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Abstract
Introduction This study aims to develop an automatic seg-
mentation framework on the basis of extreme value distribu-
tion (EVD) for the detection and volumetric quantification of
white matter hyperintensities (WMHs) on fluid-attenuated
inversion recovery (FLAIR) images.
Methods Two EVD-based segmentation methods, namely the
Gumbel and Fréchet segmentation, were developed to detect
WMHs on FLAIR (slice thickness=5 mm; TR/TE/TI=
11,000/120/2,800 ms; flip angle=90°) images. Another auto-
matic segmentation method using a trimmed likelihood esti-
mator (TLE) was implemented for comparison with our pro-
posed segmentation framework. The performances of the
three automatic segmentation methods were evaluated by
comparing with the manual segmentation method.
Results The Dice similarity coefficients (DSCs) of the two
EVD-based segmentation methods were larger than those of
the TLE-based segmentation method (Gumbel, 0.823±0.063;
Fréchet, 0.843±0.057; TLE, 0.817±0.068), demonstrating
that the EVD-based segmentation outperformed the TLE-based
segmentation. The Fréchet segmentation obtained larger DSCs
on patients with moderate to severe lesion loads and a compa-
rable performance on patients with mild lesion loads, indicating
that the Fréchet segmentation was superior to the Gumbel

segmentation. The Gumbel segmentation underestimated the
lesion volumes of all patients, whereas the Fréchet and TLE-
based segmentation methods obtained overestimated lesion vol-
umes (Manual, 13.71±14.02 cc; Gumbel, 12.73±13.21 cc;
Fréchet, 13.88±13.96 cc; TLE, 13.54±12.27 cc). Moreover,
the EVD-based segmentation was demonstrated to be compara-
ble to other state-of-the-art methods on a publicly available
dataset.
Conclusion The proposed EVD-based segmentation frame-
work is a promising, effective, and convenient tool for volu-
metric quantification and further study ofWMHs in aging and
dementia.

Keywords White matter hyperintensities . Fluid-attenuated
inversion recovery . Extreme value distribution . Automatic
segmentation . Volumetric quantification

Abbreviations
WMHs White matter hyperintensities
FLAIR Fluid-attenuated inversion recovery
MRI Magnetic resonance imaging
TLE Trimmed likelihood estimator
EVD Extreme value distribution
UND Unilateral normal distribution
PDF Probability density function
DSC Dice similarity coefficient
FPR False-positive rate
FNR False-negative rate

Introduction

White matter hyperintensities (WMHs), also known as white
matter lesions or leukoaraiosis [1, 2], are focal or diffused
lesions of high signals that are visualized on T2-weighted and
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fluid-attenuated inversion recovery (FLAIR) magnetic reso-
nance imaging scans [3]. WMHs are commonly detected on
elderly patients and are accompanied by other symptoms,
such as cognition impairment [1, 4], gait dysfunction [5],
dementia [6], and depression [7]. The exact pathological
mechanism ofWMHs remains unclear, but WMHs are report-
edly associated with myelin or axonal loss, diminished pallor
or rarefaction, and mild gliosis [1, 8].

Volumetric quantification data of WMHs are valuable for
disease tracking, therapeutic evaluation and prognosis, and
neuroscience research [2, 9]. WMHs are possible independent
risk factors for symptomatic intracerebral hemorrhage in pa-
tients treated with thrombolysis for acute stroke [10, 11]. The
relative risk of stroke increases significantly as the WMH
burden increases. Furthermore, the study of the relationship
between the severity of WMHs and cognitive impairment in
demented patients [6, 12, 13] has attracted considerable in-
creasing attention from researchers worldwide.

Accurate segmentation of WMHs on MR images is re-
quired before volumetric quantification. Automatic segmen-
tation methods can be categorized into two groups [9]: lesion-
based and tissue-based methods. Lesion-based methods
[14–16] consider the WMH as a separate class and use em-
pirical rules to detect specific types of lesions directly. By
contrast, tissue-based segmentation [17–20] avoids the need
to model the intensity of the heterogeneous lesions directly.
Instead, the tissue-based methods model the intensity distri-
bution of normal brain tissues (e.g., gray matter (GM), white
matter (WM), and cerebral spinal fluid (CSF)) using the
Gaussian mixture model (GMM) [21] and detect the WMHs
as tissue outliers. For example, some methods [18–20]
employed a trimmed likelihood estimator (TLE) proposed
by Neykov et al. [22] to identify a fraction of the abnormal
voxels from normal brain tissues. For all the aforementioned
techniques, two important issues should be considered. First,
magnetic resonance imaging (MRI) sequences should be cho-
sen properly. The FLAIR sequence is more advantageous in
suppressing the CSF signal and enhancing the contrast be-
tween the WMHs and other normal tissues [3]. Thus, FLAIR
images are widely employed in WMH segmentation [23–25].
The second important issue to consider is the WMH lesion
load, which can vary greatly in different patients [2].

In this study, we propose a new segmentation framework
that combines unilateral normal distributions (UND) and ex-
treme value distributions (EVD) [26–28] for the automatic
segmentation and volumetric quantification of WMHs on
FLAIR images. The EVD-based segmentation is divided into
two subtasks, given that the two subtypes of the EVDs (name-
ly, the Gumbel and Fréchet distributions) are employed to
detect the WMHs. Different similarity measures are used to
assess the volumetric agreement between the EVD-based
segmentation and manual segmentation on 60 patients with
different lesion loads. Furthermore, the proposed automatic

segmentation framework is compared with the aforemen-
tioned method, which employs TLE to detect the WMHs as
outliers to the normal brain tissue model.

Material and methods

Patient selection and image acquisition

This study was approved by the institutional review board,
and written informed consent was obtained from all patients.
The FLAIR images of 60 elderly patients scanned as part of
normal patient care were enrolled in this study. The patients
were between 61 and 86 years old (mean age, 68.2 years) and
suffered from various degrees of vascular white matter abnor-
malities. All the patients participated in a mini-mental state
examination to screen for cognitive impairment. A score was
awarded to indicate whether a person has normal cognition or
different levels of cognitive impairment. The patients were
classified into three classes according to the locations of
WMHs. The demographic characteristics of the patient cohort
are shown in Table 1.

Brain MR images were acquired through a 3 T clinical MR
system (Inter Achieva SMI-2.1, Philip Medical System). All
the patients were scanned by using the same MR protocol of
the brain with a T1-weighted fast-field echo sequence (slice
thickness=5 mm; TR/TE=250/2.3 ms; flip angle=70°;
FOV=280 mm; scan matrix=640×640; and voxel size=5×
0.4375×0.4375 mm3), a T2-weighted turbo-spin echo se-
quence (slice thickness=5 mm; TR/TE=3,508.4/80 ms; flip
angle=90°; FOV=280 mm; scan matrix=640×640; and
voxel size=5×0.4375×0.4375 mm3), and FLAIR sequence
(slice thickness=5 mm; TR/TE/TI=11,000/120/2,800 ms;
flip angle=90°; FOV=280 mm; scan matrix=640×640;
and voxel size=5×0.4375×0.4375 mm3). The magnetic
resonance (MR) images of these three sequences were
acquired in axial direction. Besides the clinical MR images
mentioned before, a subset of the Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI) data
(http://www.ia.unc.edu/MSseg/index.html) was also employed
to assess our segmentation methods. The FLAIR images of ten
cases from the training dataset provided by Children’s Hospital
of Boston (CHB) were used to detect multiple sclerosis (MS)
lesions. The manual segmentation of the training cases was
performed by an expert from CHB, and the manual segmenta-
tion results were publicly available.

Preprocessing with already available software

Two steps of image preprocessing were used before WMH
segmentation: intensity inhomogeneity (IIH) correction and skull
stripping. The images were loaded and displayed using the
default view in the MIPAV software (http://mipav.cit.nih.gov/).
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During this process, a robust range scaling method was
automatically performed to transform the raw images into new
images with intensity values between 0 and 255. Two
parameters, namely the window and level, defined a specific
range of voxel intensities to be displayed. A window/level
function was applied to make sure all the voxel intensities
falling inside the specified range. The N3 inhomogeneity
correction module [29] in the MIPAV software was
employed to correct the MR inhomogeneity on the FLAIR
images. The results were exported as regular bmp-images.
Non-brain tissues, such as the skull and the scalp, which
might cause misclassification of the WMHs, were eliminated
by using the brain extraction tool (BET) [30] in MRIcro
software (http://www.mccauslandcenter.sc.edu/mricro/mricro/).
Image binarization was performed to get a binary brain
template. The brain region was extracted from the FLAIR
images by combining the bmp-images processed by N3
inhomogeneity correction and the binary brain template ob-
tained before.

EVD-based WMH segmentation

Before WMH segmentation, Otsu’s threshold method [31]
was employed to divide the FLAIR image into two parts:
the foreground and background regions. The foreground
region was composed of the WM, GM, and WMHs,
whereas the background region consisted of the CSF and
the region outside the brain. The intensities and locations
for all the voxels in the foreground region were recorded
so that the following WMH segmentation would only
occur at the foreground area.

For some outlier detection issues, the EVD concerns the
data distribution of the abnormally low or high values in the
tails of some data-generating distributions. Notably, the histo-
gram of the FLAIR image (Fig. 1) contains a single central
peak, which represents normal brain tissues. The left-hand tail
indicates the CSF region and the dark background, whereas
the right-hand tail corresponds to the WMHs. Thus, the EVD

can be employed to describe the intensity distribution of
WMHs on FLAIR images. Given that we mainly focus on
the right-hand tail of the histogram, the normal brain tissues
(WM and GM) in the foreground region are modeled by using
a UND.

The WMH segmentation is conducted by comparing the
probability density functions (PDFs) of the UND and the
EVD. Two different kinds of EVDs, namely, the Gumbel
and Fréchet distributions [26, 27, 32], are suitable for detect-
ing abnormally high signals in FLAIR images. The PDFs of
the Gumbel and Fréchet distributions are given by

pGumbel ¼
1

σ
exp �x−μ

σ
� exp �x−μ

σ
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ð1Þ
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s
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where x represents the intensity of each voxel in the fore-
ground region. The PDF of the Gumbel distribution was
evaluated through Eq. 1, using the mean (μ) and standard
variation (σ) of the foreground region. The parameters α,
m, and s in Eq. 2 correspond to the shape, scale, and
location parameters, respectively, of the Fréchet distribution.
UND was employed to model the intensity distribution
property of the normal tissues (WM and GM), and the PDF
is given by [28]

pUND ¼ 2ffiffiffiffiffiffi
2π

p
σ
exp −

x� μð Þ2
2σ2

 !
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where μ and σ are the mean and standard variations of the
foreground region. The PDFs between the UND and the EVD
were compared to understand the WMH segmentation better
(Fig. 2). Notably, the EVD-based segmentation was divided
into two subtypes according to the different EVDs enrolled in
our WMH segmentation. These subtypes are the Gumbel and
Fréchet segmentations. The complete segmentation scheme of

Table 1 Demographic
characteristics of the patient
cohort

Item Classification Number (n, %)

Gender Male 27 (45 %)

Female 33 (55 %)

Locations of WMHs Periventricular 5 (8.3 %)

Deep white matter 5 (8.3 %)

Juxtacortical 4 (6.7 %)

Both periventricular and other two types 46 (76.7 %)

Cognition impairment Normal (≥25 points) 8 (13.3 %)

Mild (19∼24 points) 38 (63.3 %)

Moderate (10∼18 points) 11 (18.3 %)

Dementia (≤9 points) 3 (5 %)
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the proposed approach (Fig. 3) is composed of the following
steps:

Step 1: Calculation of the mean value μ and standard vari-
ation σ, with regard to the foreground region. The
PDFs of Fréchet distributions using different combi-
nation of parameters (α, m, and s) were compared
and the recommended empirical values of the
parameters employed in the Fréchet segmentation
should be α=2, m=μ, and s=3 σ.

Step 2: Calculation of the PDFs, with respect to the UND
and the two EVDs for each voxel in the foreground
region.

Step 3: Classification of the normal appearing brain tissues
and the abnormal WMHs, by comparing the PDFs of
the UND and the EVD. For Gumbel segmentation,
the voxel would be considered as a possible WMH
candidate if PUND<PGumbel; otherwise, the voxel
would be classified as the normal appearing brain
tissue candidate if PUND≥PGumbel. Likewise, Fréchet
segmentation was performed by comparing the PDFs

of the UND (PUND) and the Fréchet distribution
(PFréchet) for each voxel in the foreground region.

Step 4: Performing the false-positive (FP) minimization. Af-
ter the segmentation, there were some FP signals, like
the bony artifacts and the flow artifacts in the WMH
candidates. These FP signals mainly occurred around
the interface of the CSF and cortical GM as well as
the juxtacortical lesions. Thus, two morphological
operations, including a single dilation and erosion,
were performed on the binary WMH segmentation
results to reduce the FP signals. A 3×3 convolution
kernel was used for the morphological operations.

The two EVD-based WMH segmentation methods (the
Gumbel and Fréchet segmentations) were implemented by
usingMatlabR2012b (TheMathWorks Inc, Natick,MA,USA).

TLE-based WMH segmentation

TLE was proposed by Neykov et al. [22] to avoid outliers in
the maximum likelihood estimation of the robust GMM. The

Fig. 1 Example of the WMHs on
the FLAIR images. The WMHs
are located at the periventricular
WM in a single slice of FLAIR
image (a). A pseudo-color FLAIR
image (b) and the pseudo-color
histogram of the colored FLAIR
image (c) are provided to better
understand the positional
correspondence of specific tissues
on the two colored graphics

Fig. 2 Comparison of the Gaussian distribution and the two EVDs. a
The PDFs of the Gaussian distribution and Gumbel distribution,
where the center of the Gaussian curve corresponds to the normal

brain tissue (WM and GM) and the right tail of the Gumbel curve
indicate the WMHs. b The PDFs of the Gaussian and Fréchet
distributions
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TLE has been used to detect MS lesions in multidimensional
MR sequences (T1w, T2w, and proton density weighted
images) [18–20]. In our study, we implemented TLE-based
segmentation to detect the WMHs on the FLAIR images.
The required steps for the TLE-based segmentation are as
follows:

Step 1: Classification of the foreground and background re-
gions using the EM algorithm. A two-component
GMM was employed to model the intensity distribu-
tion of the FLAIR images that were not preprocessed
via skull stripping. The foreground region consisted
of the WM, GM, WMHs, and non-brain tissues (e.g.,
skull and scalp). The background region was com-
posed of the CSF and the background outside the
brain. The PDFs of all the voxels were computed with
respect to the GMM.

Step 2: Detection of abnormally high signals. With the com-
puted PDFs for all the voxels in the FLAIR images,
the TLE was employed to detect abnormally high
signals (WMHs and non-brain tissues). The propor-
tion of abnormally high signals in the FLAIR images
has to be estimated before WMH segmentation be-
cause this estimation is a required parameter in TLE.
An anatomy image atlas was constructed by using
the FLAIR images of 20 patients with different
WMH volumes, varying from small to large. The
tissues, namely, the WMHs, skull, and scalp, that
presented abnormally high signals were delineated or
detected to estimate the proportion of the abnormally
high signals on the FLAIR images. The proportion of
the abnormally high signals was denoted by h, which
indicates that approximately h×100 % voxels in the
FLAIR images can be considered as abnormally high

signals. Thus, TLE detected the abnormally high
signal by sorting the PDFs of all voxels in descending
order and by considering the last h×100 % voxels as
abnormally high signals. When performing the TLE-
based segmentation, we chose h=0.035 to detect the
patients with different lesion loads.

Step 3: Refinement step. The abnormally high signals de-
tected may include both WMHs and non-brain tis-
sues. A binary brain template was generated through
skull stripping with the use of BET inMRIcro. Non-
brain tissues, namely, abnormally high signals that
did not overlap with the binary brain template, were
removed through morphology processing. More-
over, the morphology operations, including erosion
and dilation, were performed on the binary segmen-
tation results to eliminate the FP signals, such as the
bony artifacts and flow artifacts.

The TLE-based WMH, segmentation on the FLAIR
images was also implemented by using Matlab R2012b
(The MathWorks Inc., Natick, MA, USA).

Statistical analysis

Three different automatic segmentation methods were devel-
oped to detect WMHs on FLAIR images: Gumbel, Fréchet,
and TLE-based segmentations. Notably, the Gumbel and
Fréchet segmentations are two subtypes of EVD-based seg-
mentation. Manual segmentation was performed by an expe-
rienced neurologist and an experienced radiologist to delineate
the WMHs on the FLAIR images, referring to the correspond-
ing T1-w and T2-w images. The bmp-images were loaded in
Adobe Photoshop CS5 [33], and the boundaries of theWMHs
were delineated by the neurologist and radiologist separately.
Two groups of the results were obtained after manual segmen-
tation. The final results of manual segmentation were assessed
in a consensus meeting. For each patient, the better manual
segmentation result of the two groups was considered the
ground truth and used to assess the performance of automatic
segmentation methods. According to the WMH volumes ob-
tained through manual segmentation, we categorized 60 pa-
tients into three groups [34, 35]: severe (WMH volume >18 cc;
14 patients), moderate (4 cc<WMH volume <18 cc; 31
patients), and mild (WMH volume <4 cc; 15 patients).

The performances of these automatic segmentation
methods were assessed by using three different similarity
measures: Dice similarity coefficient (DSC) [36], false-
positive ratio (FPR), and false-negative ratio (FNR) [24, 37].
These similarity measures were defined as follows:

DSC ¼ 2� M∩Að Þ
Mþ A

ð4Þ

Fig. 3 Flow diagram of the EVD-based and TLE-based WMH
segmentations
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FPR ¼ M∩A
M

ð5Þ

FNR ¼ M∩A
M

ð6Þ

where A and M represent the WMH areas detected by auto-
matic andmanual segmentation, respectively. Similarly,Ā and
M denote the background areas in the FLAIR images derived
from the automatic and manual segmentation. M∩A repre-
sents the true positive (TP), which is the area of the WMHs
that was correctly detected through automatic segmentation.
The volume of M∩A corresponds to the FP, which is the area
of the background that is falsely classified as WMHs. M∩Ā
denotes the volume of the FN, which is the area of the WMHs
that is falsely classified as the background. The DSCmeasures
the percentage of the correctly detected WMH area relative to
the total area of the WMHs derived from the manual and
automatic segmentations. The value of the DSC varies be-
tween 0 and 1. Practically, a DSC value of 0.7 or higher
indicates good agreement between automatic and manual
segmentations [2, 37]. FPR and FNR respectively measure
the FP (M∩A ) and FN (M∩Ā) classifications of the WMHs
in the area of theWMHs detected via manual segmentation. In

fact, the evaluation of the three similarity measures mentioned
above is limited, since these similarity metrics were sensitive
to volumes. Thus, we also computed the outlier error rate
(OER) [38], detection error rate (DER) [39], and SIestimate

[38, 39] to evaluate the automatic segmentation methods.
Moreover, a volumetric comparison between automatic and
manual segmentations was performed using linear regression
and Bland–Altman analysis [40, 41]. The intraclass corre-
lation coefficient (ICC) and the Pearson’s correlation co-
efficient (PCC) were computed to evaluate volumetric
agreement between manual and automated segmentation.
Of note, the ICC values were obtained using two-way
mixed model with absolute agreement definition. SPSS
for Windows (version 19.0; SPSS, Chicago, IL, USA) was
used for the statistical computations.

Results

EVD- and TLE-based WMH segmentations were performed
on 60 patients with different lesion loads. The three different
automatic segmentation methods, namely, Gumbel, Fréchet,
and TLE segmentations, were employed to detect the WMHs
on the FLAIR images. The WMHs detected by the automatic

Fig. 4 The results of applying the differentWMH segmentation methods
on the FLAIR images of three patients with different lesion loads. From
top to bottom: sample slices of three patients with mild (a–e), moderate

(f–j), and severe (k–o) lesion loads. From left to right, the segmented
WMHs derived from themanual (b, g, l), Gumbel (c,h,m), Fréchet (d, i,n),
and TLE-based (e, j, o) segmentations are illustrated, respectively
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and manual segmentations were illustrated on the images of
three patients with a mild, moderate, and severe lesion loads
(Fig. 4). For a clear evaluation, the regions of the TP, FP,
and FN were detected using the binary results of automatic
and manual segmentations. An illustrative example is pro-
vided to facilitate understanding of the real TP, FP, and FN
signals in the segmentation results, which were obtained on
a sample slice of a patient with a moderate lesion load
(Fig. 5). The result of the WMH segmentation on the

sample slices demonstrated the minimum FP signal for
the Gumbel segmentation among the three automatic
methods employed. Interestingly, Gumbel segmentation al-
so produced the maximum FN signal.

Similarity measures

To measure the spatial accuracy of the three automatic seg-
mentation methods, we computed and compared the DSCs,

Fig. 5 Sample images of an axial
slice for assessing the
segmentation performance on a
patient with moderate lesion load.
From top to bottom: the TP (a–c),
FP (d–f), and TN (g–i) signals
derived from the automatic
segmentation. From left to right:
the results of different automatic
segmentation methods, namely
the Gumbel (a, d, g), Fréchet
(b, e, h), and TLE-based (c, f, i)
segmentations

Table 2 Comparison of
similarity measures for different
WMH segmentation methods
with respect to different lesion
loads

Measures Methods All patients Mild Moderate Severe

DSC Gumbel 0.823±0.063 0.809±0.083 0.823±0.054 0.839±0.059

Fréchet 0.843±0.057 0.805±0.064 0.843±0.050 0.882±0.031

TLE 0.817±0.068 0.782±0.106 0.817±0.048 0.852±0.033

FPR Gumbel 0.135±0.072 0.175±0.111 0.125±0.045 0.114±0.052

Fréchet 0.179±0.078 0.238±0.085 0.183±0.059 0.106±0.042

TLE 0.243±0.151 0.363±0.175 0.250±0.109 0.098±0.057

FNR Gumbel 0.205±0.081 0.204±0.082 0.210±0.084 0.194±0.077

Fréchet 0.141±0.073 0.165±0.079 0.136±0.075 0.127±0.058

TLE 0.147±0.078 0.130±0.106 0.137±0.069 0.185±0.053
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FPRs, and FNRs for all patients with different lesion loads
(Table 2 and Fig. 6). The mean DSCs with respect to the
Gumbel, Fréchet, and TLE segmentations for all patients were
0.823±0.063, 0.843±0.057, and 0.817±0.068 (Table 2), re-
spectively. These values indicate that the EVD-based (Gumbel
and Fréchet) segmentations were more accurate than the TLE-
based WMH segmentation (Fig. 6a). The comparison of these
three segmentation methods revealed that Fréchet segmenta-
tion outperformed the other two segmentation methods on the
patients with different lesion loads, considering all the simi-
larity measures (e.g., DSC, FPR, and FNR). Gumbel segmen-
tation performed slightly better than the TLE segmentation.

The DSCs for all of the three automatic segmentation
methods increased as the WMH volumes increased (Table 2
and Fig. 6a). In particular, for patients with mild lesion loads,
Gumbel segmentation obtained higher DSC and lower FPR
than the Fréchet and TLE-based segmentations. For patients
with moderate and severe lesion loads, Fréchet segmentation
outperformed the other two automatic methods. TLE-based
segmentation performed well on patients with moderate and
severe lesion loads. Nevertheless, the TLE-based segmen-
tation remains limited, given that this method is prone to
generate more FP signals than the EVD-based segmenta-
tion methods (Fig. 6b), especially on patients with mild
lesion loads (FPR=0.363±0.175). The results of the
Gumbel segmentation were more susceptible to the effect
of the FN signals than those of the Fréchet and TLE-
based segmentations (Fig. 6c).

The DER, OER, and SIestimate were listed in the Table 3.
Similar to SI (Table 2), the SIestimate indicates the Fréchet
segmentation has the best performance among the three auto-
matic segmentation methods. The Fréchet segmentation ob-
tained the minimum mean DER and mean OER for patients
with mild and severe lesion loads. In general, the DERs and
OERs decreased as the lesion volume increased.

Volumetric comparison

Linear regression and Bland–Altman analysis were performed
to compare the volumetric agreement between the automatic
and manual segmentations (Figs. 7 and 8). In the Bland–
Altman plot, the difference between the two measurements
(manual vs. automatic), which is referred to as the bias, is
plotted against the average of the two measurements (Fig. 8).

The regression analysis (Fig. 7a and Table 4) shows excel-
lent agreement (ICC=0.989; p<0.01) between Gumbel and
manual segmentations. The slope of the regression line of
0.936 did not differ significantly from the equality (y=x),
and the intercept of −0.014 was close to 0. The Bland–Altman
plot (Fig. 8a) indicates a system bias of 0.98 cc and a standard
deviation (SD) of 1.76 cc over a range of 1.47 to 62.35 cc.
The ICC value between Fréchet and manual segmentations
(ICC=0.993; p<0.01) is a little larger than that between the

Fig. 6 Similarity measures between the automatic segmentation and the
ground truth derived from themanual segmentation as a function of lesion
loads. The DSCs (a), FPRs (b), and FNRs (c) of the Gumbel, Fréchet, and
TLE-based segmentation are obtained to assess the performance of the
different automatic segmentation methods
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Gumbel and manual segmentations (ICC=0.989; p<0.01).
The slope and intercept for the regression line of Fréchet
versus manual segmentation (Fig. 7b) were 0.989 and
0.318, respectively. The Bland–Altman plot (Fig. 8b) shows
the absence of a systematic bias of −0.17 cc and a narrow
95 % limit of agreement (1.92 cc, 64.57 cc) with SD of
1.62 cc, which demonstrates a general overestimation of the
WMH volume for Fréchet segmentation compared with
manual segmentation.

The ICC value between TLE-based and manual segmenta-
tions (ICC=0.981; p<0.01) was lower than that between
EVD-based (Gumbel and Fréchet) and manual segmentations.
The slope of the regression line was 0.866, and the intercept
was 1.669. The Bland–Altman analysis between the two
measurements (manual versus TLE-based) (Fig. 8c) illustrates
a system bias of 0.19 cc and SD of 2.58 cc over a range of
2.49 cc to 56.78 cc.

The average volumes of the WMHs quantified by these
three automatic methods for patients with different lesion
loads were summarized and compared with those derived
from the manual segmentation (Table 5). Compared with
manual segmentation, Gumbel segmentation underestimated
the WMH volumes for patients with all lesion loads as a
whole. An overestimation was observed for the WMH vol-
umes derived by the Fréchet and TLE-based segmentations on
patients with mild and moderate lesions. The WMH volumes
for patients with severe lesion loads were prone to underesti-
mation by all three automatic segmentation methods.

Validation on public datasets

The automatic segmentation methods were also validated on
the MICCAI data. FLAIR images of ten cases from the
training dataset provided by CHB were used to detect MS
lesions. The manual segmentation results of the training cases
were used to evaluate our segmentation methods. For the
purpose of comparison, two similarity metrics, namely the
true positive rate (TPR) and the positive predictive value
(PPV) were employed to compare our methods with other

two state-of-art segmentation methods proposed by Geremia
et al. [42] and Abdullah et al. [43], respectively. The TPR was
defined as TPR=TP/(TP+FN), and the PPV was computed by
PPV=TP/(TP+FP) [43]. A larger value of TPR or PPV indi-
cates less FN or FP signals in the segmented MS lesions. The
results of the comparison between our automatic methods and
other state-of-art methods were illustrated in Table 6. Given
that the TLE-based segmentation obtained the minimum PPV,
we considered that TLE-based segmentation produced more
FP signals than the other two automatic methods (the Gumbel
and Fréchet segmentation). The performance of the EVD-
based segmentation was comparable to those of the other
proposed methods. Of note, the automatic segmentation
methods performed better on our own clinical images than
the MICCAI dataset. In fact, the quality of the images in the
MICCAI dataset is poorer given that various artifacts were
found in most of the images [2].

Discussion

In this study, we proposed an EVD-based segmentation
framework using the Gumbel and Fréchet distributions to
detect and quantify WMHs on FLAIR images. A TLE-based
segmentation method was implemented for comparison with
the proposed EVD-based segmentation. The results of the
three automatic segmentation methods (Gumbel, Fréchet,
and TLE segmentations) were validated against the manually
drawn WMHs on FLAIR images of 60 patients with different
lesion loads. The comparison between our EVD-based seg-
mentation and the TLE-based method yields higher DSCs and
lower FPRs, indicating that the EVD-based segmentation
(the Gumbel and Fréchet segmentation) outperformed
TLE-based segmentation. Moreover, the Fréchet segmenta-
tion performed better and was more robust than the Gumbel
segmentation on patients with different lesion loads.

EVD-based segmentation combined outlier detection theory
with the adaptive threshold technique to detect WMHs. In

Table 3 Comparison of
similarity measures less sensitive
to lesion volumes for different
WMH segmentation methods
with respect to different lesion
loads

Measures Methods All patients Mild Moderate Severe

DER Gumbel 0.203±0.187 0.284±0.279 0.188±0.153 0.151±0.102

Fréchet 0.142±0.107 0.208±0.136 0.125±0.099 0.109±0.052

TLE 0.201±0.183 0.212±0.231 0.214±0.175 0.162±0.146

OER Gumbel 0.152±0.154 0.120±0.139 0.163±0.167 0.162±0.145

Fréchet 0.166±0.135 0.193±0.189 0.177±0.125 0.114±0.070

TLE 0.168±0.138 0.198±0.159 0.167±0.131 0.139±0.130

SIestimate Gumbel 0.822±0.100 0.798±0.129 0.824±0.091 0.843±0.083

Fréchet 0.846±0.079 0.799±0.104 0.849±0.069 0.889±0.035

TLE 0.815±0.103 0.795±0.125 0.809±0.102 0.850±0.076

Neuroradiology (2015) 57:307–320 315



EVD-based segmentation, the normal brain tissue (WM and
GM) in the foreground region was modeled by using the UND.
The WMHs were considered as outliers in the normal brain

tissue model and were illustrated by the EVD. After comparing
the PDFs of the UND and the EVD, the voxels whose proba-
bility density values of EVD were equal or greater than those
with respect to UND were considered as the possible WMH
candidates. Theminimum intensity of these voxels corresponds
to the threshold that distinguishes the WMHs from the normal
brain tissue. Thus, the process of determining the thresholding
process is completely automated and self-adaptive. The TLE-
based segmentation employed the two-component GMM to
model the foreground and background of the FLAIR images,
and used the TLE to detect theWMHs as outliers of the GMM.
The performance of the TLE-based segmentation depended on
the parameter h, which indicated the possible ratio between the
abnormal WMHs and the normal brain tissue in the FLAIR
images. In fact, the TLE-based segmentation resembles a
proximity-based thresholding technique [44], where a voxel is
considered the possible WMH candidate if threshold distance
from the normal brain tissue model (GMM) is exceeded. By
contrast, the EVD-based segmentation is more principled than
the TLE-based segmentation, given that that the EVD-based
segmentation method uses an adaptive thresholding technique
for WMH detection.

Compared with other state-of-the-art segmentationmethods,
the EVD-based segmentation is more automated and has better
robustness on MR images collected, using different imaging
sequence parameters or imaging devices. For example, super-
vised segmentation methods (e.g., k-nearest neighbors (k-NN),
artificial neural networks (ANNs), or support vector machine
(SVM)) [45–47] are commonly employed for various lesion
segmentation tasks. These methods involve a training stage that
uses a training database to learn the feature of the lesions to
discriminate the WMHs from the normal brain tissues. How-
ever, the construction of a well-performed training database is
difficult because the training database should cover all possible
cases, and all the lesions should be previously segmented using
the labor-intensive and time-consuming manual segmentation
[2, 9]. This way, the EVD-based segmentation is more auto-
mated and does not need manual intervention compared with
the supervised segmentation. The EVD-based segmentation is
independent of the acquisition protocol and should not be
affected by variability in lesion size, shape, and location. We
employed a subset of the MICCAI data to evaluate our seg-
mentation methods. The comparison of our methods and other
two state-of-art supervised segmentation methods [42, 43]
demonstrated that the EVD-based segmentation can be gener-
alized to other scanners and to other types of white matter

�Fig. 7 Linear regression analysis. Manual delineatedWMH volumes are
plotted over automatically segmented WMH volumes. a Gumbel versus
manual volume measurement. b Fréchet versus manual volume
measurement. c TLE-based versus manual volume measurement. The
solid lines represent the regression lines, while the dotted lines correspond
to the equality line (y=x)
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damage, e.g., MS lesions, which are less confluent and can be
more diffuse. Furthermore, the EVD-based segmentation
achieved good segmentation performance when dealing with
different lesion types (e.g., periventricular, deep white matter,
juxtacortical, or infratentorial lesions). The EVD-based seg-
mentation is also more advantageous than the other unsuper-
vised methods. For instance, the lesion-based segmentation
using empirical rules performs well for a particular type of
lesion. However, the segmentation performance of this method
can be negatively affected by the image intensity non-
standardness [48], which implies that intensities do not have a
tissue-specific numeric meaning for images collected from
different patients. Likewise, the method is negatively influ-
enced when distinct imaging parameters are used. Given that
the lesion-based segmentation often directly uses the intensity
of the MR images to model and detect WMHs, then intensity
standardization [49] should be performed on all of the MR
images requiring segmentation. Intensity standardization is
complicated and can have noticeable effects on the results of
the lesion-based segmentation. By contrast, based on the
outlier detection theory and adaptive threshold technique,
the EVD-based WMH segmentation is flexible with no re-
strictions on theMRI imaging parameters or image intensities.

Lesion load is an important issue that should be considered
during the evaluation of a segmentation method, as the seg-
mentation performance can differ depending on whether the
lesion load is mild or severe. Generally, in our study, the EVD-
based segmentation performed better against the TLE-based
segmentation regardless of the lesion load. For the patients with
mild lesion loads, the Gumbel segmentation outperformed the
Fréchet and TLE-based segmentations because the Gumbel

Fig. 8 Bland–Altman plot for the volumetric comparison between the
manual and Gumbel segmentation (a), manual and Fréchet segmentation
(b), and manual and TLE-based segmentation (c)

Table 4 Volumetric agreement between manual and automated
segmentation

Reliability Gumbel Fréchet TLE

ICC (n=60) 0.989 0.993 0.981

PCC (n=60) 0.996 0.996 0.990

ICC intraclass correlation coefficient, PCC Pearson’s correlation
coefficient

Table 5 Volumes (cubic centimeters) of the segmented WMHs for the
different segmentation methods derived from 60 patients with different
lesion loads

Lesion load Gumbel_Seg Fréchet_Seg TLE_Seg Manual_Seg

Mild 2.73±0.74 2.99±0.69 3.45±0.70 2.81±0.70

Moderate 8.73±3.86 9.89±4.06 10.25±3.42 9.47±3.89

Severe 32.29±13.85 34.39±14.78 31.63±12.65 34.78±14.09

All 12.73±13.21 13.88±13.96 13.54±12.27 13.71±14.02

Volumes are means±standard deviations
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segmentation method has a maximum DSC and a minimum
FPR. Among the three automatic segmentation methods
employed in our study, the Fréchet segmentation performed
best on the patients with moderate and severe lesion loads.
Although the TLE-based segmentation performed well on the
patients with moderate and severe lesion loads, this segmenta-
tion method produced an excessive amount of FP signals
compared with the two EVD-based segmentation methods,
especially on the patients with mild lesion loads. Hence, the
TLE-based segmentation is inappropriate, considering the ef-
fect of the FP signals on the final results. The FNR was
computed to measure the percentage of the missed WMH
voxels. A comparison of the two EVD-based segmentation
methods yields that the FNR for the Gumbel segmentation is
higher than that for the Fréchet segmentation. The probabilistic
characteristics of the Gumbel and Fréchet distributions are well
explained. The Gumbel distribution is actually more specifical-
ly suited for outlier detection, with respect to data mixed with
minimal abnormal data samples. Hence, the Gumbel segmen-
tation most probably underestimated the WMHs for the pa-
tients with moderate and severe lesion loads. By contrast, the
Fréchet distribution is flexible enough to handle different out-
lier detection tasks, regardless of the amount of the abnormal
data samples. Thus, the Fréchet segmentation should conform
more to the demands of the WMH segmentation, considering
the varying lesion loads for different patients.

The primary sources of the FP signals in the results of the
EVD-based segmentation are directly linked to some bony
and CSF flow artifacts. To eliminate the FP signals, some
studies [50] proposed to segment the WM region on the T1-
w images first. Subsequently, a morphological operation is
performed on the binary segmentation results and the binary
WM mask, to eliminate the FP signals outside the WM.

However, the difficulty of detecting the complete region of
the WM is an issue. Given that the signal of the WMHs in the
T1-w images is lower than that of the WM, different-sized
“black holes” will probably be detected in the WM region.
Thus, a morphological closing operation is required to fill
these “black holes” and obtain a contiguous WM region.
Nevertheless, obtaining a satisfactory WM region is made
difficult by the different-sized “black holes.” The binary
mathematical morphological operations of dilation and ero-
sion were performed in our study to eliminate the FP signals
that present either threadiness or isolated voxels. Of note, the
EVD-based segmentation behaved well in the presence of
hyperintense choroid plexus whereas the TLE-based segmen-
tation method may classified little hyperintense choroid plex-
us as possible lesions. Thus, as far as the FPR is concerned, the
EVD-based segmentation is likely to maintain the FPR signals
in a relatively lower level compared with the other methods
(for example, the TLE-based segmentation).

Conversely, our method is limited because different normal
tissues (WM, GM, and CSF) were undetected along with the
WMHs, given that only the FLAIR images were employed in
our work. Moreover, the FLAIR may overestimate the lesion
loads in the lateral ventricle or supratentorial region when
compared with the T2-w or proton density-weighted images
[2]. To solve this problem, some methods were proposed to
detect the WMHs, combing information from different MRI
sequences, particularly for the supervised segmentation
methods. These methods are advantageous in segmenting
the WM, GM, and CSF along with the WMHs. However,
using multimodal MR images presents some disadvantages.
Before the segmentation, the different MR sequences of
the same patients should be registered into the same space
through a proper image registration algorithm, which is a

Table 6 Comparison of different segmentation methods using training dataset of MICCAI

Data sets TPR PPV

Gumbel –Fréchet TLE Ref [42] Ref [43] Gumbel –Fréchet TLE Ref [42] Ref [43]

CHBTC01 0.49 0.51 0.55 0.49 0.73 0.58 0.59 0.69 0.64 0.48

CHBTC02 0.23 0.27 0.39 0.44 0.02 0.37 0.39 0.45 0.63 0.56

CHBTC03 0.29 0.31 0.26 0.22 0.14 0.55 0.51 0.27 0.57 0.06

CHBTC04 0.50 0.53 0.42 0.38 0.48 0.37 0.38 0.24 0.78 0.04

CHBTC05 0.58 0.58 0.48 0.40 0.44 0.46 0.44 0.28 0.52 0.10

CHBTC06 0.22 0.23 0.14 0.32 0.15 0.26 0.26 0.10 0.52 0.42

CHBTC07 0.48 0.49 0.36 0.40 0.29 0.66 0.67 0.22 0.54 0.54

CHBTC08 0.57 0.61 0.72 0.46 0.76 0.81 0.73 0.77 0.65 0.47

CHBTC09 0.16 0.18 0.20 0.23 0.18 0.29 0.32 0.24 0.28 0.09

CHBTC10 0.24 0.26 0.37 0.23 0.38 0.43 0.42 0.30 0.39 0.43

Average 0.38 0.40 0.39 0.36 0.35 0.48 0.47 0.36 0.55 0.32

Works of Geremia et al. [42] and Abdullah et al. [43]

CHBTC CHB_train_case, namely the training cases provided by Children’s Hospital of Boston
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labor-intensive and time-consuming task. Moreover, the
MR images collected from the elderly patients are often
accompanied by motion artifacts and bony artifacts, which
can negatively influence the outcome of the registration
and make the segmentation results unconvincing. In this
study, we solely focus on the automatic segmentation and
volumetric quantification of the WMHs in the WM areas.
Actually, the FLAIR images are more advantageous over
the other conventional MRI techniques when detecting
WMHs because of the high contrasts between the WMHs
and the other normal brain tissues (e.g., WM, GM, and
CSF). Using the FLAIR images provides a fast and effi-
cient WMH segmentation method to meet the required
accuracy (DSC>0.7).

In conclusion, we presented an EVD-based segmentation
framework to detect WMHs on FLAIR images. The EVD-
based segmentation framework has been applied to detect and
quantify the WMH volume of patients with different lesion
loads. The evaluation of the EVD-based segmentation on the
MICCAI data indicated that the performance of this segmen-
tation is comparable to other state-of-art segmentation
methods. This EVD-based segmentation outperformed the
TLE-based segmentation method. Notably, two different
EVDs (Gumbel and Fréchet distributions) were employed in
the EVD segmentation framework. The Fréchet segmentation
generally performed better than the Gumbel segmentation.
Thus, the EVD-based segmentation using the Fréchet distri-
bution can be the best choice, by weighing various factors
comprehensively. In the future, wewill release the EVD-based
segmentation framework as a user-friendly software for larger
cohorts to employ this segmentation framework for the study
of WMHs in aging and dementia.
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