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Abstract
Introduction Understanding disease progression in Alzheimer’s
disease (AD) awaits the resolution of three fundamental
questions: first, can we identify the location of “seed”
regions where neuropathology is first present? Some
studies have suggested the medial temporal lobe while
others have suggested the hippocampus. Second, are there
similar atrophy rates within affected regions in AD? Third,
is there evidence of causality relationships between
different affected regions in AD progression?
Methods To address these questions, we conducted a longitu-
dinal MRI study to investigate the gray matter (GM) changes in
AD progression. Abnormal brain regions were localized by a
standard voxel-based morphometry method, and the absolute
atrophy rate in these regions was calculated using a robust
regression method. Primary foci of atrophy were identified in
the hippocampus and middle temporal gyrus (MTG). A model
based upon the Granger causality approach was developed to
investigate the cause–effect relationship over time between
these regions based on GM concentration.
Results Results show that in the earlier stages of AD, primary
pathological foci are in the hippocampus and entorhinal
cortex. Subsequently, atrophy appears to subsume the MTG.
Conclusion The causality results show that there is in fact
little difference between AD and age-matched healthy
control in terms of hippocampus atrophy, but there are

larger differences in MTG, suggesting that local pathology
in MTG is the predominant progressive abnormality during
intermediate stages of AD development.

Keywords Voxel-based morphometry . Longitudinal
structural MRI . Effective connectivity . Alzheimer’s
disease . Hippocampus and medial temporal gyrus

Introduction

Alzheimer’s disease (AD) has been extensively studied
using cross-sectional structural magnetic resonance im-
aging (sMRI) methods [1, 2]. Most studies have
employed morphometric approaches [3–6] and consistent-
ly report gray matter (GM) changes in the hippocampus,
entorhinal cortex (EC), and temporal lobe [1, 2, 7, 8].
Although such studies identify regions implicated in the
neuropathological processes associated with AD, they can
shed no light on individual change over time. To
overcome this limitation, several longitudinal sMRI
studies have been undertaken [9–18]. Such studies have
the advantage of providing more efficient estimators of
illness trajectory in terms of neuropathological progres-
sion pattern and rates of spread as the illness subsumes
new territories of the neocortex. For example, the
structural changes in amnesic mild cognitive impaired
(aMCI) patients has been longitudinally assessed using
whole-brain morphometry [9], where changing atrophy
patterns have been identified as subjects progress from
aMCI to AD [12]. There is evidence of a particularly rapid
atrophy of the hippocampus in aMCI and AD patients in
the earlier stages of the disease [16].
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Typically, in the study of atrophy progression, regres-
sion methods are applied for analysis of the time-
dependent data as a function of some predictor variables
[19]. Application of transition models such as the Markov
general linear model [20] can also be used to trace the
pathology characteristic of disease progression [16]. This
is a simple procedure which includes past response
covariates in the model but does not include interaction
terms so it cannot assess any causality feedback inter-
actions (effective connectivity) between affected structures
in the longitudinal data. Causality relationships between
regions in AD are potentially important. For example,
Whitwell [21] has argued that such approaches provide
unique insights into region-specific variation and region-
specific inter-dependencies of pathology development. To
address both feed-forward and feedback causality issues,
feedback [19] or Granger causality (GCM) [22] models
can be adopted.

The objectives of this study are to combine longitu-
dinal sMRI data with a causality analysis in a large
population of prodromal AD and AD patients to address
three questions in disease progression. First, what is the
pattern of neuropathological expansion in AD and which
regions show earliest disease effects? Previous studies
implicate regions of the hippocampus and EC early in the
course of illness, with later pathology extending to include
medial temporal lobe (MTL) and middle temporal gyrus
(MTG) structures [12, 23]. However, these findings are
based on relatively small subject groups, so typicality, in
terms of disease progression, is uncertain. In this large-
scale study, we test the hypothesis that this progression
pattern in AD is indeed characteristic of the disease
course. The second question we seek to answer is, whether
the atrophy rates (GM loss) noted in AD is similar or
different across affected regions? This includes analysis of
hemisphere-related pathological asymmetry. For example,
recent AD studies which estimated the atrophy rate based
on brain regional volume [15, 24–26] suggest that
hippocampus atrophy may be faster than that seen in
MTG; we anticipate that analysis of this large longitudinal
population will confirm this finding. Third, a fundamental
question is whether patterns of atrophy across affected
regions are inter-dependent or independent, i.e., is there
any causality relationship between for example hippocam-
pus atrophy in earlier stages of disease and the MTG
atrophy present at later stages of the disease? Previous
work by Nestor and colleagues [10] suggest that the
degree and rate of pathology development may be a local
phenomenon rather than “inheriting” pathology from other
more remote structural entities. We predict that progres-
sive hippocampal changes will be predominantly influ-
enced by a previous state of atrophy in this structure.
However, in relation to other temporal regions, we

hypothesize that, although these will again be primarily
influenced by their local atrophy characteristics, there will
also be an additional influence from the hippocampus
condition on this progression.

Materials and methods

Subjects

The data were obtained from the Open Access Structural
Imaging Series (OASIS, http://www.oasis-brains.org/) da-
tabase, generously contributed by Dr. Randy Buckner [27,
28]. The data acquisition conformed to The Code of Ethics
of the World Medical Association (Declaration of Helsinki),
printed in the British Medical Journal (18 July 1964). One
hundred and fifty subjects (63 males) aged 60 to 96 were
included in the study. Each subject was scanned on two or
more visits. All scan intervals (from initial scan) were
rounded to the nearest year e.g., a scan occurring less than
6 months post-initial scan would be classified as year 0
while a scan occurring 6 months or more later would be
classified as year 1 and so on. The analysis was made up of
373 imaging sessions. For each subject at each visit, three
or four individual T1-weighted MRI scans are included in
the database. The subjects were all right-handed and
included both men and women. All subjects were classified
according to accepted guidelines using the clinical dementia
rating scale (CDR), a key scale in determining dementia of
the Alzheimer type [29]. Seventy-two of the recruited
subjects were designated as normal aging (age matched
healthy controls) throughout the study. Sixty-four others
were classified as suffering from some stage of dementia of
the AD type at first attendance and remained so classified at
subsequent scans, including 51 individuals diagnosed with
very mild (CDR=0.5) and 13 mild to moderate (CDR>0.5)
dementia of the AD type. Fourteen classified as normal
aging at first presentation were subsequently reclassified as
suffering some level of dementia consistent with AD on one
or more later visits. For the purposes of this longitudinal
morphometric comparison, we regarded these 14 converters
as AD subjects. The mean age of the AD patients (64+14
subjects; 40 males) was 77.0 (±7.2), and the mean age of
the healthy control subjects (19 males) was 77.1(±8.1). The
age of the AD patients was not significantly different from
that of the controls (t=0.1014 nonsignificant at p<0.05).
The mean mini-mental state examination (MMSE) score
was 25.4 (±4.4) for the AD patients and 29.2 (±0.9) for
control subjects. The MMSE score of the controls was
significantly different from that of the AD patients (t=
11.6805, p<0.05). The AD subjects were clinically diag-
nosed with very mild to moderate AD: CDR=0.5, very
mild dementia; CDR=1, mild dementia; CDR=2, moderate
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dementia [30]. The CDRs of the 78 subjects in the AD
group are between 0.5 and 2 (only two subjects had a CDR
of 2).

Structural MRI acquisition

All sMRI were collected with a 1.5-T scanner (Vision,
Siemens, Erlangen, Germany). Structural images were
acquired with a transmit–receive circularly polarized head
coil, and a T1-weighted magnetization prepared rapid
gradient-echo sequence (TR [recovery time]=9.7 ms; TE
[echo time]=4 ms; flip angle=10°), giving 128 (gap
1.25 mm) sagittal slices of 256×256 image voxels with a
voxel size of 1×1×1.25 mm. No neuroimaging evidence of
focal lesions such as brain tumors was found, and neither
cortical nor subcortical vascular lesions were visible on the
structural images.

Structural MRI processing

The pipeline for the sMRI data processing is shown in Fig. 1.
For each subject visit, three or four individual T1-weighted
MRI scans were averaged to increase the signal-to-noise
ratio. These averaged structural images of each of the 373
sessions were registered to the conventional affine Talairach
space [31] by the mritotal function provided by MINC tools
software (http://noodles.bic.mni.mcgill.ca/ServicesSoftware/
HomePage) to improve the registration in FSL (http://www.
fmrib.ox.ac.uk/fsl/). If a scan was misregistered (each image
was checked visually) by mritotal, then the manual control
point registration method was performed using register
software from MINC tools. The averaged structural images
were re-sampled to 2×2×2 mm (FSL can only process the
data with maximum image resolution of 2×2×2 mm) and
transformed to Talairach space for FSL-VBM software
analysis (for details: http://www.fmrib.ox.ac.uk/fsl/fslvbm/
index.html) by using a mincresample function with trilinear
interpolation in MINC tools. Then FSL-VBM pre-processing
(Fig. 1 solid line blocks) was conducted as follows. First, the
BET method [32] was employed to extract the brain (cut the
skull from whole image) from the averaged and re-sampled
structural image for each of the 373 image sessions. Next,
non-uniformity correction was carried out, and FAST4 [33]
was used to segment tissues according to their type. The
segmented GM partial volume images were then aligned to
the Montréal Neurological Institute (MNI) standard space
(MNI152) by applying the affine registration tool FLIRT
[34] and nonlinear registration FNIRT methods, which use a
B-spline representation of the registration warp field [35].
The registered images (before smoothing) were averaged to
create a study specific template, and the native GM images
were then nonlinearly re-registered to the template image.
The registered GM partial volume images were then

modulated (to correct for local expansion or contraction) by
dividing them by the Jacobian of the warp field. The
segmented and modulated images were then smoothed with
an isotropic Gaussian kernel with a full-width-at-half-
maximum=12 mm using SPM5 (http://www.fil.ion.ucl.ac.
uk/spm/) with VBM 5.1 (http://dbm.neuro.uni-jena.de/vbm/
vbm5-for-spm5/) software packages (SPM 5-VBM 5.1). The
result images are projected from the MNI space to the
Talairach space.

For the longitudinal VBM comparison, if the subject had
two visits (visit 1 was denoted as time point 1 and visit 2 was
represented as time point 2), we used all sMRI data from both
visits for the comparison. If the subject had three visits, we
only used the first visit as time point 1 and last visit as time
point 2 for the VBM comparison. If the subject had four or
five visits, we used the first two visits to create an average of
GM concentration as time point 1, and the last two visits to
create an average GM concentration for time point 2 for the
VBM comparison. The interval between time points 1 and 2

MRI scan can be downloaded from the OASIS website (http://
www.oasis-brains.org/). It should be noted that in our VBM
analysis, both AD and AD converters have been combined to
form the patient population. Two separate VBM analyses
were conducted: the first compared GM concentration
between normal aging subjects with AD patients at time
point 1 and the second VBM repeated the comparison for
time point 2. A whole-brain voxel-based two-sample t test
analysis (equal variance) was performed (SPM 5-VBM 5.1).
All the default parameters for the t test were accepted except
the absolute threshold for the GM which was set to 0.01. The
significance threshold with the family-wise error (FWE) [36]
corrected threshold was set to be p<0.05.

To help localize GM differences, the 116 regions
specified in the automated anatomical labeling (AAL)
template [37] were used to label regions in the resulting
statistical maps. Finally, the atrophy rate within each of the
identified regions of GM loss was estimated using a robust
linear regression method [38] at the group level (second-
level analysis) [39].

To study the effective connectivity between the hippo-
campus and MTG, a network as shown in Fig. 2 was
constructed. Then, a GCM (Appendix 1) with feedback was
developed for each subject. For the causality analysis, only
the subjects who had at least three visits were used in the
analysis, including 20 AD subjects and 34 healthy controls.
The GCM needs at least three visits to solve the equation
(Eq. A2 in Appendix) for each individual subject. After
deriving the model and its parameters, Granger causality
inferences (Appendix 2) were employed, and an F test was
applied to test the causality inference for each subject
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(see Appendix 3). For the second-level analysis [40], a
mixed effect model was used to compare causality in the
control subjects and AD patients (see Appendix 4).

Results

Localization of cortical atrophy with longitudinal VBM
(to address question 1)

The results of the VBM analysis investigating regions of
GM concentration change in the AD patients compared to
normal aging participants is shown in Fig. 3 at time points 1
(Fig. 3a) and 2 (Fig. 3b). White outlines on the cortex
image show the anatomical region boundaries (the edges)
of the AAL template detected by the canny method from
the MATLAB function edge.

The color regions on the cortex indicate regions where
GM concentration was significantly reduced in AD
patients. The initial GM deficits are generally bilateral,
located in anterior regions of the hippocampus and
entorhinal cortex (EC). Smaller regions of the MTG and
temporal pole also show deficits. The figure is consistent
with a regional expansion of affected areas with time,
which fits with the way AD pathology is known to
progressively subsume medial temporal structures. By time
point 2, there is an observable progression of atrophy in the
medial temporal regions. Hippocampus GM loss has also
extended so that most of the structure is affected. Increased
deficits were also found in the parahippocampus, MTG, and
temporal pole with evidence of extension into the fusiform
and parahippocampal gyri. It is also of interest to note that
at time point 1, atrophy changes appear more prominent in
the right hemisphere, while by time point 2, changes appear

to have progressed more rapidly in the left. In addition, the
full factorial model (2×2 ANOVA) was adopted in the
VBM analysis which combines the “four groups” (two
groups, two time points). We did not find significant
difference between time points 1 and 2 in the AD and
control group comparison. We further investigated this
using a two sample t test VBM by setting the contrast
matrix to [1 0 −1 0] and [0 1 0 −1] in full factorial model
(the results were exactly the same and not reproduced here).
These results confirmed a GM difference between the AD
patients and their normal aging counterparts at both time
points, predominantly located in the hippocampus and
MTG areas. However, the group by time point interaction
contrast failed to uncover any significant voxels. This is
unexpected and counter intuitively suggests that over the
test period, GM changes in both groups were somewhat
parallel. However, the analysis method uncouples intra-
subject relationships in GM concentration over time, and it
is possible that this permits inter-subject variability, which
is increased at time point 2 to mask a group influence on
differences in rate of atrophy progression.

Atrophy rate estimation in the affected regions (to address
question 2)

To further study the atrophy changes in regions showing
significant reduction in GM concentration, we employed
regional masks to isolate the primary affected regions
(hippocampus, MTG) and averaged the GM concentration
within these regions for each subject. The first scan was
used as the baseline, and subsequent GM changes were
estimated by calculating the proportional change (subtract-
ing the first baseline image). Robust linear regression
methods [38] were applied to calculate the atrophy rate.
The variation in GM concentration over time for the healthy
aging and patient groups (patients with dementia at first
scan and converters are shown separately) in the hippo-
campus and MTG are shown in Fig. 4.

The data show that there is a considerable amount of
variation across the AD subjects in terms of yearly rate of
GM atrophy for both hippocampus and MTG structures, but
it is typically 1% for hippocampus and 0.5% for MTG.
These rates are, respectively, two times and five times

Fig. 2 Hippocampus and MTG network for the effective connectivity
study; y1(t) is the GM concentration from the hippocampus region,
and y2(t) is the GM concentration from the MTG region. e1(t) and e2(t)
are the model error terms

Fig. 1 sMRI data pre-processing steps and VBM analysis. The
different software tools used at various stages are indicated above the
block diagrams, and functions employed from the software are given

under the block diagrams. The meaning of each function can be found
at the toolbox website, for example, mritotal means transfer MRI
image to Talairach space
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greater than rates of atrophy measured in the normal aging
controls, both differences are statistically significant when
compared to their normal aging counterparts (p<0.05;
Fig. 4c). It is also important to note that in the comparison
of the atrophy rates between the AD converters (we used
seven converted subjects who have at least three longitu-
dinal scans in Fig. 4) and matched controls, no significant
difference was noted between the hippocampal atrophy
rate; however, the atrophy rate was significantly higher in
the MTG for the converter group (p<0.05) suggesting over
the period of conversion GM changes in this region are
particularly prominent. This is confirmed by the fact that
atrophy rates between hippocampus and MTG also signif-
icantly differ from one another in this group (p<0.05).

Table 1 and Fig. 5 contain results for the asymmetry
analysis. Although Fig. 5 suggests a change in the relative

GM volume (right relative to left hemisphere) in the
hippocampus of AD patients compared to controls, this
was not confirmed statistically. A two-sample t test showed
no significant difference between the asymmetry measures
(for either the hippocampus or MTG) between the AD
patients and healthy controls, suggesting that the relative
(right/left) GM volume in the structures were not altered by
disease (Table 1). A hemisphere related asymmetry in GM
concentration (Left>Right) was observed for both the
hippocampus and MTG which is more marked in the
MTG in both populations (Table 1 and Fig. 5). Though it
appears atrophy rates are different in the two structures and
different in AD and normal aging, this divergence is not
profound enough in the present dataset to show statistical
difference between groups. This may be because AD subjects
are generally in the mild to moderate stage of disease.

Fig. 3 VBM analysis results.
a The comparison results
between age matched healthy
controls and AD patients at time
point 1. b The comparison
results between age-matched
healthy control and AD patients
at time point 2. The max and
min t values in the color region
is t=4.76 (min) and t=5.67
(max) for (a). The magnitude
of the abnormal region in b is
t=4.72 (min) and t=5.78 (max).
Thresholds corrected for
multiple comparisons
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Effective connectivity abnormality in AD (to address
question 3)

To estimate the parameters within the GCM to test for
effective connectivity (Eq. A2 in Appendix), we required at
least three longitudinal scans, which reduced our analysis
population to 20 AD subjects and 34 controls. Because of
brain symmetry (Fig. 5 and Table 1) and to increase
numerical stability, left and right hemispheres were com-
bined in the solution of the GCM equation (Eq. A3 in
Appendix 1). A two-connection network was constructed
(Fig. 2), and the parameters for the network were calculated
(see Appendixes 1 and 2); an F statistic (Appendix 3) was

used to assess significance of inter-region influence
(causality). Subsequently, a two-sample t test was employed
for group comparisons. The group averaged model for the
AD subjects was:

y1ðtÞ ¼ 0:8705y1ðt � 1Þ þ 0:0892y2ðt � 1Þ þ e1ðtÞ ð1Þ

y2ðtÞ ¼ 0:6652y1ðt � 1Þ þ 0:3268y2ðt � 1Þ þ e2ðtÞ ð2Þ
where y1(t) represents the GM concentration in hippocam-
pus of the AD subjects localized as shown in Fig. 3b; y2(t)
denotes the GM concentration in MTG of the AD subjects.

Fig. 4 Left panel top (a), hippocampus GM atrophy annual rate in AD
(Sa=−0.009), converters (Sc=−0.007), and healthy aging (Sn=−0.005);
Right panel (b), MTG GM atrophy annual rate in AD (Sa=−0.005),
converters (Sc=−0.006), and healthy aging (Sn=−0.001). Left panel
bottom (c) shows comparison of mean atrophy rates for each group
(please note one of our subjects from the dataset (subject OAS2_0048)

has five longitudinal scans. For this subject, scans 1, 2, 3, 4, and 5 are
collected at the age of 66, 66, 68, 68, and 69, respectively. Using the
first scan as baseline, we get an age difference from the first to second
MRI scan of 0 and a decline from baseline of −0.02; hence, the point at
−0.02 at time 0 in (a))
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e1(t) and e1(t) are random noise. Similarly, the averaged
model for the age matched healthy control subjects was:

y1ðtÞ ¼ 0:8358y1ðt � 1Þ þ 0:1331y2ðt � 1Þ þ e1ðtÞ ð3Þ

y2ðtÞ ¼ 0:4194y1ðt � 1Þ þ 0:5771y2ðt � 1Þ þ e2ðtÞ ð4Þ
F tests values for all the causality (trimmed mean values)

are given in Table 2 and Fig. 6a. Figure 6b shows the
corresponding coefficients of the feedback model (Eqs. 1, 2,
3, and 4). A mixed effect model (Appendix 4) was employed
for the second-level (between-subjects) analysis [40].

Analysis of variance confirms consistent causality
relationships between time points 1 and 2 for both
structures for both groups (F(1,52)=11.152, p<0.01). The

Fig. 5 Scatter plots of relative regional GM concentration in the right
and left hemispheres for hippocampus and MTG regions in control
and patient groups (averaged across time). a Hippocampus of control

subjects; b hippocampus of AD subjects; c MTG of control subjects; d
MTG of AD subjects. Regression equations are given within the
figure panels

Table 1 Hemisphere symmetry between subject analysis

Correlation coefficient between
subject

Time point 1 Time point 2

AD

Hippocampus 0.8016 0.8125

MTG 0.5693 0.5597

Control

Hippocampus 0.8888 0.8346

MTG 0.4309 0.6697

The correlation coefficients between left hemisphere and right hemi-
sphere in both groups at time points 1 and 2 (significant at p<0.05)
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analysis failed to indicate any group interaction suggest-
ing that this relationship is similar in both the AD and
control subjects. The analysis also confirmed a weaker
but still significant relationship between regions (F(1,52)
=4.365, p<0.05). This suggests that later structural GM
concentrations are better predicted by previous concen-
trations within the same structure and not by a feedback or
feed-forward mechanism between structures. There was
no evidence of a group interaction suggesting that this
inter-structural relationship was not affected by AD
(Fig. 6). The difference in causality indices between
intra-structural and inter-structural causality was also
confirmed in the analysis (F(1,52)=20.357, p<0.001),
confirming stronger causality relationships within struc-
tures rather than between structures. Several post hoc
analyses were also performed. First, we tested to see if
there was any evidence of the intra-structural causality
found for the hippocampus and the MTG being of
differing magnitude (independent of group). The results
showed that the causality was greater within the hippo-
campus than in the MTG (t(53)=4.083, p<0.001). A
second analysis to compare directionality effects in inter-
structural causality (hippocampus to MTG compared to

MTG to hippocampus) confirmed a greater influence of
the hippocampus on the MTG than the reverse situation (t
(53)=−4.286, p<0.001). To follow this up, we tested to see if
the group had any effect on these general relationships.
Similar t tests applied on a group basis produced identical
results. Suggesting that the causality differences noted above
applied equally to both AD and control subjects.

The causality analyses not only confirm relationships
between previous and current atrophy states within the
hippocampus and MTG but also evidence of temporal
relationships between atrophy states across these structures.
It is clear from the results that for both the hippocampus
and MTG, local changes in GM concentration are the best
predictors of future changes. It is also clear that hippocam-
pus atrophy is a better predictor of MTG changes over time
than the reverse. Group comparisons of causality indices
showed no statistically significant differences. This sug-
gests that the general atrophy patterns encountered in AD
are superimposed upon the same causal relationships or
linkages upon which normal aging atrophy changes are
founded and do not perturb these relationships per se.
However, the large increases in statistical variation in the
causality data (Fig. 7 and Table 3) for the patient group

Table 2 Mean F statistics of causality test for GM concentration of hippocampus and MTG for subject groups

Mean F Hippocampus Local (F1) MTG to Hippocampus (F2) Hippocampus to MTG (F3) MTG Local (F4)

AD 2,375 (±6,784) 57 (±2,540) 384 (±3,640) 419 (±7,118)

Normal aging 2,392 (±896) 95 (±1,003) 191 (±2,260) 741 (±746)

All F are significant at p<0.05. The numbers in the table represent mean (± standard deviation)

F1 hippocampus influence from its local past, F2 influence of hippocampus on MTG, F3 influence from MTG to hippocampus, F4 MTG
influences from its local past

Fig. 6 Group causality analysis comparison results. a F test results
(left panel). b coefficients (right panel) in the feedback model (Eqs. 1,
2, 3, and 4). The figure shows the autoregressive influences within the

hippocampus (F1 Hippocampus AR) and MTG (F4 MTG AR); and
the mutual/feedback influence between the hippocampus and MTG
(F2 MTG to Hippocampus and F3 Hippocampus to MTG)

740 Neuroradiology (2011) 53:733–748



does suggest that causality relationships are less consistent
and may be breaking down in AD subjects compared to their
healthy aging counterparts. However, there is no evidence of a
uniform trajectory for this breakdown. This may also explain
the lack of an observable statistical difference in the group by
time point interaction contrast in the VBM analysis.

The coefficient distribution across subjects in the
feedback models (Eqs. 1, 2, 3, and 4) are shown in Fig. 7
and Table 3. From Figs. 6b, 7, and Table 3 (mean and

standard deviation of the coefficients), it can be seen that
coefficients in the MTG feedback model have a much
greater scatter (larger standard derivation) than the hippo-
campus feed-forward model in both control and AD
patients. The lower variability of the causal coefficients
within each structure compared to between each structure
across the subjects is clearly illustrated in this figure
(Fig. 6b). The results of the preceding sections can be
summarized as set out in Table 4 below.

Fig. 7 Feedback model coefficients distribution of normal controls and AD patients. a hippocampus autoregression (AR) coefficient; b feedback
coefficient from MTG; c feed-forward influence from hippocampus to MTG; d MTG AR coefficients

Table 3 Coefficients in the feedback model

Model coefficients Hippocampus auto-regression MTG feedback Hippocampus feed-forward MTG auto-regression

AD 0.871 (±0.293) 0.089 (±0.283) 0.665 (±0.803) 0.327 (±0.760)

Control 0.836 (±0.331) 0.133 (±0.330) 0.419 (±0.452) 0.577 (±0.467)

Hippocampus and MTG system feedback model coefficients. T test is used for the differences between control and AD subjects. The numbers in
the table represent mean (±standard deviation)
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Discussion

In this large study, longitudinal VBM methods [5, 9, 41,
42] were employed to map the progression of GM changes
in AD. This was done by comparing sMRI images collected
at initial referral with images acquired on a second later
occasion (one or more years later). The majority of the
population studied were considered to be at an early stage
in illness progression at first scan as 51 of 64 (80%) had a
CDR=0.5 consistent with a very mild stage of the disease
of AD type. In addition, a further 14 appeared to be
prodromal at this stage. Therefore, in general, time point 1
in the analysis can be considered to represent neuropathol-
ogy near clinical onset of AD.

Two key regions of atrophy were located bilaterally in
the hippocampus and MTG. Absolute qualification of the
atrophy rate in these regions was employed to assess
whether there were rate differences in GM concentration in
these areas. Finally, we carried out a causality analysis to
determine patterns of association between the time courses
of atrophy accumulation in the hippocampus and MTG
regions. Results indicate that in AD, GM loss is extensive;
involving large regions of the hippocampus, parahippocam-
pus, MTG, and EC, and so it is not simply loss of effective
connectivity in terms of known structural connections
which has been reported in some diffusion tensor image
studies [43–46]. Further, progression of the disease is fairly
rapid and encompasses progressive changes in multiple
regions.

Correspondence with previous longitudinal studies

Our results concur with the findings of pathological staging
schemes in AD [12, 23, 24], namely that primary
neuropathology is first identified in AD in the EC and
hippocampus regions (transentorhinal stages I and II),
before subsuming temporal lobe structures such as the
MTG (limbic stages III and IV). Secondly, the hippocam-
pus showed progressive atrophy throughout the disease
course. This is in agreement with other studies [12, 16, 17].
Our results also show that the atrophy rates in the
hippocampus were faster than in the MTG in both AD
and normal aging subjects, but with a faster rate of change
in the AD patients (Fig. 4a). This supports the observation
that atrophy rates accelerate as individuals progress further
into the disease [24]. It is worthwhile to mention that the
unit of atrophy rate in the study is absolute (in proportion).
The advantage of using such an absolute unit is that it is
straightforward to observe the group decline rate and
compare the individual rates across subjects at the same
time (Fig. 4). The limitation of this method is that it is
unable to quantify the hippocampus volume size change
with time. It is interesting to note that the study failed to

find any involvement of the posterior cingulate at both time
points. This region has previously been implicated in AD
pathology [9, 47]. This is in line with some previous work
[12] where posterior cingulate cortex abnormality in AD
was not detected. The reason for the discrepancy may be
because most of our subjects were in the earlier stages of
AD (CDR=0.5); cingulate involvement may, therefore, not
have been sufficient to be properly identified. The use of
the conservative FWE correction method [36] to correct for
multiple comparisons in the VBM analysis may also have
contributed in this respect.

Effective connectivity in this study

Although functional [48–54] and structural [49] connectiv-
ity abnormalities have been reported in AD, the causality
issue [10, 21, 55] of regional atrophy in AD based on
longitudinal structural MRI has received little attention. By
this, we mean that the temporal pattern of atrophy
development, for example, in structures such as the
hippocampus, which display earlier evidence of pathology,
predict or modulate the way pathology appears and
develops in other affected regions as the disease takes
hold. Unlike most previous functional connectivity studies
which used functional MRI with task-free (resting-state)
conditions [49, 53, 54]; we used the GM concentration
extracted from the sMRIs to study the effective connectiv-
ity. The advantage of this approach is that it has better
spatial resolution and, thus, provides increased confidence
in localization of the affected brain regions in AD.
Furthermore, the functional connectivity approach [56]
relies on the correlation; therefore, it is limited in that it
cannot address the question of causality between different
brain regions. We employed a causality model similar to the
work of Granger [22] which is a feedback model [19] and
was based on the proposal that there were causality
relationships between hippocampus and MTG GM losses
over time. This method relied on local current GM values in
these regions having a causality relationship with their own
past. This model, also named the Markov chain model [20],
has been applied to study AD progression previously [16].
We found there were significant influences of atrophy
changes over time in the hippocampus on temporal patterns
of MTG GM change and vice versa in both AD and their
normal age-matched controls. We found there was stronger
feed-forward from the hippocampus to MTG than feedback
from the MTG to hippocampus (Table 1). This suggests that
the changes in and around the hippocampus act as an
influence for the way AD engulfs other regions of the
temporal lobe. Having said this, the finding that the
autoregressive analysis provided by far the best causality
linkages shows that in fact the best overall predictors of
future change in both the hippocampus and MTG GM was
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in fact their previous atrophy condition. This result
supports the findings of previous studies [10] suggesting
that local pathology is an important variable for the
progression of the disease. It must be noted that there is
evidence that MTG local pathology is a weaker predictor
of its future condition than the hippocampus. This might
implicate stronger network influences from connected
regions such as the hippocampus.

Advantages and limitations of the method

The strength of the study is, first and foremost, the
involvement of a relatively large number of subjects and
scans. We used all the 373 cross-sectional MRI scans from
OASIS. Furthermore, our method is primarily a longitudi-
nal one, which overcomes the limitation of cross-sectional
designs. In addition, in the sMRI data pre-processing stage,
we combined three widely used software packages (MINC
tools, FSL, and SPM) for VBM data analysis. One major
difference between FSL-VBM 1.1 and SPM 5-VBM 5.1 is
that FSL-VBM 1.1 uses a permutation test for the statistical
comparison in the last step of VBM analysis, while SPM 5-
VBM 5.1 uses a two-sample t test. The permutation results
often include a lot of abnormal regions in AD compared
with the two-sample t test method [8]. To get conservative
values, we chose SPM 5-VBM 5.1 and adopted a two-
sample t test for the final group comparison. This enables
us to use the strengths of both software packages in the
analysis. Lastly, in the regression analysis (Figs. 4a, b, and
5), a robust linear regression method was adopted to
overcome the limitation of outlier influence on the atrophy
rates estimations.

Several limitations in this study should be noted.
Firstly, the time interval between the first and second
time points is not the same for all the subjects. This will
have the effect of increasing variability of atrophy rate
across subjects as smaller intervals will tend to show
lower rates and longer intervals higher rates in a two-
level (time points 1, 2) analysis. Also, there was
considerable variation in subject age at initial recruit-
ment. The analysis makes the assumption that atrophy
rate will not be affected by this. This allows us to
combine the patients with AD at study onset with those
who converted in the study period. However, there is
some evidence in this study, from comparisons between
AD and AD converter subjects, that rate changes for
example in the MTG may be more rapid in earlier stages
than later on. Combining these two sets of data for the
VBM analysis may have had some effects on results.
Although a previous study [57] suggested atrophy rate
was linear during the aging processing in healthy subjects,
another study [24] showed evidence that atrophy rates may
fluctuate in different stages of AD.

Another point to mention is that, unavoidably, patients
recruited were not all at the same stage of disease. Although
the majority of patients were classified as very mild
dementia of AD type there remains the problem as to
whether atrophy rate in AD holds a linear or nonlinear
course as patients become more impaired.

We employed causality based on the feedback model for
the longitudinal dataset. Although there has been no
universally accepted definition of causality, it is commonly
accepted that the notion of causality of two events describes
to what extent one event is caused by the other [58]. In the
analysis, most of the subjects have three time points (three
visits); more longitudinal scans would be needed for more
accurate estimates of the causality relationships. This is
because the coefficients can contain estimation bias [59] for
short time series, especially for the auto-correlation models.
Although we combined the left and right hemisphere data
to reduce the estimation bias, this only partially offsets the
lack of time points in the series. Finally, for the causal
model used in this study, we only included linear
influences, nonlinear influences were neglected. A nonlin-
ear method [60] with more connected regions and time
points could be used to study effective connectivity in
future studies in attempts to more fully explore causality
relationships.

Finally, it should be pointed out that our causality
analysis is based on the averaged concentration of GM in
regions of hippocampus and MTG which of course assumes
regular atrophy rates across each of the structures; this
assumption may not be correct. There is some evidence for
example that not all regions of the hippocampus are
affected equally in AD as the disease develops with
suggestions of an anterior to posterior progression [12].

Conclusion

In conclusion, this investigation provides the following
answers to the three posited questions from the data used in
this analysis: (1) what is the pattern of neuropathological
expansion in AD? In the early phase of AD, progression
appears to encompass the hippocampus and EC regions,
with development of increasing pathology in other regions
particularly the MTG region over time. (2) Are there similar
atrophy rates within affected regions in AD? Affected
regions appear to have different atrophy rates, and our
results suggest faster atrophy rates in the hippocampus over
several years near illness onset. (3) Is there evidence of
causality relationships between different affected regions in
AD progression? The data suggest that local pathology is
important for AD progression in affected regions, but there
is evidence that magnitude of hippocampal changes may be
a factor for increasing MTG abnormality in AD. Interest-
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ingly, similar patterns of atrophy progression and causality
relationships were found in the normal aging subjects. This
suggests that the pathological processes underpinning AD
amplify brain changes present during the normal aging
process.
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Appendix 1: AR model within subjects for effective
connectivity study

For the subjects who have at least three longitudinal scans,
we assume the brain GM concentration is an autoregressive
(AR) function, i.e., the GM change at a later time point is
related to the GM at a previous time point. This is a
reasonable assumption [16], and based on this assumption,
for each affected region i, we have:

yiðtÞ ¼ aiyiðt � 1Þ þ eiðtÞ ðA1Þ
where t is the time, yi(t) is current GM concentration value;
yi(t−1) is the previous GM concentration value; ai is the
AR coefficient; and ei(t) is the model error (Gaussian
noise). For two-connected regions, we can consider the
mutual interaction between these regions (for example
hippocampus and MTG as shown in Fig. 2); we thus have
a GCM as follows [19, 22]:

y2ðtÞ ¼ b1y1ðt � 1Þ þ b2y2ðt � 1Þ þ e2ðtÞ ðA2Þ
where y1(t) and y2(t) are the current averaged GM
concentration in hippocampus and MTG, respectively, and
y1(t−1), y2(t−1) are the corresponding previous average
GM concentration in hippocampus and MTG regions as
shown in Fig. 3b. If a subject has been scanned only twice
over time, we cannot estimate the coefficients based on
individual subjects. Equation A2 has two parameters, but
two “visits” can only produce one equation. Assuming for
each subject, left and right hemispheres have the same
model within each subject (Fig. 5), we can build a general
linear model for each subject and combine the left and right
hemisphere regional GM concentration within this model,
i.e. first-level analysis for Eq. A2 [39]:

Y ¼ X1b1 þ X2b2 þ eðtÞ ðA3Þ
where Y=[y2,1(t), y2,2(t), …, y2,n(t)]′, n ¼ ðV � 1Þ � 2,
where V is the total number of visits (we multiply by 2

because we combine the left and right hemisphere
GM concentrations within the model); X1= [y1,1(t−1),
y1,2(t−1), …, y1,n(t−1)]′, X2= [y2,1(t−1), y2,2(t−1), …,
y2,n(t−1)]′. X2 represents the AR term of y2(t), and X1

denotes the influence from the other connected region and
eðtÞ ¼ ½e2;1ðtÞ; e2;2ðtÞ; � � � ; e2;nðtÞ�0 � Nð0; s2Þ. The estimat-
ed GM concentration response is:

bY ¼ Xbb þ eðtÞ ðA4Þ
where bb can be estimated by:

bb ¼ XþY ðA5Þ
and X=[X1, X2], and X+ is the Moore–Penrose pseudoinverse
of the matrix. To study the influence from MTG to
hippocampus, we swap the y2(t) and y1(t) in Eq. A2.

Appendix 2: Granger model for the effective
connectivity

Granger causality analysis [61, 62] is derived based on F
statistics. For Eq. A2, the test for determining Granger
causality (GC) is: (1) y1(t) is GC of y2(t) [61], if b1=0 in
Eq. A2 is not true. Given the data, we reach this conclusion
if b1=0 is rejected. (2) Similarly, y2(t) is GC of y1(t) can be
investigated by reversing the input–output roles of the two
series. F statistics (see Appendix 3) are developed to detect
significant relations within subject, and t statistics are
developed for between-subjects analysis (Appendix 4).

Appendix 3: F test (within subject)

After the covariates and their coefficients b1 and b2 in
Eqs. A3/A4 have been estimated by the least squares
method in Appendix 1 from the GM concentration
response, the F test [63] is applied to test the inference of
the connectivity between different regions. Accordingly
from Eq. A4, we partitioned the coefficients bb as: bb ¼ ðbb1 :bb2Þ and X=(X1 : X2), we can write this test as:

H0:bb2 ¼ 0 versus H1 : bb2 6¼ 0;

For one GM concentration response, the F test on the
causality is given by [64]:

R2

1� R2

n� k � s

s
� Fðs; n� k � sÞ ðA6Þ

where s is the column of X2; k is the column of X1; n is the
total number of visits minus one (multiply by 2 if combining
two hemispheres within the brain). R2 ¼ RSS0�RSS

RSS0
, where

RSS0 (original system when β2=0, without interaction terms
for the two-connection network (Fig. 2)) and RSS are the
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residual sums of squares (when both the AR and feedback
terms exists in the system), RSS0 ¼ ðY � bY Þ0 � ðY � bY Þ
(under H0); RSS ¼ ðY � bY Þ0 � ðY � bY Þ. Then, we apply
Eq. A6 to test the influences between regions.

Appendix 4: Mixed effect model (first level:
within subject)

Apart from the F test conducted within subjects, we can
also inference an effect by defining a contrast matrix c
and using the t statistics, we start from estimation of an
effect:

Ej ¼ cbb ðA7Þ
j=1,…, n, where n is the number of visits minus one (×2 if
combine two hemispheres within the model in A3/A4). For
example, we can select c=[0,1] at first level contrast to
study the influence from MTG to hippocampus.

Sj ¼ cXþk kbs ðA8Þ
where bs ¼ ffiffiffiffiffiffiffiffiffiffi

r0r=v
p

, r ¼ Y � Xbb, v ¼ m� rankðX Þis the
degree of freedom (df ); m ¼ 2ðn� 1Þis the total number of
effect in Eq. A7 for two hemispheres.

Appendix 4: Mixed effect model (second level:
between subjects)

For the second-level analysis, a general linear mixed model
[65] was adopted, i.e.:

E ¼ Z � g þ h ðA9Þ
where E=(E1, …, En*)′, S=(S1, …, Sn), and η is normally
distributed with zero mean and variance S þ s2

random

independently for j=1, …, n. We want to compare the
effects in VBM using covariates (Z is the design matrix for
comparison in the general linear model):

Z ¼ In»1
O1

O2 In»2

" #
ðA10Þ

If we are interested in the difference between two groups,
we can set In1 ¼ 1; � � � ; 1½ �01�n

»

1
,In2 ¼ 1; � � � ; 1½ �01�n

»

2
,O2 ¼

0; � � � ; 0½ �
0

1�n
»

2

, and O1 ¼ 0; � � � ; 0½ �01�n
»

1
. In this study,

n
»
1 ¼ 34 (number of controls), n

»
2 ¼ 20 (number of AD

subjects).
To estimate g in Eq. A9, we first use the restricted

maximum likelihood [66, 67] algorithm to estimate bs2
random.

In the expectation maximization algorithm [67–69], let S=
diag(S1, …, Sn*) and I be the n*×n* identity matrix

(n
» ¼ n

»
1 þ n

»
2 ¼ 54 in this study). From (A9), we have

the variance matrix of the effects vector E=(E1, …, En)′:X
¼ S2 þ Is2

random ðA11Þ

Define the weighted residual matrix:

RP ¼
X�1�

X�1
Z Z

0X�1
Z

� �
þZ

0X�1 ðA12Þ

Starting with an initial value of s2
random ¼ E

0
RIE==v

»

based on assuming that the fixed effects variances are zero.
The updated estimate is:

bs2
random ¼ s2

random p
» þ trðS2R

X
Þ

� �
þ s4

randomE
0
R

2

PE

0B@
1CA=n

»

ðA13Þ

where p*=rank(Z). Replace s2
random with bs2

random in (A11)
and iterate (A11–A13) to convergence. In practice, 10
iterations appear to be enough [69]. After convergence, step
(A11) is repeated with s2

random by bs2
random, then the estimate

of g is:

bg ¼ Z 0X �1
Z

� �þ
Z

0X �1
E ðA14Þ

And its estimated variance matrix is:

V barðbg ¼ Z
0 X �1

ZÞþ
�

ðA15Þ

In the case when the variances of E are not homogeneous
across the level 2 unit (for example, different scanner),
Eq. A15 should be replaced by other terms [40, 70]:

V barðbgÞ ¼ Z
0 X �1

Z
� �þ

Z
0 X �1

E � Z bgð Þ E � Z bgð Þ0X �1
Z Z

0 X �1
Z

� �þ

ðA16Þ

Finally, effects defined by a contrasts matrix (second level,
b=[1 −1] in this study for control compared to AD) b in g
can be estimated by E

» ¼ b g
^
with standard deviation:

S
» ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bVbar bgð Þb0

q
ðA17Þ

The T statistic is:

T
» ¼ E

»
=S

» ðA18Þ
with a nominal ν* df (v

» ¼ n
» � rankðZÞ) can then be used

to detect such an effect.
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