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Abstract
Introduction The aim of this study is to evaluate the long-
term stabilizing–healing effectiveness and influence on
adjacent intact vertebral bodies of a new injectable partly
resorbable calcium sulfate (60 wt.%)/hydroxyapatite (40 wt.%)
bone substitute employed in vertebral augmentation of
osteoporotic collapses.
Methods From April 2009 to April 2011, 80 patients
underwent vertebral augmentation. Patients enrolling criteria
were age >20 years and symptomatic osteoporotic vertebral
collapse from low-energy trauma encompassed between
levels T5 to L5. Preoperative and postoperative imaging
studies consisted of computed tomography, plain X-ray, dual
X-ray absorptiometry scanning, and magnetic resonance.
Pain intensity has been evaluated by an 11-point visual

analog scale (VAS) and physical and quality of life
compromise assessments have been evaluated by Oswestry
Disability Questionnaire (ODI). All procedures have been
performed fluoroscopically guided by left unilateral
approach under local anesthesia and mild sedation.
Results VAS-based pain trend over the 12-month follow-up
has shown a statistically significant (p<0.001) decrease,
starting from 7.68 (SD 1.83) preoperatively with an
immediate first day decrease at 3.51 (SD 2.16) and 0.96
(SD 0.93) at 12 months. ODI score dropped significantly
from 54.78% to 20.12% at 6 months. No device-related
complication has been reported. In no case a new incidental
adjacent fracture has been reported.
Conclusion Data show how this injectable partly resorbable
ceramic cement could be a nontoxic and lower stiffness
alternative to polymethylmethacrylate for immediate and
long-term stabilization of osteoporotic collapsed vertebral
bodies.
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Introduction

Vertebral compression fractures (VCFs) represent one of the
most common complications of osteoporosis [1]. Their
impact on quality of life (QoL) and mortality is huge
because they lead to several complications sweeping from
kyphotic deformities with respiratory involvement to pain
regardless of mobility and to mood changes [2–4].

Percutaneous vertebral body augmentation is a proven
procedure for the treatment of osteoporotic and pathologic
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acute VCFs refractory to medical therapy and without
neurologic deficits due to medullar/root involvement. The
treatment has been shown to improve function in more than
85% of cases [5–9].

The most employed device for vertebral augmentation is
polymethylmethacrylate (PMMA), first introduced in 1984,
which assures optimal and potentially eternal vertebral
stabilization with immediate pain reduction [10]. Some
disadvantages are embedded in its mechanical and chemical
characteristics, like high stiffness with possible altered
vertebral bodies load transfer, monomer toxicity, and
possible heat damage on surrounding soft tissues owing to
exothermal setting polymerization [11–13].

The aim of this study is to verify if an alternative
cement, Cerament™|SPINE SUPPORT–BONESUPPORT
AB, Lund, Sweden (CSS), with osteoconductive properties
consisting of calcium sulfate and hydroxyapatite may be
effective for the scope of vertebral augmentation, i.e.,
immediate pain relief and fracture stabilization. The main
advantages are fracture stabilization by bone remodeling
and the lack of chemical and temperature effect on the
surrounding structures in case of leakages. Moreover, its
bone-like stiffness may decrease the risk of adjacent-level
fractures.

Material and methods

Ethics

From April 2009 to April 2011, 80 patients with osteoporotic
vertebral compression fractures underwent vertebral augmen-
tation using a novel injectable and partly resorbable ceramic
bone substitute. The study, a prospective nonrandomized trial,
was approved by our institution ethical committee and
informed consent was achieved before any study-related
activity (vertebral augmentation, imaging studies, and
follow-up test administration).

Patients selection

All patients were identified at our institution outpatient
department. Patients were enrolled if they met the following
criteria: age more than 20 years, symptomatic osteoporotic
vertebral compression fracture from low-energy trauma
encompassing levels T5 to L5 and classified as A1.1 to
A1.2 according to the AO classification system [14],
vertebral height compression within 0–75% compared to
the posterior (dorsal) wall, bone edema of collapsed
vertebral body evident on magnetic resonance imaging
(MRI), client history confirming compression fracture
dating at least 4 weeks and resistant to medical therapy,
>and patients able to understand the procedure and

participate in the study. Patients with known illness such
as cancer, irreversible coagulopathy or bleeding disorder,
preexisting calcium disorder (e.g., hypercalcemia), diabetes,
and renal failure (dialysis) were excluded. Patients present-
ing a compression fracture with retropulsed fragment or
patients who had previously undergone vertebroplasty/
kyphoplasty at the fracture site were also excluded.
Moreover, patients were considered not eligible if they
presented infections or other skin damage at the puncture
site, history of anaphylactic reaction to iodine-based
contrast media, and a body mass index more than 30.

Clinical assessment and follow-up

A careful physical examination, including neurological
examination, was conducted prior to the procedure to
assess patients’ clinical condition. During the screening
investigation, the use of painkillers was recorded. In most
cases, patients attending the screening session provided an
MRI exam performed elsewhere of their own; in these
cases, they undertook the scheduled first day MRI
examination anyway. In all cases where patients attended
the screening examination without an MRI exam, this was
performed the day after at our institution as part of the
screening. MRI exams performed at our institution the day
after the screening examination were not repeated during
the first admittance day.

Patients who met the above criteria were scheduled to be
treated as soon as possible according to our institution daily
bed availability; treatment in most cases took place 1 week
later, while in four cases, 2 weeks later. Post-procedural
physical examination checks were scheduled at day 7 and at
months 1, 6, and 12.

All patients were treated the day after hospitalization.
During the admittance day, they undertook plain roent-
genograms (X-ray), MRI if not performed at our
institution the week before, and computed tomography
(CT) of the spinal segment involved. Dual X-ray
absorptiometry (DXA) scanning was performed on the
same day to assess osteoporosis [15]. Follow-up imaging
investigations were scheduled as follows: plain X-ray, CT,
and MRI at months 1 and 6, plain X-ray and CT at
12 months. To minimize patient radiation exposure during
the four-step CT follow-up, post-procedural CT scans were
confined to one segment above and one below the treated
vertebral body.

Pain intensity was evaluated by an 11-point visual
analog scale (VAS) administered before and after the
procedure at days 1 and 7 and at 1, 6, and 12 months.
Physical and QoL compromise assessment was evaluated
by Oswestry Disability Questionnaire (ODI) adminis-
tered the day before the procedure and at months 6 and
12 [16, 17].
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Operational technique and device

All procedures were performed with patients in prone
position under local anesthesia (lidocaine/bupivacaine 1%/
0.25% for skin incision; ropivacaine 10 mg/mL for
periosteal anesthesia) with fluoroscopic guidance and, in
some cases, supported by mild sedation. In all cases, the
approach was transpedicular. The favorite approach was
represented by the left unilateral approach, according to the
habit of the first operators and good visibility of the
bilateral pedicles cortical boundary. Our technique did not
differ substantially from the standard well-established
procedure described elsewhere [18]. To set the intraverte-
bral cement spread as homogeneously as possible, the 13-G
straight injection cannula was at first advanced up to the
anterior third of the vertebral body (Fig. 1). Cement was
gently injected, paying careful attention to any leakage
(intradiscal or intravenous); if it happened, injection was
stopped for 3–4 min to allow partial cement hardening and
then restarted. Once maximum cement spread was achieved
at this site, the tip of the cannula was retracted to the
posterior third, retrying cement injection. This two-step
injection, in our experience, allowed us to achieve cement
filling as completely as possible.

At the end of the procedure, patients were kept for
20 min in prone position before rolling over into a bed
where they were kept for 3 h in supine position before
letting them go to the outpatient clinic. CSS setting time (in
blood at 37°C) is 41±3.6 min, but we preferred to keep the
patients in bed longer. Because most patients used analgesic
medications before hospital admittance, they were encour-
aged to terminate these on the following few days after the
procedure, and they were instructed to contact us in case of
any discomfort. Patients, in the absence of complications,
were planned to be discharged the day after the procedure.
CT scans targeted on the treated level were performed 5 to

8 h after the procedure to visualize the cement spread and
rule out fluoroscopy occult leakage.

The investigational device (CSS) is a CE-approvedmedical
device intended for augmentation of vertebral compression
fractures. It is an injectable and partially resorbable ceramic
bone substitute. The device consists of synthetic calcium
sulfate (60 wt.%) and hydroxyapatite (40 wt.%) mixed with
the radiocontrast agent CERAMENT™|C-TRU (iohexol,
300 mg iodine/mL). The device allows bone ingrowth after
curing.

Statistical methodology

Data are presented as average, standard deviation, and
significance level. Given the sample size (80 patients),
raw data were recorded and analyzed on SAS™
statistical software by two-tailed, matched-pair, two-
sample t test. Differences in averages were accepted as
significant at p<0.001.

Theory

The investigational device (CSS) is an injectable and
partially resorbable ceramic bone substitute consisting of
60% synthetic calcium sulfate and 40% hydroxyapatite,
mixed with the radiocontrast agent CERAMENT™|C-TRU
(iohexol, 300 mg iodine/mL). Once mixed, powder and
liquid compose a viscous paste able to be easily injected
(Fig. 2). During the complete hardening period (about 2 h),
CSS becomes solid, providing fracture mechanical stabili-
zation. The calcium sulfate dehydrate component will be
gradually resorbed, allowing the implant to be remodeled
through bone ingrowth [19]. The hydroxyapatite compo-
nent remains intact for years, providing an osteoconductive
matrix for new bone ingrowth and long-term armoring of

Fig. 1 Anteroposterior (a) and
lateral (b) intraprocedural fluo-
roscopic view. Good cement
impregnation showed by its
good radiopacity
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the osteoporotic vertebra. The components of CSS have
been used in humans for decades and are proven to be
highly biocompatible. The compressive strength of CSS is
similar to cancellous bone, with the potential of minimizing
the risk of implant-induced adjacent fractures [20–22].

Results

Eighty sequential patients (47 (58.8%) women; 33 (41.2%)
men) fulfilling the above inclusion criteria underwent
vertebral augmentation. Patients mean age and DXA T
score values are shown in Table 1. All female patients were
osteoporotic. Forty-two women were already receiving
therapy for osteoporosis; 5 women were not and were,

therefore, scheduled at our institution orthopedic depart-
ment for appropriate treatment. DXA scans performed on
males ruled out osteoporosis in 25 patients, according to the
WHO cutoff [15, 23–26]. DXA scans performed at 1 year
did not show statistically significant differences in T score
values for both men and women. The mean symptoms
duration was 8.3 weeks (range, 4.5–24 weeks, from the
onset to the treatment).

An overall amount of 128 levels were augmented, 50
levels for men and 78 levels for women. Collapsed
vertebral bodies showed a bimodal spinal segmental
distribution with peak prevalence at the midthoracic and
thoracic–lumbar junction, congruous with epidemiological
data [27]. Data on levels involvement and on involved level
contiguity are summarized in Table 1. Data on fracture type
(AO classification system) [14] were gathered as follows:
35 (27.34%) levels classified A1.1, 93 (72.66%) levels
classified A1.2. Type A1.2 fractures frequency was found
significantly higher in women population and with multiple
level involvement (Table 1).

Bilateral transpedicular approach was in no case necessary
for optimal cement spreading, also in upper thoracic levels
where it is more difficult to target near-midline injection, and
all procedures were performed through the left-sided pedicle.
The mean volume of cement injected was 3.35mL (SD, 0.38),
with 1.5–5 mL range. At targeted CT scans performed some
hours after the procedure, cement leakages were reported in 15
levels (11.7%); 9 (60%) of these were intradiscal and 6 (40%)
were represented by small cement wedging inside the anterior
venous plexuses. Thanks to the excellent cement radiopacity,
all intradiscal leaks had been immediately identified under
fluoroscopy. Given the good opacity of the cement, all
intradiscal leaks were minimal because injection was
immediately stopped once the leak is identified, to be
restarted after 3–4 min, as described upon. Of six
intravenous leaks, only three were detected during
fluoroscopy, the remaining three being identified by
CT scans.

At 1.5 months after the procedure, in two single-level
cases, painful symptomatology suddenly arose again with
the same intensity and location as the preoperative
condition. Patients undertook extra-protocol MRI and CT
scans. In both cases, CT scans were negative for unstable
fracture, but in one case, MRI scans showed, at the treated
level (L4), the typical signs of vertebral body edema just
underneath the superior endplate, owing to a new collapse
at the same level. This patient was retreated the day after
MRI and refollowed up according to protocol. At 1 week, a
six-point VAS drop was recorded; before the first treatment,
VAS was 9, dropped to 2 at 1 month follow-up, raised at
8 with the recollapse, and eventually dropped to 2 to remain
stable at the end of the 1-year follow-up. In the patient with
both negative CT and MRI exams, a persistent spasm of

Fig. 2 CERAMENT™ is highly injectable and can be extruded
through cannulae with minimum inner diameter of 0.191 cm

Table 1 Patients/levels treated summary

Women Men

Patients N (80) 47 (58.8%) 33 (41.2%)

Mean age (SD) 66.81 (14.28) 65.18 (14.21)

DXA T score

Prox femur −2.98 (0.19) −2.73 (0.20)

Lumbar spine −2.79 (0.21) −2.68 (0.19)

Level treated (total 128) Patients/levels Patients/levels

Single 24/24 20/20

Double 15/30 9/18

Triple 8/24 4/12

Level contiguity (N patients)

Double contiguous 10 6

Double sandwich 3 1

Double distant 2 2

Triple contiguous 5 3

Triple sandwich (Bn−Bn+1−Bn+3) 2 1

Triple distant 1 0

Collapse type (AO classification)

A1.1 17 (13.3%) 18 (14.0%)

A1.2 61 (47.7%) 32 (25.0%)
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paravertebral muscles around the treated level were
identified and promptly resolved in some days with
analgesic drugs and thiocolchicoside.

VAS-based pain trend over the 1-year follow-up showed
a statistically significant decrease at both baseline and each
interval comparison, starting from 7.688 (SD, 1.825) points
baseline score with an immediate first day decrease at 3.513
(SD, 2.158) points, to get through 2.363 (SD, 1.577) points
at day 7, 1.875 (SD, 1.247) points at day 30, 1.325
(SD, 0.883) points at 6 months, to end at 0.963 (SD,
0.934) points at 1 year. Quality of life assessment
sampled by ODI scoring also showed a statistically
significant improvement with a baseline mean score of
54.78% (SD, 15.82%) that dropped to 22.61% (SD,
8.35%) at 6 months to end with 20.12% (SD, 11.53%)
at 1 year. All significance levels for both VAS and ODI
evaluation showed p<0.0005 (Figs. 3 and 4).

No intraprocedural or periprocedural complications were
reported, except the above-mentioned small cement leaks.
At the end of the 1-year follow-up, no cases of new
adjacent vertebral fractures were reported. In four cases (all
women) with monolevel involvement, a new incidental
fracture per person occurred at a distant level. The first
early vertebral collapse occurred 7 months after the
procedure, the last at 9 months; all four cases were
augmented by traditional PMMA cement vertebroplasty.

Discussion

Pain and kyphotic deformities account for the majority of
life-threatening complications that follow the loss of
mobility consequent to VCFs [28–30]. Vertebral augmenta-
tion is a technique of proven efficacy, almost immediately
reducing pain related to osteoporotic and pathologic acute
VCFs with great improvement in patients clinical condition
and improvement in QoL [5–7, 9, 31], as also confirmed by
the recently published VERTOS II study in which, with the
right inclusion criteria, vertebral augmentation is effective
and safe, leading to a significantly better improvement than
that achieved with conservative treatment [32].

PMMA is the most employed commercially available
device for vertebral augmentation. Its proven effectiveness
in reducing pain from vertebral collapse almost imme-
diately is considered to reside not only in its fracture-
stabilizing action, but also in the secondary local nerve
damage as a consequence to its high setting temperature
and chemical toxicity. The available scientific literature
data on PMMA setting induced heat–chemical toxicity
damage on the surrounding nerve structures may be
ambiguous [11–13, 33]. However, data on its mechanical
and bone integration properties are clear. PMMA Young's
modulus (1.8–3.1 GPa) is significantly higher than the
normal bone thus interfering mechanically with the load
stresses and preventing surrounding bone remodeling; in
case of osteoporotic bone, PMMA strength is 8 to 40 times
higher [34–38]. Such high stiffness may account for the
risk of recollapse of the spared, not impregnated, cancel-
lous bone of the same vertebral body and for the risk of
incidental adjacent fractures.

Complete cancellous bone impregnation, bridging both
the endplates and the axial level, appears to strengthen the
whole vertebral body, reducing the risk of intrasomatic
recollapse. Additionally, such complete cement distribution
may also affect adjacent vertebral bodies load transfer,
potentially decreasing the risk of new incidental collapses,
especially in “sandwich” vertebral bodies [39–42]. It was
on the basis of these hypotheses, and based on CSS lower
stiffness (0.3–0.4 GPa), which is comparable to normal
trabecular bone, that we strived for a complete vertebral
body cement filling.

The rationale of the ideal bone substitute lies in its
ability to be resorbed at a rate equal to new bone ingrowth,
achieving complete bone remodeling and healing, while
being able to tolerate the motion–load stresses the spine
usually undergoes. Strength of calcium sulfate alone is too
weak compared to that of cancellous bone, and its rate of
resorption is too high to allow new bone ingrowth. CSS
consists of calcium sulfate and hydroxyapatite; the
hydroxyapatite acts as slow or never absorbable frame-
work that slows down the absorption rate of calcium

Fig. 3 Both VAS values and ODI values show a significant constant
improvement over the 12-month follow-up
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sulfate and at the same time acts as an osteoconductive
template for new bone ingrowths. The hydroxyapatite
particles are completely embedded inside the new bone
tissue during the new bone ingrowth. The mechanical
properties, the low stiffness of the device, and the bone-
remodeling processes decrease the shear stresses at the
border bone/CSS [20, 22, 43–46].

In the study, one patient presented with a recollapse of
the already augmented vertebral body (L4) about 1.5 months
after the treatment. In this patient, there was no new trauma
or any intradiscal leak from the first augmentation. The
etiology of this occurrence could be explained by a
combination of irregular cement filling and the lower
mechanical strength of the device in the early stages of
integration when calcium sulfate resorption was still in
progress and new bone ingrowth was limited [43]. Anyhow,
once reaugmented with CSS, the painful symptomatology
in this patient decreased, becoming equal to the mean of the
other patients.

The involved vertebral bodies in our patients showed the
typical “load stress”-related cluster distribution, with higher
frequencies of collapses at midthoracic and thoracic–lumbar
junction [47–50]. We were worried by the risk of adjacent
fractures in sandwich vertebral body fractures. However,
based on the above considerations and on the evidence

presented by some authors [47, 51] showing the incidence
of a vertebral collapse to be unaffected by the augmentation
of the adjacent levels, we withheld any preventive
treatment.

Some authors argued that the frequency of adjacent
vertebral fractures increase in case of intradiscal leakages
[49]. In our study, we reported nine cases of such leakages,
all minimal because early identification, but none of these
patients presented with new incidental adjacent or distant
collapse in the 1-year follow-up. Four women with
monolevel involvement presented a new collapse at distant
levels.

According to our data, immediate fracture stabilization
and pain relief, assessed by imaging and VAS score, were
completely accomplished by augmentation with this device.
Also, the QoL, as assessed by ODI score, showed
significant improvement.

Follow-up showed immediate and lasting pain relief in
the absence of new incidental fractures and no device-
related adverse reactions. Our results strongly suggest that
CSS can be an effective alternative to PMMA. We propose
that the sustained pain relief during the 12-month follow-up
period is due to a new bone ingrowth, and this is supported
by another study on osteoporotic patients undergoing wrist
osteotomy augmentation with the same device, showing its

Fig. 4 Sagittal (a) and coronal
(c) CT scans show the appear-
ance of CSS spread inside the
collapsed vertebral body on the
first day after the procedure;
appearance at 6 months (b, d),
when iodine is completely
resorbed and calcium sulfate
should also be resorbed. Ante-
roposterior (e) and lateral (f)
fluoroscopic view of the same
vertebral body
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complete substitution by a new bone [22]. However, in this
study, it was not possible, for ethical reasons, to investigate
on long-term bone device integration by biopsy samples.

Grounding on our results, CSS appear to be a valid
alternative to PMMA for vertebral augmentation of
osteoporotic collapses, with some potential advantages
embedded. Further evaluation of its validity is necessary
in the way of wider inclusion criteria and longer and
bigger prospective observational studies. CSS resorbable
properties could limit its employment in collapses
secondary to malignancies because, if a malignancy is
able to erode a normal bone, it may be able to do the
same with CSS too, considering its composition, leading
to recollapse. However, there are some circumstances in
which CSS is employed with the double purpose of
being both bone void filler and antibiotic carrier [52,
53]. It should be, therefore, plausible to venture that CSS
could also be an antineoplastic drug carrier, hence
widening its employment to nonosteoporotic VCFs.

Conclusions

CERAMENT™|C-TRU, a new bioactive calcium sulfate/
hydroxyapatite cement for vertebral augmentation, has
shown immediate and long-term effectiveness, leading to
immediate and lasting pain relief, improved QoL, and
absence of any device-related complication, including new
incidental adjacent fractures.

Conflict of interest We declare that we have no conflict of interest.
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