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Abstract

We characterize all the radical congruence systems for finite semigroups which are
systems of greatest congruences over some pseudovariety.

A congruence system is a system of congruences p = (p(S))s defined on all finite
semigroups S. Radical congruence systems for finite semigroups were introduced by
Auinger, Hall, Reilly and Zhang [3], following work by Petrich and Reilly [9] and
Reilly and Zhang [13]. They are the congruence systems which satisfy the following
four properties (in this paper all semigroups are assumed to be finite, unless otherwise
indicated):

C1 For each S, p(S/p(S)) is the trivial congruence on S/p(S).
C2 For all semigroups S and T, p(S) x p(T) is contained in p(S x T).

C3 If S is a subsemigroup of T, then the restriction of p(T) to S, p(T)s, is
contained in p(S).

C4 If ¢: S — T is an onto morphism, then sp(S)s’ implies ¢(s) p(T) ¢(s').

In [3], it was shown that the systems of greatest congruences over the following
pseudovarieties form radical congruence systems: N, D, K, LI, IE, DV G, KV G
and LG, respectively the pseudovarieties of nilpotent semigroups, definite semigroups,
reverse definite semigroups, locally trivial semigroups, unipotent semigroups, the joins
of D and K with the pseudovariety G of groups, and the pseudovariety of semigroups
that are locally groups. These results have important consequences on the decidability
of the pseudovarieties of the form V (® W, and on the solution sets of equations of
the form V ® X = W (W fixed) when V € {N,K,D,LLIE, KV G,DV G,LG}
([3], see also Section 2.2 below). For these values of V, the operations X +» V (@ X
on the lattice of pseudovarieties play a particularly important role, as can be seen in
13, 8,9, 17].

In this paper, we characterize all those radical congruence systems which are,
like the above examples, systems of greatest congruences over some pseudovariety.
All semigroups considered in this paper are finite.

* The second author gratefully acknowledges support from Australian Research Council Grant
A69231516, and from the Projet de Recherche Coordonnée “Mathématique et Informatique”.
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1. Preliminaries

Let us first review some elementary definitions and results on pseudovarieties and
congruences.

1.1 Pseudovarieties and Mal’cev Products

A pseudovariety of semigroups is a class of finite semigroups which is closed under
taking subsemigroups, homomorphic images and finite direct products. The following
classes, each a pseudovariety, will play an important role in this paper (for the
description by pseudoidentities, see for instance [10, 1, 2]):

e S = [z = z], the class of all finite semigroups;

e I = [z = y], the trivial pseudovariety, consisting only of the 1-element semi-
groups;

o G = [z¥y = yz¥ = y], the pseudovariety of all finite groups;

e For each pseudovariety H contained in G (we say that H is a pseudovariety of
groups), H is the class of semigroups all of whose subgroups lie in H;

e SL = [z = z, zy = yz], the pseudovariety of idempotent and commutative
semigroups, that is, semilattices;

e CS = [(zyz)® = z¥, z¥z = x|, the pseudovariety of completely simple
semigroups;

e Null = [zy = zt], the pseudovariety of null semigroups;

e N = [z¥y = ya¥ = z¥], the pseudovariety of nilpotent semigroups;
e D = [yz¥ = z“], the pseudovariety of definite semigroups;

o K = [z¥y = z*], the pseudovariety of reverse definite semigroups;
e LI = [z¥yz® = z*], the pseudovariety of locally trivial semigroups;
e IE = [z* = y*], the pseudovariety of unipotent semigroups;

e DVG=[y“z¥ =z*];

e KV G=[z¢y = z*] (see Section 3.1);

* LG = [(zyz¥)” = 2], the pseudovariety of semigroups that are locally
groups. If H is a pseudovariety of groups, then LH = LG N H.

If V and W are pseudovarieties of semigroups, we denote by V (® W the
Mal’cev product of V and W, that is, the pseudovariety generated by the semigroups
S such that there exists a morphism 3:5 — W with W € W and 87 !(e) € V for
each idempotent e of W. It is easy to verify [18] that a semigroup T € V @ W if
and only if there exist morphisms 7 & S 2 W such that « is onto, W € W, and
B37!(e) € V for each idempotent e of W .

57



HALL AND WEIL

Lemma 1.1.  Let V be a pseudovariety.

(1) A semigroup S lies in V @ N if and only if the ideal generated by the regular
elements of S lies in V.

(2) If VC LG, then VC (VNCS) @ N.

Proof.  For Statement (1), see [12]. For Statement (2), it suffices to observe that
LG is the class of semigroups in which the regular elements form the minimum ideal,
and hence form a completely simple subsemigroup. The result then follows from (1).

=
1.2 Congruences
The following lemma, which can be found in [4], will be useful in the sequel.
Lemma 1.2. Let S be a semigroup and let (p;)ic1 be a family of congruences on
S. Then the least equivalence relation on S containing the p; is a congruence. ]

This lemma will be used in the following well known form:

Corollary 1.3.  Let S be a semigroup and let P be a partition of S. Then there
exists a greatest congruence on S which is contained in P. ]

2. Radical and weakly radical congruence systems

The definition of a radical congruence system was given in the introduction. In view
of the special role played by Condition C1, we introduce the notion of weakly radical
congruence systems: these are the congruence systems which satisfy Conditions C2,
C3 and C4.

From Condition C4, we obtain p(S x T) C p(S) x p(T'), by considering the
projections of S x T onto S and T. Thus, when in conjunction with C4, Condition
C2 can be replaced by

C’2 For all semigroups S and T, p(S) x p(T) = p(S x T).

Examples 2.1. The universal (respectively trivial) congruence system, where
p(S) is the universal (respectively trivial) congruence on S for each semigroup S, is
a radical congruence system. Other examples and counter-examples are given further
in the paper.

2.1 Universal class of a weakly radical congruence system

Let p be a congruence system. A semigroup S is p-universal if p(S) is the universal
congruence on S. As in [3], the class of p-universal semigroups is called the universal
class of p, and is denoted V(p).

Lemma 2.2. Let p be a weakly radical congruence system.

(1) A semigroup S is p-universal if and only if there exists a semigroup T and an
idempotent e of T such that S is isomorphic to the p(T)-class of e.

(2) V(p) is a pseudovariety.
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Proof. (1) If S is p-universal, then S is the p(S)-class of any one of its idem-
potents. Conversely, suppose that there exists a semigroup T and an idempotent e
of T such that S is isomorphic to the p(T)-class C. of e. Then the restriction of
o(T) to C. is universal, so by Condition C3, C, is p-universal. It now follows from
C4 that S itself is p-universal.

(2) This follows immediately from the definition of weakly radical congruence
systems: If S and T are p-universal, then p(S x T} = p(S) x p(T) is the universal
congruence on S x T'. Similarly, if S is a subsemigroup of T and if T is p-universal,
then p(S), which contains the restriction of p(T') to S, is the universal congruence.
Finally, if ¢: S — T is an onto morphism and if S is p-universal, then p(7T"), which
contains the ¢-image of p(S), is universal as well. ]

We say that a congruence ¢ on a semigroup S is over a pseudovariety V if
each idempotent class of o (a subsemigroup of S) is in V. A congruence system p
is over V if each congruence p(S) is over V. In particular, if p is a weakly radical
congruence system, then it is a system of congruences over its universal class V(p).
We give some restriction on the possible values of V(p).

Proposition 2.3.  If p is a weakly radical congruence system and if SL C V(p),
then p is the universal congruence system.

Proof. Let S be a semigroup and let T = {0,1}. Then T is a semilattice, so T is
p-universal. It follows that p(S x T) = p(S) x p(T) is such that (s,t) p(S x T) (5, t')
if and only if s p(S)s’. Let U be the quotient of S x T by the ideal S x {0}, that
is, U = (S x {1}) U {0}, and let ¢ be the natural morphism from S x T onto U.
Then, for each s € S, we have ¢(s,1) p(U) ¢(s,0}, i.e. (s,1)p(U)0. Thus U is
p-universal. But S is isomorphic to a subsemigroup of U, so S is p-universal as
well: we have proved that every finite semigroup is p-universal, and hence p is the
universal congruence system. n

Corollary 2.4. If p is a weakly radical congruence system which is not the uni-
versal congruence system, then

(1) V(p) CLG;
(2) V(p)NCS C V(p) C(V(p)NCS) @ N.

Proof. (1) LG is the largest pseudovariety which does not contain all semilattices.
(2) This follows from (1) and Lemma 1.1. ]

Proposition 2.5.  Let p be a weakly radical congruence system with V(p) # 1.
Then

(1) Null € V(p);

(2) p(S) is non-trivial for any non-trivial nilpotent semigroup S.
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Proof. (1) Recall that Null is generated by the semigroup N = {a,0}, where
a’> = 0. Let S be a non-trivial member of V(p). Then, for all s,¢ € S, we have
(s,a) p(S x N)(t,a). For each s € S, let U, be the quotient of S x /N by the ideal
(S x N)\{(s,a)}, that is, U; = {(s,a),0}, and let ¢, be the natural morphism from
Sx N onto Us. Let t € S be different from s. Then, (s,a) = ¢s(s, a) p(Us) gs(t,a) =
0, so U, is p-universal. But U, is isomorphic to N, so N € V(p), and hence
Null C V(p).

(2) Let S be a non-trivial nilpotent semigroup and let b € S be such that
b# 0 and bS = Sb= {0} (say b lies in some O-minimal ideal of S). Within S x N,
we consider the subsemigroup U = (S x {0}) U {(0,a)}. Finally, we consider the
morphism ¢ defined on U by

Il

8,

S
s
0, b

—~ o~
(=]
=

=]

Then (0,a) p(S x N)(0,0) by (1), so (0,a)p(U)(0,0). Now this implies that
©(0,a) p(S) ¢(0,0); that is, bp(S) 0. =

Corollary 2.6. If p is a radical congruence system and V(p) # I, then N C
Vip).

Proof. Since p is a radical congruence system, p satisfies Condition C1, and for
each nilpotent semigroup S, the congruence p(S/p(S)) is trivial. So S/p(S) is trivial,
by Proposition 2.5. [

Example 2.7. Hall and Zhang exhibited an example of a radical congruence
system whose universal class is K, but which is not the system of greatest congruences
over K [5]. For each finite semigroup S, the relation p(S) is defined on S by

ap(S)b ifand only if exa =ezbforall e € E(S), z€S.

It can be verified that p = (p(S))s is a radical congruence system and that V{p) = K.
To verify that p is not the system of greatest congruences over K, it suffices to
consider the monoid S = {1,a,b} given by aS = a and bS = b: then p(S) is the
trivial congruence, whereas the partition {{1}, {a,b}} corresponds to a congruence
on S over K.

2.2 Systems of greatest congruences over a pseudovariety
We first observe that systems of greatest congruences over a pseudovariety always
satisfy some of the conditions defining weakly radical congruence systems.

Proposition 2.8.  Let V be a pseudovariety such that every semigroup S admits
a greatest congruence over V, and let p be the resulting congruence system. Then p
satisfies Conditions C2 and C3.

Moreover, p satisfies Condition C1 if and only if V(®V =V.
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Proof. Let S be a subsemigroup of a semigroup T. Then the restriction of p(T')
to S is trivially a congruence over V, and hence it is contained in the greatest
congruence on S over V, namely p(S). Thus p satisfies Condition C3.

Let now S and T be semigroups. Then p(S) x p(T) is a congruence on S x T
which is over V, so it is contained in p(S x T'). Thus p satisfies Condition C2.

Let us first assume that p satisfies Condition C1. If S € V ( V, then there
exist morphisms S & T % V such that « is onto, V € V, and 87(e) € V for
each idempotent e of V. Then the congruence induced by 8 on T is over V, and
hence is contained in p(T). This implies that T/p(T) is a quotient of B(T) C V,
and hence T'/p(T) € V. Therefore p(T/p(T)) is simultaneously trivial and universal,
that is, T/p(T) is trivial. Thus T is p-universal, i.e. T € V. Finally, this implies
S=a(T)eV.

Conversely, let us assume that V.=V (3 V. Let 8 and 7 be the natural
morphisms 8: 5 — S/p(S) = T and v:T — T/p(T). Then for each idempotent e
of T/p(T), the inverse image 3~(y"'(e)) liesin V ® V, since p(T) is over V and
since the restriction of p(S) to S~1(y7(e)) is over V as well. It follows that the
congruence on S induced by the morphism yo 8 is over V. V = V| and hence is
contained in p(S). Thus + is an isomorphism, that is, p(T) = p(S/p(S)) is trivial,
which completes the proof. u

Note however that not all systems of greatest congruences over a pseudovariety
are weakly radical congruence systems. We give two examples.

Examples 2.9. (1) From Corollary 1.3 it is easily seen that each semigroup ad-
mits a greatest congruence over right zero semigroups. This congruence system is not
a weakly radical congruence system, from Proposition 2.5 (1).

(2) Every semigroup also admits a greatest congruence over I. This system of
congruences, say p, is not a weakly radical congruence system either. Let S = {a,b,0}
be the 3-element null semigroup. Then a p(S)b. Let T be the quotient of S by the
ideal {b,0} and let ¢ be the natural morphism of S onto T'. If p satisfied Condition
C4, then T = {a,0} would satisfy a = ¢(a) p(T) ¢(b) = 0, a contradiction.

Corollary 2.10.  Let 'V be a pseudovariety such that every semigroup S admits a
greatest congruence over 'V, and let p be the resulting congruence system. If p is a
radical congruence system, then V=8 or V=(VNCS) @ N.

Proof. By the previous example, we have V # I, and then by Corollary 2.6,
N C V. Let us assume that V # S. Then, from Corollary 2.4 (2), we have
VC(VNCS)@N. But V(@ V =V (by Proposition 2.8),s0 V= (VNCS) @ N
as required. [

If V is a pseudovariety such that each semigroup S admits a greatest congru-
ence over V, and if this system of congruences is a weakly radical congruence system,
then Mal’cev products with V are more easily computed. The results below slightly
extend those of [3].

Lemma 2.11.  Let V be a pseudovariety such that each semigroup S admits a
greatest congruence over V, and let p be the resulting congruence system. If p is a
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weakly radical congruence system, then S € V. (» W if and only if S/p(S) € W, for
any semigroup S and any pseudovariety W.

Proof.  Since p(S) is a congruence over V, S/p(S) € W implies S € V (m W.

Conversely, let us assume that S € V (m W. Then there exist morphisms S & T LN
W such that « is onto, W € W, and $7!(e) € V for each idempotent e of W.
Since the congruence induced by 8 on T is over V, it is contained in p(T). This
implies that T'/p(T) is a quotient of W, and hence T'/p(T’) € W. Now Condition C4
implies that S/p(S) is a quotient of T/p(T), so S/p(S) € W. =

Corollary 2.12.  Let 'V be a pseudovariety such that each semigroup S admits a
greatest congruence over V, and let p be the resulting congruence system. If p is a
weakly radical congruence system, then

(1) for any pseudovariety W, a semigroup S lies in V (9 W if and only if there
ezists an onto morphism 3:S — W with W € W and 7'(e) € V for all
idempotents e € W ;

(2) i V and W are decidable pseudovarieties, then V m W is decidable.

Proof.  Statement (1) is an immediate consequence of Lemma 2.11. This implies
the following: in order to check membership of S in V (» W, it suffices to check,
for each quotient of S that lies in W, whether the idempotent classes liein V. But a
finite semigroup has finitely many congruences, and for each of them, the idempotent
classes are effectively computable. Thus membership in V (m W is decidable. [

" Following again the notations of [3] for radical congruence systems, we define
the radical class of a weakly radical congruence system p, denoted RC(p), to be the
class of all semigroups of the form S/p(S).

For each class C of semigroups, psv(C) denotes the pseudovariety generated
by C.

Proposition 2.13.  Let 'V be a pseudovariety such that each finite semigroup S
admits a greatest congruence over V, and let us assume that the resulting congruence
system p 1s a weakly radical congruence system. Let W and W' be pseudovarieties.

(1) The following conditions are equivalent.
() VRW=V@W
(b) WNRC(p) =W'NRC(p)
(c) psv(W N RC(p)) = psv(W'N RC(p)).

(2) If p is a radical congruence system, then the set of solutions of the equation
V @ X =W is either empty, or is the interval [psv(W N RC(p)), W].

Proof. (1) By Lemma 2.11, S € V @ W if and only if S/p(S) € W N RC(p).
So (a) implies (b). Trivially, (b) implies (¢). Suppose (c). Then psv(W N RC(p)) is
contained in WN'W'. Therefore, if S € V(@ W, then S/p(S) € WNRC(p) C W',
and hence S € V (m W'. Thus (c) implies (a).

(2) We refer the reader to {3]. L
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2.3 Some important radical congruence systems
In [3], it is proved that each finite semigroup admits a greatest congruence over N,
K,D LILIE KVG, DVG and LG, and that the resulting congruence systems
are radical congruence systems. It may be useful to give “closed” formula for these
congruences.

The existence of these greatest congruences, the formulas giving them, and the
fact that they satisfy Condition C4, can also be found in [6] as well as in [3, Lemma
5.1], in a different terminology.

Proposition 2.14. The greatest congruences over N, K, D, LI, IE, KV G,
DV G and LG on a semigroup S are given by the following formule:

{for each regular D-class D and for each idempotent

s~yt <= <eof D, thenes,et & D ores =et, and se,te & D or
se = te;
St = { for each regular D-class D and for each idempotent
K e of D, then es,et ¢ D or es = et;
{ for each regular D-class D and for each idempotent
s~pt <=
e of D, then se,te & D or se = te;
PRI { for each regular D-class D and for all idempotents
L1 e, f of D, thenesf,etf € D or esf =etf;
for each regular D-class D and for each idempotent
s~pt = {e of D, then es,et & D or es H et, and se,te ¢ D
or se H te;
smggt <= { for each regular D-class D and for each idempotent
e of D, then es,et ¢ D or es H et;
Srort {for each regular D-class D and for each idempotent
ba e of D, then se,te & D or se H te;
Sroret 4= {for each regular D-class D and for aoll idempotents
La e,f of D, thenesf,etf € D oresf Hetf.

Proof. We give a full proof of the result only for ~gg. The other relations are
dealt with similarly.

Let us first verify that ~xg is a congruence. Let s,t € S with s ~gg t and
let u,v € SU{1}: we want to verify that usv ~xg utv. Let D be a regular D-class
and let e € E(S)ND. If eu & D, then eusv,eutv € D. If eu € D, there exist
v €S, ¢ € E(S) such that ¢ £ eu and eu = v'e'. If ¢'s ¢ D, then we know
that €'t &€ D, so eusv = u'e’sv and eutv = v'e’tv are not in D. If €¢'s € D, then
€'s H e't. As long as we remain within D, right and left inner translations preserve
‘H -classes by Green’s Lemma, so either eusv,eutv ¢ D, or eusv H eutv.

We now verify that ~gg is over KV G: let e € E(S) and let s € S with
e ~x¢ §. Let D be the D-class of e. Since e = ee € D, we have es H e. This
expresses exactly that the ~gg-class of e isin KV G.

Finally, let = be a congruence on S over KV G and let s =¢. Let D be a
regular D-class of S and let e be an idempotent in D. Let us assume that es € D.
Then there exists © £ e such that e = esu (u is an inverse of es). In particular,
us = ues is idempotent. We have e = esu = efu. Since = is over KV G, it follows
that e £ etu, and hence e H etu R et. Thus e H (etu)® = et(uet)?u and so
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(uet)? € D and uet € D: hence uet lies in a group # -class of D. Let h be the
idempotent power of uet: then h H uet L et and ues = uet = h. But =-equivalent
idempotents are L-related, so ues H h. In turn, this implies that es H et. By
symmetry, et € D implies et H es and so it follows that s = ¢ implies s ~xgt. ®

3. Some new systems of greatest congruences

We construct systems of greatest congruences over certain pseudovarieties of LG
which extend the above examples. In Section 4, we will prove that they are weakly
radical congruence systems, and give a simple necessary and sufficient condition that
they be radical congruence systems.

3.1 Some elementary computations

The following technical lemma will be useful in the sequel. Some of the results therein
belong to “folklore” (see for instance [11]). Almost all can also be found in [14]. We
include the proof anyway for the sake of completeness, and also to justify Corollary 3.2
below. Recall that LG is exactly the class of all finite semigroups in which the regular
elements all lie in the minimum ideal.

Lemma 3.1. (1) N®@G=G®N=NVG=IE.

@D K®@G=G@K=KVG =[z¥y" =z].

B D®G=G®D=DVG = [y“z¥ =2v].

(4) LI® G =L1VG = [z¥y“z” = z*] is strictly contained in G (3 LI = LG.

Proof. (1) G@N is generated by semigroups in which the regular elements form
the minimum ideal, and that minimum ideal is a group: such semigroups have only
one idempotent, and hence lie in IE. On the other hand, N (» G is generated by
semigroups S admitting a congruence p such that S/p € G and the (only) idempotent
class of p is in N. Such semigroups also have only one idempotent, and hence lie in
IE. So we have the inclusions NVG C (N® G)U(G @ N) CIE. Let now S € IE,
let e be the idempotent of S and let I be the minimum ideal of S, that is, the
H-class of e. Let p:S — I be given by ¢(s) = es, and let 3: S — S/I be the
canonical projection. Since es is H -equivalent to e, we have e(st) = (es)t = (ese)t
for each t € S, so ¢ is a morphism. Finally, let us assume that ¢(s) = ¢(t) and
P(s) = +(t) for some s,t € S. If s ¢ I, then ¢(s) = ¢(t) implies that ¢ ¢ |
and s =t. If s € I, then ¢(s) = 0,s0 ¢t € [. But I is a group with unit e, so
s = es = p(s) = p(t) = et = t. Thus, in all cases, we have s = t. Therefore, S
embeds in the direct product I x S/I, and hence S € G vV N, which proves (1).

(2) K (m G is generated by semigroups S on which there exists a congruence
p such that S/p € G and the (unique) idempotent class of p is in K. Since the
idempotents of S all lie in that idempotent class, they are all L-equivalent, that
is, S satisfies z¥y* = z¢. On the other hand, G (W K is generated by semigroups
S on which there exists a congruence p such that S/p € K and the idempotent
classes of p are groups (so ep C H, for each idempotent e € S). Since K satisfies
¥y = z%, we find that in S, z¥y* px*, whence z%y¥ H z*. Thus the idempotents
of S are all £-equivalent, and hence S satisfies z¥y* = z*. So we have the inclusions
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KVG C(K®GU(G®K)C [z¥y = z¥]. Let now S € [a¥y* = z*], let I
be the minimum ideal of S, let e be an idempotent of S (so e € I), let H, be the
‘H -class of e, and let ¢: S — H, be given by ¢(s) = es. Since es € I, we have
es = es(es)”. In addition, e = e¥(es)” = (es)”, so ese = es. Therefore ¢ is a
morphism. Let ~ be the congruence on S defined by s ~ ¢ if and only if s =t or
s,t€l and s Ht. Then S/~ K. Welet ¢: S — S/~ be the natural morphism.
We now verify that ¢(s) = ¢(t) and ¥(s) = (¢) implies s = ¢t. Indeed, if s g I,
then (s) = (t) implies t ¢ I and s =t. If s € I, then 9(s) = ¢(t) implies that
tel andtH s. Let f be the idempotent of the common H -class of s and £: then
(s) = (t) implies s = fs = (fe)s = f(es) = f(et) = ft =t. Thus, S imbeds in
H, x S/~, and hence S € G Vv K. This completes the proof of Statement (2).

(3) Statement (3) is the left-right dual of Statement (2).

(4) LI(® G is generated by semigroups S on which there exists a congruence
p such that S/p € G and the (unique) idempotent class of p is in LI. Since the
idempotents of S all lie in that idempotent class, they form a rectangular band, that
is, S satisfies z¥y“z¥ = z¥. Conversely, let us assume that S satisfies z“y“z¥ = zv,
let I be the minimum ideal of S, let e be an idempotent of S (so e € I), let H, be the
H -class of e, and let ¢: S — H, be given by ¢(s) = ese. Since es, se € I, we have
es = es(es)” and se = (se)“se. So este = es(es)”(te)*te = es(es)”e(te)“te = esete
for all s,t € S. Therefore ¢ is a morphism. Let ~ be the congruence on S defined
by s ~ tifand only if s = t or s,t € I and s H t. Then S/ ~e LI. We
let : S — S/ ~ be the projection morphism. Again, we verify that ¢(s) = (1)
and ¥(s) = ¥(t) implies s = t. Indeed, if s & I, then 9(s) = ¢(t)implies t ¢ T
and s = t. If s € I, then 9(s) = 9(t) implies that ¢t € I and t H s. Let f
be the idempotent of the common H-class of s and ¢: then ¢(s) = ¢(t) implies
s = fsf = (fef)s(fef) = flese)f = flete)f = (fef)t(fef) = ftf = t. Thus, §
imbeds in H, x S/~, and hence S € GV LI. Since clearly LIVG C LI ® G, we
have obtained the two first equalities.

G (m LI is generated by semigroups S on which there exists a congruence p
such that S/p € LI and each idempotent class of p is a group. Thus S/p satisfies
z¥yz* = z¥ and so S satisfies (z¥yz¥)¥ = z¥, that is, S € LG. Conversely, if
S € LG and [ is its minimum ideal, let ~ be the congruence on S defined by s ~ ¢
if s=torsteland s Ht. Then S/~ LI and each idempotent class of ~ is an
H -class in I, that is, a group. So G (m LI = LG.

In order to verify the strict containment of LIVG in LG, it suffices to consider
the case of a non-orthodox completely simple semigroup. ]

With the same proofs, one also obtains the following.
Corollary 3.2.  Let H be a non-trivial pseudovariety of groups.
(1) N@H=H@N=NVH=IENH.

2 K@H=H@®K=KVH=[z¥y =z*]nH.
3) D@H=H@®D=DVH-=[yz¥ =z*] nH.
(4) LI®H = LIVH = [z*y“z* = z*|NH is strictly contained in H@®LI=LH. m
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3.2 Existence of certain systems of greatest congruences

In a group G, a congruence is entirely determined by its unique idempotent class,
which is a normal subgroup of G. Let H be a pseudovariety of groups: a finite
group admits a greatest congruence over H if and only if it admits a greatest normal
subgroup in H.

Proposition 3.3.  Let H be a pseudovariety of groups such that H = H (® H.
Then every group admits a greatest congruence over H.

Proof. =~ We want to prove that each group G has a greatest normal subgroup
Gu in H. Observe that if G € H, then Gy = G, and if G has no non-trivial
normal subgroups in H, then Gg = 1. In particular, if G is simple, then Gy
exists. We proceed by induction on the order of G. If |G| < 3, then G is simple,
so Gy exists. Let us now assume that |G| > 3. If G has no non-trivial normal
subgroup in H, then Gy exists, and is trivial. Otherwise, let N be a non-trivial
normal subgroup of G in H. Let ¢:G — G/N be the natural morphism. Since
IG/N| < |G|, K = (G/N)u exists: we let H = ¢ '(K). Then H is normal in G.
Since H=H ® H, H/N =K € H and N € H, we have H ¢ H. Finally, if H' is
a normal subgroup of G in H, then ¢(H') is a normal subgroup of G/N in H, and
hence ¢(H') C K. Thus H' C H, and hence H is the greatest normal subgroup of
G in H. ]

Examples 3.4.  Not every group has a greatest normal abelian subgroup: if Qg =
{#£1,+i,£5, +k} is the group of quaternions, all proper subgroups are abelian and
normal, but there is no greatest abelian subgroup.

The pseudovarieties G, (where p is prime and G, consists of all p-groups),
Gn (where II is a set of prime numbers and Gy is the pseudovariety of [I-groups),
and the pseudovariety of all solvable groups, are closed under extension, that is,
under Mal’cev product with themselves. If p is a fixed prime, the intersection of the
p-Sylows of a group G constitutes its greatest normal subgroup in G,.

On the other hand, the pseudovariety G,, of all nilpotent groups is not closed
under extension. Yet each finite group has a greatest normal nilpotent subgroup,
called the Fitting subgroup [16].

Theorem 3.5.  If H is a pseudovariety of groups such that each group admits a
greatest congruence over H, then each semigroup admits a greatest congruence over
NVvH, KVH, DVH and LH.

Before we prove Theorem 3.5, let us recall a few facts about completely simple
semigroups (see [7]). Every completely simple semigroup S admits a normalized Rees
matrix representation S = M(G, I, A, P), where G € G, I and A are finite sets and
P is a (A x I')-matrix with entries in G, and with a full row and a full column of 1.
The group G is called the structure group of S. The product in S is given by

(ia g, A) (.77 h‘: N) = (21 gp)\,jha /J')
Moreover, the congruences on S are characterized by the following result [7].
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Let N be a normal subgroup of G and let ~; and ~, be equivalence relations
on I and A. We say that the triple (N, ~p,~,) is admissible if
i~pj = YA€EA pri=pa; (mod N)
Arvpp = Yiel, py;=pu; (mod N)

Lemma 3.6. Let S be a completely simple semigroup and let M(G,I,A, P) be a
normalized Rees matriz representation of S.

(1) For each admissible triple (N, ~r,~,), the relation o on S given by
(g, Mo (g, h,u) <= g=h (mod N),i~yj and A~y it
is a congruence on S.

(2) Every congruence on S is obtained in this fashion.
As a result, there is a greatest congruence on S for which the first component of the
associated triple is a fized normal subgroup N : it is the congruence for which
t~pj &= VAEA, pri=py; (mod N)
Arvpp = Yiel, pyi=p,; (modN)
]

This lemma is used to prove Theorem 3.5 in the case of a completely simple
semigroup.

Lemma 3.7. If H is a pseudovariety of groups such that each group admits a
greatest congruence over H, then each completely simple semigroup admits a greatest
congruence over NVH, KVH, DVH and LH.

Proof. Let S = M(G,I,A, P) be a completely simple semigroup given by a
normalized Rees matrix representation. Let H be the greatest normal subgroup of
G in H and let ~; and ~, be the equivalence relations on I and A given by

i~y j = VYAEA pri=ps,; (mod H)
Ampp <= Yi€l, py;=p,; (mod H)
Let o be the congruence on S corresponding to the triple (H,~j,~4). Then ¢ is
trivially a congruence over LH.

Let 7 be a congruence on S over LH, and let (N,=;,=,) be the associated
admissible triple. Then every idempotent class of 7 is a completely simple semigroup
with structure group N, so N € H, and hence N C H. Therefore

. . g=h (mod N); forall N € A, ¢ €I, pry =

69,070 o) = {pwv (mod N) and py; =px; (mod N)
—_ {g =h (mod H); forall X e A, 7 €I, pry =
Puy (mod H) and py; = py; (mod H)
= (59,20, h,p)
Thus o is the greatest congruence on S over LH.
The construction of the greatest congruences on S over K V H, (respectively

DV H, NVH) is similar: it suffices to modify the above construction by choosing
~r (respectively ~4, ~; and ~,) to be trivial. [ ]
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A simple examination of these constructions reveals the following.

Corollary 3.8.  Let S be a completely simple semigroup. The join of the greatest
congruences on S over KVH and DVH is the greatest congruence over LH. Their
intersection is the greatest congruence over NV H. ]

We can now prove Theorem 3.5.

Proof of Theorem 3.5. Let S be a finite semigroup and let v be the greatest
congruence on S over LG. For each idempotent v-class N, N € LG, so all the
regular elements of N are contained in its minimum ideal, say D. Moreover D € CS:
we let o(D) be the greatest congruence on D over LH (respectively KV H, DVH,
NV H). For each idempotent o(D)-class @, we let Py g be the set

Pyo={seN|ss"eq@}.

Then the Py g are pairwise equal or disjoint, and we let P be the partition of S
whose classes are the Pyg and S\ Ung Pn,o. Finally, we let p be the greatest
congruence on S contained in P: such a congruence exists by Corollary 1.3.

Observe that each idempotent of S lies in some Py, so its p-class C is
contained in Pygq. But Pyg C N, so C € LG. Moreover the minimum ideal of C
is contained in the set of regular elements of N, namely D, so it is contained in Q.
Therefore the minimum ideal of C' lies in LH (respectively KVH, DVH, NV H),
and hence so does C. Thus, p is a congruence over LH (respectively KVH, DVH,
NVvH).

Let now 7 be a congruence on S over LH (respectively K v H, D Vv H,
NV H). In order to verify that 7 is contained in p, it suffices to verify that 7 is
contained in the partition P. Let s,t € S such that s7¢. Since 7 is over LG, we
have svt. If the v-class of s and ¢ is not idempotent, then s,¢ € S \ Ung Prno-
So now we assume that the v-class of s and t, say N', is idempotent. Let D’
be the minimum ideal of N’. The restriction of 7 to D' is over LH (respectively
KVH, DVH, NVH), so it is contained in o(D'). But st implies ss¥ rtt,
and ss¥,1t* € D', so we have ss¥o(D')tt. If the o(D')-class of ss¥,tt* is not
idempotent, then s,t € S\ UygPng. Otherwise, this o(D')-class, say @', is
idempotent, and s,t € Py g . Thus 7 is contained in P, and hence in p. Thus
p is the greatest congruence on S over LH (respectively KVH, DVH, NV H). =

4. Greatest congruences which form weakly radical congruence systems

4.1 The greatest congruences of Section 3.2 form weakly radical congru-
ence systems

Theorem 4.1.  If H is a pseudovariety of groups such that each group admits a
greatest congruence over H, then the systems of greatest congruences over N v H,
KVH, DVH and LH are weakly radical congruence systems.
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Proof. Let p = (p(S))s be the system of greatest congruences over LH (respec-
tively KVH, DVH, NVH). By Proposition 2.8, it suffices to verify that p satisfies
Condition C4, that is, to verify that if ¢: S — T is an onto morphism, then z p(S)y
implies @(z) p(T) p(y) for all z,y € S.

Let us first assume that S is a group. Then T is a group as well. Let H
(respectively K ) be the greatest normal subgroup of S (respectively T') in H. Since
¢ is onto, p(H) is normal in T, and p(H) € H, so ¢(H) C K. Now p(S) is
a congruence on a group, so it is in fact a congruence over LH N G (respectively
(KVH)NG, (DVH)NG, (NVH)NG), that is, a congruence over H. Thus, p(S)
is the greatest congruence on S over H, and is given by

zp(S)y <= wzy 'e€H
A similar formula characterizes p(T), and we have

zp(S)y = wy '€ H
= p(2)e(y) ™ € p(H)
= p@)py) ' €K
= ¢(z)p(T) ¢(y)-

Let us now assume that S = M(G, I, A, P) is a completely simple semigroup,
given by a normalized Rees matrix representation. Then T also is in CS. Let
(H, ~r,~4) be the admissible triple associated with p(S), and let (N,=;,=,) be
the admissible triple associated with the congruence induced by ¢ on S. Then

’iEIj —— V)\GA, Pri = Paj (mod N)
A=ap = Vel Dri = DPuji (mod N)

Moreover, M(G/N,I/ =1,A/ =x,Q), with gy = PN, is a normalized Rees
matrix representation of T. In this representation, ¢ is given by ¢(i,g,A) =
([¢], gN,[A]). Let H' be the greatest normal subgroup of G/N in H and let ¢: G —
G/N be the natural morphism. Then the previous case shows that, for all ¢,¢' € G,
g=¢ (mod H) implies gN = ¢’ N (mod H'). So

g=nh (mod H);forall X € A, 7 €1,
(4,9, A) p(S) (G, by 1) = {p)\,i’ = P, (mod H) and Py =DPxj
(mod H)
{gN = hN (mod H'); for all N’ € A,
— 7 e I, p)\,i/N = pu,i’N (IIIOd H’) and
p)\/)iN = p)\/)jN (mod H/)
= ¢(i,9,A) p(T) p(j, b, ).

Finally, we consider the general case. In order to show that z p(S)y implies
w(z) p(T) p(y), it suffices to verify that z p(S)y implies that p(z) and (y) lie in
the same class of the partition P used to define p(T") (see the proof of Theorem 3.5).
Indeed, if the relation {(¢(z},¢(y)) | 2 p(S)y} is contained in P, then so is its
transitive closure. But it is not difficult to verify that this transitive closure is in
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fact a congruence on 7', so it is contained in the greatest congruence contained in P,
namely p(T).

Let ©(S) and v(T) be the greatest congruences on S and T respectively over
LG. Recall that the classes of P are

e the Pyg, where N is an idempotent v(T)-class of T and @ is an idem-
potent p(D)-class of the minimum ideal D of N (which is in CS), and

[ 4 T\UN,QPN,Q-

Let z,y € S be such that z p(S)y. Then zv(S)y, and hence ¢(z) ¥(T) p(y), since
v is a radical congruence system (see Section 2.3). If the v(T')-class of ¢(s) and
@(t) is not idempotent, then ¢(s), p(t) € T\ Uy g Pn,q. So we now assume that the
v(T)-class of p(s) and ¢(t), say N’, is idempotent, and let D’ be its minimum ideal.
Then ¢(x)p(z)?, o{y)e(y)® € D’'. Let C be the minimum ideal of the subsemigroup
@ 1(D') of S. Then C € CS and ¢(C) = I (see for instance [15]). Moreover, for
each idempotent e of C', we have

er* p(S) ey”

ex” p(C) ey” since p satisfies C2
plex*) p(D') ¢(ey”) from the previous case.
o(z¥e) p(D) ¢(y“e) similarly.

Choosing e such that ¢(e) = p{z*), it follows that
¢(z*) p(D') p(z*y*) p(D') (y*z?),
so ¢(z¥) p(D) p(y*z*)p(zy”) = p(y*zz"y")
whence  ¢(z%) p(D') o((y*s*s°y*)*) = p(y*)-

In the same fashion, we show that ¢(ezz“e) p(D’) p(eyy“e) for each idempotent e of
C. Choosing again e such that ¢(e) = ¢(z¥), we get

o(za”) p(D") e(z“yy“z") p(D') o (y*yy“y") = o(yy*)-

Thus, if the p(D')-class of @(zz*¥) and @(yy*), say @', is not idempotent, then
@(x), () € T\ Un,g Prng- If, on the other hand, Q' is an idempotent class, then
(), p(y) € Py g This completes the proof. [

Corollary 4.2. If H is a pseudovariety of groups such that each group admits a
greatest congruence over H, then the systems of greatest congruences over NV H,
KvVvH, DVH and LH are radical congruence systems if and only if H@m H =H.

Proof. By Proposition 2.8 and Theorem 4.1, the system of greatest congruences
over NV H (respectively KVH, DV H, LH) is a radical congruence system if and
only if NV H (respectively KV H, DV H, LH) is closed under Mal’cev product
with itself. It is easily verified that this is the case if and only if H (m H = H. n

We also obtain the following corollary to Corollary 2.12 and Theorem 4.1.
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Corollary 4.3. Let W be a decidable pseudovariety, and let H be a decidable
pseudovariety of groups such that each group admits a greatest congruence over H
(e.g. H is decidable and H @ H = H ). Then the pseudovarieties (N V H) (m W,
(KVH) @W, (DVH) @ W and LH @ W are decidable for each prime p. =

4.2 All systems of greatest congruences over a pseudovariety which are
radical congruence systems

We first determine all possible values (modulo group theory) of VN CS when V is
such that every semigroup admits a greatest congruence over V.

Lemma 4.4.  Let'V be a pseudovariety such that each completely simple semigroup
admits a greatest congruence over V, and let H =V N G. Then every group admits
a greatest congruence over H and V N CS is equal to one of H= (NVH)NCS,
(KVH)NCS, (DVH)NCS or (LH)NCS.

Proof. Let LZ = [zy = z] and RZ = [yz = z]. Four cases may arise:

o f LZ,RZ Z V, then VNCS C G, and hence VN CS = H.

o fLZC Vand RZZ V, then VNCS C LZVH, and hence VNCS =LZVH =
(KvH)NCS.

e f RZCV and LZ € V, then dually VN CS = (DVH)NCS.

o If LZVRZ C V, then VN CS contains (DVH)NCS and (KV H) N CS.
So, for each completely simple semigroup S, the greatest congruence on S over V
contains the greatest congruences on S over K VH and DV H. By Corollary 3.8,
the join of these two congruences is the greatest congruence on S over LH. So
LHNCS CVNCS. But VNCS is trivially contained in CSNH =LHNCS, so
VNCS=LHNCS. ]

Theorem 4.5.  The only pseudovarieties V such that each semigroup admits a
greatest congruence over V and such that the resulting congruence system is a radical
congruence system are S and the pseudovarieties of the form NVH, KVH, DVH
and LH where H is a pseudovariety of groups such that each group admits a greatest
normal subgroup in H and such that H(» H =H.

Proof. If V # S, then by Corollary 2.10, we have V. = (VN CS) (» N. Now
Lemma 4.4 shows that VNCS is one of (NVH)NCS, (KVH)NCS, (DVH)NCS or
LHNCS, with H = VNG and each group admits a greatest normal subgroup in H. It
is easily verified (say with the help of Lemma 1.1) that (NVH)NCS)@N =NVH,
(KVH)NCS)@mN =KVH, (DVH)NCS)®@N =DVH and (LHNCS)@N =
LH. Moreover, by Proposition 2.8, V(® V =V, so H (m H = H. This concludes
the proof of the theorem, in view of Corollary 4.2. n

5. Open problems

We have, in a way, completed the work of [3], by determining all the pseudovarieties
'V such that each semigroup admits a greatest congruence over V and such that these
congruences form a radical congruence system. There remain however several open
questions regarding radical congruence systems.
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For instance, we do not know any pseudovariety V such that every semigroup
admits a greatest congruence over V and such that the resulting system of con-
gruences is a weakly radical congruence system, other than S and those listed in
Theorem 4.1. Would it be possible to list them all? We know that VN CS Cc V C
(VNCS) @ N, and that if H = GNV, then VNCS € {H,LZVH,RZVH, CSNH}.
The least pseudovariety satisfying these Conditions is NullvVH, but it is easy to show
that not every semigroup admits a greatest congruence over Null vV H. Let indeed
S = {a,b,ab,0} be given by a®> = b> = ba = 0. Then the ideals {a,ab,0} and
{b,ab,0} are in Null, so the greatest congruence on S over Null v H, if it exists,
is universal. But S ¢ Null vV H, a contradiction. Is it possible to show that, under
these hypotheses, N C V?

We also know very little about the classification of the (weakly) radical congru-
ence systems which are not systems of greatest congruences over some pseudovariety.
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