required even
using a single scanner as non-quantitative sequences were
evaluated (e.g., T2-w images and not T2 maps). All images
and corresponding ROI masks were also resampled to a 2 ×
2 × 2 mm resolution. To optimize extraction time, making it
less memory intensive, images were automatically cropped
based on ROI masks keeping 10-voxel padding in order to
consent subsequent filter application.

As for image discretization, the employed software allows
both for a fixed bin count and bin width. As suggested by the
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developers, we decided to use a fixed bin width that allowed us
to obtain an ideal bin count between 16 and 128 [22]. To do so,
a preliminary extraction of first order parameters was performed
in all patients, calculating using the gray level range an optimal
bin width of 3. To avoid negative gray values after normaliza-
tion, potentially affecting first-order feature extraction, an array
shift of 300 (3 standard deviations × 100) was applied.

Various filters were also used to generate derived images
for additional texture feature extraction. In particular, wavelet
decomposition yields all possible combinations of high- and
low-pass filtering in the x and y dimensions; edge enhance-
ment Laplacian of Gaussian (LoG) filter emphasizing gray
level changes at different texture coarseness. Due to the ap-
plied resampling resolution and lesion size, we chose four
LoG sigma values ranging from 2.0 (maximum fineness) to
3.5 mm (maximum coarseness) with 0.5-mm increments.

Regarding feature extraction, to bidimensional shape and
first-order statistics, commonly referred to as histogram anal-
ysis, we added higher order class parameters. In detail, the
symmetrical gray level co-occurrence matrix (GLCM) charac-
terizes image texture by calculating how often pairs of voxels
with specific intensity levels and spatial relationship occur in an
image, extracting statistical measures from the deriving matrix
[23]. Gray level size zone matrix (GLSZM) features quantify
gray level zones, defined as the number of connected voxels
that share the same intensity value [24]. The gray level run
length matrix (GLRLM) evaluates gray level runs, which are
the length of consecutive pixels with the same gray level [25].
Neighboring gray-tone difference matrix (NGTDM) features

assess differences between pixel values and neighbor average
gray value within a set distance [26]. Finally, employing gray
level dependence matrix (GLDM)-derived parameters, the de-
pendency of connected voxels, expressed as their number with-
in a set distance, to the center voxel can be determined [27].

Statistical analysis

Feature scaling was performed through normalization.
Subsequently, in order to remove irrelevant and redundant data,
which can reduce computation time, improve learning accuracy,
and facilitate a better understanding for the learning model or
data, different supervised feature selection methods were
employed [28]. This process and subsequent steps in our ma-
chine learning pipeline were performed on a freely available data
mining software (Weka v3.8) [29]. To balance data dimension-
ality reduction and loss of information, we tested eight-feature
selection method belonging to three different families as follows:

1. Embedded classifier methods, both ranking attribute
worth with the OneR (1R) algorithm and C4.5 decision
tree, and selecting the best feature subset for C4.5 deci-
sion tree and random tree algorithms [30];

2. Feature ranking methods using a direct Pearson’s correla-
tion and a ReliefF Evaluator, a filter-method approach
sensitive to feature interactions [31];

3. Subset feature search selection method, which evaluates
attribute subset worth considering both feature predictive
ability and redundancy [31].

Fig. 1 Segmentation examples on coronal T2-weighted images in two
patients with low (upper row, a) and high (lower row, d) proliferation
index pituitary adenomas, showing hand-drawn ROI placement (b and e,

respectively). Pictures c and f show corresponding immunohistochemical
evaluation (× 40 magnification) of ki-67 cell labeling index, respectively,
1 and 6%
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Absolute agreement intraclass correlation coefficient (ICC)
values were calculated for the selected texture features using
SPSS version 17.

A k-nearest neighbors (k-NN) classifier was employed to
predict macroadenoma proliferation index class. It represents
a non-parametric, lazy learning algorithm, not making any
assumption on the underlying data distribution and not using
training data points to do generalization, deferring computa-
tion until classification [32]. We utilized a k = 3 linear nearest
neighbor search with Euclidean distance function and no dis-
tance weighting.

Algorithm validation was performed with a train-test ap-
proach, randomly splitting the patients in training (60%) and
test (40%) groups. Feature selection and model training were
performed on the first while the latter was employed for clas-
sifier validation and calculation of accuracy metrics.

Our radiomics workflow pipeline is illustrated in Fig. 2.

Results

Subjects and pathological data

According to the inclusion and exclusion criteria, the final
population consisted of 89 patients (51 males and 38 females;
mean age 52.17 ± 1 years; range, 16–80). As stated above,

they were divided into training (n = 53) and test (n = 36)
groups.

Of the included lesions, 25 were functioning adenomas (5
ACTH, 8 GH, 5 GH/PRL, 6 PRL, and 1 TSH secreting) and
64 non-functioning. Concerning tumor location, 13 were
purely intrasellar, 40 presented suprasellar infradiaphragmatic
extension, while 36 involved the supradiaphragmatic space
(Table 1).

Surgical treatment was performed via “standard” endo-
scopic endonasal approach in 79 cases, with a transtuberculum
transplanum “extended” approach in the remaining. Overall
gross-total removal was obtained in 74 cases with a subtotal
removal in the other 15 patients.

In regard to pathological features, we identified 59 lesions
(12 functioning and 47 non-functioning tumors) whose ki-67
was lesser than 3% (low proliferation index), while in 30 cases
(13 functioning and 17 non-functioning lesions), it resulted
equal to or greater than 3% (high proliferative index) [33].

The training group included 20 high proliferation and 33
low proliferation index patients, while the test one included
respectively 10 and 26 patients for each class.

Image analysis

A total of 1128 features were extracted from each patient,
represented on the correlation cluster map shown in Fig. 3.

Fig. 2 Radiomic workflow pipeline. Manual segmentation of the lesions
was performed on coronal T2-weighted images using a bidimensional
polygonal ROI. Image pre-processing included resampling of all images
and corresponding ROI masks to a 2 × 2 × 2 mm resolution,
discretization, and normalization of voxel gray levels. Feature extraction

(histogram and texture analysis) was performed on both native and fil-
tered images. Subsequently, in order to remove irrelevant and redundant
data, different supervised feature selection methods were employed. A k-
NN classifier was employed to predict the macroadenoma proliferation
index class with a train-test approach
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Of the 12 subsets derived from feature selection (feature num-
ber range = 1–6), the best performing one was constituted by
the 4 highest correlating parameters at Pearson’s test. They
were the following: kurtosis derived from the filtered LoG
(sigma = 3.5), zone variance from both the GLSZM of the
original image and after low-high pass wavelet transform,
and large area emphasis from the GLSZM after low-high pass
wavelet transform. Their ICC values were respectively 0.87,
0.97, 0.93, and 0.95, indicating very good reproducibility
[34]. Figures 4 and 5 present univariate and pairwise feature
distribution for this data subset in our population.

The k-NN overall accuracy was 91.67% (33/36) of correct-
ly classified patients. Other evaluation metrics are reported in

Table 2, derived from the confusion matrix in Table 3. Among
these, some accuracy measures more commonly used in ma-
chine learning but less in other fields included as follows:

– F Score, the harmonic average of the precision (also pos-
itive predictive value) and recall (also sensitivity) ranging
from 0 to 1 (perfect accuracy), which in our case, was
0.92;

– Matthews correlation coefficient, a measure of the quality
of binary classifications in machine learning (+ 1
representing a perfect prediction, 0 an average random
prediction and − 1 inverse prediction), was 0.78;

– The area under the precision-recall curve representing an
alternative to the area under the receiver operator charac-
teristics curve that is considered more informative
for imbalanced classes. A high area under the curve,
0.88 in our case, represents both high recall and high
precision.

Discussion

In the previous edition of the WHO Classification of Tumors
of the Pituitary Gland (2004), pituitary neuroendocrine tumors
were divided into a typical adenoma, atypical adenoma, and
carcinoma. Atypical adenomas were identified by an elevated

Fig. 3 Feature correlation matrix
represented as a hierarchically
clustered heatmap

Table 1 Patient population clinical data

Characteristic Low ki-67 LI High ki-67 LI

No. of patients 59 30
Age (mean) (year) 54.8 47.6
Sex
M (no.) (%) 35 (59.3%) 16 (53.3%)
F (no.) (%) 24 (40.6%) 14 (46.7%)

Tumor type F (12) F (13)
NF (47) NF (17)

MRI availability (no.)
3 T 14 7
1.5 T 45 23

LI, labeling index; F, functioning macroadenomas; NF, non-functioning
macroadenomas
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mitotic index and ki-67-labeling index ≥ 3%, suggestive of
aggressive clinical behavior. Using this classification, atypical
adenoma incidence was relatively variable and lacking valid
and reliable prognostic correlations [35]. Therefore, Trouillas
and colleagues proposed a new clinicopathological classifica-
tion using MRI invasiveness signs (cavernous and/or sphe-
noid sinus involvement), immunocytochemistry and prolifer-
ative markers, and labeling adenomas according to size, type,

and grade (grade 1a, non-invasive; 1b, non-invasive and pro-
liferative; 2a, invasive; 2b, invasive and proliferative; and 3,
metastatic) [2]. Along this line, the fourth WHO classification
edition (2017) emphasizes pituitary adenoma histopathologi-
cal aspects and molecular genetics, abandons the term “atyp-
ical,” and strongly recommends an accurate assessment of
tumor subtyping, proliferative potential, and clinical parame-
ters such as tumor invasion for consideration of aggressive
adenomas [36, 37]. However, it does not provide any hint to
correlate these elements to define pituitary adenomas subtypes
[38].

In this setting, artificial intelligence could contribute to bet-
ter allocate individual cases in relation to aggressiveness.
Machine learning applications have proved promising in re-
cently published papers, providing insights into how predic-
tive modeling can improve patient perioperative management.
Hollon and colleagues reported an accuracy of 87% in the
prediction of early postoperative outcomes in a retrospective
cohort of 400 consecutive pituitary adenoma patients [39]. At
the same time, Staartjes et al. demonstrated the usefulness of
deep learning to preoperatively predict gross-total resection
likelihood in 140 patients, reporting a 91% accuracy [40].
Furthermore, using radiomics, MRI proved accurate in
predicting non-functioning pituitary adenomas subtypes [41]
and cavernous sinus invasion [42].

Fig. 5 Pairwise bivariate distribution with regression lines for the selected feature subset in relation to the proliferation index class

Fig. 4 Box plot of the distribution for each feature of the selected subset
in relation to the proliferation index class
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To our knowledge, this is the first study investigating pro-
liferative index prediction using a radiomics analysis, possibly
affecting surgical approach and postoperative management.
Interestingly, MRI had already proved promising in prolifera-
tive index prediction, using diffusion-weighted imaging.
Indeed, a strong correlation of ADC values and ki-67 has been
recently reported [43]. Our study demonstrates that data min-
ing from non-diffusion-weighted sequences can provide sim-
ilar results.

A frequent limitation of radiomic machine learning studies
is applicability across different sites, varying scanner vendors
and field intensity. We chose to analyze images acquired on
both 1.5 and 3 Tscanners by different vendors, suggesting that
our results could more easily be confirmed using exams from
different institutions/equipment. Obviously, this approach re-
quires accurate pre-processing of images to reduce scanner-
induced variability.

Another recurring issue in radiomics and machine learning
applications is the optimal feature number choice. It depends
on both sample size and algorithm employed [44]. As texture
analysis often yields very large datasets, data dimensionality
reduction methods are necessary to select optimal subsets for
the proposed classification problem. As error distribution usu-
ally cannot be known prior to classification, it is best to test a
wider range of feature set sizes derived from different selec-
tion methods. In our case, when feature selection output was
represented by a ranking, a range of 4–6 parameters was used
to create distinct sets. Among these, the 4-feature set ranked
by direct correlation with high Ki-67 expression proved most
effective in combination with k-NN.

Recently, a growing interest has been shown for deep learn-
ing applications in medical imaging [45]. Their complex tech-
nical aspects are surely more fascinating than simpler machine
learning algorithms such as the k-NN we employed. On the
other hand, deep learning presents its own sets of issues, such

as the “black box” nature of its feature extraction and selection
as well as a decision process, limiting software assumption
correctness assessment and subsequent wide-scale applicabil-
ity. Furthermore, data required for training such as networks is
exponentially larger and computational time is also increased
compared with post-processing pipelines such as the one we
used. For these reasons, it would be more correct to start by
using simpler, less resource-intensive machine learning
methods, reserving more complex approaches in case satisfac-
tory results are not obtainable by other means.

This study has some limitations which have to be pointed
out. A further study on a more numerous population is nec-
essary to further validate and possibly expand these results.
Only T2-weighted images were used as contrast-enhanced
sequences were not taken into consideration due to the pres-
ence of both gradient echo and spin echo sequences; DWI
was not performed for all lesions. However, obtaining valu-
able data without contrast agent administration could repre-
sent an added value. Finally, while very good, feature repro-
ducibility was only tested after their selection on a subset of
patients.

Obviously, the proliferative index is only one of many as-
pects to be taken into consideration. However, with the pro-
posed approach, from a T2-weighted sequence, it might be
possible to obtain data concerning size, invasiveness, and pro-
liferative index, as well as information on secretory activity
[46] and on collagen content [47], useful for predicting tumor
consistency. Regarding the last, a recent study by Zeynalova
[48] employed a neural network on data extracted from 55
pituitary adenoma patients to assess, with good results
(72.5% accuracy). It is interesting to note that only T2 images
were employed, as done in our study. T2-weighted MR im-
ages also proved effective in predicting response to somato-
statin analogues in patients with acromegaly and GH-
secreting pituitary macroadenoma using a radiomic machine
learning approach [49, 50].

For this reason, a possible future application of artificial
intelligence in the study of macroadenomas could derive from
consideration, in addition to data originating from advanced
image analysis (intensity, texture, shape and wavelet), of clin-
ical data, immunohistotype, proliferative indices, and inva-
siveness parameters (cavernous sinuses, sphenoid sinus), also
evaluating other omics such as proteomics and genomics, to
improve lesion classification and disease treatment choice.

Table 2 k-NN accuracy metrics
weighted average and by class Class Sensitivity Specificity Precision MCC F score ROC area PRC area

Low ki-67 LI 0.96 0.80 0.93 0.79 0.94 0.87 0.91

High ki-67 LI 0.80 0.96 0.89 0.79 0.84 0.87 0.79

WA 0.92 0.86 0.92 0.79 0.92 0.87 0.88

LI, labeling index;WA, weighted average;MCC, Matthews correlation coefficient; ROC, receiver operator curve;
PRC, precision-recall curve

Table 3 Confusion matrix for the test group

Actual class

Low ki-67 LI High ki-67 LI

Predicted class Low ki-67 LI 25 1

High ki-67 LI 2 8

LI, labeling index
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Conclusion

We analyzed pituitary adenoma proliferative index class pre-
operative prediction, based on T2-weighted MR imaging. Our
findings might aid the surgical strategy making a more accu-
rate preoperative lesion classification and allow for a more
focused and cost-effective follow-up and long-term
management.
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