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Abstract
Introduction Altered thalamocortical development is hypoth-
esized to be a key substrate underlying neurodevelopmental
disabilities in preterm infants. However, the pathogenesis of
this abnormality is not well-understood. We combined mag-
netic resonance spectroscopy of the parietal white matter and
morphometric analyses of the thalamus to investigate the as-
sociation between white matter metabolism and thalamic vol-
ume and tested the hypothesis that thalamic volume would be
associated with diminished N-acetyl-aspartate (NAA), a mea-
sure of neuronal/axonal maturation, independent of whitemat-
ter injury.
Methods Data from 106 preterm infants (mean gestational age
at birth: 31.0 weeks±4.3; range 23–36 weeks) who underwent
MR examinations under clinical indications were included in
this study.

Results Linear regression analyses demonstrated a significant
association between parietal white matter NAA concentration
and thalamic volume. This effect was above and beyond the
effect of white matter injury and age at MRI and remained
significant even when preterm infants with punctate white
matter lesions (pWMLs) were excluded from the analysis.
Furthermore, choline, and among the preterm infants without
pWMLs, lactate concentrations were also associated with tha-
lamic volume. Of note, the associations between NAA and
choline concentration and thalamic volume remained signifi-
cant even when the sample was restricted to neonates who
were term-equivalent age or older.
Conclusion These observations provide convergent evidence
of a neuroimaging phenotype characterized by widespread
abnormal thalamocortical development and suggest that the
pathogenesis may involve impaired axonal maturation.

Keywords N-acetyl-aspartate . Oligodendrocyte . Preterm
birth . Thalamus . Neonate

Worldwide, 10 % of all live births are preterm [1]. Advances
in neonatal intensive care during the preceding decades have
dramatically increased survival; however, as many as 50 % of
survivors continue to display cognitive-behavioral deficits and
learning impairments in childhood [2, 3]. The neural substrate
underlying these impairments is not well-understood, but the
timing of vital developmental processes and the available neu-
ropathological and neuroimaging data all suggest that disrup-
tion of the thalamocortical system is a key component [4, 5].

Thalamocortical connections are established during the late
second and third trimester of fetal brain development [5, 6].
Quantitative MRI studies have shown that thalamic volume is
reduced in preterm infants relative to their term counterparts at
term-equivalent age [7–10] and predictive of later
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neurocognitive functioning [11]. The reduction in thalamic
volume is more pronounced in infants with overt signs of
white matter injury [7, 8]. Still, even in the absence of severe
white matter injury, thalamic volumes remain smaller in pre-
term infants [8] and associated with altered thalamocortical
connectivity [12].

Neuropathological examinations of preterm infants
have demonstrated frank neuronal loss in the thalamus
of infants with periventricular leukomalacia (PVL) [13,
14]. However, in contrast to the neuroimaging results,
the incidence in thalamic pathology is markedly reduced
in infants without PVL (19 %; 3/16 cases) compared to
infants with PVL (59 %; 13/22 cases) and not associated
with decreased neuronal density in the thalamus [13, 14].
This apparent contradiction between the neuroimaging re-
sults and the neuropathological data raises the question
about the underlying neuroanatomical substrate for the
observed alteration in thalamocortical connectivity: that
is, if not frank neuronal loss, what accounts for the dimin-
ished thalamocortical connectivity in preterm infants
without overt white matter injury?

Magnetic resonance spectroscopy (MRS) affords the
unique opportunity to investigate cellular-molecular aspects
of tissue function in vivo, providing, for example, biomarkers
of axonal maturation, membrane synthesis, and energymetab-
olism. In this study, we focused our investigation first on N-
acetyl-aspartate (NAA) in the parietal white matter. NAA is
synthesized in the mitochondria of mature neurons and axons
[15–19], and prior studies have demonstrated rapid increases
in NAA concentration during the perinatal period coincident
with neuronal/axonal maturation [20–22]. Other studies have
demonstrated decreases in NAA concentration in the setting
of preterm white matter injury [23], traumatic brain injury
[24], stroke [25], and other hypoxic-ischemic brain injuries
[26], signifying diminished neuronal/axonal integrity. Given
the neuroimaging and neuropathological evidence cited
above, we expected associations among overt white matter
injury, white matter NAA, and thalamic volume—i.e., that
white matter injury would result in widespread axonopathy
and concomitant neuronal loss in the thalamus. Yet, because
of the mounting evidence from neuroimaging studies suggest-
ing that thalamocortical development is altered, even in the
absence of white matter injury, we also predicted that thalamic
volume would be associated with white matter NAA, inde-
pendent of white matter injury, potentially indicating impaired
axonal development or reduced connectivity to and from the
thalamus.

Finally, in order to determine whether there was con-
vergent evidence of impaired axonal maturation or evi-
dence of other pathogenic mechanisms, we conducted ex-
ploratory analyses—comparing putative markers of
markers of energy metabolism (creatine, lactate) [27],
excitotoxicity (glutamate, glutamine) [23, 28, 29],

membrane synthesis (choline) [27, 30, 31], and
astrogliosis (myo-inositol) [32] to thalamic volume.

Materials and methods

Case selection

Data from 108 preterm neonates (mean gestational age at
birth: 31.0 weeks ± 4.3; range 23–36 weeks; mean
postconceptional age at scan: 41.2 weeks±6.0; range 25.7–
60.7 weeks) were included in this study. Details regarding
case selection are available in [23]. Briefly, all preterm infants
who underwent clinically indicated MRIs were screened pro-
spectively as part of ongoing longitudinal studies of
neurodevelopment in neonates with prematurity. All available
cases were included in this study provided: (1) the imaging
study had been completed on an infant born before 37 gesta-
tional weeks of age; (2) the infant was not older than 60 weeks
postconceptional age (PCA; calculated as the interval between
the mother’s last menstrual period and birth plus post-natal
age) at the time of the MRI; (3) there was no evidence of
cerebral abnormality other than punctate white matter lesions
(pWMLs) or diffuse excessive high signal intensity (DEHSI)
(i.e., large vessel acute or chronic infarction, parenchymal
hemorrhage, infection, tumor, or cerebral malformation); and
(4) there was no clinical or laboratory evidence of liver failure,
hyperbilirubinemia (requiring exchange transfusion), or un-
derlying inborn error of metabolism. We excluded data from
two infants for analyses: one for technical reasons and one
because it was a statistical outlier (measured thalamic volume
was more than four standard deviations larger than the mean);
thus, the final sample included only 106 preterm infants (mean
gestational age at birth: 31.0 weeks±4.3; range 23–36 weeks;
mean age at scan: 41.3 weeks±6.1; range 25.7–60.7 weeks).

This study was approved by the Children’s Hospital Los
Angeles (CHLA) Committee on Clinical Investigations
and the University of Pittsburgh Internal Review Board.
Written informed consent for use of their child’s clinically
acquired MRI data and for participation in additional
neurodevelopmental and neuroimaging studies were ob-
tained from parents on behalf of the prospectively recruited
patients by a research coordinator. The ethics committee
approved this consent process. Additionally, as this study
involved a retrospective review of all clinically acquired
neonatal data for the period between 2002 and 2008, which
included neonates who were not enrolled into prospective
studies, approval has also been obtained from the CHLA
Committee on Clinical Investigations and the University of
Pittsburgh Internal Review Board for the retrospective use
of all clinically acquired neonatal MRI data acquired at
CHLA between 2002 and 2008. Prior results from this
cohort have been published [23, 33].

516 Neuroradiology (2015) 57:515–525



MR data acquisition

MRI studies were acquired under clinical indications (most
often to assess brain injury following preterm birth) on a GE
1.5 T (Signa LX, GE Healthcare, Milwaukee, WI) MR
System using a customized neonatal transmit-receive head
coil. Some studies were conducted using an MR compatible
incubator; however, the majority of the studies were conduct-
ed with the neonate wrapped in a blanket and secured in the
MR scanner with appropriate physiological monitoring equip-
ment. Per clinical protocol, most infants were sedated with
choral hydrate throughout the MR scan. Ear protection was
achieved using foam ear plugs in conjunction with MiniMuffs
(Natus Medical Inc., San Carlos, CA). Conventional imaging
studies were acquiredwith theMRS studies and included a 3D
coronal SPGR sequence (TE=6 ms, TR=25 ms, FOV=
18 cm, matrix=256×160, slice thickness 1.5 mm, spacing
0 mm) or axial and sagittal T1-weighted FLAIR sequences
(TE=7.4, TR=2100, TI=750, FOV=20 cm, matrix=256×
160), axial T2-weighted FSE sequence (TE=85 ms, TR=
5000 ms, FOV=20 cm, matrix=320×160 or 256×128) and
a diffusion-weighted sequence (TE=80, TR=10,000, FOV=
22 cm, matrix=128×128, slice thickness 4.5 mm, spacing
0 mm).

1H spectra were acquired from a single voxel (approxi-
mately 3 cm3) placed in the developing parietal white matter
dorsolateral to the trigone of the lateral ventricle in the left
hemisphere using a point-resolved spectroscopy (PRESS) se-
quence with a short echo time (TE) of 35 ms, a repetition time
(TR) of 1.5 s, 128 signal averages, and a total acquisition time
for each spectrum of approximately 5 min, including scanner
adjustments. The parietal white matter location was selected
because (1) the parietal white matter is known to be a region of
vulnerability in preterm infants and (2) numerous developing
thalamocortical and corticocortical association pathways tra-
verse that region [34–36].

Characterization of white matter injury based on conventional
MR images

Conventional MRI scans (T1-, T2-, and diffusion-weighted
sequences) for all studies were independently reviewed by
two investigators (JLW, AP) and scored for the presence of
both pWMLs and DEHSI. PWMLs were defined as punctate
T1-hyperintense lesions in the developing periventricular
white matter and centrum semiovale (Fig. 1) and classified
dichotomously (present/absent). DEHSI was classified visual-
ly in accordance with a four-point scale modified from [37],
with scores reflecting the intensity and extent of signal abnor-
mality within the white matter: no signal abnormality (scored
as 0), high signal restricted to the periventricular region only,
classified as mild (1), high signal in the periventricular regions
extending into the centrum semiovale, classified as moderate

(2), and high signal extending from the periventricular white
matter into the intragyral white matter (3). (For further details,
see [23]).

Measurement of thalamic volume and brain growth

The bilateral regions of the thalamus were manually traced on
the 3D coronal SPGR images by a single individual (RCC)
under the supervision of a senior pediatric neuroradiologist
(AP) using ITK-SNAP as shown in Fig. 2 [38]. The margins
of the neonatal thalamus were determined with reference to a
standard neuroanatomical atlas [39]. High-resolution axial T2
and coronal 3D SPGR images were co-registered, when avail-
able, to help with placement of the contours. Inter- and intra-
rater reliabilities were assessed in a subset of cases (n=5) and
determined to be approximately 0.85 and 0.93, respectively.

Metabolites analyzed and data processing

We focused our analyses first on NAA. NAA is synthesized in
the mitochondria of mature neurons and axons [15–19], and is
used as a marker of axonal maturation. In addition, we includ-
ed markers of energy metabolism (creatine, lactate),
excitotoxicity (glutamate, glutamine), membrane synthesis
(choline), and astrogliosis (myo-inositol). Absolute concentra-
tion for eachmetabolite was quantitated from theMRS spectra
using LCModel software (Stephen Provencher Inc., Oakville,
Ontario, Canada, LCModel Version 6.1-4F). In accordance
with prior publications [20, 23, 33, 40], metabolite concentra-
tions were corrected for the varying fractions of cerebrospinal
fluid and tissue water content in the parietal white matter re-
gion of interest. For absolute quantitation, the signal from
unsuppressed water was used as internal concentration refer-
ence. MR spectra of low quality were removed by limiting the
sample empirically to spectra with a linewidth (measure of
field homogeneity) of <5 Hz and signal-to-noise ratio
(SNR)≥5. Cramer Rao bounds were typically less than 15 %
(as calculated by LCModel).

Statistical analyses

Statistical analyses were carried out in SPSS (V.20/21, IBM
Corporation). Standard linear regression models were used to
test the associations among various independent variables and
thalamic volume (computed separately for right and left thal-
amus). Analyses were conducted in a sequential fashion. As a
first level analysis, gestational age and age at MRI were tested
as possible predictors, followed by (second level) MRI indices
of white matter abnormalities (pWMLs and DEHSI), then
(third level) NAA, and finally (fourth level) other white matter
metabolites. To minimize type I error, we included a final
model whereby all potential metabolites were tested simulta-
neously together with age at scan and pWMLs as covariates
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using stepwise multiple regression with criteria for entry
(p<0.05) and exit (p>0.10). Effect size was calculated using
Cohen’s f2, which can be interpreted as small (f2=0.2), medi-
um (f2=0.15), or large (f2=0.35) [41]. A p value of <0.05 was
considered statistically significant.

Results

Thalamic volume in association with white matter injury
and age

Thalamic volume was associated with postconceptional
age at MRI (right thalamus: T [104]=8.622, p<0.001,
effect size = 0.715; left thalamus: T [104] = 8.498,
p<0.001, effect size=0.695) but not gestational age at
birth (p’s>0.5). Controlling for age at MRI, the presence
of pWMLs and DEHSI were tested next as possible pre-
dictors of thalamic volume. Reduced thalamic volume
was associated with the presence of pWMLs (right thala-
mus: T [103]=−3.235, p=0.002, effect size=0.102; left
thalamus: T [103]=−3.577, p=0.001, effect size=0.124),
but not with DEHSI (right thalamus: T [103]=0.694,
p>0.25; left thalamus: T [103]=0.489, p>0.5).

Thalamic volume in association with NAA, controlling
for pWMLs and age

To determine whether thalamic volume was associated with
NAA concentration above what could be accounted for by
overt white matter injury and age, we used stepwise linear
regression to test for the association with NAA, controlling
for pWMLs and age at MRI. As hypothesized, NAA concen-
tration was associated with thalamic volume (right thalamus:
T [102]=2.636, p=0.010, effect size=0.069; left thalamus: T
[102]=2.631, p=0.010, effect size=0.067), that is, the larger
the NAA concentration in parietal white matter, the larger the
thalamic volume (Fig. 3a).

As an additional test, we excluded the infants with
pWMLs from the regression analysis. Again, after control-
ling for age, NAA concentration was associated with tha-
lamic volume (right thalamus: T [74]=2.596, p=0.011,

Fig. 2 Thalamic volumes were manually traced on 3D-SPGR scans (co-
registered with T2-weighted scans when available) and verified across all
three planes axial, sagittal, and coronal (not pictured). [Bottom row] Left and
right thalami rendered as volumes viewed in transverse and sagittal planes

Fig. 1 1H spectra were acquired from a 3 cm3 voxel localized to the left
parietal white matter (white square) exemplified here in a case with
pWMLs (left image, circled in gray). The acquired 1H-MRS spectra is
depicted on the right. The NAA peak is highlighted in black, while other

prominent peaks, which were included here in exploratory analyses, are
noted in gray. Glu glutamate, gln glutamine, Cho choline, Cr creatine,
Lac lactate, mI myoinositol
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effect size=0.090; left thalamus: T [74]=2.503, p=0.015,
effect size=0.084) (Fig. 3b).

Thalamic volume in association with other white matter
metabolites

We also conducted exploratory analyses testing for pos-
sible associations among other white matter metabolites

and thalamic volume. Controlling for age at MRI,
pWMLs, and NAA, only one additional parietal white
matter metabolite added significant predictive value to
the linear regression on thalamic volume: choline (right
thalamus: T [101]=−3.107, p=0.002, effect size=0.095;
left thalamus: T [101]=−3.237, p=0.002, effect size=
0.103) (Fig. 4a). No significant associations were found
for creatine, lactate, glutamate, glutamine, or myo-

Fig. 3 Residual plots
demonstrating the association
between NAA concentration and
the volume of the right thalamus
across the full sample of preterm
infants, while controlling for PCA
and pWMLs (a) and in the
subsample of preterm infants
without pWMLs (n=75) while
controlling for PCA (b)
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inositol (all p’s>0.2). The final model, which included
age at MRI, pWMLs, NAA, and choline, is presented in
Table 1.

As above, we also ran the regression analyses while ex-
cluding the preterm infants with pWMLs. In this model, after
controlling for age at MRI, choline (right thalamus: T [73]=
−2.915, p=0.005, effect size=0.116; left thalamus: T [73]=
−3.033, p=0.003; Fig. 4b), and also lactate (right thalamus: T

[72]=−2.220, p=0.030, effect size=0.069 ; left thalamus: T
[72]=−1.991, p=0.050 (n.s.)], predicted thalamic volume.

Thalamic volume and cerebral metabolism at term-equivalent
age

As a final inquiry, we restricted our sample to the cases who
were s canned a t t e rm-equ iva l en t age o r o lde r

Fig. 4 Residual plots
demonstrating the association
between choline concentration
and the volume of the right
thalamus across the full sample of
preterm infants, while controlling
for PCA, pWMLs, and NAA
concentration (a) and in the
subsample of preterm infants
without pWMLs (n=75) while
controlling for PCA and NAA (b)
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(postconceptional age≥37.0; n=87) and repeated the above
analyses. In this model, after controlling for age at MRI and
pWMLs, NAA (right thalamus: T [83]=2.440, p=0.017, ef-
fect size=0.072; left thalamus: T [83]=2.197, p=0.031, effect
size=0.058) and choline concentration (right thalamus: T
[82]=−1.689; p<0.1; left thalamus: T [82]=−2.137, p=
0.036, effect size=0.056) still predicted thalamic volume.

Discussion

The results from this study demonstrated significant associa-
tions between NAA and choline concentrations (measured in
the parietal white matter) and thalamic volume in preterm
infants. These effects were above and beyond the effect of
white matter injury (as defined by punctate white matter le-
sions) and age at MRI and remained evident even when pre-
term infants with punctate white matter lesions were excluded
from the analysis. Recent neuroimaging studies have docu-
mented marked differences in thalamocortical connectivity
in preterm infants at term-equivalency [12, 42] and demon-
strated that diminished thalamic volume in conjunction with
white matter abnormalities predict lower neurodevelopmental
outcome in early childhood [11]. The association here be-
tween white matter NAA concentration and thalamic volume
not only provides convergent validity for this neuroimaging
phenotype but also, in conjunction with other metabolites,
further information regarding pathogenesis.

Human neuropathological studies have identified two pre-
dominant abnormalities associated with preterm white matter
injury: periventricular leukomalacia (PVL) and diffuse
astrogliosis without focal necrosis [14, 43, 44]. Although ad-
vances in neonatal intensive care have led to a dramatic reduc-
tion in the incidence of large, cystic lesions (i.e., cavitary
PVL), non-cystic focal lesions and microcysts (i.e., non-
cystic PVL) are still observed in approximately one third of

cases at autopsy while the incidence of diffuse white matter
gliosis is even higher [14, 44]. Moreover, although it is pos-
sible that diffuse astrogliosis and PVL represent a spectrum of
preterm white matter injury with increasing severity, it is note-
worthy that in neuropathological studies, neuronal loss in gray
matter structures, including the thalamus, has been exclusively
associated with PVL [13, 14]. Consistent with the neuropath-
ological studies, the results from this study demonstrated a
negative association between pWMLs and thalamic volume,
that is, the presence of pWMLs predicted a decrease in tha-
lamic volume.

Yet, human neuroimaging studies repeatedly demonstrate
that thalamic volume is diminished in preterm infants, even in
the absence of focal white matter injury [7, 8, 42]. Moreover,
DTI tractography studies have demonstrated diminished con-
nectivity from the thalamus to widespread cortical regions,
including frontal cortices, supplementary motor areas, and
occipitotemporal gyri [12, 42]. It has been proposed that the
decreased thalamic volume, increased thalamic diffusivity,
and decreased white matter fractional anisotropy are together
compatible with decreased cell numbers in the thalamocortical
system [42]. While the decreased NAA in association with
diminished thalamic volume would be consistent with this
hypothesis, the finding that elevated choline also predicts de-
creased thalamic volume suggests additional and/or alterna-
tive pathogenic mechanisms.

In MRS, the choline signal is generally considered a mark-
er of membranes because it incorporates the precursors or
degradation products of membrane phospholipids [31].
Notably, the choline peak, which is comprised largely of in-
distinguishable signal from two compounds: phosphocholine
(PC) and glycerophosphocholine (GPC), reflects only water-
soluble choline metabolites. Sphingomyelin and phosphati-
dylcholine (lecithin), which are large and immobile membrane
components, are BMR invisible.^ Choline concentration is
elevated in fetuses and neonates and declines in infancy, co-
incident with white matter maturation and myelination [20,
22, 27, 30, 45–47]. Prior research has also demonstrated that
choline is elevated in the setting CNS inflammation, with the
magnitude of the choline signal related to glial proliferation
[48, 49] and demyelination/remyelination [50].

In a prior study, we found no mean difference in choline
concentration among preterm infants with and without
pWMLs or in relation to increasing DEHSI severity [23].
However, in the present study, after controlling for white mat-
ter injury and NAA concentration, we found that elevated
choline in the white matter predicted diminished thalamic vol-
ume. Moreover, when infants with pWMLs were excluded
from the analyses, choline concentration remained a signifi-
cant predictor of thalamic volume. The fact that pWMLs or
DEHSI alone was not associated with a difference in the av-
erage choline concentration indicates that these MR bio-
markers of white matter injury are not necessarily associated

Table 1 Final model predicting thalamic volume from age at MRI,
pWMLs, NAA, and choline concentration

Overall
R2

(model)

Standardized
beta

T
statistic

Significance

Right
thalamus

0.530 PCA 0.274 2.442 0.016

pWMLs −0.169 −2.408 0.018

NAA 0.412 3.606 0.001

Choline −0.223 −3.107 0.002

Left
thalamus

0.537 PCA 0.263 2.359 0.020

pWMLs −0.192 −2.764 0.007

NAA 0.414 3.654 0.001

Choline −0.230 −3.237 0.002
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with alterations in the net rate of membrane synthesis or
breakdown in the white matter. Nevertheless, the association
between choline concentration and thalamic volume observed
here does suggest that that the pathogenesis of diminished
thalamic volume in preterm neonates is related to a reduction
in membrane synthesis, or else, glial proliferation, in the white
matter.

Recent studies have demonstrated that injury to and subse-
quent maturational arrest of the pool of developing oligoden-
drocytes is the probable pathogenic mechanism underlying
cerebral hypomyelination—a hallmark finding in preterm sur-
vivors [44, 51–53]. The findings from this study further sug-
gest that the maturational arrest of the oligodendrocytes may
not only affect the development of the white matter but also
may account for the disrupted thalamocortical development
and consequent neurocognitive disabilities. In preparation
for myelination, unmyelinated axons rapidly expand in diam-
eter [54, 55] stimulated by signals from mature oligodendrog-
lia [55]. In diffusion tensor imaging, the maturation is repre-
sented by increased fractional anisotropy (FA), coincident
with the rise in immature oligodendrocytes [56]. In MRS,
the maturation is reflected in the increase in NAA concentra-
tion [20–22], as well as, as noted above, a decrease in choline.
Thus, taken together, the association between thalamic vol-
ume and NAA and choline concentrations observed here and
the association between decreased thalamic volume and white
matter FA observed in previous studies suggests the possibil-
ity that the pathogenesis of aberrant thalamocortical develop-
ment is related to the arrested oligodendrocyte maturation in
the white matter.

Additional support for this hypothesis is provided by the
observation that in this study, elevated lactate is also associat-
ed with diminished thalamic volume when infants with
pWMLs are excluded from the analysis. Lactate, a marker of
anaerobic metabolism, has been observed in association with
active inflammatory lesions in patients with multiple sclerosis,
acute HIV infection of the CNS, and correlates with the ex-
pression of proinflammatory cytokines in infants with perina-
tal asphyxia [48, 57, 58]. Moreover, astrogliosis has been
shown to potentiate damage to developing oligodendrocytes
[59]. Thus, together, the metabolic data provide convergent
evidence of an association between impaired corticothalamic
development, astrogliosis, and myelination failure.

It should be noted that a biomarker specific to astrogliosis
in preterm neonates remains elusive. In this study as in many
previous studies, myo-inositol, an osmolite present in high
intracellular concentration in astroglia, was included as a po-
tential surrogate indicator of astrogliosis. However, near term-
equivalency, myo-inositol decreases dramatically as a func-
tion of age, coincident with the transient proliferation of mi-
croglia in the white matter [60]. Thus, myo-inositol is already
a challenging marker to use for astrogliosis in a preterm neo-
nate near term-equivalency due to the rapid underlying

developmental changes during this period. Furthermore, the
role of myo-inositol as an osmolite confounds its potential role
as an astroglial marker [33]. More work is needed to develop a
more specific marker for astrogliosis in preterm white matter
injury.

It should also be noted that prior studies have demonstrated
associations between DEHSI and thalamic volume at term-
equivalency [7, 8], although such associations were not dem-
onstrated here. Similar inconsistency has been observed in
studies attempting to relate DEHSI to long-term
neurodevelopmental outcome [61–63]. In this study, DEHSI
was classified visually on a qualitative scale. It is possible that
a more quantitative measure of white matter signal (such as
ADC or T2 relaxation) would relate to thalamic volume.

Also, in this study, a binary classification was used for
pWMLs, without quantitating the number of pWMLs or
distinguishing isolated pWML lesions from clusters or con-
glomerates [64]. A remaining question concerns whether the-
se lesions convey a dose-dependent effect on thalamic vol-
ume. In this context, it is possible that NAA concentration in
infants with pWMLs reflects, in part, a degree of axonopathy
that not only predicts thalamic volume but also is linearly
related to the extent of overt white matter injury. Further re-
search is needed.

At the same time, recent studies have documented asso-
ciations between NAA/choline ratios in preterm neonates
and later developmental outcome [65–67] (but see also
[68]). Although without outcome data, we cannot speculate
on the clinical significance of the associations between
white matter metabolism and thalamic volume observed
in our study, these findings suggest that the observed asso-
ciation between NAA/choline and outcome might be fur-
t h e r med i a t e d by ch ang e s t o t h e d e v e l o p i n g
corticothalamic system. Moreover, as our parietal white
matter voxel included most of the developing white matter
from the dorsolateral boundary of the trigone of the lateral
ventricle to the intragyral white matter, we also cannot rule
out contributions from other developing corticocortical fi-
ber bundles to our findings.

A further limitation of this study is the fact that we did not
directly account for brain volume in our analyses of thalamic
volume. However, age, which is also strongly associated with
growth during this period, was included as covariate.

In summary, we show for the first time that reduced parietal
white matter NAA, irrespective of visible white matter injury
on conventional MRI, was associated with reduced thalamic
volumes in high-risk preterm infants near term-equivalent age.
In addition, choline, a marker specific to membrane synthesis,
and lactate, measured in the white matter, also predicted tha-
lamic volume. Together, these observations provide conver-
gent evidence of a neuroimaging phenotype characterized by
abnormal thalamocortical development and suggest that the
pathogenesis may involve impaired axonal maturation in
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association with arrested oligodendrocyte maturation and
myelination failure.
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