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Abstract
Introduction Solitary brain metastasis (MET) and glioblasto-
ma multiforme (GBM) can appear similar on conventional
MRI. The purpose of this study was to identify magnetic res-
onance (MR) perfusion and diffusion-weighted biomarkers
that can differentiate MET from GBM.
Methods In this retrospective study, patients were included if
they met the following criteria: underwent resection of a sol-
itary enhancing brain tumor and had preoperative 3.0 T MRI
encompassing diffusion tensor imaging (DTI), dynamic
contrast-enhanced (DCE), and dynamic susceptibility contrast
(DSC) perfusion. Using co-registered images, voxel-based
fractional anisotropy (FA), mean diffusivity (MD), Ktrans,
and relative cerebral blood volume (rCBV) values were ob-
tained in the enhancing tumor and non-enhancing peritumoral
T2 hyperintense region (NET2). Data were analyzed by logis-
tic regression and analysis of variance. Receiver operating
characteristic (ROC) analysis was performed to determine
the optimal parameter/s and threshold for predicting of
GBM vs. MET.
Results Twenty-three patients (14 M, age 32–78 years old)
met our inclusion criteria. Pathology revealed 13 GBMs and
10 METs. In the enhancing tumor, rCBV, Ktrans, and FAwere
higher in GBM, whereas MD was lower, neither without sta-
tistical significance. In the NET2, rCBV was significantly

higher (p=0.05) in GBM, but MD was significantly lower
(p<0.01) in GBM. FA and Ktrans were higher in GBM, though
not reaching significance. The best discriminative power was
obtained in NET2 from a combination of rCBV, FA, and MD,
resulting in an area under the curve (AUC) of 0.98.
Conclusion The combination of MR diffusion and perfusion
matrices in NET2 can help differentiate GBM over solitary
METwith diagnostic accuracy of 98 %.

Keywords Glioblastomamultiforme . Intracranial
metastasis . Dynamic contrast enhancement . Dynamic
susceptibility contrast . Diffusion tensor imaging

Introduction

Glioblastoma multiforme (GBM) comprises about 40–50 %
of all primary malignant brain tumors in adults [1], and brain
metastases occur in 10–30 % of adults, with approximately
50 % seemingly solitary at diagnosis [2]. History of a primary
malignancy, multiplicity of lesions, location at the gray-white
junction, and non-infiltrating appearance are characteristics
traditionally utilized to help differentiate metastasis (MET)
from GBM. Nonetheless, primary brain malignancies can
present in patients with systemic cancer and solitary intracra-
nial brain MET can be the first manifestation of extracranial
malignancy. Brain MET and GBM can appear similar on
conventional MRI, and therefore, reliable imaging differen-
tiation between MET and GBM can be important for medical
staging, surgical planning, and therapeutic decision making
[3–5].

Acknowledging its importance, many investigators have
used morphological features and advanced MRI techniques
such as magnetic resonance (MR) diffusion and perfusion to
differentiate GBM from MET. Feature extraction and

* Adam Herman Bauer
adam.herman.bauer@gmail.com

1 Department of Medical Imaging, Cedars-Sinai Medical Center, 8700
Beverly Blvd., Taper Bldg., Suite M335, Los Angeles, CA 90048,
USA

2 Department of Medical Imaging, University of Arizona Medical
Center, Tucson, AZ, USA

Neuroradiology (2015) 57:697–703
DOI 10.1007/s00234-015-1524-6



segmentation algorithms have been demonstrated as favorable
techniques to distinguish GBM from MET [6, 7]. Diffusion
tensor imaging (DTI) has been applied for differentiating
GBM fromMETwith mixed results [8–12]. Recent data from
Wang et al. have shown DTI to be a very promising imaging
tool to differentiate GBM from MET [8, 9]. Other investiga-
tors have used MR perfusion to differentiate solitary MET
from GBM either by taking advantage of the existing differ-
ences in hemodynamic curve analysis and utilizing the param-
eters of peak height and percentage signal recovery [4] or by
using dynamic susceptibility contrast (DSC)-derived relative
cerebral blood volume (rCBV) to exploit the differences in
tumor vascularity and angiogenesis between the two [13,
14]. More recently, researchers have investigated the differ-
ences between GBM and MET utilizing a combination of
these techniques [15, 16].

The purpose of this study was to use a combination of MR
diffusion (DTI-fractional anisotropy (FA) and mean diffusiv-
ity (MD)) and MR perfusion (DSC-relative cerebral blood
volume (rCBV) and dynamic contrast-enhanced (DCE)-
Ktrans) parameters to create a predictive multiparametric imag-
ing approach that can be used to differentiate MET from HG
in patients with solitary enhancing brain mass.

Methods

Patients

This retrospective single-institutional study was conducted be-
tween 24 June 2013 and 10 June 2014. All examinations were
performed in accordance with institutional review board guide-
lines with an approved study protocol. Inclusion criteria were as
follows: (1) patients with single solitary enhancing brain mass
with clinical question of MET vs. GBM; (2) pretreatment ac-
quisition of 3.0 T MRI brain tumor protocol including DSC,
DCE, and DTI; and (3) confirmed surgical pathology.

Image acquisition

All patients underwent MRI on a 3.0 T Siemens Skyra MRI
system (Siemens; Erlangen, Germany). The imaging protocol
included transverse T1WI (TR/TE/FA 600/82 ms/180°),
T2WI (TR/TE/FA 7000/100 ms/180°), FLAIR (TR/TE/TI
9000/81/2500 ms), gradient recalled echo (TR/TE/FA 870/
20 ms/20°), DTI, DCE, and DSC perfusion imaging.

DTI was acquired using single-shot spin-echo EPI (TR/TE,
5500/82 ms; FOV 22 cm×22 cm; matrix 128 mm; slices 40×
3 mm, voxel size 1.5×1.5×3 mm). Diffusion gradients were
applied along 20 noncollinear directions with a b value of
1000 s/mm2 resulting in a 6-min acquisition time. A general-
ized partial parallel acquisition (GRAPPA) [17] technique
with acceleration factor of 3 was used.

The DCE perfusion was accomplished by using a 3D radial
volumetric interpolated examination (VIBE) sequence (TR/
TE (ms) 3.6/1.7, FA 12o, voxel size 1.4×1.4×3 mm). A total
of 328 radial views were acquired in eight rotations (42 views/
rotation) with Bstack-of-stars^ scheme: i.e., normal sampling
in the z-direction and radial sampling in the xy-plane. Three
measurements were obtained each divided into eight sub-
frames by applying K-space weighted image contrast echo-
sharing [18], resulting in 3-min acquisition time with a 4-s
temporal resolution. Varying flip angle methodology with flip
angles of 2°, 5°, 9°, and 15° was implemented for the gener-
ation of T1 maps [19].

DSC perfusion was performed using a single-shot gradient-
echo EPI sequence with the following parameters: TR/TE
1450/22 ms, FA=90o, FOV 22 cm×22 cm, matrix 128×
128 mm, 30×4 mm slices, GRAPPA=3, and 60 dynamic
frames.

A total volume of 0.15 mmol/kg of Gd-DTPAwas used to
accomplish both DCE and DSC perfusion imaging. First,
40 % of contrast volume was injected at 5 cc/s for DCE im-
aging. This injection was considered as a preload to rectify
leakage correction for subsequent DSC imaging [20]. There
was an 8-min interval gap between DCE and DSC in which
axial T2 and T1 postcontrast images were obtained.
Subsequently, the remaining 60 % of contrast solution was
injected at 5 ml/s for the DSC perfusion scan. All injections
were performed using an electronic power injector via 18-
gauge antecubital venous access. Each contrast injection was
flushed with 20 ml of normal saline.

Image analysis

MR perfusion and DTI studies were processed using commer-
cially available FDA-approved software (Olea Sphere, Olea
Medical SAS, La Ciotat, France). The arterial input function
was selected automatically and multiparametric perfusion
maps were calculated using an extended toft model [21] for
DCE and block-circulant singular value decomposition tech-
nique [22] for DSC. The rCBVand Ktrans maps derived from
DSC and DCE perfusion datasets, respectively, were then
exported from the software for subsequent analysis. DTI anal-
ysis was also performed by the Olea DTI package where FA
and mean diffusivity (MD) maps were calculated using stan-
dard methods [23].

The FLAIR and T1W1-postcontrast images, CBV, Ktrans,
MD, and FA maps for each patient were coregistered by the
OleaSphere software using a 6-degree of freedom transforma-
tion and a mutual information cost function. This was follow-
ed by visual inspection to ensure adequate alignment.

Then, regions of interest were drawn manually on enhanc-
ing tumor and NET2 using coregistered images. The NET2
was defined as the T2 hyperintense region on FLAIR images
within 2 cm around the enhancing tumor. Depending on the
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size of the tumor, this was performed on two to three
slices for each patient with average region of interest
volumes of 1656 (±1202) and 2103 (±1445) mm3 for enhanc-
ing and NET2 regions, respectively. rCBV,Ktrans, FA, andMD
values for each voxel in the enhancing tumor and NET2
were calculated and exported into an excel spreadsheet for
statistical analysis.

Statistical analysis

Univariate analysis of variance was performed for rCBV, FA,
MD, and Ktrans between GBM and MET in the enhancing and
NET2 regions. Multivariate ANOVAwas then performed for
each parameter to assess overall differences between regions
(enhancing tumor and NET2) in addition to GBM and MET.
P<0.05 was considered to indicate a statistically significant
difference. Receiver operating characteristic (ROC) analysis
was performed to determine the optimal parameter(s) (rCBV,
Ktrans, FA, MD) in distinguishing MET from GBM in both
enhancing tumor and NET2. Optimal thresholds were calcu-
lated for each ROC curve to maximize both sensitivity and
specificity employing the Youden statistic. Subsequently, a
combined ROC curve for combination of parameters was cal-
culated extrapolating from the maximum likelihood estima-
tion model of combining classifiers [24]. Area under the curve
was calculated for each individual classifier’s ROC curve as
well as for the combined ROC curves.

Results

Twenty-three patients (14 M, 9 F, age 32–78 years old) met
our inclusion criteria. Thirteen patients had histologically con-
firmed GBM. Ten patients had surgically proven brain MET:
non-small cell lung adenocarcinoma (n=4), colon adenocar-
cinoma (n=1), breast adenocarcinoma (n=2), melanoma (n=
1), ovarian serous adenocarcinoma (n=1), and neuroendo-
crine tumor (n=1).

The quantitative values including mean±SD and corre-
sponding statistical analysis of rCBV, FA, MD, and Ktrans in
the enhancing tumor and NET2 for both GBM and MET are

summarized in Table 1. Figure 1 shows an example of our
multiparametric MRI in a patient with GBM.

For enhancing regions, the rCBV, Ktrans, and FA were
higher in GBM, whereas MD was lower in GBM, neither
demonstrating statistical significance (Table 1). For NET2 re-
gions, the rCBV was significantly (p=0.05) higher in GBM,
while MD was significantly (p<0.01) lower in GBM
(Table 1). Multivariate analysis resulted in statistically signif-
icant differences in means (p<0.05) between the enhancing
and NET2 regions for rCBV, FA, MD, and Ktrans. ROC curve
analysis results are exhibited in Fig. 2. For each parameter,
area under the curve (AUC) and threshold values with their
associated sensitivity and specificity are listed in Table 2.

For the enhancing tumor, the discriminative power of our
individual imaging biomarkers was highest for FA with an
AUC of 0.87. The best diagnostic accuracy in the enhancing
tumor was obtained by combining rCBVand FAwith resultant
AUC of 0.94 compared to either parameter alone (0.68 and
0.87). In the enhancing tumor, using rCBV>1.96 and FA>
0.13, GBM could be differentiated fromMETwith sensitivity
and specificity of 88 and 85 %. For the NET2, the discrimi-
native power of our individual imaging biomarkers was com-
parable with the highest AUC of 0.83 for MD. The best dis-
criminative power in NET2 was achieved by combination of
rCBV, FA, and MD with an AUC of 0.98. In the NET2, using
rCBV>3.14, FA>0.22, and MD<143×10−6 mm2 s−1, GBM
could be differentiated from MET with sensitivity and speci-
ficity of 90 and 100 %.

Subanalysis of metastatic lesions showed no significant
difference in rCBV, Ktrans, FA, or MD between the four cases
of adenocarcinoma and the remaining metastases in both the
enhancing tumor and NET2.

Discussion

Our study showed that there are differences in MR perfusion
and diffusion biomarkers between METand GBM that can be
exploited to differentiate solitary MET from GBM. The ROC
analysis indicated that the best overall model to distinguish
GBM from MET is a combination of rCBV, FA, and ADC in

Table 1 Multivariate analysis for the differentiation of GBM and MET using mean rCBV, FA, MD, and Ktrans in enhancing and NET2 regions

Parameter Region Glioma (mean) SD Mets (mean) SD p value ANOVA p value

rCBV Enhancing tumor 3.87 1.17 2.55 1.20 0.10 0.01
NET2 1.71 1.21 0.94 1.25 0.05

FA Enhancing tumor 0.23 0.04 0.11 0.05 0.09 0.02
NET2 0.27 0.05 0.16 0.05 0.10

MD (×10−6 mm2 s−1) Enhancing tumor 119.07 10.28 133.28 12.05 0.38 0.02
NET2 110.49 6.84 145.13 8.03 0.004

Ktrans (min−1) Enhancing tumor 0.43 0.14 0.18 0.16 0.26 0.21
NET2 0.10 0.04 0.06 0.05 0.57
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NET2 with an AUC of 0.98 superior to any individual or
combination of other classifiers. In the enhancing regions of
tumor, the best discriminative power was achieved by using
rCBVand FAwith resultant AUC of 0.94.

In distinguishing GBM from solitary MET using the de-
scribed imaging model, special attention should be given to
NET2 rather than enhancing tumor. The enhancing area of
both GBM andMET is heterogeneous often with architectural
distortion, necrosis, hemorrhage, and vascular proliferation,
all of which can distort the normal parenchymal
microarchitecture including white matter tracts, capillary
bed, and extracellular matrix [25, 26]. Conversely, the NET2

is more homogeneous where the absence of necrosis and hem-
orrhage preserves the microenvironmental structure. Our re-
sults reflect this histological contradistinction. We highlight
two primary findings:

DSC-rCBV

We observed significantly higher rCBV values in GBM com-
pared to those in MET in the NET2 and elevation of rCBV in
the enhancing region in GBM concordant with prior reports in
the literature [4, 13, 14]. Our results showed a moderate dis-
criminative power for rCBV in differentiation of MET from

Fig. 1 Pretreatment contrast-enhanced T1 (a), FLAIR (b), DSC-rCBV (c),
DCE-Ktrans (d), MD (e), and FA (f) maps in a 74-year-old woman
subsequently diagnosed as having GBM. Upper row: in the enhancing
region, there is significant increase in rCBV (6.9) and Ktrans (0.22 min−1).
The values of MD and FA are 915×10−6 mm2 s−1 and 0.25, respectively.

Example regions of interest are provided for this slice around the enhancing
and NET2 components. Lower row: in NET2, there is also significant
increase in rCBV (3.2) but normal Ktrans (0.04 min−1). The mean values
of diffusion parameters are lower in NET2 in comparison to enhancing
tumor with 715×10−6 mm2 s−1 and 0.12 for MD and FA, respectively

Fig. 2 ROC analysis with AUC for each imaging biomarker and best combined AUC for enhancing (a) and NET2 (b)
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GBM with AUC of 0.68 and 0.74 for enhancing and NET2,
respectively. As shown by others [27, 28], our results suggest
that rCBValonemay be less than ideal for differentiatingMET
from GBM, particularly in the enhancing region in which we
found lower AUC, and less sensitivity/specificity to differenti-
ate MET from GBM. This may be explained by the fact that
angiogenesis, although a feature of GBM [25], is also present
in many hematogenous brain metastases. rCBVas a biomarker
of increased angiogenesis should therefore be interpreted with
caution in differentiating MET from GBM, particularly within
enhancing tumor. On the other hand, improved performance of
rCBV in NET2 compared to within enhancing tumor as shown

in our study and others [4, 13, 14] likely relies on the
discongruity of tissue composition between MET and GBM,
where neoangiogenesis and increased neoplastic cellularity are
widespread within GBM-NET2 while vasogenic edema dom-
inates the MET-NET2 [26].

DTI

As shown in several prior reports [9, 29], we found higher FA
and lower MD in both enhancing and NET2 of GBM com-
pared to those of MET. Our results in particular showed that
while FA has better discriminatory power in the enhancing

Fig. 3 ROC analysis with AUC
for combinations of imaging
biomarkers in the NET2

Table 2 ROC analysis of different imaging biomarkers in enhancing and NET2 regions between GBM and MET

Region Classifier Threshold values Sensitivity (%) Specificity (%) Area under the curve

Enhancing tumor rCBV 3.75 70 62 0.68

FA 0.12 88 80 0.87

MD 143×10−6 mm2 s−1 63 55 0.57

Ktrans 0.3 min−1 60 69 0.68

rCBV+FA 1.96/0.13 88 85 0.94

NET2 rCBV 1.56 80 69 0.74

FA 0.2 75 90 0.82

MD 132×10−6 mm2 s−1 75 82 0.83

Ktrans 0.034 min−1 70 69 0.59

rCBV+FA+MD 3.14, 0.22, 143×10−6 mm2 s−1 90 100 0.98

rCBV+FA 3.14, 0.20 83 90 0.93

rCBV+MD 2.2, 143.3×10−6 mm2 s−1 81 92 0.93

FA+MD 0.2, 143.3×10−6 mm2 s−1 91 90 0.96
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tumor, MD has better diagnostic accuracy in NET2 compared
to enhancing region concordant with other reports [30].
Within the enhancing region, higher FA and lower MD in
GBM compared to those of MET resulted in AUC of 0.87
and 0.57, respectively. The diagnostic performance was com-
parable in NET2, where higher FA and lower MD in GBM
resulted in AUC of 0.82 and 0.83, respectively.

Changes in diffusion biomarkers are explained by underly-
ing brain microstructure and histology [31]. Lower MD, an
indication of higher cellularity, and higher FA, an indication of
increased anisotropy along the WM tracts and structured ori-
entation, can be seen in GBM [9, 32].

Although there is agreement on the beneficial role of MR
diffusion for differentiation of MET vs. GBM, there are dis-
crepant reports as to which region of the tumor these bio-
markers should be applied and how to define those regions.
Our results showed better discriminative power in NET2 for
MD and the combination of FA and MD as suggested by a
prior report [30, 33]. There are however reports of heteroge-
neity of diffusion data in NET2 [34] or even better diagnostic
performance in enhancing tumor [9, 29]. Along these lines,
FA individually performed better within the enhancing tumor.
The discrepancies between these studies including FA and
MD values may be not only due to differences in the under-
lying histology of tumor but also secondary to varying degrees
of tumor heterogeneity in the enhancing region due to necro-
sis, calcification, and hemorrhage.

The finding that Ktrans was essentially noncontributory was
unexpected. While DSC measures the angiogenesis and vas-
cular proliferation, Ktrans provides a measure of microvascular
permeability. In the heterogeneous and complex microenvi-
ronment of the tumor bed [35], Ktrans depends not only on
vascular permeability but also on a combination of blood flow,
vascular surface area, and hydrostatic and osmotic pressures
[36]. Though not significant, our finding of increased Ktrans in
the enhancing portion of tumor regardless of being MET or
GBM is an expected observation, since contrast enhancement
indicates BBB breakdown and, hence, increase in permeabil-
ity. Because Ktrans is the product of vascular permeability and
vascular surface area [37], one expects higher Ktrans values in
the enhancing region of GBM thanKtrans values in the enhanc-
ing region ofMET due to increased vascular surface area, as is
shown in our results. The ROC analysis showed only modest
discriminative power to differentiate MET from GBM with
AUC of 0.68 and 0.59 for enhancing and NET2, respectively.

The combination of multiple parameters allows for in-
creased diagnostic accuracy that is further improved with addi-
tional classifiers. This is analogous to the imaging diagnosis of
meningioma. Alone, an enhancing mass is nonspecific.
However, with an additional qualifier of dural-based, the prob-
ability of meningioma is increased. Furthermore, additional
characteristics of homogeneous enhancement, the presence of
a dural tail, and internal restricted diffusion dramatically

increase the probability that the enhancing mass is a meningi-
oma. In a similar manner, the additional diagnostic information
provided by each parameter can be combined to yield improved
diagnostic performance. Our imaging approach allows for the
quantification of this process, as demonstrated in the ROC
curves of combinations of parameters within the NET2
(Fig. 3). A combination of two parameters (Fig. 3) results in
diagnostic accuracy superior to a single parameter alone
(Fig. 2), and a combination of three parameters gives additional
diagnostic power. When utilizing the ROC of a combination of
three parameters, there exists the possibility of disagreement
between thresholds. In these cases of false positive (or false
negative) values, the two-parameter ROC curves can be refer-
enced to evaluate conflicting values.

Our study has several limitations. First, our small sample
size is too small which limits the conclusion. The results of
this study need to be confirmed in a larger clinical cohort.
Second, the retrospective nature of the study can introduce
unknown bias. For the same reason, we were unable to spa-
tially match histology with our imaging biomarkers within a
specific ROI. Third, we only included the two most common
solitary enhancing lesions in our practice and did not include
other possible solitary lesions such as cerebral abscesses or
lymphoma.We thought that mixing other lesions could further
dilute the statistical analysis of our study. Lastly, the hetero-
geneity of the metastatic origin in our study warrants consid-
eration. Differing microvascular environments from various
origins may inadvertently lead to increased variability in our
results. Future studies with larger sample size and prospective
approaches to enable direct correlation of imaging with histo-
logic observations are warranted to further investigate the di-
agnostic potential of the presented imaging approach.

Conclusion

There is a significant difference inDTI (MD) andMRperfusion
(rCBV) matrices between MET and GBM with better diagnos-
tic performance in the NET2 than in the enhancing region.
Using our multiparametric MRI, the best overall model to dis-
tinguish GBM fromMETconsisted of a combination of rCBV,
FA, and ADC within the NET2 yielding an AUC of 0.98,
superior to any individual or combination of other classifiers.
The results of this study should be confirmed in a larger cohort.
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