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Abstract
Purpose The structural connectome is a comprehensive struc-
tural description of the network of elements and connections
forming the brain. In recent years, this framework has progres-
sively been used to investigate the pediatric brain.
Methods We discuss the different steps and emphasize key
technical aspects required for the successful reconstruction,
analysis, and visualization of the pediatric structural
connectome using current state-of-the-art neuroimaging and
post-processing techniques.
Results The two key components of structural connectome
are a node (a cortical region obtained with high-resolution
anatomical imaging) and an edge (structural association be-
tween cortical regions, defined with tractography). After de-
lineation of nodes and edges, an association matrix can be
generated by compiling all pairwise associations between
nodes and applying a threshold to produce a binary adjacency
matrix. Several measures can be used to characterize the to-
pological architecture of the brain’s networks. Finally, we pro-
vide an overview of various visualization methods of the
structural connectome in children.

Conclusion The human connectome is the culmination of
more than a century of conceptual and methodological inno-
vation. Biological substrates of brain development such as
cortical gyration and myelination challenge the acquisition,
reconstruction, and analysis of structural connectome in chil-
dren and require specific considerations compared to adults.

Keywords Diffusion tensor imaging . Structural
connectome . Tractography . Brain . Children

Introduction

Connectomics based on graph theory has become a unique
methodological framework for studying structural connectiv-
ity patterns of the pediatric brain. The term Bconnectome^
embodies the advances of over a century of neuroscientific
innovation and reflects the agenda for a new era: the era of
the brain networks [1]. The complex network approach to
neuroimaging represents a conceptual revolution, not just an
evolution of existing techniques. The human connectome is
the comprehensive structural description of the network of
elements and connections forming the human brain and can
be mathematically described as a neural graph [2–4]. Brain
graphs provide a relatively simple and increasingly popular
way of modeling the human brain connectome, using graph
theory to abstractly define the brain as a set of anatomical
regions, the so-called nodes, and structural connections, the
so-called interconnecting edges [4, 5].

The main impact of graph theory is to promote a change of
perspective in how we look at the brain [6]. The connectome
provides a unified, time-invariant, and readily available
neuroinformatics resource that can be used in virtually all
areas of experimental and theoretical neuroscience [7].
Network analyses of brain connectivity have begun to yield
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important insights into brain organization of humans and non-
human primates [8]. Network measures are critical for creat-
ing metrics that allow the comparison of connectivity patterns
across individuals and imaging modalities, as well as clinical
conditions. Graph measures allow the characterization of net-
work structure by identifying local contributions of individual
nodes and connections, as well as the network’s global capac-
ity to integrate information, or its tendency to form intercon-
nected communities or modules [9]. Complex network prop-
erties have been identified with some consistency in all mo-
dalities of neuroimaging data and over a range of spatial and
time scales. Conserved properties include small worldness,
high efficiency of information transfer for low wiring cost,
modularity, and the existence of network hubs [10–12]. In
recent years, this framework has been used to investigate the
pediatric brain. Normal brain development is characterized by
continuous and significant network evolution throughout in-
fancy, childhood, and adolescence, following specific matura-
tional steps. Uncovering these complex processes is crucial to
understanding the development of brain networking. With the
recent advancement of noninvasive neuroimaging techniques
to study the pediatric brain, the comprehensive macroscale
connectome can be evaluated in children in vivo.

Currently, various neurodevelopmental disorders, such as
autism spectrum disorder, attention-deficit hyperactivity dis-
order, and schizophrenia, some congenital malformations and
trumatic brain injury may be considered as connectopathies or
disconnection syndromes, and thus, the structural connectome
may help us understand the pathogenesis and implication for
cognitive and behavioral functions of brain disorders from a
network perspective [13–19].

Among the imaging modalities used for macroconnectomics,
magnetic resonance imaging (MRI) is dominant, partly because
of widespread availability, safety, and spatial resolution.
Diffusion weighted (DWI) and diffusion tensor imaging (DTI)
as well as functional MRI (fMRI) are widely used for inferring
structural and functional connectivity. Several important steps
are needed for the reconstruction of the structural connectome.
First, a morphological high-resolution T1-weighted MRI is used
to segment the brain and identify cortical regions, e.g., nodes.
Second, the macroscopic pathways of the underlying neuronal
fibers need to be estimated from DWI/DTI by means of
tractography, namely edges. Subsequently, the connectivity ma-
trix is obtained by associating edges between each pairs of nodes.
Finally, sophisticated methods of connectome visualization are
used for network representation. In each of these steps, there are
many important parameters that can lead to variations of the
connectomes depending on how they are calibrated.

In this review article, we focus on the up-to-date mapping,
description, and analysis pipelines of macroscale pediatric
structural connectome. We first review approaches and chal-
lenges to segment the developing brain into discrete nodes and
then discuss the imaging and analytic methodologies used to

map and quantify patterns of structural connectivity that are
represented by edges in the connectome. For each step of the
structural connectome reconstruction, we included special
considerations for the pediatric population highlighting chal-
lenges and discussing potential limitations related to the pedi-
atric brain that are different compared to the structural
connectome reconstruction in adults.

The ingredients of structural connectome

The two key components required for structural connectome
reconstruction are a node and an edge. Nodes correspond to
neuronal elements, e.g., gray matter voxels or brain regions.
For this purpose, high-resolution T1-weightedMRI is needed.
Edges represent measures of structural association between
cortical regions and are derived from DTI tractography. The
results of the structural connectome reconstruction depend on
the quality of the acquired imaging data. For a precise recon-
struction of the structural connectome, high-resolution T1-
weighted MRI and DTI are required. Ideally, high-resolution
DTI data should be acquired at high field strength along mul-
tiple noncollinear directions (30 or more) and with multiple b
values [20].

Defining nodes—cortical parcellation

Defining the nodes of a macroscale connectome is a complex
task as there is lack of agreement on how best to define the
different cortical regions. Parcellations of the brain into differ-
ent nodes should (1) be distinct in that each brain segment
only belongs to one region, (2) assign tissue to one node that
has similar connections to other parts of the brain, and (3) only
be compared with other networks that use the same
parcellation scheme. The goal is to segment the cortex in a
standard way such that regions of interest (ROI) are robustly
placed on the same cortical surface across subjects, enabling
the construction of whole brain normalized connection matrix
at multiple scales, which can be averaged and compared over
population of subjects [21].

Different parcellations of the human brain exist. Atlases of
brain areas generated using anatomical and functional
parcellation schemes are available (Fig. 1) [1]. In children,
the accurate identification of cortical regions at high resolution
is challenging because sulci continue to develop after birth
resulting in a rapidly changing complexity of the brain sur-
face/sulci. In addition, the MRI contrast in the brain of young
children varies considerably with age, and it is not always
straightforward to delineate what constitutes a normal appear-
ance and what degree of variability reflects a pathological
condition. Template-based volumetric registration like in sta-
tistical parametric mapping (SPM) software and Montreal
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neurological institute (MNI) space or surface-based matching
like in Freesurfer (http://surfer.nmr.mgh.harvard.edu) has
shown great results in adults and older children [22]. The
adult brain templates and in adults widely used software life
Freesurfer, however, do not work with incompletely
myelinated brain. [23] For pediatric brain analysis, attempts
have been made to create age-specific brain templates. Multi-
contrast, single-subject atlases for neonates and 18-month-old
as well as 2-year-old children have been recently developed.
[24] The low graymatter/white matter contrast in both T1- and
T2-weighted MR images in young children compared to the
adult brain, however, makes the accurate normalization of one
brain to another very difficult [24]. A template-free
parcellation that uses unconstrained parcellation schemes
and enables calculation of single-subject network parameters
without imposing anatomical bias may be a valuable alterna-
tive and has shown promising results in the segmentation of
the neonatal brain [25].

A novel data-driven approach to explore the cortical architec-
ture has been recently described such as Dense Individualized
and Common Connectivity-based Cortical Landmarks
(DICCCOLs). This approach allows to effectively represent the
common cortical architecture by groupwise consistent structural
fiber connectionswithout the need to acquire high-resolution T1-
weighted images for cortical parcellation [26].

Defining edges—structural connectivity

After defining the nodes as anatomically distinct brain re-
gions, the next step of the connectome reconstruction includes
the evaluation of the structural connectivity by measuring in-
terregional fiber tracks. Tractography is the most commonly
used diffusion DWI/DTI method for defining structural con-
nectivity. Briefly, DWI/DTI exploits the principles of tradi-
tional MRI to measure the random motion of water molecules
and subsequently to (1) infer information about white matter
microstructural properties and (2) delineate the gross axonal
organization of the brain. White matter is characterized by
bundles of myelinated axons surrounded by myelin sheaths
that are built up by layers of membranes. This restricts

diffusion of free water molecules; i.e., the myelin layers and
the axonal membrane cause a lower restriction parallel than
perpendicular the axon and thus a higher anisotropy [27]. The
main technique by which individual structural connectome
reconstruction is made possible in vivo is DWI/DTI. To date,
DTI tractography is still the only in vivo tool capable of esti-
mating structural connectivity in the brain. The basic principle
underlying the inference of structural connectivity from diffu-
sion MRI data is that water diffusion in white matter is hin-
dered and occurs primarily along the path of axons. By fol-
lowing the motion of water, it is possible to map the orienta-
tion(s) of fibers passing through each voxel of white matter
[1]. Fiber tractography is a rendering method for improving
the depiction of data from DWI/DTI of the brain (Fig. 2)
[28–33].

The primary purpose of tractography is to clarify the ori-
entational architecture of tissues by integrating pathways of
maximum diffusion coherence. The fibers depicted with
tractography are often considered to represent axonal bundles
or nerve fibers, but they are more correctly viewed in physical
terms as lines of fast diffusion that follow the local diffusion
maxima and that only generally reflect the axonal architecture
[34]. Fiber orientationmust be inferred for white matter voxels
individually, before any connectivity analysis. The goal of
DWI/DTI analysis is to infer a probability function for each
voxel, which captures the different fiber orientations present
and their relative proportions. Estimation of this function at
each voxel, which is referred to as the fiber orientation density
function (fODF), is the first step in estimating structural con-
nectivity (Fig. 3).

The DTI model performs well in regions where there is
only one fiber population (i.e., fibers are aligned along a single
axis), where it gives a good depiction of the fiber orientation.
However, this is not always the case. Fibers are known to
disperse (fan), cross, merge, and kiss (temporarily run adja-
cent to one another), all of which can occur within the same
single voxel and lead to heterogeneity not accounted for by a
simple delta function. Complex fODF models better estimate
fiber trajectories, particularly when several white matter tracts
intersect and allow recovery of nondominant pathways invis-
ible to DTI. Imaging techniques that provide higher angular

Fig. 1 Different parcellations of the human brain. Atlases of brain areas
generated using anatomical parcellation schemes. a Lausanne2008 atlas
with 66 cortical regions—also known as the Desikan-Killiany atlas. b

Lausanne2008 atlas with 120 cortical regions. c Lausanne2008 atlas with
250 cortical regions. d Lausanne2008 atlas with 500 cortical regions
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resolution are needed [35, 36]. Two newer types of diffusion
imaging, diffusion spectrum imaging (DSI) and high-angular
resolution diffusion imaging (HARDI), and their variations
have begun to replace DTI in recent years. Although they
differ in their details, HARDI and DSI ultimately work by
detecting the movement of water in many more directions
within a given voxel. DSI can overcome this limitation by
reconstructing multiple diffusion directions in each voxel
[37].

After estimation of the fODF in each voxel, tractography
approaches such as deterministic or probabilistic are used to
establish structural connectivity between connectome nodes.
With deterministic tractography, 3D trajectories, e.g.,
Bstreamlines^, are used to trace putative white matter paths.
The individual streamlines do not represent actual axons; they
depict estimates of the average trajectories of axon bundles,
given our assumption that diffusion is least hindered along
axons [1]. However, streamlines tractography suffers from a

number of inherent limitations, one of which is the accurate
determination of when streamlines should be terminated.
BAnatomically constrained tractography^ improves
tractography through effective use of anatomical information
and prevents spurious streamline terminations for improved
connectome reconstruction [38].

With probabilistic tractography, it is possible to assign a
probability of axonal connection between any pair of gray mat-
ter regions on the basis of tractographic analysis of an individ-
ual dataset. For DTI, DSI, or HARDI dataset of a subject,
probabilistic tractography allows to assign a probability of ax-
onal connection, while deterministic tractography reconstructs
the Bnumber of axons^ between any pair of gray matter re-
gions. In this way, the Bconnection^ between each pair of cor-
tical regions in the brain can be quantified [23, 34, 35, 37, 39].

Special considerations for children deserve to be men-
tioned here. First, the duration of a high-resolution DWI/DTI
protocol is challenging for children. Currently, the main

Fig. 3 a Axial view of DTI fiber
orientation estimates. The zoomed
area represents one of the most
critical Bcross-roads^ of the
human brain: the region where
corpus callosum, corona radiata,
and superior longitudinal
fasciculus fibers intersect. b
Tensor ellipsoid. c fODF: note
how fODF better estimate fiber
trajectories and allow recovery of
nondominant pathways invisible
to DTI

Fig. 2 a 3D depiction of whole
brain tractography obtained with
HARDI of an 8-year-old healthy
subject overlaid on high-
resolution axial T1WI. b Coronal
view of whole brain tractography
with hemi-brain surface.
Improved tractography with
HARDI is capable of capturing
more connections and yields de-
tailed representation of the white
matter
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human connectome project (HCP) protocol lasts approximate-
ly 60 min for DWI/DTI acquisition, which is very long for
young children and difficult to obtain without sedation.
Lifespan-HCP protocol implemented a pilot protocol and set-
tled on a modified 20 min DWI/DTI protocol. In addition, the
collaboration with a child life specialist may improve child
compliance with MRI and hence reduce the problem of mo-
tion and the difficulty of performing longer scans in children.
The MRI scans are acquired in pairs with opposing phase-
encoding polarity, which increases the signal-to-noise ratio
(SNR) and allows corrections of susceptibility-induced and
eddy current-induced distortions (see http://lifespan.
humanconnectome.org) [40, 41]. Second, the measurement
of the development of brain connectivity is very challenging
and is prone to mis-interpretation. In the maturing brain,
diffusion anisotropy changes physiologically, which also
directly affects tractographic results. The low fractional
anisotropy (FA) in the unmyelinated white matter hampers
traditional tractography approaches in the developing brain
[23]. Moreover, the patient weight has been shown to affect
the incidence of mechanical vibration-induced artifact, mak-
ing children potentially more susceptible than adults [42].
This has important implications for the interpretation of the
results of longitudinal DWI/DTI studies. Visual inspection
remains the primary method for artifact identification in such
cases. In addition, other artifacts such as those originating
from cardiac pulsation in ungated acquisitions and those orig-
inating from subject motion when scanning uncooperative
patients or unsedated pediatric subjects may decrease data
quality. Different automated algorithms have been developed
for data analysis and correction. One novel approach for ro-
bust diffusion tensor estimation, called RESTORE (robust es-
timation of tensors by outlier rejection) uses iteratively
reweighted least-squares regression to identify potential out-
liers and subsequently exclude them. This has been shown to
improve tensor estimation [43].

Furthermore, assessing the anatomical accuracy of
tractography is difficult because of the lack of independent
knowledge of the true anatomical connections in humans.
There is an inherent limitation in determining long-range ana-
tomical projections based on voxel-averaged estimates of local
fiber orientation obtained from DWI/DTI data that is unlikely
to be overcome by improvements in data acquisition and anal-
ysis alone [44]. Last but not least, the accuracy and reproduc-
ibility of constructing the structural connectome done with dif-
ferent acquisition and reconstruction techniques are not well
defined. To date, there is limited consensus on what the refer-
ence method for structural connectome tractography should be.

All diffusion schemes, from the classical DTI to the high-
angular resolution DSI, produce a biologically meaningful
mapping of the human connectome. However, different
tractography algorithms can influence the estimation of sever-
al network indices that characterize the human structural

connectome such as differences in network topology. It is
important to note that the findings of small worldness, high
global network efficiency, and high density hubs per se, char-
acteristic for the human brain, are very robust over all inves-
tigated methods and parameters [45–47].

The matrix

The next step in structural connectome reconstruction is the
generation of an association matrix by compiling all pairwise
associations between nodes. By applying a threshold to each
element of this matrix, we obtain a binary adjacency matrix or
undirected graph. There are many possibilities to identify the
threshold for connectivity matrices (e.g., FA or 1/apparent
diffusion coefficient) and it is a focus of ongoing studies to
determine whether a thresholding is needed and, if yes, which
one is the most accurate. An adjacency matrix indicates the
number of edges between each pair of nodes in a graph. For
most brain networks, the adjacency matrix is specified as bi-
nary. This means that each element is either 1 (if there is an
edge between nodes) or 0 (if there is no edge). For undirected
graphs, the adjacency matrix is symmetrical [3].

Edges are differentiated on the basis of their weight and
directionality. Network edges may be directed (drawn as ar-
rows) or undirected (drawn as lines). A directed edge makes a
claim about the causal relations between nodes, whereas an
undirected edge is agnostic about causality. In human neuro-
imaging data, it is currently more difficult to assign direction-
ality to associations between regions, whether measured by
structural MRI, DTI, DSI, or fMRI. Although the majority
of network studies of neuroimaging data have been performed
on binary or unweighted networks, in which each edge has a
weight of one and each nonedge has a weight of zero, there
has been a growing interest in the use of weighted networks
that contain information about connection strengths [4, 48].
After completing the connectome reconstruction, it is possible
to calculate the network parameters of interest in this graphical
model of a brain network (Fig. 4).

The metrics—topology measures

Because network analysis is based on the mathematical field
of graph theory, there is a wide variety of measures that can be
used to characterize the topological architecture of the brain’s
anatomical or functional connectivity. In particular, graphs are
commonly assessed in terms of their local and global
connectivity/efficiency (Table 1) [48]. The interpretation of
topology measures in young children may be different com-
pared to adults. For example, changes in measures of integra-
tion and segregation have been shown with brain maturation
and ongoing myelination [49]. Normal brain development is
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characterized by continuous network development/changes
from infancy, throughout childhood, and adolescence, follow-
ing specific maturational patterns. During development, the
structural connectome demonstrates increased global integra-
tion and robustness and decreased local segregation, as well as
strengthening of the hubs. This suggests that progressive
white matter myelination favors increased global efficiency
[22]. This age-dependent maturation of the structural
connectome warrants separate analysis of graphs of partially
myelinated (<2 years old) and fully myelinated brains
(>2 years old). Network measures can be used as diagnostic
biomarkers to quantify differences between patients and
healthy subjects. Network measures have been reported to
be altered in several neuropsychiatric developmental disor-
ders, such as autism spectrum disorders or attention-deficit
hyperactivity disorder [50]. Neuroimaging studies on structur-
al connectome during development and pediatric CNS disease
are included in Table 2.

Measure of local connectivity

The clustering coefficient is a measure of local segregation or
efficiency. It measures the density of connections between the
node neighbors. Densely interconnected neighbors form a
cluster around the node. Transitivity is a normalized variant
of clustering coefficient that is not influenced by nodes with
low degree of connections [11]. Networks with a high level of
clustering are often composed of local communities or mod-
ules of densely interconnected nodes where most edges link

nodes within modules and few edges link nodes between
modules. Modularity indicates a decomposability of the sys-
tem into smaller subsystems, e.g., community structure, and is
revealed by partitioning the network into groups of nodes,
with a maximally possible number of within-group links and
a minimally possible number of between-group modular net-
works that are composed of topological modules or commu-
nities [68]. The degree to which the network may be
partitioned into such clearly delineated and nonoverlapping
groups is quantified by a single statistic, the modularity [69].

Measures of global connectivity

Paths are sequences of distinct nodes and edges and in ana-
tomical networks represent potential trajectory of information
flow between pairs of brain regions.

Characteristic path length is a measure of a network inte-
gration and is calculated as the average shortest path length
between all pairs of nodes in the network. In general, each
node can be reached from any other node along a path com-
posed of only a few edges. Short path are likely to be the most
effective for internode communication [11]. The average in-
verse shortest path length is a related measure known as the
global efficiency [10].

Measures of influence and centrality

The degree (strength) is a basic and important measure of a
network. The degree of a node is the number of edges

Fig. 4 4-year healthy boy
structural brain connectome,
explored using graph theory
through the following steps: (1)
step 1: define the network nodes,
with anatomical parcellation of
high-resolution T1WI, (2) step 2:
estimate a continuous measure of
association between nodes with
structural connectivity, obtained
with tractography, and (3) step 3:
generate an association matrix by
compiling all pairwise associa-
tions between nodes. The result of
these three steps is the structural
connectome, a graphical model of
a brain network
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connecting it to the rest of the network. Hubs are important
nodes that are more highly or densely connected to the rest of
the network, facilitate global integrative processes, or play
critical compensatory role when a network is damaged (node
with high degree/betweeness centrality). Various measures of
centrality are based on the idea that central nodes participate in
many short paths within a network and consequently act as
important controls of information flow [70, 71]. Betweeness
centrality is the fraction of all the shortest paths in the network
that pass through the node. A node with high betweeness
centrality can control information flow because it represents

the intersection of many short paths. Centrality measures iden-
tify elements that are highly interconnected or carry a signif-
icant proportion of signal traffic.

Measures of resilience

The distribution of degrees over all nodes in the network can
be described as a degree (probability) distribution. Brain
graphs typically have a broad-scale degree distribution. This
implies that at least a few Bhub^ nodes will have high degree
and interact with large number of other nodes. The mean net-
work degree is most commonly used as a measure of density
or the total Bwiring cost^ of the network [48]. The assortativity
coefficient is a correlation coefficient for the degree of
neighboring nodes. Networks with a positive assortativity
coefficient are therefore likely to have a comparatively
resilient core of mutually interconnected high-degree hubs.
On the other hand, networks with a negative assortativity
coefficient are likely to have widely distributed and con-
sequently vulnerable high-degree hubs [72]. Small
worldness has been originally defined as the combination
of high clustering and short characteristic path length.
Recently, this definition has been modified to the combi-
nation of high global and local efficiency of information
transfer between nodes of a network [73]. A well-designed
anatomical network could therefore reconcile the presence
of functionally specialized (segregated) modules with a
robust number of intermodular (integrated) edges. Small
worldness appears to be a ubiquitous organization of ana-
tomical connectivity [73–75].

Comparison of graphs

When comparing brain graphs and topology measures, it is
important to observe two main rules: the graphs to be com-
pared must have (i) the same number of nodes and (ii) the
same number of edges. This is because the quantitative values
of topological metrics will depend on both the size and con-
nection density of the graphs [4]. Furthermore, building
Bconsensus connectomes^ are necessary when analyzing het-
erogeneous group of subjects with too much interindividual
variation of structural connectivity. The consensus
connectomes have the advantage of being pooled across all
the individuals in the group, which smooths out individual
variation and allows for comparison of graph metrics with
other studies that have reported results for consensus
connectomes [14]. This method has been recently applied in
children with segmental callosal agenesis [19]. In addition to
comparing topological structures of entire graphs, we can
identify subnetworks of graphs that are different between
groups, e.g., network-based statistics (NBS) [76]. NBS has
the ability to detect differences in connectivity between

Table 1 Structural connectome glossary

Network measure Definition

Measures of local connectivity

Clustering coefficient A measure of local segregation or efficiency
measures the density of connections
between the node’s neighbors

Transitivity A normalized variant of clustering
coefficient not influenced by nodes with
low degree

Modularity Decomposability of the system into smaller
subsystems, e.g., community structure

Measures of global connectivity

Characteristic
path length

A measure of network integration is the
average shortest path length between all
pairs of nodes in the network; short
paths are likely to be the most effective for
internode communication

Measures of influence and centrality

Degree Number of edges connecting it to the rest of
the network

Hub Important nodes highly connected to the rest
of the network facilitate global integrative
processes

Betweenness centrality Fraction of all the shortest paths in the
network that pass through the node

Measures of resilience

Degree distribution The distribution of degrees over all nodes in
the network; brain graphs typically have a
broad-scale degree distribution, implying
that at least a few Bhubs^ will have high
degree

Assortativity
coefficient

Measure of resilience and is the correlation
coefficient for the degree of neighboring
nodes; networks with a positive
assortativity coefficient are resilient.
Networks with a negative assortativity are
likely vulnerable

Other

Small worldness The combination of high clustering and short
characteristic path length; also defined as
the combination of high global and
local efficiency of information
transfer between nodes of a network
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Fig. 5 Visualization of the structural connectome and structural
connectivity of a healthy 4-year boy, including (1) circular modules: all
cortical regions depicted as rectangles with size based on degree of a
module, connected by weighted edges; (2) circular degree: all cortical
regions depicted as circles with size according to degree value; (3) graph
visualization: network in nonanatomical space with different communi-
ties, node color represent assigned community; (4) network visualization

with nodes as spheres with different colors and sizes, according to mod-
ularity partitioning and hub, respectively; (5) networks in anatomical
space: different modules are depicted with different colors, this type of
visualization facilitates anatomical interpretation, but less optimal for
dense networks; and (6) whole brain tractography, e.g., structural
connectivity
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groups and may be helpful in identifying alternate wiring or
reorganization of brain networks [13].

The whole picture—visualization of the structural
connectome

The structure of the human brain is easily perceived by
looking at two- or three-dimensional views. However, the
increase interest and popularity in the human connectome
have established a new neuroimaging dimension: the imaging
of networks (Fig. 5). The analysis of the human connectome
collects the connectivity of the human brain from multiple
imaging modalities that are analyzed using graph theoretical
techniques. The dimensionality of human connectivity data is
high and the complex networks require sophisticated visuali-
zation and analysis software [77]. Innovations in data visual-
ization punctuate the landmark advances in human
connectome research since its origins including glyphs for
DWI/DTI and graph-based brain network representations of
structural connectivity data [78]. Connectome mapping has
been a visual tale of increasing complexity, continuously os-
cillating between various priorities of data presentation. The
result in any connectome visualization is a trade-off between
of anatomical fidelity and connectome complexity. These
challenges require balance between complexity and simplicity
and between thoroughness and readability [78]. Finally, inter-
active connectome visualization tools are emerging. A repre-
sentation of structural and functional connectomes using high-
dimensional data followed by dimensionality reduction has
been recently described. A Broad map^ of the human brain
can be visualized using a novel visualization platform that
reconstructs connectomes’ intrinsic geometry, implemented
with virtual reality [79].

Conclusion and future directions

In this review article, we outlined the different steps and the
many challenges that remain in the acquisition, preprocessing,
and analysis of the structural connectome in children. The
measurement of the network topology allows a better under-
standing of the pathogenesis, implication for cognitive and
behavioral functions, and treatment of pediatric brain disor-
ders from a network perspective. Innovative methods of neu-
roimaging data analysis are essential for the structural
connectome. Brain connectomics is becoming a core compo-
nent of several neuroscience research projects. A fundamental
challenge for all connectomics studies is the need for an effi-
cient, robust, reliable, and easy-to-use pipeline to mine large
neuroscience datasets [80]. State-of-the-art algorithms are cur-
rently being developed for mapping and analyzing the
connectome. High performance clusters are being used for

the intensive computation involved in this type of analysis.
Publicly available pipelines that such as MRImages to
Graphs Pipeline will be used to map and analyze the patients’
connectome (M2G http://openconnecto.me/graph-services/).
In conclusion, the human connectome provides an
unparalleled compilation of neural data allowing navigating
the brain and exploring developing brain circuits in a way that
was not possible in the preconnectome era. Functional
disorders including many behavioral and attention disorders
may likely be better explored studying the internal
networking.
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