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Flow diversion: what can clinicians learn from animal models?
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Abstract
Introduction Flow diversion is increasingly used for treating
intracranial aneurysms. This article aims to review the evi-
dence obtained from animal models and summarizes the find-
ings that might be of clinical interest.
Methods From a systematic review of studies published be-
tween 2000 and 2016, we extracted the data on the following
questions: What roles do aneurysm dimension, morphology,
and vascular geometry have on success of flow diversion?
What characteristics of a flow diverter can influence aneurysm
occlusion? What are the risk factors for jailed branch
occlusion?
Results Flow diversion has been shown to be less effective in
occluding large aneurysms with wide or undefined necks, as
compared to smaller aneurysms with narrower necks. Straight
sidewall aneurysms were more likely to occlude after flow
diversion than curved sidewall aneurysms or bifurcation

aneurysms with branches originating from the neck or the
fundus. The main characteristics of devices that may impact
on the success of flow diversion are porosity and pore-density,
but challenging aneurysm models were not better occluded
with devices of lower porosity. Porosity is not uniform when
devices deform to adapt to local in vivo anatomy when de-
ployed. Neointima formation on devices correlates with low
porosity. Branches are rarely occluded when they are jailed,
but persistent branch flow may prevent aneurysm occlusion.
Conclusion Experimental models may help anticipate clinical
results of flow diversion.
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Introduction

Flow diversion is an innovative approach for the treatment of
intracranial aneurysms [1]. A systematic review of animal
experiments on flow diversion performed between 2000 and
2015 has recently been published [2]. Animal models may
serve to anticipate clinical difficulties when using flow
diverters (FDs), explain treatment failures, or generate hypoth-
eses for clinical trials [3, 4]. We aimed to review the evidence
obtained from animal models that could be pertinent to users
of flow diverters when treating clinical aneurysms.

Methods

Search strategy

The systematic review was performed according to the
Cochrane guidelines for systematic reviews [5–7]. Search
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strategies are provided in the Appendix. The interfaces were
PubMed for MEDLINE, Ovid for MEDLINE, EMBASE,
Cochrane, and EBSCO for CINAHL. We also hand-
searched grey literature sources, including System for
Information on Grey Literature in Europe (Open Grey),
National Guideline Clearing House, National Institutes for
Health and Clinical Excellence (NICE), The Grey Literature
Report (NYAM), Google, and Google Scholar.

We included all articles that met the following selection
criteria: (1) an animal study, (2) at least one flow diverter used,
(3) peer-reviewed, (4) original research (review articles, abstracts,
editorials and letters excluded), (5) English or French language.

Data extraction

A case report form (available in Appendix online) was created to
examine the following: (i) Study characteristics: year of publica-
tion, laboratory of origin, funding source (industry, public, or
both); (ii) animal model: species, type of aneurysm(s), aneurysm
dimensions, presence of at least one jailed branch; (iii) flow
diverter characteristics: brand name(s) and dimensions; (iv)
method of treatment: single or multiple FDs and anti-platelet
medications; (v) results: method of angiography, aneurysm oc-
clusion rates, incidence of parent or jailed branch vessel stenosis
or occlusion, length of follow-up, and whether pathology was
performed; (vi) factors potentially influencing aneurysm occlu-
sion (aneurysm dimensions, neck size, persistent branch flow,
angle of incident blood flow, porosity/pore density, neointima
proliferation); and (vii) FD safety (stenosis/occlusion of parent
artery, stenosis/occlusion of jailed branches, hemorrhagic com-
plications, embolic complications).

Three clinically relevant research questions were
predefined: What role do aneurysm dimensions, morphology,
and vascular geometry have on success of flow diversion?
Which flow diverter characteristics can impact aneurysm oc-
clusion? What are the risk factors for jailed branch occlusion?

Two authors (RF and JR) reviewed the methodology of each
article to categorize preclinical evidence according to two levels
inspired by Claude Bernard [8]: Evidence A (or confirmatory
evidence) is evidence supported by the results of a direct exper-
iment, where a predefined factor is manipulated and tested
against appropriate controls, while evidence B (observational
evidence) is obtained through the careful study of relations that
were observed, but not manipulated, in the course of an animal
study. Efficacy of aneurysm occlusion was assessed using the
Kamran classification [9], where a greater score indicated a
better result, according to an ordinal scale.

Results

The initial title search yielded 3762 publications (Fig. 1); 3647
articles were excluded after reviewing abstracts, retaining 115

articles for full-text evaluation; and 100 articles did not meet
selection criteria (53 articles) or were not relevant to the
predefined research questions (47 articles), leaving 15 articles
for evaluation.

The main findings of the review are summarized in
Tables 1 and 2. Aneurysm-related factors are illustrated in
Fig. 2. Neck size was surgically modulated in canine models
[10]. The median angiographic occlusion score of aneurysms
with small necks was better than for aneurysms with a large
neck (level A evidence) [10]. Observations in elastase-
induced rabbit models showed a similar effect of neck size
on the success of flow diversion (level B evidence) [11, 12].

Small aneurysms were more likely to be occluded with
flow diversion than large aneurysms, as suggested by level
B evidence in both canines and rabbits [10, 11].

The median angiographic occlusion score of straight side-
wall aneurysms was better than scores for curved lateral and
bifurcation aneurysms (level A evidence) [13, 14]. There were
no conflicting animal reports. The presence of a circulating
branch arising from the neck or fundus of the aneurysm was
also associated with failure of aneurysm occlusion (level A
evidence) (Fig. 2c) [3, 16, 17].

Device-related factors reported to impact aneurysm occlu-
sion rates in animal models are presented in Fig. 3. Low po-
rosity stenting (flow diversion) could successfully occlude
lateral wall aneurysms that could not be occludedwith a single
or two overlapping high porosity stents (level A evidence)
[17]. Several animal studies have reported a correlation be-
tween porosity (or metallic density) and neointimal coverage
of devices (level B evidence) [14, 17]. However, the same low

Fig. 1 Flow chart of the systematic review
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Table 1 Summary of the main findings of the flow diversion animal experimental literature

Finding Animal Level of evidence Reference

Roles of aneurysm dimensions, morphology, and vascular geometry on flow diversion success
Aneurysms with smaller neck size were
more likely to be occluded

Dog A [10]
Rabbit B [11]
Rabbit B [47]

Aneurysms of smaller size were more
likely to be occluded

Dog B [10]
Rabbit B [11]

Straight sidewall aneurysms were more
likely to be occluded than curved sidewall
or endwall bifurcation aneurysms

Dog A [13]
Dog A [14]
Dog A [15]

The presence of a jailed branch arising from
the neck or the aneurysm was associated
with failure

Dog A [3]
Dog A [16]
Dog A [17]

Influence of flow diverter characteristics on aneurysm occlusion
Decreasing porosity improves aneurysm occlusion Dog A [17]
Increasing pore density improved aneurysm occlusion Rabbit A [18]
Axial compaction of flow diverters improved aneurysm occlusion Dog A [4]
Proper sizing of the flow diverter improved
aneurysm occlusion

Dog B [19]
Rabbit B [12]

Risk factors for jailed branch occlusion
Jailed branches with an anastomotic circulation are more readily occluded than similarly jailed terminal branches Swine A [22]

Swine A [21]
Neointimal coverage of jailed branch ostia is more complete with undersized compared to oversized FDs Swine A [20]

Table 2 Angiographic (near)-complete occlusion rates reported in animal works with various aneurysm morphologies and dimensions

Reference Animal Level of
evidence

Mean neck size Successful occlusiona at
3 months

Median Kamran score at
3 months

Influence of neck size on flow diversion success—canine studies
[10] Dog A Small neck group (n = 6): 8 ± 1 mm 0/6 2

Large neck group (n = 6): 13 ± 2 mm 0/6 0
Influence of neck size on flow diversion success—rabbit studies
Reference Animal Level of

evidence
Mean neck surface Aneurysm occlusion rate

[11] Rabbit B Fast-occlusion group (n = 9):0.144 ± 0.078 mm2 9/9 (near-)completely occluded ≤4 weeks
Slow-occlusion group (n = 6): 0.365 ± 0.082 mm2 6/6 incompletely occluded at 8 weeks

Influence of Aneurysm size on flow diversion success—canine studies
Reference Animal Level of

evidence
Mean aneurysm volume at 3 months Successful occlusiona at

3 months
Median Kamran score at

3 months
[10] Dog B Small neck group (n = 6): 2500 ± 24,684 mm3 0/6 2

Large neck group (n = 6): 16,915 ± 5724 mm3 0/6 0
Influence of Aneurysm size on flow diversion success—rabbit studies
Reference Animal Level of

evidence
Mean aneurysm volume Aneurysm occlusion rate

[11] Rabbit B Fast-occlusion group (n = 9): 0.205 ± 0.238 mm3 9/9 (near-)completely occluded ≤4 weeks
Slow-occlusion group (n = 6): 0.723 ± 0.495 mm3 6/6 incompletely occluded at 8 weeks

Influence of Aneurysm morphology on success of flow diversion—canines
Reference Animal Level of

evidence
Aneurysm type Successful occlusiona at

3 months
Median Kamran score at

3 months
[13] Dog A Straight sidewall (n = 5) 3/5 4

Curved sidewall (n = 4) 0/4 0
Endwall bifurcation (n = 11) 1/11 0

[17] Dog A Straight sidewall (n = 5) 3/5 4
Straight sidewall with a branch arising from the

fundus (n = 2)
0/2 0

[14] Dog A Bifurcation aneurysms (n = 20) 0/20 0
[15] Dog A Curved sidewall (n = 5) 1/5 1

Endwall bifurcation (n = 12) 1/12 0.5
[3] Dog A Patent branch arising from the neck (n = 6) 0/6 0

Occluded branch arising from the neck (n = 5) 2/5 2

a Defined by a (near-)complete occlusion in the original article
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porosity devices capable of occluding lateral wall aneurysms
were unsuccessful in challenging curved sidewall and bifurca-
tion aneurysms, and using devices of lower porosity, higher pore
density, or overlapping multiple devices still failed to occlude
the same challenging aneurysms (level of evidence A) [15].

One study using the rabbit-elastase model compared de-
vices of various porosities and pore densities and found that,

at equal porosities, higher aneurysm occlusion rates were ob-
tained with the device with the greatest pore density (level of
evidence A) [18].

Deployment technique was also found to influence local
porosities and angiographic results: experimental aneurysms
treated with axially compacted devices were more likely to
become occluded than aneurysms treated with FDs that were
simply unsheathed across the aneurysm neck (level of evi-
dence A) [4].

Proper sizing of the FD to the diameter of the recipient
vessel was shown in several retrospective animal observations
to correlate with better occlusion rates (level of evidence B)
[12, 14, 19].

Factors found to favor the occlusion of jailed branches are
presented in Table 1. These include an increased amount of
metallic coverage from device struts as well as neointimal
coverage of the ostium (level B) [20]. Recent studies in swine
have suggested that branches with an anastomotic circulation
may be more readily occluded than similarly jailed terminal
branches (level of evidence A) [21, 22].

Pathologically, residual aneurysms are reproducibly asso-
ciated with persistent leaks lined with neointima, connecting
the arterial with the aneurysmal lumen (level of evidence B)
[13, 16, 17].

Discussion

Animal studies have provided evidence that flow diversion
may be less effective in occluding large aneurysms with wide
or undefined necks, as compared to smaller aneurysms with
narrow necks. Straight sidewall aneurysms were more likely
to become occluded after flow diversion than curved sidewall
or bifurcation aneurysms. Branches originating from the neck
or the fundus remain patent and may prevent aneurysm occlu-
sion. Porosity and pore density are important, but challenging
aneurysms are difficult to occlude despite the use of very low
porosity or telescoping devices. Metallic density may not be
uniform as devices adapt to local in vivo conditions.

These laboratory findings have a number of clinical
implications. Flow diverters were initially approved for
the treatment of unruptured cavernous and ophthalmic
carotid aneurysms >10 mm [23]. This makes intuitive
sense since large, wide-necked aneurysms are more like-
ly to recur after coiling [24]. Systematic reviews have
shown occlusion rates in the range of 75% [1, 25, 26],
but these results reflect the frequent use of flow diver-
sion in large aneurysms. The use of flow diversion has
been extended beyond initial indications, with many
clinical reports detailing use of flow diversion of small
[27], bifurcation [28, 29], and even ruptured aneurysms
[30]. Animal studies suggest that flow diversion may be
particularly effective in small aneurysms with well-

Fig. 2 Aneurysm-related factors influencing results of flow diversion. a
Aneurysms of smaller neck size (a) were more likely to be occluded with
flow diversion than aneurysms with a wide neck (b). b Aneurysms in a
straight lateral wall configuration (a) were more likely to be occluded
with flow diversion than curved lateral wall (b) or bifurcation
aneurysms (c). c The presence of a jailed branch arising from the neck
or the aneurysm was also associated with failures

Fig. 3 Device-related factors influencing flow diversion. Compared to
experimental aneurysms treated with FDs that were simply unsheathed
across the aneurysm neck (a), aneurysms treated with axially compacted
devices (b) were more likely to become occluded
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defined necks. Since coiling is not only safe but also
quite effective in such aneurysms, a large-scale random-
ized trial is necessary to properly identify which option
is best [31].

A survey of expert opinions has previously shown that flow
diversion is more readily used in lateral wall than in bifurca-
tion aneurysms [32]. Various teams have published conflicting
clinical results in bifurcation aneurysms. While some authors
report satisfactory safety and efficacy rates in middle cerebral
artery bifurcation aneurysms [33], others are in line with ani-
mal studies, and are more pessimistic [28]. Animal findings
regarding poor results in aneurysms with a branch originating
from the aneurysm neck are also consistent with poor results
in clinical aneurysms associated with a fetal-type posterior
communicating artery [34, 35].

There has been a growing interest in better understanding,
through benchtop or CFD studies, the deployment techniques,
local anatomy, and typical deformations of flow diverters,
which were first identified in animal models [19, 36, 37].
Problems concerning the more porous Btransition zone,^ and
fish mouthing of device extremities, have been evoked to
explain clinical complications [38, 39]. Whether clinicians
should modify their technique, for example, by using
telescoping devices when confronted with the transition zone
problem, remains uncertain [40, 41].

Animal models are efficient methods to explore the use
of innovative devices prior to clinical applications. They
can permit the intentional manipulation of one variable
while keeping all others constant in order to study the
effects of that variable on an outcome of interest, such
as efficacy. If animal models have helped us better under-
stand factors involved in the success or failure of flow
diversion in various aneurysm configurations, they have,
in general, been poorly predictive of clinical complica-
tions. Several authors have published clinical concerns
regarding jailed branch occlusion in patients [1, 42], but
branch occlusions have rarely been documented in animal
studies [2]. One exception may be the report of Iosif et al.
studying the relationship between the type of collateral
circulation and the fate of jailed branches; they were ca-
pable of reproducing results consistent with clinical series
[21, 22].

Other rare but grave clinical complications of flow diver-
sion, such as the rupture of unruptured aneurysms and the
occurrence of parenchymal hematomas, have not been antic-
ipated by animal studies [1, 43–46].

We have categorized evidence from animal studies ac-
cording to two levels inspired from the work of Claude
Bernard, often considered the father of modern experi-
mental medicine. BIn a word, I consider hospitals only
as the entrance to scientific medicine; they are the first
field of observation which a physician enters; but the true
sanctuary of medical science is a laboratory…. In leaving

the hospital, a physician… must go into his laboratory^
[8]. Bernard emphasized experimentation, which he fa-
vored over observation: B…we give the name observer
to a man who applies methods of investigation… to the
study of phenomena which he does not vary and which he
therefore gathers as nature offers them. We give the name
experimenter to the man who applies methods of investi-
gation… so as to make natural phenomena vary… and to
make them present themselves in circumstances or condi-
tions in which nature does not show them.^ The distinc-
tion between observational and experimental evidence is
reminiscent of the clinical research distinction between
observational studies and clinical trials. If we are sympa-
thetic to Bernard’s emphasis on preclinical experimenta-
tion, we do not share the disdain for clinical research that
many authors attribute to him [8]. We must, however,
remember that he lived before the development of clinical
trial methodology. Thus, if important principles pertinent
to flow diversion can be tested in the animal laboratory,
translation of findings into clinical decisions is always
problematic and must, at least in principle, be preceded
by proper clinical trials whenever possible.

Conclusion

Factors that may impact aneurysm outcomes after flow diver-
sion can be identified and intentionally manipulated using
experiments in animal models. Insights obtained in animals
may influence clinical decisions, but extrapolation of labora-
tory findings to clinical decisions must always be cautious.
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