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Abstract

We consider a (linear) system of thermo-elastic plate equations which accounts for
rotational forces, under all canonical boundary conditions (B.C.). These include
cases of coupled B.C. such as: hinged mechanical/Neumann thermal B.C., and the
most challenging case of all, the so-called case of free B.C. In all cases, the original
thermo-elastic s.c. semigroup of contractions admits a structural decomposition, for all
positive times, as the sum of a \non-compact semigroup" and a compact component.
In all cases, save (at present) the case of free B.C., the \non-compact semigroup"
component is actually a s.c. uniformly (exponentially) stable group, based only on
the mechanical variables: as a consequence, a precise uniform (exponential) stability
result of the original thermo-elastic semigroup is then obtained. For the free B.C.
case, the \non-compact" semigroup corresponds to a simpler problem with uncoupled

elastic equation and shear force B.C. The stated structural decomposition requires, for
its proof, sharp/optimal regularity theory of the associated elastic Kircho� equation;
including two new such results as in [27, 28] for hinged/Neumann and for free B.C.,
respectively. The structural decomposition results of this paper for models that account
for rotational forces are at striking contrast with the property of analyticity of the
thermo-elastic semigroup, which characterizes, instead, models which do not account
for rotational forces. Implications on exact controllability are noted.

1. Introduction. Problem statement. Main results

1.1. A coupled B.C. case: Hinged mechanical B.C. and Neumann

(Robin) thermal B.C.

The partial di�erential equations (P.D.E.'s) of linear thermo-elastic plate equations

on a bounded domain 
 of R2 are derived e.g. in Lagnese [18]. In general, a

thermo-elastic system consists of an elastic equation in the vertical displacement

w and a heat equation in the relative temperature � about the stress-free state

� = 0; which transfer mechanical and thermal energy through coupling. In the

linear, homogeneous case, if one normalizes inessential constants and omits lower-

order terms, these equations are8><
>:

wtt � 
�wtt +�2
w +�� = 0 in (0; T ]� 
 � Q;

�t ��� ��wt = 0 in Q;

w(0; � ) = w0; wt(0; � ) = w1; �(0; � ) = �0 in 
;

(1:1:1)

(1:1:2)

(1:1:3)

to be augmented by boundary conditions (B.C.) on @
; where throughout this paper,

the constant 
 is positive: 
 > 0: We shall associate with the above equations

several canonical B.C. We begin in this section with a challenging case of coupled
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B.C.: hinged mechanical B.C. and Neumann (Robin) thermal B.C., i.e., if � = unit

outward normal

wj� � 0; [�w + �]� � 0;

�
@�

@�
+ b�

�
�

� 0; b � 0; � = (0; T ]� � : (1.1.4)

We note the coupling between w and � in the second B.C. It is critical to distinguish

between the case 
 = 0 (whereby Eqn. (1.1.1) becomes the Euler-Bernoulli equation

with in�nite speed of propagation) and the case 
 > 0 (whereby Eqn. (1.1.1) becomes

the hyperbolic Kircho� equation with �nite speed of propagation. The constant 


accounts for rotational forces and is proportional to the square of the thickness of the

plate in the two-dimensional case.

For 
 = 0 in (1.1.1) it has been recently shown that under all canoni-

cal B.C., Eqns. (1.1.1) { (1.1.3) de�ne a s.c. contraction semigroup: [w0; w1; �0] !
[w(t); wt(t); �(t)] on a natural energy space, which, moreover, is analytic : see [32] for

the �rst (technical) key contribution in the case of clamped mechanical B.C./Dirichlet

thermal B.C., which spurred interest on this issue; and, subsequently, [21-23] for all

canonical B.C.; see also [31] for some uncoupled cases by an indirect proof by con-

tradiction. A recent review is given in [24]. As a consequence of analyticity, such

contraction semigroups are, moreover, uniformly (exponentially) stable.

The present paper is entirely devoted to the case 
 > 0 in (1.1.1): here,

the corresponding s.c. contraction semigroup on a di�erent natural energy space

displays radically di�erent structural properties, as the main results of this paper

will show. However, the property of uniform exponential stability is preserved. See

Literature below.

Abstract model and well-posedness. Our starting point is an abstract model for

problem (1.1.1) { (1.1.4), which is readily seen to be (details e.g., in [3; 25, Chapter 3,

Section 12] (
wtt + 
ADwtt +A2

Dw �AR� = ADD(�j�);
�t +AR� +ADwt = 0;

(1:1:5)

(1:1:6)

ADf = ��f; D(AD) = H
2(
) \H1

0 (
); D(A
1
2

D) = H
1
0 (
); (1.1.7)

ARf=��f; D(AR)=

�
f 2 H2(
) :

�
@f

@�
+ bf

�
�

= 0

�
; D(A

1
2

R)=H
1(
); (1.1.8)

A2
Df = �2

f; D(A2
D) = ff 2 H4(
) : f j� = �f j� = 0g; (1.1.9)

h = Dg () f�h = 0 in 
 : hj� = gg;
D : continuous H

s(�)! H
s+ 1

2 (
); s 2 R ;

)
(1:1:10)

thus L2(�)! H
1
2 (
) � H

1
2
�2�(
) = D(A

1

4
��

D ); � > 0: (1.1.11)
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We shall explicitly consider the case b > 0 throughout (Robin B.C.); for b = 0

(Neumann B.C.), one works on L2(
) factored by the one-dimensional null space

of AR: Setting throughout y = [w;wt; �]; the �rst-order system corresponding to

(1.1.5), (1.1.6) is

_y = A 
y; A 
 : Y
 � D(A 
 )! Y
; Y
 = D(AD)�D(A
1
2

D;
)� L2(
); (1.1.12)

AD;
 = (I + 
AD); (x1; x2)
D(A

1
2
D;


)
= ((I + 
AD)x1; x2)L2(
); (1.1.13)

A 
 =

2
64

0 I 0

�A�1
D;
A2

D 0 A�1
D;
 [AR +ADD( � j�)]

0 �AD �AR

3
75 ; (1:1:14a)

D(A 
 ) =
n
w1; w2 2 D(AD); � 2 D(AR) : [ADw1 �D(�j�)] 2 D(A

1
2

D)
o
: (1:1:14b)

Proposition 1.1.1. (i) The operator A 
 in (1.1.14) is dissipative and becomes

skew-adjoint on Y
; if one removes the bottom-right corner element �AR from

(1.1.14a):

Re (A 
x; x)Y
 = �(ARx3; x3)L2(
); x = [x1; x2; x3] 2 D(A 
 ) (1.1.15)

(ii) In fact, A 
 is maximal dissipative and generates a s.c. contraction semi-

group e
A 
 t on the space Y
 de�ned by (1.1.12): [w(t); wt(t); �(t)] = e

A 
 t[w0; w1; �0] 2
C([0; T ];Y
):

(iii) The resolvent R(�; A 
 ) is compact on Y
 .

For details of the proof via the Lumer-Phillip theorem we refer to [3],

[25, Chapter 3, Section 12].

Main result: structural decomposition. Substituting AR� from (1.1.6) into

(1.1.5), yields the equation

wtt + 
ADwtt +A2
Dw +ADwt = ADD(�j�)� �t : (1.1.16)

We then introduce the damped Kircho� equation corresponding to the left-hand side

of Eqn. (1.1.16):

�tt + 
AD�tt +A2
D�+AD�t = 0; �(0) = w0; �t(0) = w1 ; (1.1.17)

whose solution is (compare with (1.1.12) for Y
 )�
�(t)

�t(t)

�
= e

A 1;
 t

�
w0

w1

�
2 C([0; T ];Y1;
); Y1;
 � D(AD)�D(A

1
2

D;
); (1.1.18)

AD;
 de�ned in (1.1.13), where the operator A 1;
 is de�ned by

A 1;
 =

�
0 I

�A�1
D;
A2

D �A�1
D;
AD

�
: D(A 1;
 ) = D(A

3

2

D)�D(AD); (1.1.19)
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and plainly generates a s.c. group e
A 1;
 t on Y1;
 (the entry A�1

D;
AD is a bounded

perturbation on D(A
1

2

D;
); see (1.1.13)). Moreover, eA 1;
 t is uniformly (exponentially)

stable on Y1;
 : there exist constants M � 1, Æ > 0 such that, as is well known (and

can be shown in a few ways)

keA 1;
 tkL(Y1;
) �M e
�Æt
; t � 0; Æ > 0 : (1.1.20)

Our main result of the present subsection for problem (1.1.1) { (1.1.4) is the following

structural decomposition theorem.

Theorem 1.1.2. With reference to problem (1.1.1) { (1.1.4) and its corresponding

s.c. contraction semigroup e
A 
 t guaranteed by Proposition 1.1.1, we have that the

following decomposition holds true for all t > 0 :2
4 w(t)wt(t)

�(t)

3
5 = e

A 
 t

2
4w0

w1

�0

3
5 =

" h
e
A 1;
 t

h
w0

w1

ii
0

#
+K
(t)

2
4w0

w1

�0

3
5 ; (1.1.21)

where eA 1;
 t is the s.c. contraction uniformly stable group de�ned in (1.1.19) { (1.1.20),

and where the operator K
(t) (de�ned explicitly in (2.29) below ) satis�es

K
(t) : compact Y
 ! Y
: (1.1.22)

Corollary 1.1.3. The s.c. contraction semigroup e
A 
 t is uniformly (exponen-

tially ) stable on Y
 : moreover, ress(e
A 
 t) = ress(e

A 1;
 t) < 1; t > 0; where ress denotes

the essential spectrum radius. Thus, eA 1;
 t determines the decay of eA 
 t; except pos-

sibly for a �nite-dimensional subspace.

Remark 1.1.1. A fortiori, it follows from the decomposition in (1.1.21), the

s.c. semigroup e
A 
 t cannot be compact for all t > 0 (for otherwise the group e

A 1;
 t

would be compact for all t > 0; impossible!). Equivalently, since the resolvent

R(�; A 
 ) of A 
 is compact by Proposition 1.1.1 (iii), then eA 
 t cannot be continuous in

the uniform operator topology of Y
 for all t > 0 [33, p. 48-51]. These results for 
 > 0

should be contrasted with the case 
 = 0 where the corresponding s.c. semigroup is

analytic on Y
; [21-24], in particular, [22] for the B.C. in (1.1.4).

1.2. An abstract model for uncoupled B.C.

In this subsection we introduce an abstract thermo-elastic model, which in particular

will cover concrete thermo-elastic problems (1.1.1) { (1.1.3), possibly de�ned on a

bounded domain 
 � R
n , with uncoupled B.C. (see Section 4).

Assumptions and well-posedness. With motivation coming from Eqns. (1.1.1),

(1.1.2), the abstract model considered in this subsection is8>><
>>:

wtt + 
Cwtt + Aw �B� = 0; 
 > 0;

�t +B� +Bwt = 0;

w(0) = w0 2 D(A 1
2 ); wt(0) = w1 2 D(A 1

4 ); �(0) = �0 2 H;

(1:2:1)

(1:2:2)

(1:2:3)
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with constant 
 > 0 throughout, under the following standing assumptions:

(H.1) (i) A;B;C are (unbounded) positive, self-adjoint operators on the

Hilbert space H and D(A 1

2 ) \ D(B) is dense in H; (ii) with compact resolvent

(as in the motivating physical models).

(H.2)
D(A 1

4 ) � D(B 1
2 )() B

1
2A

� 1
4 2 L(H); (1.2.4)

(H.3)

D(A 1
4 ) = D(C 1

2 ); so that A
1
4C

� 1
2 2 L(H) and C

1
2A

� 1
4 2 L(H): (1.2.5)

Combining (H.3) = (1.2.5) with (H.2) = (1.2.4), we obtain that

D(C 1
2 ) � D(B 1

2 )() B
1
2C

� 1
2 2 L(H): (1.2.6)

The �rst-order version corresponding to Eqns. (1.2.1), (1.2.2) is

_y(t) = A 
y(t); y(0) = y0 = [w0; w1; �0] 2 Y
; y(t) = [w(t); wt(t); �(t)]; (1.2.7)

A 
 =

2
4 0 I 0

�C�1

 A 0 C

�1

 B

0 �B �B

3
5 : Y
 � D(A 
 )! Y
; (1.2.8)

D(A 
 ) = D(A 3
4 )� [D(A 1

2 ) \ D(B)]�D(B);
Y
 � D(A 1

2 )�D(C
1
2

 )�H � Y1;
 �H ;

)
(1.2.9)

Y1;
 � D(A 1
2 )�D(C

1

2

 );D(C

1

2

 ) = D(A 1

4 );

C
 = (I + 
C); (x1; x2)
D(C

1
2

 )

= (C
x1; x2)H :

9=
; (1.2.10)

Notice that at the level of writing D(A 
 ) in (1.2.9), as dense in Y
 , we

have used (H.1) as well as D(C 1

2 ) � D(A 1

4 ); contained in (H.3) = (1.2.5). By

(1.2.10) (right)

the operators C�1

 A and C�1


 B are

positive self-adjoint on the space D(C
1

2

 ):

)
(1.2.11)

The densely de�ned operator A 
 in (1.2.8), (1.2.9) is dissipative, hence clos-

able [33, p. 15]. [In the applications of Section 4, we have D(A 1

2 ) � D(B); and
A 
 is closed.] Once closed, the operator obtained from A 
 in (1.2.8) by omitting

the bottom-right corner element (�B) is skew-adjoint on the space Y
 de�ned by

(1.2.10). Thus, the Lumer-Phillips theorem, or its corollary as in [33, p. 15], readily

yields
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Proposition 1.2.1. Assume (H.1) (i), (H.2), (H.3). Then:

(i)
Re (A 
x; x)Y
 = �(Bx3; x3)H ; x = [x1; x2; x3] 2 D(A 
 ) :

(ii) Once closed, A 
 is maximal dissipative and hence is the generator of a s.c. con-

traction semigroup e
A 
 t on the space Y
 in (1.2.9): y(t) = [w(t); wt(t); �(t)] =

e
A 
 t[w0; w1; �0] 2 C([0; T ];Y
):

(iii) Assume further (H.1) (ii). Then, the resolvent R(�; A 
 ) of A 
 is compact

on Y
:

Main result: structural decomposition. In order to state our main result,

Theorem 1.2.2 below, we need to introduce two (uncoupled) systems related to (1.2.1):

the abstract undamped Kircho� equation(
 tt + 
C tt + A = 0;  (0) =  0;  t(0) =  1 ;

f 0;  1g 2 Y1;
 � D(A 1
2 )�D(C

1
2

 ); D(C

1
2

 ) = D(A 1

4 ) :

(1:2:12)

(1:2:13)

as well as its damped version(
�tt + 
C�tt + A�+B�t = 0; �(0) = �0; �t(0) = �1 ;

f�0; �1g 2 Y1;
 = D(A 1
2 )�D(C

1
2

 ); D(C

1
2

 ) = D(A 1

4 ) :

(1:2:14)

(1:2:15)

Thus, we set, with D(A 1;
 ) = D(A 0;
 ) = D(A 3

4 )�D(A 1

2 );

A 0;
 =

�
0 I

�C�1

 A 0

�
;

A 1;
 =

�
0 I

�C�1

 A �C�1


 B

�
= A 0;
 +

�
0 0

0 �C�1

 B

�
: D(A 0;
 )! Y1;
:

9>>>=
>>>;

(1.2.16)

In (1.2.16), the perturbation C
�1

 B is bounded on the space D(C

1

2

 ); which is the

second component space of Y1;
 : recalling (1.2.10) and the implication (1.2.6),

kC�1

 Bxk

D(C
1
2

 )

= kC� 1
2


 B
1
2B

1
2C

� 1
2


 C

1
2

 xkH � kkC

1
2

 xkH = kkxk

D(C
1
2

 )
: (1.2.17)

The operator A 0;
 in (1.2.16) is skew-adjoint on the space Y1;
 in (1.2.13) and thus

generates a s.c. unitary group eA 0;
 t on Y1;
: By (1.2.17), the operator A 1;
 in (1.2.16)

generates likewise a s.c. contraction group eA 1;
 t on Y1;
 which, moreover, is uniformly

stable: there exist constants M � 1 and Æ > 0; such that

keA 1;
 tkL(Y1;
) �M e
�Æt
; t � 0; Æ > 0 : (1.2.18)

Thus, the solutions [ (t);  t(t)]; [�(t); �t(t)] 2 C([0; T ];Y1;
) of problems (1.2.12)

and (1.2.14) are�
 (t)

 t(t)

�
= e

A 0;
 t

�
 0

 1

�
2 C([0; T ];Y1;
);  (t;�0; �1) = C0;
(t) 0 + S0;
(t) 1; (1.2.19)
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�
�(t)

�t(t)

�
= e

A 1;
 t

�
�0

�1

�
= e

A 0;
 t

�
�0

�1

�
+

Z t

0

e
A 0;
 (t��)

�
0

0

0

�C�1

 B

� �
�(�)

�t(�)

�
d� ; (1.2.20)

�(t) = �(t;�0; �1) =  (t;�0; �1)�
Z t

0

S0;
(t� �)C�1

 B�t(�) d� ; (1.2.21)

where C0;
(t) is the cosine operator on D(C
1
2

 ) corresponding to the negative self-

adjoint operator [�C�1

 A] on D(C

1

2

 ); and S0;
(t) its corresponding sine operator.

We may now state our �nal assumption (which is satis�ed for all B.C. of interest,

either trivially (Eqn. (4.1.6) of Section 4.1) or via \sharp trace regularity theory"

(Eqn. (4.2.7) of Section 4.2)).

(H.4) With reference to the Kircho� problem (1.2.12), (1.2.13), assume that

the following regularity property holds true for one, hence any, T :

f 0;  1g 2 Y1;
 )  tt 2 L2(0; T ;H); continuously: (1.2.22)

(For a dual version, see Remark 1.2.1 below.)

Our main result of the present subsection for problem (1.2.1), (1.2.2) is the

following structural decomposition theorem, the counterpart of Theorem 1.1.2 of the

preceding subsection.

Theorem 1.2.2. Assume (H.1), (H.2) = (1.2.4), (H.3) = (1.2.5), (H.4) = (1.2.22).

With reference to problem (1.2.1), (1.2.2) and its corresponding s.c. contraction semi-

group eA 
 t guaranteed by Proposition 1.2.1, we have that the following decomposition

holds true for all t > 0;2
4 w(t)

wt(t)

�(t)

3
5 = e

A 
 t

2
4 w0

w1

�0

3
5 =

" h
e
A 1;
 t

h
w0

w1

ii
0

#
+K
(t)

2
4 w0

w1

�0

3
5 ; (1.2.23)

where eA 1;
 t is the s.c. contraction uniformly stable group de�ned in (1.2.16), (1.2.18),

and where the operator K
(t) (de�ned explicitly in (3.35) below ) satis�es

K
(t) : compact Y
 ! Y
 (see (1.2.9)). (1.2.24)

Corollary 1.2.3. Assume (H.1), (H.2) = (1.2.4), (H.3) = (1.2.5), (H.4) = (1.2.22).

Then the s.c. semigroup e
A 
 t is uniformly (exponentially ) stable on Y
 : moreover,

ress(e
A 
 t) = ress(e

A 1;
 t) < 1; t > 0; where ress denotes the essential spectrum radius.

Thus, eA 1;
 t determines the decay of eA 
 t; except possibly for a �nite-dimensional

subspace. Moreover, eA 
 t cannot be compact, or continuous in the uniform operator

topology of Y
; for all t > 0; by the same reason as in Remark 1.1.1.

Remark 1.2.1. A dual version of assumption (H.4) = (1.2.22) is as follows:

(H.4� )

f!
Z t

0

e
A 0;
 (t��)

�
C
�1

 f(�)

0

�
d� : continuous L2(0; t;H)! Y1;
: (1.2.25)
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In fact, pick f 0;  1g 2 Y1;
 , recall (below (1.2.17)) that the operator A 0;
 is skew-

adjoint on Y1;
 : A
�
0;
 = �A 0;
 ; so that e

A �0;
 (t��) = e
A 0;
 (��t) and compute via (1.2.12),

(1.2.19)

�Z t

0

e
A 0;
 (t��)

�
C
�1

 f(�)

0

�
d�;

�
 0

 1

��
Y1;


=

Z t

0

��
C
�1

 f(�)

0

�
; e

A 0;
 (��t)
�
 0

 1

��
Y1;


d� (1.2.26)

=

Z t

0

(C�1

 f(�);  (� � t; 0;  1))D(A

1
2 )
d� (1.2.27)

= (f; C�1

 A ( � � t); 0;  1))L2(0;T ;H) = (f;  tt( � � t);  0;  1))L2(0;T ;H); (1.2.28)

where  (� � t; 0;  1) solves Eqn. (1.2.12) with data f 0;  1g 2 Y1;
 at the initial

time t; backward in time (Eqn. (1.2.12) is time reversible). Thus, (1.2.28) shows that

(H.4) = (1.2.22) holds true if and only if (H.4� ) = (1.2.25) holds true.

Remark 1.2.2. Assumption (H.4) = (1.2.22) on the undamped Kircho� problem

(1.2.12), (1.2.13), will imply the same property for the damped Kircho� problem

(1.2.14), (1.2.15), and for the thermo-elastic problem (1.2.1) { (1.2.3): i.e.,

�tt 2 L2(0; T ;H) and wtt 2 L2(0; T ;H) continuously; (1.2.29)

see Lemma 3.5, Eqn. (3.15), and Remark 3.3, Eqn. (3.36), respectively. Then, the

property in (1.2.29) for wtt will, in turn, imply the regularity

[w0; w1; 0] 2 Y
 ) �t 2 L2(0; T ;H) and �tt 2 L2(0; T ; [D(B)]0) (1.2.30)

on the thermal component of the thermo-elastic problem (1.2.1) { (1.2.3) with �0 = 0;

see Remark 3.4.

1.3. The case of (coupled) free B.C.

In this subsection, we consider a thermo-elastic problem de�ned on a smooth bounded

domain 
 � R
2 with boundary �; this time with free B.C. [18, p. 151],

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

wtt � 
�wtt +�2
w +�� = 0 in (0; T ]� 
 = Q;

�t ��� ��wt = 0 in Q;

w(0; � ) = w0; wt(0; � ) = w1; �(0; � ) = �0 in 
;

�w +B1w + � = 0 in (0; T ]� � = �;

@�w

@�
+B2w � 


@wtt

@�
+
@�

@�
= 0 in �;

@�

@�
+ b� = 0 b � 0 in �:

(1:3:1)

(1:3:2)

(1:3:3)

(1:3:4)

(1:3:5)

(1:3:6)
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As in preceding cases, the constant 
 is positive, 
 > 0; throughout. The

boundary operators B1 and B2 are de�ned by [18, p. 16],

B1w = �(1� �)[2�1�2wxy � �
2
1wyy � �

2
2wxy] (1.3.7)

B2w = (1� �)
@

@�
[(�21 � �

2
2)wxy + �1�2(wyy � wxx)] ; (1.3.8)

where 0 < � < 1 is the Poisson's modulus, � = [�1; �2] is the unit outward normal

and � = [��2; �1] is a tangential unit vector. We note the coupling between w and

� on the two boundary conditions (1.3.5) and (1.3.6).

Abstract model and well-posedness. Our starting point is the following abstract

model for problem (1.3.1) { (1.3.6), for whose derivation we refer to [4] (however, a

hint will be given below (1.3.17)):8><
>:

wtt+
ANwtt+Aw�AR� = �AG1(�j�)+bAG2(�j�) in [D(A)]0;

�t+AR�+ANwt�ANN
@wt

@�
= 0 in [D(AR)]

0
;

(1:3:9)

(1:3:10)

where AN ; A; and AR are the following positive, self-adjoint operators on L2(
)

(we take b > 0 for de�niteness):

ANf=��f; D(AN) =

�
f 2 H2(
) :

@f

@�

���
�
= 0

�
; D(A

1
2

N) � H
1(
); (1.3.11)

Af=�2
f; D(A)=

�
f 2H4(
) : �f+B1f=0;

@�f

@�
+B2f=0 on �

�
;

D(A 1
2 ) = H

2(
);

9=
; (1.3.12)

ARf=��f; D(AR)=

�
f 2H2(
) :

@f

@�
+bf=0 in �

�
; D(A

1
2

R) � H
1(
): (1.3.13)

Moreover, the Neumann map N and Green maps G1; G2 are de�ned by

(here � > 0):

h = Ng ()
�
�h = 0 in 
;

@h

@�
=g on �

�
; N : Hs(�)! H

s+ 3
2 (
);

A
3

4
��

N N 2L(L2(�); L2(
));

9>=
>; (1.3.14)

h = G1g ()
�
�2
h = 0 in 
; �h+B1h = g;

@�h

@�
+B2h = 0 in �

�
; (1.3.15)

h = G2g ()
�
�2
h = 0 in 
; �h+B1h = 0;

@�h

@�
+B2h = g in �

�
; (1.3.16)

G1 : H
s(�)! H

s+ 5
2 (
);

G2 : H
s(�)! H

s+ 7
2 (
); s 2 R; A 5

8
��
G2;A

7
8
��
G2 2 L(L2(�);L2(
)):

)
(1.3.17)
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The following trace properties (proved by means of Green's second theorem)

are known [25]:

N
�ANf = f j�; f 2 H1(
); G�

1Af =
@f

@�
; f 2 H2(
);

G
�
2Af = �f j�; f 2 H1(
):

9=
; (1.3.18)

By way of a brief explanation, we recall that the derivation of the abstract

Eqns. (1.3.9) and (1.3.10) from the original P.D.E. problem (1.3.1) { (1.3.6) proceeds

by writing, via (1.3.14), (1.3.11),

�f = �

�
f �N

@f

@�

�
= �AN

�
f �N

@f

@�

�
; f 2 H2(
);

first for f = wtt with reference to Eqn. (1.3.1), whereby the terms �
ANN
@wtt
@�

and

�
AG2
@wtt
@�
; cancel out by (1.3.18); next, for f = wt with reference to Eqn. (1.3.2).

Details are in [4]. Setting

C
 = (I + 
AN); so that C�1

 AN =

1



(I � C

�1

 ) 2 L(L2(
));

D(C
1
2

 ) = D(A

1
2

N) = D(A
1
2

R) = H
1(
);

9>=
>; (1.3.19)

we have that the abstract Eqns. (1.3.9), (1.3.10) may be rewritten as the �rst-order

system

_y = A 
 y; A 
 : Y
 � D(A 
 )! Y
; y(t) = [w(t); wt(t); �(t)]; (1.3.20)

Y
 = D(A 1
2 )�D(C

1
2

 )� L2(
); (x1; x2)

D(C
1
2

 )

= (C
1
2

 x1; x2)L2(
); (1.3.21)

A 
 =

2
64

0 I 0

�C�1

 A 0 C

�1

 [AR�AG1( � j�)+bAG2( � j�)]

0 �AN+ANN
@

@�
�AR

3
75; (1:3:22a)

D(A 
 ) = fx1; x2 2 D(A
1

2 ) = H
2(
); x3 2 D(AR) � H

2(
) :

[x1 +G1(x3j�)] 2 D(C� 1
2


 A) = D(A 3
4 )g

9=
; (1:3:22b)

since [x2 � N
@x2
@�
] 2 D(AN) automatically, and since G2(x2j�) 2 H

3
2
+ 7

2 (
); by

trace theory on x3 and (1.3.17), and satis�es the �rst B.C. of A in (1.3.12), so

that G2(x3j�) 2 D(A 3
4 ) [10]. See also (5.1.2) below for C

�1

 AR(x3j�) 2 D(C

1
2

 )

automatically.

Proposition 1.3.1. (i) The operator A 
 in (1.3.22) is dissipative and becomes

skew-adjoint on Y
; if one removes the bottom-right corner element �AR from

(1.3.22a):

Re (A 
x; x)Y
 = �(ARx3; x3)L2(
); x = [x1; x2; x3] 2 D(A 
 ) (1.3.23)
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(ii) In fact, A 
 is maximal dissipative and generates a s.c. contraction semi-

group e
A 
 t on the space Y
 de�ned by (1.3.21): [w(t); wt(t); �(t)] = e

A 
 t[w0; w1; �0] 2
C([0; T ];Y
):

(iii) The resolvent R(�; A 
 ) is compact on Y
:

For details of the proof based on the Lumer-Phillips theorem, see [4].

Main results: Structural decomposition of eA 
 t . Substituting AR� from

(1.3.10) into (1.3.9) yields the equation

wtt+
ANwtt+Aw+ANwt�ANN
@wt

@�
= ��t�AG1(�j�)+bAG2(�j�) ; (1.3.24)

which, combined with Eqn. (1.3.10), allows us to express the semigroup solution

[w(t); wt(t); �(t)] guaranteed by Proposition 1.3.1 as follows via (1.3.19),

d

dt

2
4 w(t)wt(t)

�(t)

3
5 = A
;s

2
4 w(t)wt(t)

�(t)

3
5+

2
4 0

C
�1

 [��t + bAG2(�j�)]

0

3
5 ; (1.3.25)

A
;s =

2
6664

0 I 0

�C�1

 A �C�1


 AN + C
�1

 ANN

@

@�
�C�1


 AG1( � j�)

0 �AN +ANN
@

@�
�AR

3
7775 ;

D(A
;s) = D(A 
 ) :

9>>>>>>>=
>>>>>>>;

(1.3.26)

Proposition 1.3.2. The operator A
;s de�ned by (1.3.26) generates a s.c. semi-

group e
A
;st on Y
 , see (1.3.21). [The subindex stands for `stripped ' or `simpli�ed '

over A 
 in (1.3.22).]

The proof of Proposition 1.3.2, where eA
;st is not claimed to be a contraction,

is given in Section 5.2. Returning to Eqn. (1.3.25) and invoking the generation results

of Proposition 1.3.1 (ii) for A 
 , and of Proposition 1.3.2 for A
;s; we can write2
4 w(t)wt(t)

�(t)

3
5= e

A 
 t

2
4w0

w1

�0

3
5=

2
4 v(t)vt(t)

�(t)

3
5+
2
4 z(t)zt(t)

 (t)

3
5;
2
4 v(t)vt(t)

�(t)

3
5= e

A
;st

2
4w0

w1

�0

3
5; (1.3.27)

2
4 z(t)zt(t)

 (t)

3
5= K
(t)

2
4w0

w1

�0

3
5=Z t

0

e
A
;s(t��)

2
4 0

�C�1

 �t(�) + bC

�1

 AG2(�(�)j�)]
0

3
5d�: (1.3.28)

Thus, by (1.3.26), [v(t); vt(t); �(t)] in (1.3.27) solves problem
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8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

d

dt

2
4vvt
�

3
5= A
;s

2
4vvt
�

3
5;

i.e.

8>>>>><
>>>>>:

vtt + 
ANvtt +Av +ANvt �ANN
@vt

@�
= �AG1(�j�);

�t +AR�+ANvt �ANN
@vt

@�
= 0;

v(0) = w0; vt(0) = w1; �(0) = �0;

(1:3:29)

(1:3:30)

or, in explicit P.D.E. terms, as in (1.3.34) below. Instead, [z(t); zt(t);  (t)] in (1.3.28)

solves problem

d

dt

2
4 zzt
 

3
5 = A
;s

2
4 zzt
 

3
5+

2
4 0

�C�1

 �t + bC

�1

 AG2(�j�)]
0

3
5 i.e., (1.3.31)

8>><
>>:
ztt+
ANztt+Az+ANz�ANN

@zt

@�
= �AG1( j�)��t+bAG2(�j�);

 t +AR +ANzt �ANN
@zt

@�
= 0; z(0) = zt(0) =  (0) = 0:

(1:3:32)

(1:3:33)

In explicit P.D.E. terms, [v; vt; �] and [z; zt;  ] solve (writing v(0; � ) = v(0)

for short):

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

vtt�
�vtt+�2
v��vt = 0

�t �����vt = 0

v(0)=w0; vt(0)=w1; �(0) = �0

�v +B1v + � = 0

@�v

@�
+B2v � 


@vtt

@�
= 0

@�

@�
+ b� = 0

;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ztt�
�ztt+�2
z��zt = ��t in Q

 t �� ��zt = 0 in Q

z(0)=0; zt(0)=0;  (0) = 0 in 


�z +B1z +  = 0 in �

@�z

@�
+B2z�
@ztt

@�
+
@�

@�
= 0 in �;

@ 

@�
+ b = 0 in �:

(1:3:34)

(1:3:35)

(1:3:36)

(1:3:37)

(1:3:38)

(1:3:39)

(Notice that the fv; �g-problem has the v -equation and the second B.C. uncoupled,

unlike the original fw; �g-problem.)

Having established the decomposition of the original thermo-elastic semigroup

solution [w(t); wt(t); �(t)] as in (1.3.27) { (1.3.39), we can now state our structural

result in its �rst form.
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Theorem 1.3.3. With reference to (1.3.27) { (1.3.39), we have that the following

decomposition of the original thermo-elastic semigroup of Proposition 1.3.1 (ii) holds

true, for all t > 0 :2
4 w(t)wt(t)

�(t)

3
5 = e

A 
 t

2
4w0

w1

�0

3
5 = e

A
;st

2
4w0

w1

�0

3
5+K
(t)

2
4w0

w1

�0

3
5 ; (1.3.40)

where the operator K
(t) is explicitly de�ned in (5.4.1), via (5.4.2) { (5.4.4) below;

(i) K
(t) : compact Y
 ! Y
 ; (1.3.41)

(ii) the resolvent R(�;A
;s) of the generator A
;s satis�es the following property,

kR(� = a+ i�; A
;s)kL(Y
) does not tend to zero, as � !1 ; (1.3.42)

on vertical lines of the complex plane, with Re� = a �xed and suÆciently large. This

implies [33, p. 50] that the statement \the s.c. semigroup e
A 
;s t is compact on Y
 for

all t > 0" is false.

Part (i), Eqn. (1.3.41), is proved in Section 5.4; while Part (ii), Eqn. (1.3.42),

is proved in Section 5.3. A �ner decomposition of the original thermo-elastic semi-

group e
A 
 t than that in Theorem 1.3.3 is available, by extracting a larger \compact

part". The price to pay, however, is a loss of the interpretation of the \non-compact

semigroup," as arising precisely from a thermo-elastic problem. For this reason, we

shall not pursue this.

1.4. Comments and literature

Main contributions of the present paper. The main contributions of our

present paper over available literature [15] and [9] (of which we became aware only

after submitting our �rst version of this paper) concern the cases of coupled B.C. of

Subsection 1.1 (hinged/Neumann B.C.) and of Subsection 1.3 (free B.C.): these are

entirely new, along with their critically supporting sharp regularity results [27, 28].

For completeness, we also provide, in Subsection 1.2, an abstract model, which in-

cludes various uncoupled B.C. cases. Our model of Subsection 1.2 is not included

in the abstract setting of [15]|which is motivated by the wave-like system of

n-dimensional elasticity, rather than by the thermo-elastic plate equations consid-

ered in this paper; see a more detailed comparison at the end of this subsection.

[9] considers, speci�cally, a thermo-elastic plate system with clamped/Dirichlet B.C.

and studies a controllability problem. Our Section 6 is useful here in re-obtaining this

result via a general strategy. Our abstract structural decomposition result of Subsec-

tion 1.2, Theorem 1.2.2, when specialized (as in Subsection 4.2) to the speci�c case

of clamped/Dirichlet B.C., improves upon [9, Theorem 2, p. 372], by further elim-

inating the thermal component from the \non-compact part" of the thermo-elastic

semigroup, and thus reducing the \non-compact part" only to the mechanical damped

Kircho� equation. This way, we obtain also a precise uniform stability result as in

Corollary 1.2.3.
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Dynamical properties of thermo-elastic plate equations. The present paper

intends to continue recent investigations on the dynamical properties of thermo-elastic

plate equations, as carried out in two distinctive settings: (a) in the case of 
 = 0

(no rotational forces), originally studied in the in
uential paper [32], in the special

but not trivial case of uncoupled clamped/Dirichlet B.C., and subsequently in [21-24]

for all canonical B.C., including coupled ones, and (b) in the case 
 > 0; however

specialized to hinged/Dirichlet B.C., studied in [6].

Case 
 = 0. In the case 
 = 0; the cited literature shows that analyticity

of the s.c. contraction semigroup is the distinctive dynamical property under all

canonical B.C.

Case 
 > 0. (i) In addressing the question of dynamical properties for


 > 0; it is natural to begin with the canonical, and particularly attractive, case

of hinged (or simply supported) Dirichlet B.C. This is done in [6]: for this special set

of B.C. it is possible to give a very precise description of the resulting s.c. semigroup.

While simplifying the analysis, the hinged B.C. also yield a richer theory, which may

be summarized as follows: here, the corresponding s.c. contraction thermo-elastic

semigroup admits a direct (non-orthogonal) sum decomposition of one analytic self-

adjoint component and of one s.c. group (in�nite-dimensional) component. This

decomposition is established in [6] both directly, and via an associated bounded

perturbation, all via spectral analysis. Some related results in the one-dimensional

case are given in [14]. This spectral analysis expands on the results obtained in [13]

in the case of a one-dimensional thermo-elastic rod , where the eigenvalues approach

asymptotically a vertical line.

(ii) The present work deals with the case 
 > 0 under all canonical B.C.

In e�ect, the present paper contains three separate parallel treatments: (a) the

case of a thermo-elastic plate with coupled hinged/Neumann B.C., which is given in

Subsection 1.1 (statement of results) and Section 2 (proofs); (b) the case of (coupled )

free B.C., which is given in Subsection 1.3 (Statement of results) and Section 5

(proofs); and, for completeness, (c) the case of an abstract model encompassing the

cases of uncoupled B.C., which is given in Subsection 1.2 (statement of results), in

Section 3 (proofs), and in Section 4 (illustrative examples including clamped/Dirichlet

or clamped/Neumann B.C.).

For the �rst two cases of Subsections 1.1 and 1.2, the structural decomposi-

tions of Theorems 1.1.2, Eqn. (1.1.21), and of Theorem 1.2.2, Eqn. (1.2.23), are sharp.

Concerning thermo-elastic dynamical properties, they strikingly emphasize the con-

trast between the \group-dominant case" of 
 > 0; and the analytic case of 
 = 0:

The proofs of these results in Sections 2 and 3 combine energy estimates with the

dominant idea of one of the two positive proofs of analyticity in [21], used, however,

\in reverse", as we now explain. After a substitution, the elastic component of the

thermo-elastic system may be rewritten with a damping term wt as in (1.1.16), or

(3.4), respectively, in the �rst two cases of Sections 1.1 and 1.2. In such form, the

\driver" is the semigroup e
A 1;
 t corresponding to the mechanical variables [w;wt]:

Then:
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(ii1) If 
 > 0; eA 1;
 t is a group (negative \driver"), and we are then able to

show that the remaining component is compact for all t > 0; by the key use of new,

sharp regularity theory (see below).

(ii2) By contrast, if 
 = 0; then the semigroup e
A 1;
=0 t is, instead, analytic,

by the theory of [7-8], and acts now as a positive \driver", which preserves analyticity

in all variables [w(t); wt(t); �(t)]; under coupling with � , as proved in [21] at least in

the uncoupled B.C. case.

The coupled case of free B.C. of Subsection 1.3 and Section 5 is, of course,

more challenging: here, the structural decomposition results which we obtain in

Theorem 1.3.3 (or in Theorem 1.3.5) are weaker than in previous cases, even though

stronger e�orts are needed to achieve them, including a new, non-trivial regularity

result for the elastic Kircho� equation (see below).

Uniform stability. As an unexpected bonus, our structural decomposition The-

orems 1.1.2 and 1.2.2 yield a precise uniform (exponential) stability of the corre-

sponding s.c. contraction, thermo-elastic semigroup, at least for the coupled case of

hinged/Neumann B.C. of Subsection 1.1 and of the abstract model for uncoupled

B.C. of Subsection 1.2. This way, we recover the uniform stability results of the

literature obtained by other methods (a novel operator multiplier), with the added

information that exponential decay of the thermo-elastic semigroup is controlled by

the elastic damped group e
A 1;
 t modulo a �nite-dimensional subspace. However, the

stability results of [3] are uniform in 0 � 
 � 
0; for some 
0; a result that cannot

follow from our decomposition. At present, the weaker structural decomposition re-

sults of Subsection 1.3 for the most demanding coupled case of free B.C. do not yield

uniform (exponential) stability.

The role of sharp regularity theory. In achieving the structural decomposi-

tion results of the present paper, the importance and role of sharp (optimal) regu-

larity results of corresponding elastic Kircho� equations cannot be over-estimated.

Two of such non-trivial regularity results are new [27, 28], and were established pre-

cisely to support the present paper. The sharp regularity results are of recent origin

[26, Thm. 1.2], [19, p. 123]. More precisely: it is thanks to a new trace regularity

result, Eqn. (2.23), of the thermo-elastic system [27], that we are able to show com-

pactness of the thermal component (2.22) in Proposition 2.6, in the case of coupled

hinged/Neumann B.C. of Subsection 1.1. Similarly, in the case of the abstract sys-

tem for uncoupled B.C. of Subsection 1.2, the proof of compactness of the operator

Lt in Proposition 3.8 rests (via Lemma 3.5) on the abstract regularity assumption

(H.4) = (1.2.22) for the (undamped) Kircho� equation (1.2.12): in the illustrations

in Section 4 dealing with clamped/Dirichlet, or clamped/Neumann B.C., veri�ca-

tion of such sharp regularity result ultimately hinges on the sharp trace regularity

(4.2.7) [19] (undamped) Kircho� problem (4.2.5). A similar, direct analysis for the

clamped/Dirichlet B.C. case as in our Subsection 4.2, is given in [9, x 2.2].
Finally, in the case of coupled free B.C., the new, sharp regularity result [29]

described by the Theorem of Remark 5.3.1 for the Kircho� equation is what guaran-

tees well-posedness (continuity) of the map (5.3.15). Its proof [29] requires micro-local

analysis and pseudo-di�erential techniques to complement energy methods.
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Comparison with [15] and [9]. Paper [15] considers an abstract setting, which is

motivated by the system of n-dimensional elasticity: this is wave-like rather than

plate-like. The main result of [15]|whose ultimate goal is a study of stability

properties| is a decomposition theorem [15, Theorem 3 and Corollary 2] of the type

of our Theorem 1.2.2. However, the abstract setting of [15], when tested for thermo-

elastic plate equations such as (1.1.1), (1.1.2) plus B.C., applies successfully only in

the most amenable case of hinged/Dirichlet B.C., where a precise and rich spectral

theory is available [6]. In the next challenging case of clamped/Dirichlet B.C. (such

as in Subsection 4.2), it is assumption (H.2) in [15, p. 67] that fails: translated into

the notation of our Subsection 4.2, that assumption (H.2) in [15] would require that

the operator C�1

 A

1

2 be bounded (have a bounded extension) on L2(
) : but this is

false since, by (4.2.2), (4.2.4), D(A 1
2 ) = H

2
0 (
) � D(C) = H

2(
) \ H1
0(
); and so

A
1
2C

�1 is not bounded on L2(
):

\An adaptation of the analogous result for the linear system of three-

dimensional thermo-elasticity due to [15]" is given in [9, Theorem 2] for the speci�c

case of a thermo-elastic plate system (1.1.1), (1.1.2) with (uncoupled)

damped/Dirichelt B.C., as in our Subsection 4.2. However, as noted before, this

result of [9] is further improved as in the specialization of our abstract Theorem 1.2.2

to Subsection 4.2, by further removing the thermal component from the \non-compact

part" of the resulting thermo-elastic semigroup. As a result, our non-compact part is

de�ned solely by the elastic, uniformly stable group eA 1;
 on the mechanical variables

with the added information that it is eA 1;
 t that controls the uniform stability of

the thermo-elastic semigroup e
A 
 t as in Corollary 1.2.3, modulo a �nite-dimensional

subspace.

2. Coupled hinged/Robin B.C.: Proof of Theorem 1.1.2

Step 1. Lemma 2.1. (a) With reference to problem (1.1.1) { (1.1.4), the following

energy identity holds true, where H = L2(
) and y0 = [w0; w1; �0] 2 Y
 :

E(t) + 2

Z t

0

kA
1
2

R�(�)k2Hd� = E(0) ; (2.1)

keA 
 ty0k2Y
 � E(t) � kADw(t)k2H + kwt(t)k2H + 
kA
1

2

Dwt(t)k2H + k�(t)k2H
= kADw(t)k2H + kwt(t)k2

D(A
1
2
D;


)

+ k�(t)k2H :
(2:2a)

(2:2b)

(b) Moreover,

E(t) +

Z t

0

h
kA

1
2

R�(�)k2H + kA� 1
2

D �t(�)k2H
i
d� � (1 + kT )E(0) : (2.3)

In particular, via D(A
1
2

R) = H
1(
) and D(A

1
2

D) = H
1
0 (
), by (1.1.7) and (1.1.8), we

have

� 2 L2(0; T ;H
1(
)); �j� 2 L2(0; T ;H

1

2 (�)); �t 2 L2(0; T ;H
�1(
)) : (2.4)
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Proof. (a) Either we use the dissipativity equality (1.1.15) for d

dt
(eA 
 ty0; e

A 
 ty0) =

2Re (A 
 e
A 
 ty0; e

A 
 ty0); or else multiply Eqn. (1.1.1) by wt; and Eqn. (1.1.2) by �;

and integrate by parts using the B.C. (1.1.4). As to (b), from (1.1.6) we obtain

A� 1
2

D �t = �A� 1
2

D A
1
2

RA
1
2

R��A
1
2

Dwt; hence kA� 1
2

D �tk2H � kkA
1
2

R�k2H+kA
1
2

Dwtk2H ; (2.5)

using D(A
1
2

D) = H
1
0 (
) � H

1(
) = D(A
1
2

R); hence A
1
2

RA
� 1
2

D 2 L(H); H = L2(
), so

that A� 1

2

D A
1

2

R has a bounded extension in L(H): Thus, (2.5) yields (2.3) by virtue of

(2.1), (2.2).

Step 2. We return to Eqn. (1.1.16): recalling from (1.1.16) { (1.1.20) the s.c. group

e
A 1;
 t on Y1;
; we rewrite the solution of (1.1.16) as

�
w(t)

wt(t)

�
= e

A 1;
 t

�
w0

w1

�
+ Lt� + ~Lt�; y0 = [w0; w1; �0] 2 Y
 ; (2.6)

Lt�=

Z t

0

e
A 1;
 (t��)

"
0

�A�1
D;
�t(�)

#
d� ; ~Lt�=

Z t

0

e
A 1;
 (t��)

"
0

A�1
D;
ADD(�(�)j�)

#
d�: (2.7)

From (2.3), or (2.4), for �t; it is clear that Lt� 2 Y1;
: However, with �j� 2
L2(0; T ;H

1
2 (�)) from (2.4), hence D�j� 2 L2(0; T ;H

1(
)) by (1.1.11), it is not clear

at �rst glance that ~Lt� is well de�ned, let alone in Y1;
 . In fact, we shall show

below that Lt and ~Lt are compact from the thermal variable, hence from the initial

condition y0 2 Y
; to Y
; see (2.14) and (2.17) below. With reference to the regularity

obtained for the thermal variable � , we introduce the space X[0;t] by setting, with

H = L2(
):

X[0;t] � C([0; t];H) \ L2(0; t;D(A
1

2

R)) \H1(0; t; [D(A
1

2

D)]
0) : (2.8)

Lemma 2.2. With reference to (2.8), we have, 8 0 < � � 1
2
;

y0 = [w0; w1; �0] 2 Y
 : continuous ! � 2 X[0;t] ,!
compact

L2(0; t;D((A
1
2
��

R )) : (2.9)

Proof. The �rst part of (2.9) (continuity) follows from Proposition 1.1.1 (ii), and

Lemma 2.1, Eqn. (2.3), for �: The compactness part follows from the de�nition (2.8)

by a direct application of Aubin's Lemma [1, p = 2], since AR has compact resolvent

on H = L2(
):

Step 3. Lemma 2.3. Lt� in (2.7) may be rewritten as

Lt� = K1;t� +K2;t� 2 Y1;
 ; (2.10)
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K1;t� �
"

0

A�1
D;
�(t)

#
+ e

A 1;
 t

"
0

A�1
D;
�0

#

+

Z t

0

e
A 1;
 (t��)

"
0

A�1
D;
ADA�1

D;
A
� 1
2

R

#
A

1
2

R�(�)d� 2 Y1;


9>>>>>=
>>>>>;

(2.11)

K2;t� =

Z t

0

e
A 1;
 (t��)

"
�A�1

D;
A
� 1

2

R

0

#
A

1
2

R�(�)d� 2 Y1;
 : (2.12)

Proof. We integrate by parts Lt� in (2.7), using from (1.1.19) that

A 1;


"
0

A�1
D;
�(�)

#
=

"
0

�A�1
D;
A2

D

I

�A�1
D;
AD

#"
0

A�1
D;
�(�)

#

=

"
A�1
D;
�(�)

�A�1
D;
ADA�1

D;
�(�)

#
:

9>>>>>=
>>>>>;

(2.13)

Lemma 2.4. With reference to (2.11) and (2.12), we have

K1;t; K2;t; Lt : X[0;t] ! Y1;
 = D(AD)�D(A
1
2

D;
) is compact.

y0 = [w0; w1; �0] 2 Y
 ! � 2 X[0;t] ! Lt� 2 Y1;
 is compact.

(2:14)

(2:15)

Proof. (2.14) For � 2 X[0;t] in (2.8), we have �0; �(t) 2 L2(
): Moreover, A� 1
2

D;


is compact on L2(
): Thus, the �rst two terms of K1;t in (2.11) are compact in

Y1;
: Next, the operator A� 1
2

D;
ADA�1
D;
A

� 1
2

R is compact on L2(
); and the operator

ADA�1
D;
A

� 1

2

R is compact on L2(
): Thus, the integral term of K1;t in (2.11) and K2;t

in (2.12) are compact on Y1;
; since A
1
2

R� 2 L2(0; T ;L2(
)) : this follows, e.g., by a

direct abstract proof in [36] using Mazur's Theorem that the convex hull of a compact

set is compact. Thus, K1;t and K2;t are compact on Y1;
; and so is Lt by (2.10).

Hence, (2.14) is proved. Then (2.15) follows via (2.9), (2.14).

Step 4. We now handle the more diÆcult term ~Lt� in (2.7).

Proposition 2.5. With y0 = [w0; w1; �0] 2 Y
; for ~Lt� in (2.7) we have

y02Y
=D(AD)�D(A
1
2

D;
)�L2(
)
compact�! �j�2L2(0; t;L2(�))

continuous�! ~Lt�2Y1;
=D(AD)�D(A
1

2

D;
):

(2:16)

(2:17)

Proof. First, writing via (2.7),�
v(t)

vt(t)

�
� ~Lt� =

Z t

0

e
A1;
 (t��)

�
0

(I + 
AD)
�1ADD(�(�)j�)

�
d�; (2.18)
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we recognize, as in (1.1.5), (1.1.6), that v solves the following mixed problem for the

Kircho� equation

8>><
>>:

vtt � 
�vtt +�2
v ��vt = 0 in (0; T ]� 
 = Q;

vj� � 0; �vj� = �� in (0; T )� � = �;

v(0; � ) = v0 = 0; vt(0; � ) = v1 = 0 in 
:

(2:19a)

(2:19b)

(2:19c)

Then, the validity of the second regularity claim in (2.17)

�j� 2 L2(0; t;L2(�))! fv; vtg � ~Lt� 2 Y1;
 = [H2(
) \H1
0 (
)]�H

1
0 (
) (2.20)

(norm equivalence) is precisely the sharp regularity result proved in [26, Theorem 1.2].

Next, it remains to show the �rst regularity claim in (2.16). But this follows readily

from (2.9) of Lemma 2.2, with D(A
1
2
��

R ) = H
1�2�(
), and trace theory.

Step 5. Thus, at this stage, we have obtained the following decomposition, from

(2.6) and (1.1.6),

2
4 w(t)wt(t)

�(t)

3
5 = e

A 
 t

2
4w0

w1

�0

3
5 =

2
4

h
e
A 1;
 t

h
w0

w1

i
+ Lt� + ~Lt�

i
e�ARt�0 �

R t
0
e�AR(t��)ADwt(�)d�

3
5; (2.21)

where the map y0 ! [Lt� + ~Lt�; e
�ARt�0] is compact Y
 ! Y
 for all t > 0: At a

�rst glance, it is not clear that the integral de�ning �(t) in (2.21) is well de�ned, let

alone in L2(
), just by using A
1
2

Dwt 2 C([0; T ];L2(
)) from Proposition 1.1.1 (ii),

since AD and AR do not commute. But, in fact, we have

Proposition 2.6. With reference to (2.21) we have

y0 2 Y
 !Mty0 �
Z t

0

e
�AR(t��)ADwt(�)d� 2 D(A

1
4
��

R )

= H
1
2
�2�(
) compact ,! L2(
):

9>=
>; (2.22)

Proof. The proof uses critically the non-trivial regularity result

@wt

@�
2 L2(0; T ;L2(�)) � L2(�) (2.23)

for problem (1.1.1) { (1.1.4). The validity of (2.23) is proved in [27]. Here we shall

invoke (2.23) to prove (2.22). Let f 2 [D(A
1
4
��

R )]0 and compute recalling wtj� � 0

from (1.1.4), whereby �ADwt = �wt by (1.1.7) by use of Green's �rst theorem:
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�(Mty0; f)L2(
) = �
�Z t

0

e
�AR(t��)ADwt(�)d�; f

�
L2(
)

=

Z t

0

�
�wt(�); e

�AR(t��)f
�
L2(
)

d�

9>>>=
>>>;

(2.24)

=

Z t

0

�
@wt(�)

@�
; [e�AR(t��)f ]�

�
L2(�)

d�

�
Z t

0

�rwt(�);r(e�AR(t��)f)
�
L2(
)

d�:

9>>>=
>>>;

(2.25)

By assumption, A� 1
4
+�

R f 2 L2(
); and thus by analyticity of the self-adjoint semi-

group e
�ARt; we have (in � ):

e
�AR(t��)f = A

1
4
��

R e
�AR(t��)A� 1

4
+�

R f 2 L2(0; t;D(A
1
4
+�

R ) � H
1
2
+2�(
)); (2.26)



jr(e�AR(t��)f)j



L2(
)

� c




A 1
2

Re
�AR(t��)f





L2(
)

= c




A 3

4
��

R e
�AR(t��)A� 1

4
+�
f





L2(
)

� c

(t� �)
3
4

; (2.27)

by analyticity of the semigroup. Thus, by trace theory on (2.26), and by (2.27), we

obtain (in � )

[e�AR(t��)f ]� 2 L2(0; t;H
2�(�)); jr(e�AR(t��)f)j 2 L1(0; t;L2(
));

jrwtj 2 C([0; T ];L2(
));

)
(2.28)

recalling also Proposition 1.1.1 (ii) for wt 2 C[0; T ];H1
0(
)): Thus, (2.28) combined

with (2.23) guarantee that both integrals terms in (2.25) are well de�ned and con-

tinuous with respect to y0 2 Y
 and f 2 [D(A
1
4
��

R )]0: Thus, Mty0 2 D(A
1
4
��

R ); and

(2.22) is proved.

Step 6. With reference to (2.21), we then have

K
(t)

2
4w0

w1

�0

3
5 =

�
Lt� + ~Lt�

e
�ARt�0 �Mty0

�
; and K
(t): compact on Y
 , (2.29)

by Proposition 2.6 on Mt; Proposition 2.5 on ~Lt�; and Lemma 2.4 on Lt�: Theo-

rem 1.1.2 is proved.

Proof of Corollary 1.1.3. This is standard and included for completeness.

The decomposition in Theorem 1.1.2 with K
(t) compact yields that ress(e
A 
 t) =

ress(e
A 1;
 t) < 1; since eA 1;
 t is uniformly (exponentially) stable. But, as one veri�es

directly, the operator A 
 does not have any eigenvalues on the imaginary axis. Thus,

r(eA 
 t) = ress(e
A 
 t) < 1; where r( � ) denotes the spectral radius. Thus, eA 
 t is

uniformly (exponentially) stable.
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3. Abstract system: Proof of Theorem 1.2.2

The present proof follows closely the pattern of the proof of Section 2, with some

marked simpli�cations (due to the absence of the highly unbounded boundary cou-

pling term ADD( � j�) in the model, where, moreover, the coupling operators AR�

and ADwt reduce now to the same operator B ); but also with some new, additional

diÆculties, not present in Section 2, where the feature C = AD , A = A2
D of the

abstract model there helped. Accordingly, the present proof will dwell mostly on the

new diÆculties.

Step 1. Lemma 3.1. (a) Assume (H.1) (i), (H.2) = (1.2.4), (H.3) = (1.2.5). Let

fw0; w1; �0g 2 Y
; in (1.2.9). Then, the following energy identity holds true:

E(t) + 2

Z t

0

kB 1
2 �(�)k2Hd� = E(0) ; (3.1)

keA 
 ty0k2Y
 = E(t) � kA 1
2w(t)k2H + kwt(t)k2

D(C
1
2

 )

+ k�(t)k2H
(by (1.2.10)) = kA 1

2w(t)k2H + kwt(t)k2H + 
kC 1
2wt(t)k2H + k�(t)k2H :

(3:2a)

(3:2b)

(b) Moreover,

E(t) +

Z t

0

[kB 1
2 �(�)k2H + kB� 1

2 �t(�)k2H ]d� � (2 + kT )E(0); 0 � t � T : (3.3)

Step 2. Substituting B� from (1.2.2) into (1.2.1) and recalling C
 in (1.2.10) yields

wtt + 
Cwtt + Aw +Bwt = ��t; wtt + C
�1

 Aw + C

�1

 Bwt = �C�1


 �t : (3.4)

Recalling the s.c. group e
A 1;
 t on Y1;
 from (1.2.16), we can write the solution of

(3.4) as�
w(t)

wt(t)

�
= e

A 1;
 t

�
w0

w1

�
+ Lt�; Lt� =

Z t

0

e
A 1;
 (t��)

�
0

�C�1

 �t(�)

�
d� 2 Y1;
 : (3.5)

Since B� 1

2 �t 2 L2(0; T ;H) by (3.3) and C
� 1

2

 B

1

2 admits a bounded extension on H

by the implication (1.2.6), we readily obtain by (1.2.10) that C�1

 �t 2 L2(0; T ;D(C

1
2

 ))

and so Lt� 2 Y1;
: With reference to the regularity obtained for the thermal variable

�; we introduce the space X[0;t] by setting

X[0;t] � C([0; t];H) \ L2(0; t;D(B 1
2 )) \H1(0; t; [D(B 1

2 )]0) : (3.6)

Lemma 3.2. Assume (H.1), (H.2) = (1.2.4), and (H.3) = (1.2.5), let fw0; w1; �0g 2
Y
 in (1.2.9). Then, with reference to problems (1.2.1) { (1.2.3), we have that the ther-

mal component �(t) satis�es the following regularity properties, continuously with

respect to Y
 :

y0 � [w0; w1; �0] 2 Y
 ! � 2 X[0;t] ,!
compact

L2(0; t;D(B
1

2
��)); 8 0 < � � 1

2
: (3.7)
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Proof. Via Aubin's Lemma, as for Lemma 2.2, using B�1 compact on H:

Step 3. Lemma 3.3. Assume (H.1) (i), (H.2) = (1.2.4), and (H.3) = (1.2.5),

so that, for fw0; w1; �0g 2 Y
; then � 2 X[0;t] as in Lemma 2.2, Eqn. (3.7). Then,

Lt� 2 Y1;
 in (3.5) may be rewritten as

Lt� = K1;t� +K2;t� 2 Y1;
 ; (3.8)

where

K1;t� �
�

0

�C�1

 �(t)

�
+ e

A1;
 t

�
0

C�1

 �0

�

+

Z t

0

e
A1;
 (t��)

�
0

C�1

 BC�1


 B
� 1
2

�
B

1
2 �(�)d� ;

9>>>=
>>>;

(3.9)

K2;t� =

Z t

0

e
A1;
 (t��)

"
�C�1


 B
� 1
2

0

#
B

1
2 �(�)d� 2 Y1;
 : (3.10)

Proof. We integrate by parts Lt� in (3.5), using via (1.2.16) that

A1;


�
0

C�1

 �(�)

�
=

�
0 I

�C�1

 A �C�1


 B

��
0

C�1

 �(�)

�
=

"
C
�1

 �(�)

�C�1

 BC�1


 �(�)

#
: (3.11)

Lemma 3.4. Assume (H.1), (H.2) = (1.2.4), (H.3) = (1.2.5). Then, with reference

to (3.9), we have

K1;t : X[0;t] ! Y1;
 = D(A
1

2 )�D(C
1
2

 ) is compact. (3.12)

Proof. As in the proof of Lemma 2.4, after noticing that

C
�1

 BC

�1

 B

� 1
2 = [C�1


 B
1
2 ][B

1
2C

� 1
2


 ][C
� 1

2

 B

� 1
2 ] is compact H ! D(C

1
2

 ); (3.13)

by use of implication (1.2.6), and compactness of B�1
; or C�1

; in H:

Step 4. So far, the proof of the present subsection has been essentially contained in

that of Section 2, mutatis mutandis. However, in tackling the second term K2;t� in

(3.10) of Lt� in (3.8), we face additional diÆculties over the same point in Section 2.

For one, with � 2 X[0;t] , it is not clear from (3.10) per se that K2;t� is well de�ned,

let alone in Y1;
; as we cannot assert that A
1

2C
�1

 B

� 1

2 2 L(H); as desirable. In the

case of the term K2;t� in (2.12) of Section 2, the special property valid there that

C = A
1
2 = AD helped (indeed, D(C) � D(A 1

2 ) would suÆce, but this is not assumed

in the present subsection either). Moreover, we actually seek to establish that K2;t :

compact X[0;t] ! Y1;
: To this end we shall invoke, for the �rst time, assumption

(H.4) = (1.2.22).
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Lemma 3.5. Assume (H.1)(i), (H.2) = (1.2.4), (H.3) = (1.2.5). Moreover, with

reference to the undamped Kircho� problem (1.2.12), (1.2.13), assume hypothesis

(H.4) = (1.2.22); i.e., that

f 0;  1g 2 Y1;
 )  tt = �C�1

 A 2 L2(0; T ;H) continuously: (3.14)

Then, with reference to the damped Kircho� problem (1.2.14), (1.2.15), with the same

initial conditions f�0 =  0; �1 =  1g as the  -problem, it follows that, in fact,

f 0;  1g2Y1;
)C
�1

 A�; �tt=�C�1


 A��C�1

 B�t2L2(0; T ;H) continuously: (3.15)

Proof. By the a-priori group regularity, see (1.2.20), we have �t 2 C([0; T ];D(C
1
2

 )):

Then, by the implication (1.2.6), it follows that

C
�1

 B�t = C

� 1
2


 [C
� 1
2


 B
1
2 ][B

1
2C

� 1
2


 ]C
1
2

 �t 2 C([0; T ];D(C

1
2

 )): (3.16)

Thus, with reference to (3.15) as well as to Eqn. (1.2.21) relating � to  ; it remains

to show that

C
�1

 A� = C

�1

 A � (C�1


 A)

Z t

0

S0;
(t� �)C�1

 B�t(�)d� 2 L2(0; T ;H); (3.17)

where, as noted below (1.2.21), S0;
( � ) is the sine operator corresponding to the

cosine operator C0;
( � ) on the space Z
 � D(C
1

2

 ); generated by the negative self-

adjoint operator (�C�1

 A) on Z
 � D(C

1

2

 ): For the �rst term on the right-hand

side of (3.17), we invoke assumption (3.14). To show that the second term on the

right-hand side of (3.17) is also in L2(0; T ;H); we provide two proofs, one here below

and one (purely operator-theoretic) in Appendix A. Recalling (1.2.19) we set

S0;
(t� �)C�1

 B�t(�) =  (t� � ; � 0; � 1(�)); � 0 = 0; � 1(�) = C

�1

 B�t(�); (3.18)

for the solution at time (t � �) of problem (1.2.12), with initial position � 0; and

initial velocity � 1(�): Next, we take any f 2 L2(0; T ;H) and compute via (3.18)����f; C�1

 A

Z �
0

S0;
( � � �)C�1

 B�t(�)d�

�
L2(0;T ;H)

���
=

����
Z T

0

Z t

0

(f(t); C�1

 A (t� � ; � 0;

� 1(�))Hd� dt

���� (3.19)

(interchanging the order of integration)

=

����
Z T

0

Z T

�

(f(t); C�1

 A (t� � ; � 0;

� 1(�))Hdt d�

���� (3.20)

� kfkL2(0;T ;H)

Z T

0

kC�1

 A ( � ; � 0;

� 1(�)kL2(0;T ;H)d� (3.21)

(by (3.14)) � cTkfkL2(0;T ;H)

Z T

0

k � 1(�)k
D(C

1
2

 )
d� (3.22)

(by (3.18)) = cTkfkL2(0;T ;H)

Z T

0

kC�1

 B�t(�)k

D(C
1
2

 )
d�

� constTkfkL2(0;T ;H)kf 0;  1gkY1;
 :

9=
; (3.23)
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We have used: the Schwarz inequality from (3.20) to (3.21); assumption (3.14)

from (3.21) to (3.22); the de�nition of � 1(�) in (3.18) from (3.22) to (3.23); �nally,

(3.16) in the last step of (3.23). Then, (3.23) shows that continuously,

f�0= 0; �1= 1g2Y1;
!C
�1

 A

Z �
0

S0;
( � � �)C�1

 B�t(�)d� 2L2(0; T ;H); (3.24)

as desired. Thus, (3.17), and hence (3.15), have been proved.

Remark 3.1. A similar argument shows that (3.15) ) (3.14).

Step 5. A duality argument as in Remark 1.2.1 shows that

Lemma 3.6. (i) With reference to (3.10), we have that:

�K2;tf =

Z t

0

e
A 1;
 (t��)

�
C
�1

 f(�)

0

�
d� : continuous L2(0; t;H)! Y1;
; (3.25)

if and only if, with reference to problem (1.2.14) or (1.2.20),

f�0; �1g 2 Y1;
 ) C
�1

 A� 2 L2(0; t;H): (3.26)

(ii) Thus, under assumptions (H.1) (i), (H.2) = (1.2.4), (H.3) = (1.2.5),

(H.4) = (1.2.22), the regularity (3.25) for K2;t holds true.

Proof. (i) As in Remark 1.2.1 we compute�Z t

0

e
A 1;
 (t��)

�
C
�1

 f(�)

0

�
d�;

�
�0

�1

��
Y1;


=

Z t

0

��
C
�1

 f(�)

0

�
; e

A �1;
 (t��)
�
�0

�1

��
Y1;


d� (3.27)

=

Z t

0

(C�1

 f(�); �(t�� ;�0; �1))D(A

1
2 )
d�=(f; C�1


 A�(t� � ;�0; �1))L2(0;t;H): (3.28)

A
�
1;
 is readily computed from (1.2.16), using properties (1.2.11).

The conclusion of part (i) follows now from (3.28). For part (ii) we invoke

Lemma 3.5.

Remark 3.2. Lemma 3.5, Remark 3.1, and Lemma 3.6 show that the regularity

(1.2.25) for A 0;
 is equivalent to the regularity (3.25) for A 1;
 :

Step 6. Proposition 3.7. Assume (H.1) (i); compactness of the resolvent of B in

(H.1) (ii); (H.2) = (1.2.4); (H.3) = (1.2.5) and (H.4) = (1.2.22). Then, with reference

to the operator K2;t in (3.10) or (3.25), we have

K2;t : compact X[0;t] ! Y1;
 = D(A
1
2 )�D(C

1
2

 ) : (3.29)
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Proof. The validity of (3.29) follows from

� 2 X[0;t]

compact
,!

by (3:7)
� 2 L2(0; t;H)

bounded�!
by (3:25)

K2;t� 2 Y1;
 ; (3.30)

via the compact embedding (with � = 1
2
) in (3.7) and the boundedness of K2;t as

in (3.25).

Step 7. Proposition 3.8. Assume (H.1) through (H.4). Then,

Lt : X[0;t] ! Y1;
 is compact;

y0 = [w0; w1; �0] 2 Y
 ! � 2 X[0;t] ! Lt� 2 Y1;
 is compact.

)
(3.31)

Proof. We return to identity (3.8), where K1;t is compact as in (3.12), and K2;t

is compact as in (3.29). Finally, we recall (3.7).

Step 8. Thus, at this stage, we have obtained the following decomposition, from

(3.5) and (1.2.2),2
4 w(t)wt(t)

�(t)

3
5 = e

A 
 t

2
4w0

w1

�0

3
5 =

2
664

h
e
A 1;
 t

h
w0

w1

i
+ Lt�

i
e�Bt�0 �

Z t

0

e
�B(t��)

Bwt(�)d�

3
775 : (3.32)

where the map y0 ! [Lt�; e
�Bt

�0] is compact Y
 ! Y
 for all t > 0: We further

notice that the integral de�ning �(t) is well de�ned and, in fact, compact on Y1;
 at

each t > 0;Z t

0

e
�B(t��)

Bwt(�)d� =

Z t

0

B
1

2 e
�B(t��)(B

1

2C
� 1

2

 )C

1
2

 wt(�)d� 2 D(B

1

2
��) ,!

compact
H; (3.33)

since B
1
2C

� 1
2


 2 L(H) by implication (1.2.6), C
1
2

 wt 2 C([0; T ];H) by the a-priori

semigroup regularity in Proposition 1.2.1 (ii); moreover,

kB1��
e
�BtkL(H) � const

t1��
; kB1��

e
�BtkL(H) 2 L1(0; T ) ; (3.34)

by analyticity of the (self-adjoint) semigroup e�Bt on H; so that the integral in (3.33)

is the convolution of an L1 -function with a C -function; �nally, B�1 is compact on

H by assumption (H.1) (ii). Thus, the operator K
(t);

K
(t)

2
4w0

w1

�0

3
5 def
=

"
Lt�

e
�Bt

�0 +

Z t

0

e
�B(t��)

Bwt(�)d�

#
is compact Y
 ! Y
 ; (3.35)

for all t > 0; by Proposition 3.8 on Lt� and (3.33). Theorem 1.2.2 is proved.

We conclude this section with two remarks which provide further relevant

regularity theory on the thermo-elastic problem (1.2.1) { (1.2.3) of the present setting.
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Remark 3.3. Under assumptions (H.1) { (H.4), the following regularity holds true

for the mechanical component of problem (1.2.1) { (1.2.3):

y0 = [w0; w1; �0] 2 Y
 ! wtt 2 L2(0; T ;H) continuously: (3.36)

Proof. With reference to Eqn. (1.2.1), we have as in (1.2.20), (1.2.21), with

 (0) = w0;  t(0) = w1 :�
w(t)

wt(t)

�
=

�
 (t)

 t(t)

�
+

Z t

0

e
A 0;
 (t��)

�
0

C
�1

 B�(�)

�
d� ; (3.37)

wt(t) =  t(t) +

Z t

0

C0;
(t� �)C�1

 B�(�)d� ; (3.38)

wtt(t) =  tt(t) + C
�1

 B�(t)� C

�1

 A

Z t

0

S0;
(t� �)C�1

 B�(�)d� ; (3.39)

where C0;
(t) is the cosine operator on D(C
1
2

 ) corresponding to the negative self-

adjoint operator [�C�1

 A] on D(C

1

2

 ); and S0;
(t) its corresponding sine operator;

see also (3.17). By the a-priori regularity of B
1
2 � in (3.1), and by (1.2.6), we have

C
�1

 B� = C

� 1
2


 [C
� 1

2

 B

1
2 ]B

1
2 � 2 L2(0; T ;D(C

1
2

 )) : (3.40)

This regularity in (3.40)|though weaker in time than the one in (3.16)| is suÆcient

to carry out the argument below (3.17) (or in Appendix A), applied to the integral

term in (3.39), to conclude that such integral term is in L2(0; T ;H) (as in (3.24)).

Thus, by assumption (H.4) = (1.2.22), we conclude from (3.39), (3.40), that (3.36)

holds true.

Remark 3.4. We now show that, under assumptions (H.1) { (H.4), the following

regularity holds true for the thermal component of problem (1.2.1) { (1.2.3); with

�0 = 0:

y0=[w0; w1; 0]2Y
)�t2L2(0; T ;H) and �tt2L2(0; T ; [D(B)]0) continuously: (3.41)

Proof. By Eqn. (1.2.2), (�t)t = �B�t �Bwtt; �t(0) = �Bwt(0) with �0 = 0; and

�t(t) = �B 1
2 e
�Bt[B

1
2C

� 1
2


 ]C
1
2

 wt(0)� B

Z t

0

e
�B(t��)

wtt(�)d� ; (3.42)

where B
1
2wt(0) 2 H by (1.2.6), since wt(0) = w1 2 D(C

1

2

 ): The analyticity of the

s.c. semigroup e
�Bt generated by the self-adjoint operator (�B) then yields conclu-

sion (3.41) for �t from (3.42) by use also of the regularity (3.36) of wtt . Di�erenti-

ating (3.42) yields readily the regularity (3.41) for �tt; again by the regularity (3.36)

of wtt:
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4. Examples of thermo-elastic plates �tting into the abstract model

In this section we consider three thermo-elastic plate equations (1.1.1), (1.1.2), sup-

plemented by sets of physical B.C., which �t into the abstract model (1.2.1), (1.2.2)

of Section 1.2. In all cases, we then verify all required assumptions (H.1), (H.2) =

(1.2.4), (H.3) = (1.2.5), and (H.4) = (1.2.22). Unless otherwise stated, Eqn. (1.1.1),

(1.1.2) will be de�ned on a smooth bounded domain 
 of Rn
; n arbitrary.

4.1. Hinged mechanical B.C. and Dirichlet thermal B.C.

This is the simplest canonical case. We supplement Eqns. (1.1.1), (1.1.2) with the

following (hinged/Dirichlet) B.C.

wj� � 0; �wj� � 0; �j� � 0; � = (0; T ]� � : (4.1.1)

Then, the resulting abstract system for problem (1.1.1), (1.1.2), (4.1.1) is given by

(1.2.1) { (1.2.3), where

B = C = A
1
2 ; H = L2(
); Bf = ��f; D(B) = H

2(
) \H1
0 (
) ; (4.1.2)

Af=�2
f; D(A)=ff 2H4(
) : f j�=�f j�=0g;D(A 1

4 )=H1
0 (
)=D(C

1
2 ); (4.1.3)

kfk2
D((I+
C)

1
2 )
= kfk2H + 
kC 1

2 fk2H =

Z



[jf j2 + 
jrf j2]d
 : (4.1.4)

Assumptions (H.1) through (H.3) are trivially satis�ed. So is (H.4), in fact, in the

following stronger form: the solution of the Kircho� problem:

 tt + 
A
1
2 tt + A � 0; f 0;  1g 2 D(A 1

2 )�D(A 1
4 ) (4.1.5)

satis�es the regularity properties (see (1.2.9), (1.2.13))

f ;  tg2C([0; T ];D(A 1
2 )�D(A 1

4 ));  tt=�(I+
A 1
2 )�1A 2C([0; T ];L2(
)): (4.1.6)

For this special canonical case, a precise description of the corresponding s.c. semi-

group e
A
 t is given in [6] by spectral analysis.

4.2. Clamped mechanical B.C. and Dirichlet thermal B.C.

We supplement Eqns. (1.1.1), (1.1.2) with the following (clamped/Dirichlet) B.C.

wj� � 0;
@w

@�

���
�
� 0; �j� � 0; � = (0; T ]� � : (4.2.1)

Then, the resulting abstract system for problem (1.1.1), (1.1.2), (4.2.1) is given by

(1.2.1) { (1.2.3), where

H = L2(
); B = C; Bf = ��f; D(B) = H
2(
) \H1

0 (
) ; (4.2.2)

Af = �2
f; D(A) =

�
f 2 H4(
) : f j� = @f

@�

���
�
= 0

�
; (4.2.3)

D(B 1
2 ) = D(C 1

2 ) = D(A 1
4 ) = H

1
0 (
); D(A 1

2 ) = H
2
0 (
) � D(B) = D(C) : (4.2.4)

Eqn. (4.1.4) still holds true. Assumptions (H.1) through (H.3) are satis�ed.
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Assumption (H.4). Veri�cation of assumption (H.4) = (1.2.22) is, however, non-

trivial and requires a sharp trace regularity result for the Kircho� equation

 tt � 
� tt +�2
 = 0 in Q

 j� =
@ 

@�

���
�
� 0 in �

; or  tt + 
C tt + A = 0 ;

9=
; (4.2.5)

 (0) =  0;  1(0) =  1; f 0;  1g 2 D(A
1
2 )�D(A 1

4 ) = H
2
0 (
)�H

1
0 (
) ; (4.2.6)

namely [19, p. 123], Z t

0

Z
�

j� j2d� dt � Ctkf 0;  1gkH2
0 (
)�H

1
0 (
)

; (4.2.7)

which is \ 1
2
" sharper in the space variable, than the result that one would get

by a formal application of trace theory on the optimal interior regularity result

 2 C([0; T ];D(A 1

2 ) = H
2
0 (
)) of (4.2.5). This fact is distinctive of many hyper-

bolic/Petrowski-type P.D.E.'s. With reference to the operator A0;
 in the present

case, see (1.2.16), and to Y1;
 which is topologically equivalent to D(A 1
2 ) � D(A 1

4 );

we have that

D(A2
0;
) = D(A

1
2C

�1

 A)�D(A 3

4 ) � D(A)�D(A 3
4 ) ; (4.2.8)

where the inclusion in (4.2.8) follows, since A
1
2C

�1

 Ax1 2 L2(
) implies Ax1 2 L2(
);

as C
A
� 1

2 2 L(L2(
)) by (4.2.4). Thus, let f 0;  1g 2 D(A2
0;
); dense in Y1;
: The

corresponding solution  of (4.2.5) then satis�es f ;  tg 2 C([0; T ];D(A2
0;
)); and

thus  2 C([0; T ];D(A)) by (4.2.8). Hence, A = �2
 and for f 2 L2(0; T ;L2(
))

we compute with H = L2(
); via Green's second theorem:

�((I + 
C)�1f; A )H=((I+
C)�1f;�2
 )L2(
)=(�(I+
C)�1f;� )L2(
) (4.2.9)

+

�
(I+
C)�1f;

�
�
�
�
�
�*

@� 

@�

�
L2(�)

�
�
@(I+
C)�1f

@�
;� 

�
L2(�)

: (4.2.10)

But, with f 2 L2(
) a.e. then (I + 
C)�1f 2 D(C) = D(B) = H
2(
) \H1

0 (
) a.e.

by (4.2.2) and so [(I+
C)�1f ]� = 0 a.e. and the second term on the right-hand side

of (4.2.10) vanishes. Next, �(I + 
C)�1f 2 L2(
) a.e. and then��(�(I + 
C)�1f;� )L2(
)
�� � ck kH2

0 (
)
kfkL2(
) a.e. (4.2.11)

Moreover,
@(I+
C)�1f

@�
2 H 1

2 (�) a.e., and then�����
�
@(I + 
C)�1f

@�
; � 

�
L2(�)

����� � ckfkL2(
)k� kH�
1
2 (�)

a.e. (4.2.12)

Using (4.2.11), (4.2.12) in (4.2.10) yields

j((I + 
C)�1f; A )H j � ckfkL2(
)[k kH2
0 (
)

+ k� k
H
�
1
2 (�)

] a.e. (4.2.13)
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Then, since f 0;  1g 2 H
2
0 (
) � H

1
0 (
) = Y1;
 implies  2 C([0; T ];H2

0(
)) by the

semigroup estimate, integrating (4.2.13) in time yields by Schwarz inequalityZ t

0

j((I + 
C)�1f(�); A (�))H jd� � ctkfkL2(0;t;L2(
))kf 0;  1gkH2
0
(
)�H1

0
(
) (4.2.14)

a fortiori by use of the sharp estimate (4.2.7). Inequality (4.2.14), which is obtained

at �rst for f 0;  1g 2 D(A2
0;
); is next extended to all of f 0;  1g 2 H2

0(
)�H1
0 (
) =

D(A 1

2 )�D(A 1

4 ) = Y1;
 (topologically). Thus assumption (H.4) = (1.2.22) is veri�ed,

since  tt = �C�1

 A and the results of Section 1.2 apply to the present case.

4.3. Clamped mechanical B.C. with Neumann (Robin) Thermal B.C.

We supplement Eqns. (1.1.1), (1.1.2) with the following (clamped/Neumann-Robin)

B.C.

wj� � 0;
@w

@�

���
�
� 0;

�
@�

@�
+ b�

�
�

� 0; b � 0 : (4.3.1)

Then, the resulting abstract system for problem (1.1.1), (1.1.2), (4.3.1) is given by

(1.2.1) { (1.2.3), where for b > 0:

H = L2(
); Bf = ��f; D(B) =
�
f 2 H2(
) :

�
@f

@�
+ bf

�
�

= 0

�
; (4.3.2)

Cf = ��f; D(C) = H
2(
) \H1

0 (
) ; (4.3.3)

Af = �2
f; D(A) =

�
f 2 H4(
) : f j� = @f

@�

���
�
= 0

�
; (4.3.4)

D(A 1

2 ) = H
2
0 (
) � D(B); D(C

1

2 ) = H
1
0 (
) = D(A

1

4 ) : (4.3.5)

[For b = 0; we take H = L2(
)=N (B); N (B) = one-dimensional null space of B:]

Moreover, (4.1.4) still holds true. Assumptions (H.1) through (H.3) are trivially

satis�ed. Since A and C are the same as in Section 4.2, then assumption (H.4) =

(1.2.22) likewise holds true, as seen there. Thus, the results of Section 1.2 apply to

the present case.

5. Analysis of the free B.C. case of Section 1.3

5.1. Preliminary energy estimates. The auxiliary operator A
;0

We begin by collecting some formulas. If f 2 D(AR); see (1.3.13), then by (1.3.14),

ARf = ��f = ��
�
f �N

@f

@�

�
= AN

�
f �N

@f

@�

�
= AN(f + bN(f j�)); (5.1.1)

since
�
f �N

@f

@�

� 2 D(AN); see (1.3.11). From (5.1.1), recalling (1.3.19), we obtain

A�1
N ARf = f + bN(f j�); C�1


 ARf

=
1



[f + bN(f j�)]� 1



C
�1

 [f + bN(f j�)]; f 2 D(AR);

9>=
>; (5.1.2)
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A 1

2C
�1

 2 L(L2(
)); A

1

4C
� 1
2


 2 L(L2(
)); hence

C
�1

 A

1

2 2 L(L2(
)); C
� 1

2

 A

1
2

R 2 L(L2(
));

9=
; (5.1.3)

recalling (1.3.19), (1.3.12). The second statement in (5.1.3) means that, by duality

on the �rst, C�1

 A

1

2 has a bounded extension in L(L2(
)).

We now present the counterpart of Lemma 2.1 and Lemma 3.1 of preceding

cases (of Sections 1.1 and 1.2).

Lemma 5.1.1. (i) With reference to problem (1.3.1) { (1.3.6), the following iden-

tity holds true, where H = L2(
) and y0 = [w0; w1; �0] 2 Y
 :

E(t) + 2

Z t

0




A 1
2

R�(�)



2
H
d� � E(0) ; (5.1.4)



eA 
 ty0

2Y
 � E(t)=kA 1
2w(t)k2H+kwt(t)k2H+
kA

1
2

Nwt(t)k2H+k�(t)k2H
(by (1.3.21))= kA 1

2w(t)k2H + kwt(t)k2
D(C

1
2

 )

+ k�(t)k2H :
(5:1:5a)

(5:1:5b)

(ii) Moreover,

y0 2 Y
 ) �j� 2 L2(0; T ;H
1
2 (�)) and wtt 2 L2(0; T ;L2(
)) continuously: (5.1.6)

Proof. (i) The proof of part (i) is the same as in Lemma 2.1 or Lemma 3.1: either

it relies on Proposition 1.3.1, or else one multiplies Eqn. (1.3.1) by wt , (1.3.2) by �;

and integrates by parts. The use of Green's formula as in [18, p. 68] provides the

desired cancellation of the boundary terms.

(ii) The statement in (5.1.6) about �j� follows by trace theory on (5.1.4), i.e.,

� 2 L2(0; T ;H
1(
)):

Next, we return to Eqn. (1.3.9), which by means of (1.3.19), we rewrite as

wtt = �C�1

 Aw + C

�1

 AR� � C

�1

 AG1(�j�) + bC

�1

 AG2(�j�): (5.1.7)

The a-priori regularity A 1

2w 2 C([0; T ];L2(
)) from Proposition 1.3.1 (ii), A
1
2

R� 2
L2(0; T ;L2(
)) from (5.1.4), along with that of �j� in (5.1.6), is combined with (5.1.3)

and (1.3.15), (1.3.16), (1.3.17), (1.3.13) and readily yield (5.1.6) on wtt:

Next, we introduce the (auxiliary) operator A
;0 (compare with A
;s in (1.3.26)

and see (5.1.2)):

A
;0 =

2
664

0 I 0

�C�1

 A �C�1


 AN �C�1

 AG1( � j�)

0 ANN
@

@�
�AR

3
775 : Y
 � D(A
;0)! Y
; (5:1:8a)
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D(A
;0) =
n
x1; x2 2 D(A 1

2 ) = H
2(
); x3 2 D(AR) :�

N
@x2
@�
�A�1

N ARx3

� 2 D(AN)
o
9=
; (5:1:8b)

Proposition 5.1.2. The operator A
;0 in (5.1.8) is dissipative

Re (A
;0x; x)Y
=�(ANx2; x2)L2(
)�(ARx3; x3)L2(
); x=[x1; x2; x3]2D(A
;0); (5.1.9)

in fact, maximal dissipative, and thus generates a s.c. contraction semigroup e
A
;0t

on Y
:

Proof. As the �rst 2� 2 block of A
;0 is plainly dissipative on D(A 1
2 )�D(C

1
2

 );

we limit ourselves to observe that

Re

 "
0 �C�1


 AG1( � j�)
ANN

@

@�
0

#�
x2

x3

�
;

�
x2

x3

�!
D(C

1
2

 )�L2(
)

= � (AG1(x3j�); x2)L2(
) + (ANN
@x2

@�
; x3)L2(
)

� (x3j�; G�
1Ax2)L2(�) +

�
@x2

@�
;N

�ANx3

�
L2(�)

9>>=
>>; (5.1.10)

= �
�
x3j�; @x2

@�

�
L2(�)

+

�
@x2

@�
; x3j�

�
L2(�)

= 0; (5.1.11)

recalling the trace results in (1.3.18). Maximal dissipativity is proved directly. Then,

one invokes the Lumer-Phillips theorem.

The point of the next result is a gain of regularity \of the order of A
1
2

R" with

respect to the third coordinate (\hidden regularity"): from L2(
) to [D(A
1
2

R)]
0 =

[H1(
)]0 = [D(C
1
2

 )]

0
; see (1.3.11), (1.3.13).

Proposition 5.1.3. With reference to the s.c. semigroup e
A
;0t guaranteed by

Proposition 5.1.2, we have

y(t) =

Z t

0

e
A
;0(t��)

2
4 0

0

f3(�)

3
5 d� :

continuous L2(0; T ; [D(A
1
2

R)]
0 = [H1(
)]0)! C([0; T ];Y
)

and y3 2 L2(0; T ;H
1(
));

9>>>>>>>=
>>>>>>>;

(5.1.12)

Proof. The function y(t) = [y1(t); y2(t); y3(t)] in (5.1.12) solves _y(t) = A
;0y(t)+

f(t); y(0) = 0; where f(t) = [0; 0; f3(t)]: Taking the Y
 -inner product of this

equation with y(t); where f(t) is taken, at �rst, in L2(0; t;D(A
;0)); so that y(t) 2
C([0; T ];D(A
;0)); we obtain by virtue of the dissipative identity (5.1.9):
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1

2
ky(t)k2Y
 = (A
;0y(t); y(t))Y
+(f(t); y(t))Y
 (5.1.13)

= �kA
1
2

Ny2(t)k2L2(
)�kA
1
2

Ry3(t)k2L2(
)+(A� 1
2

R f3(t);A
1
2

Ry3(t))L2(
); (5.1.14)

a.e. in t: Integrating (5.1.14) yields since y(0) = 0;

ky(t)k2Y
 + 2

Z t

0

kA
1
2

Ny2(�)k2L2(
)d� + 2

Z t

0

kA
1
2

Ry3(�)k2L2(
)d�

= �

Z t

0

kA
1

2

Ry3(�)k2L2(
)d� +
1

�

Z t

0

kA� 1

2

R f3(�)k2L2(
)d�;

9>>>=
>>>;

(5.1.15)

from which we obtain

kyk2L1(0;T ;Y
)
+ 2kA

1

2

Ny2k2L2(0;T ;L2(
)) + 2kA
1

2

Ry3k2L2(0;T ;L2(
))

� 1

�
kf3k2

L2(0;T ;[D(A
1
2
R
)]0)
;

9>=
>; (5.1.16)

first for f3 smooth as above. Next f3 is extended to all of L2(0; T ; [D(A
1
2

R)]
0): Finally,

a standard approximation argument boosts L1(0; T ; � ) to C([0; T ]; � ) for y and

(5.1.16) yields (5.1.11).

5.2. The operator A
 is a semigroup generator.

Proof of Proposition 1.3.2

Step 1. In this subsection we prove Proposition 1.3.2: i.e., that the operator A
;s

de�ned by (1.3.26) is the generator of a s.c. semigroup e
A
;st on Y
: To this end,

we shall employ the auxiliary semigroup generator A
;0 in (5.1.8) as guaranteed by

Proposition 5.1.2, and write (recall (1.3.27))

A
;s=A
;0 +

2
664
0 I 0

0 C
�1

 ANN

@

@�
0

0 �AN 0

3
775 ; _x=A
;sx=A
;0x+

2
664

0

C
�1

 ANN

@vt

@�

�ANvt

3
775 (5.2.1)

for x(t) = [v(t); vt; �(t)] > Equivalently, we shall establish that the corresponding

integral equation

x(t) = e
A
;0tx0 +

Z t

0

e
A
;0(t��)

2
664

0

C
�1

 ANN

@vt

@�
(�)

�ANvt(�)

3
775 d� (5.2.2)

has a unique semigroup solution x 2 C([0; T ];Y
); so that x(t) = e
A
;stx0:
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Step 2. We integrate by parts the second entry in (5.2.2) and obtain

Z t

0

e
A
;0(t��)

2
664

0

C
�1

 AN

@vt

@�
(�)

�ANvt(�)

3
775d�=(Bx)(t)+Qx(t)�eA
;0t

2
664

0

C
�1

 ANN

@v(0)

@�

0

3
775; (5.2.3)

where we have de�ned the operator B by

(Bf)(t) =
Z t

0

e
A
;0(t��)

8>><
>>:A
;0

2
664

0

C
�1

 ANN

@f1

@�
(�)

0

3
775+
2
64

0

0

�ANf2(�)

3
75
9>>=
>>; d� (5.2.4)

=

Z t

0

e
A
;0(t��)

2
6666664

C
�1

 ANN

@f1

@�
(�)

�C�1

 ANC

�1

 ANN

@f1(�)

@�

ANN
@

@�

�
C
�1

 ANN

@f1(�)

@�

�
�ANf2(�)

3
7777775
d�; (5.2.5)

for f = [f1; f2; f3]; while for h = [h1; h2; h3] 2 Y
; x(0) = x0 2 Y
 we have set

Qh=

2
664

0

C
�1

 ANN

@

@�
h1

0

3
775 ; x̂0=[I �Q]x0=x0 �

2
664

0

C
�1

 ANN

@v(0)

@�

0

3
775: (5.2.6)

With x̂0 2 Y
 as in (5.2.6), using (5.2.3) into the right-hand side of (5.2.2), we see

then that we seek a semigroup solution x(t) 2 C([0; T ];Y
) of
x(t) = e

A
;0tx̂0 + (Bx)(t) +Qx(t): (5.2.7)

Step 3. Proposition 5.2.1. With reference to the operators B and Q in (5.2.4)

and (5.2.6), we have

(i) B : continuous C([0; T ];Y
)! C([0; T ];Y
) : (5.2.8)

More precisely, with f = [f1; f2; f3] 2 C([0; T ];Y
); we have

kBfk2C([0;T ];Y
) � cT

n
kf1k2C([0;T ];H2(
)) + kf2k2C([0;T ];H1(
))

o
; (5.2.9)

where cT & 0 as T & 0:

(ii)
Q : compact Y
 ! Y
; [I �Q] is boundedly invertible on Y
 ; (5.2.10)
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(iii) the operator

fI � [I �Q]�1Bg : continuous C([0; T ];Y
)! C([0; T ];Y
) (5.2.11)

is boundedly invertible.

Proof. (i) We return to the integral (5.2.5) de�ning Bf with f = [f1; f2; f3] 2
C([0; T ];Y
); i.e., f1 2 C[0; T ];H2(
)); f2 2 C([0; T ];H1(
)): Then, regarding the

three entries, we have via (1.3.19), A 1
2C

�1

 2 L(L2(
)) (by (5.1.3), and the regularity

of N in (1.3.14):

C
�1

 ANN

@f1

@�
=

1



N
@f1

@�
� 1



C
�1

 N

@f1

@�
2 C([0; T ];H2(
) = D(A 1

2 )); (5.2.12)

N
@

@�

�
C
�1

 ANN

@f1

@�

�
2C([0; T ];H2(
));

C
�1

 ANC

�1

 ANN

@f1

@�
2C([0; T ];H2(
));

9>>=
>>; (5.2.13)

8>>>><
>>>>:

A
1
4
+�

N (A
3
4
��

N N)
@

@�

�
C
�1

 ANN

@f1

@�

�
2 C([0; T ]; [D(A

1
4
+�

N )]0)

� C([0; T ]; [D(A
1
2

N)]
0);

9=
;

ANf2 = A
1
2

NA
1
2

Nf2 2 C([0; T ]; [D(A
1
2

N)]
0 = [H1(
)]0):

(5:2:14)

(5:2:15)

Thus, recalling the hidden regularity of Proposition 5.1.3 on the third entry in (5.2.5)

via (5.2.14), (5.2.15), as well as (5.2.12), (5.2.13) for the �rst two entries, we readily

obtain via the generation result of Proposition 5.1.2,

kBfk2C([0;T ];Y
) � kT

n
kf1k2L2(0;T ;H2(
)) + kf2k2L2(0;T ;H1(
))

o
(5.2.16)

� TkT

n
kfk2C([0;T ];H2(
)) + kf2k2C([0;T ];H1(
))

o
; (5.2.17)

and cT = TkT & 0 as T & 0 since kT is decreasing in T :

(ii) The second entry of Qh is compact H
2(
) ! H

1(
) = D(C
1
2

 ); via

(5.2.12). Moreover, the operator [I � Q] is plainly injective on Y
 by its de�nition

in (5.2.6). Thus, [I �Q] is boundedly invertible on Y
:

(iii) For g 2 C([0; T ];Y
); we seek to solve uniquely

fI � [I �Q]�1Bgf = g; i.e., f = g + [I �Q]�1Bf (5.2.18)

for f 2 C([0; T ];Y
): Since cT & 0 in (5.2.9), this can be done at least initially for

T small, by the contraction mapping principle. A �nite number of iterations allows

extension to any T �nite.
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Step 4. Corollary 5.2.2. The integral equation (5.2.2), equivalently (5.2.7), has

a unique semigroup solution x(t) 2 C([0; T ];Y
): This is, in fact, x(t) = e
A
 tx0; and

A
 generates a s.c. semigroup e
A
 t on Y
: Moreover, the following representation

formula holds true:

x( � ) = e
A
;s �x0 = [I � [I �Q]�1B]�1 �(I �Q)�1eA
;0 � x̂0

�
; (5.2.19)

with Q; B; x̂0 as in (5.2.6), (5.2.4).

Proof. We return to (5.2.7) where eA
;0tx̂0 2 C([0; T ];Y
) by Proposition 5.1.2.

Then (5.2.7) is rewritten as

[I�Q]x(t) = e
A
;0tx̂0+(Bx)(t); fI� [I�Q]�1Bgx( � ) = (I�Q)�1eA
;0 � x̂0; (5.2.20)

and then the unique solution x( � ) as in (5.2.19) is obtained by Proposition 5.2.1 (iii).
The semigroup property of x(t) is a standard consequence of being a solution in

C([0; T ];Y
) of (5.2.2).

5.3. Analysis of the fv; �g-problem (1.3.29), (1.3.30):

Proof of Theorem 1.3.3(ii)

In this subsection we return to the operator A
;s in (1.3.25), which was established

in Subsection 5.3, to be a generator of a s.c. semigroup. Such semigroup describes

the fv; �g-dynamics in (1.3.29) { (1.3.30), or (1.3.34) { (1.3.39) (left). Our goal here

is to show the following result contained in Theorem 1.3.3 (ii).

Theorem 5.3.1. The statement \the s.c. semigroup e
A
;st is compact for all

t > 0" is false: this is implied [33, p. 50] by the fact that the resolvent R(�;A
;s)

possesses the following property:

kR(� = a + i�; A
;s)kL(Y
) does not tend to zero as � !1; with

Re � = a �xed and suÆciently large.

)
(5.3.1)

Convention. In this subsection, when we write \� !1" we mean, for short, the

full statement in (5.3.1), unless otherwise noted.

We begin by showing the same property for the (simpli�ed) generator A
;0 in

(5.1.8) of Proposition 5.1.2.

Theorem 5.3.2. The statement \the s.c. semigroup e
A
;0t is compact for all

t > 0" is false: this is implied [P.1, p. 50] by the fact that the resolvent R(�;A
;0)

possesses the following property:

kR(� = a+ i�; A
;0)kL(Y
) does not tend to zero as � !1; with

Re � = a �xed and suÆciently large.

)
(5.3.2)
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Proof. Step 1. For a s.c. semigroup the property \compactness for all t > 0"

is invariant under a bounded perturbation of the generator [33, p. 79]. Hence, we

may further simplify the analysis by removing from the generator A
;0 the second

row-second column entry [�C�1

 AN ]; which is a bounded operator on D(C

1
2

 ): We

then consider the following new generators on Y
 :

�A
;0=

2
664

0 I 0

�C�1

 A 0 �C�1


 AG1( � j�)
0 ANN

@

@�
�AR

3
775; Ad=

2
4 0 I 0

�C�1

 A 0 0

0 0 �AR

3
5; (5.3.3)

with the obvious domains, in particular D( �A
;0) = D(A
;0) in (5.1.8b). Both opera-

tors in (5.3.3) are generators of s.c. semigroups on Y
 ; indeed, e
Adt is a contraction

which decomposes as a direct sum of the unitary group eA 
;0 t on D(A 1
2 )�D(C

1
2

 ) with

generator A 
;0 =
h

0

�C�1
 A
I

0

i
; and the analytic semigroup e�ARt on L2(
): Instead of

(5.3.2), we thus prove equivalently that

kR(� = a+ i�; �A
;0)kL(Y
) does not tend to zero as � !1; with

Re � = a �xed and suÆciently large.

)
(5.3.4)

To this end, we assume by contradiction that with Re � = a fixed and suÆciently

large,
kR(� = a+ i�; �A
;0)kL(Y
) ! 0 as � !1 (5.3.5)

Let f = [f1; f2; f3] 2 Y
; kfkY
 = 1 and set with v(�) = [v1(�); v2(�); v3(�)];

v(�) = R(�; �A
;0)f ; or (�I � �A
;0)v(�) = f ; �v1(�)� v2(�) = f1 (5.3.6)

(we have chosen to write explicitly only the �rst row, to be invoked below), where

f1 2 D(A 1
2 ); f2 2 D(C

1
2

 ) and f3 2 L2(
): We have by (5.3.6) and (5.3.5),

sup
kfk=1

kv(�)kY
 = sup
kfk=1

kR(�; �A
;0)fkY
 = kR(�; �A
;0)kL(Y
) ! 0 as � !1; (5.3.7)

so that, explicitly, via the de�nition of Y
 in (1.3.21) we have

sup
kfk=1

kv1(�)kH2(
) ! 0; sup
kfk=1

kv2(�)kH1(
) ! 0;

sup
kfk=1

kv3(�)kL2(
) ! 0; as � !1:

9>=
>; (5.3.8)

Recalling the generators �A
;0 and Ad in (5.3.3), we rewrite (5.3.6) as

f = (�I � �A
;0)v(�) = (�� Ad)v(�) +

2
664

0

C
�1

 AG1(v3(�)j�)

ANN
@v2(�)

@�

3
775; (5.3.9)
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from which we obtain by applying R(�;Ad):

R(�;Ad)f = v(�) +R(�;Ad)

2
664

0

C
�1

 AG1(v3(�)j�)

ANN
@v2(�)

@�

3
775: (5.3.10)

As v(�)! 0 in Y
 as � !1 by (5.3.7), (5.3.8), uniformly in f in the unit sphere

of Y
; our next goal is to show that

R(�;Ad)

2
6664

0

C
�1

 AG1(v3(�)j�)

ANN
@v2(�)

@�

3
7775=
2
64R(�; A 
;0)

h
0

C
�1

 AG1(v3(�)j�)

i

R(�;�AR)ANN
@v2(�)

@�

3
75! 0 as � !1; (5.3.11)

in Y
; uniformly in f running over the unit sphere of Y
; where A 
;0 =
h

0

�C�1
 A
I

0

i
as

below (5.3.3) and will see that this will lead to a contradiction.

Step 2. We need to boost (5.3.8) for v3 , as in the t-domain (see Lemma 5.1.1 (i)).

Lemma 5.3.3. We have

sup
kfkY
=1

kv3(�)kH1(
)!0 as �!1 as Re � = a �xed and large enough. (5.3.12)

Proof. We �rst recall from Proposition 5.1.2 for A
;0 adapted to the simpler

operator �A
;0; that �A
;0 in (5.3.3) becomes skew-adjoint if we remove the bottom

right corner element �AR: Thus, from (5.3.6) we obtain

Re((�I � �A
;0)v(�); v(�))Y


= (Re �)kv(�)k2Y
 + (ARv3(�); v3(�))L2(
) = (f; v(�))Y
 ;

)
(5.3.13)

from which

kv3(�)kH1(
) _= kA
1

2

Rv3(�)kL2(
) � jRe �jkv(�)k2Y
 + kfkY
kv3(�)kY
 : (5.3.14)

Then (5.3.12) follows from (5.3.14), via (5.3.7), or (5.3.8).

Step 3. We begin with the �rst term in (5.3.11). To this end, we invoke from

Remark 5.3.1 (at the end of this subsection) the following sharp regularity result

of the Kircho� problem corresponding to the original thermo-elastic problem (1.3.1) {

(1.3.6): the map

v3 2 L2(0; T ;H
1

2 (�))!
Z t

0

e
A 
;0 (t��)

�
0

C
�1

 AG1(v3(�)j�)

�
d�

2 C([0; T ];D(A 1
2 )�D(C

1
2

 ))

9>>=
>>; (5.3.15)
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is continuous. For more details see Remark 5.3.1 below, Eqn. (5.3.44). It then

follows readily, via Laplace transform, see Remark 5.3.2 below, that in the norm of

D(A 1

2 )�D(C
1
2

 ); we have:

sup
kfk=1





R(�; A 
;0)

�
0

C
�1

 AG1(v3(�)j�)

�




Y


� constp
Re�

sup
kfk=1

kv3(�)j�k
H

1
2 (�)

9>>>=
>>>;

(5.3.16)

� constp
Re�

sup
kfk=1

kv3(�)kH1(
)!0 as �!1;
(5.3.17)

where in going from (5.3.13) to (5.3.14) we have used trace theory. In (5.3.17), we

have recalled (5.3.12) for v3; as Re � = a is �xed.

Step 4. We next show likewise that for the second term in (5.3.11) we have

sup
kfk=1





R(�;�AR)ANN
@v2(�)

@�






L2(
)

! 0 as � !1: (5.3.18)

This will be done by duality. Let x 2 L2(
) and compute�����
�
R(�;�AR)ANN

@v2(�)

@�
; x

�
L2(
)

����� =
�����
�
@v2(�)

@�
;N

�ANR(��;�AR)

�
L2(�)

����� (5.3.19)

(by (1.3.18)) =

�����
�
@v2(�)

@�
; [R(��;�AR)x]�

�
L2(�)

�����
�




@v2(�)@�






L2(�)



[R(��;�AR)x]�



L2(�)

: (5.3.20)

By trace estimates [5, Thm. 1.6.6, p. 37], since v2(�) = �v1(�)� f1 from (5.3.6):





@v2(�)@�






2

L2(�)

� ckv2(�)kH2(
)kv2(�)kH1(
)=ck�v1(�)�f1kH2(
)kv2(�)kH1(
) (5.3.21)

� c
�j�jkv1(�)kH2(
)kv2(�)kH1(
)+kf1kH2(
)kv2(�)kH1(
)

	
: (5.3.22)

Similarly, by trace estimates [5, Thm. 1.6.6, p. 37]

k[R(��;�AR)x]�k2L2(�) � ckR(��;�AR)xkH1(
)kR(��;�AR)xkL2(
) (5.3.23)

(by (1.3.13)) � ckA
1
2

RR(
��;�AR)xkL2(
)kR(��;�AR)xkL2(
) (5.3.24)

� c
1

j�j 12
kxkL2(
)

1

j�j kxkL2(
)=c
1

j�j 32
kxk2L2(
); (5.3.25)
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recalling the standard estimates for the resolvent of the analytic semigroup generator

�AR: Combining estimates (5.3.22) and (5.3.25) and using
p
a2 + b2 � a+ b for a; b

positive, we obtain



@v2(�)@�






L2(�)

k[R(��;�AR)x]�kL2(�)

� c

n
j�j 12kv1(�)k

1

2

H2(
)
kv2(�)k

1

2

H1(
)
+kf1k

1

2

H2(
)
kv2(�)k

1

2

H1(
)

o 1

j�j 34
kxkL2(
) (5.3.26)

� c

(
1

j�j 14
kv1(�)k

1

2

H2(
)
kv2(�)k

1

2

H1(
)
+

1

j�j 34
kv2(�)k

1

2

H1(
)
kf1k

1

2

H2(
)

)
�

�kxkL2(
) ! 0 as � !1;

9>>=
>>; (5.3.27)

uniformly in f running over the unit sphere of Y
; recalling (5.3.8) for v1 and v2:

Using (5.3.27) on the right-hand side of (5.3.20), we obtain

sup
kfk=1

�����
�
R(�;�AR)ANN

@v2(�)

@�
; x

�
L2(
)

�����! 0 as � !1; 8 x 2 L2(
); (5.3.28)

and (5.3.18) is proved as desired.

Step 5. Thus (5.3.17) and (5.3.18), combined show (5.3.11), uniformly on all f

running over the unit sphere of Y
; which was our objective. But then (5.3.11) and

(5.3.7), or (5.3.8), used in (5.3.10) yield, with Re � = a �xed and suÆciently large:

sup
kfk=1

kR(�;Ad)fkY
 = kR(�;AD)kL(Y
) ! 0 as � !1: (5.3.29)

However, since Ad in (5.3.3) splits as A 
;0 � (�AR); see below (5.3.11), and A 
;0

generates a (unitary) group, (5.3.29) is impossible, see Remark 5.3.3 below: a con-

tradiction. Thus, (5.3.5) is false, and (5.3.4) and (5.3.2) hold true. Theorem 5.3.2 is

proved.

Completion of the proof of Theorem 5.3.1. We shall use Theorem 5.3.2.

Step 1. We return to (5.2.6) and identity (5.2.7), where x(t) = e
A
 tx0 by Corollary

5.2.2, rewritten now as

e
A
;0tx̂0 = e

A
 tx0 � (Bx)(t)�Qx(t);
x(t; x0) = x(t) = e

A
 tx0; x̂0 = (I �Q)x0;

)
(5.3.30)

R(�;A
;0)x̂0 = R(�;A
)x0 � (Bx)(�)�Qx(�); x(�) = R(�;A
)x0: (5.3.31)

Assume by contradiction that for x0 2 Y
; with kx0k = 1 in the Y
 -norm:

kR(�;A
;s)kL(Y
)= sup
kx0k=1

kR(�;A
;s)x0kY
 = sup
kx0k=1

kx(�)kY
!0 as �!1; (5.3.32)

54



Lasiecka and Triggiani

in particular,

sup
kx0k=1

kx1(�)kH2(
) ! 0; sup
kx0k=1

kx2(�)kH1(
) ! 0; as � !1; (5.3.33)

for Re � = a �xed and large enough where we have written x(�) = [x1(�); x2(�); x3(�)]:

The goal of this proof is to show that then

sup
kx0k=1

k(Bx)(�)kY
 ! 0 as � !1; (5.3.34)

after which we obtain from (5.3.32), (5.3.34), used in (5.3.31):

sup
kx0k=1

kR(�;A
;0)x̂0kY
 ! 0 as � !1: (5.3.35)

Since x̂0 = [I�Q]x0 and (I�Q) is an isomorphism on Y
 (by Proposition 5.2.1 (ii),

Eqn. (5.2.10)), (5.3.35) is equivalent to

sup
kx0k=1

kR(�;A
;0)x0kY
 = kR(�;A
;0)kL(Y
) ! 0 as � !1; (5.3.36)

which is the sought-after contradiction by Theorem 5.3.2.

Step 2. Proof of (5.3.34). We return to the de�nition of B given by (5.2.5),

where by Proposition 5.2.1, B : continuous C([0; T ];Y
) ! itself. Thus, by Laplace

transform, see Remark 5.3.2 below, we deduce via (5.2.5) that

sup
kx0k=1

k(Bx)(�)kY


� constp
Re�

(
sup
kx0k=1

kx1(�)kH2(
)+ sup
kx0k=1

kx2(�)kH1(
)

)
! 0 as � !1;

9>>>=
>>>;

(5.3.37)

recalling (5.3.33). Thus, assumption (5.3.32) applied to (5.3.37) yields (5.3.34) as

desired. The proof of Theorem 5.3.1 is complete.

In the next three remarks, we provide further explanation on three critical

issues used in the above proof.

Remark 5.3.1. (sharp interior regularity of the Kircho� problem) We consider

the following Kircho� elastic problem corresponding to (1.3.1) { (1.3.6):8>>>>>>>><
>>>>>>>>:

utt � 
�utt +�2
u = 0 in Q = (0; T ]� 
;

u(0; � ) = u0; ut(0; � ) = u1 in 
;

�u+B1u = g in � = (0; T ]� �;

@�u

@�
+B2u� 


@utt

@�
= 0 in �:

(5:3:38)

(5:3:39)

(5:3:40)

(5:3:41)

The following result is proved in [28]: the proof requires micro-local analysis

and pseudo-di�erential operator techniques.
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Theorem. With reference to problem (5.3.38) { (5.3.41), the following regu-

larity result holds true: the map

fu0; u1; gg2 H2(
)�H
1(
)� L2(0; T ;H

1
2 (�))

! fu; utg 2 C([0; T ];H2(
)�H
1(
)) is continuous.

9=
; (5.3.42)

The abstract version of problem (5.3.38) { (5.3.41) is

utt + 
ANutt +Au = AG1(gj�); d

dt

�
u

ut

�
= A 
;0

�
u

ut

�
(5.3.43)

(compare with (1.3.10)) with A 
;0 =
h

0

�C�1
 A
I

0

i
: Hence

�
u(t)

ut(t)

�
= e

A 
;0 t

�
u0

u1

�
+

Z t

0

e
A 
;0 (t��)

�
0

AG1(g(�)j�)
�
d�: (5.3.44)

In particular, for u0 = u1 = 0; the regularity result (5.3.42) may be rewritten as

g !
Z t

0

e
A 
;0 (t��)

�
0

AG1(g(�)j�)

�
d� : continuous L2(0; T ;H

1
2 (�))

! C([0; T ];H2(
)�H
1(
)):

9=
; (5.3.45)

It is in the form (5.3.44) that this result is used in (5.3.15) above.

Remark 5.3.2. In this remark, we justify the step from (5.3.15) to (5.3.16);

and likewise that the operator B in (5.2.5) satis�es (5.3.37), as a consequence of

its continuity property (5.2.8). We are using the following known result, a ready

consequence of [12]. Let, as in [12; 25, Chapter 7], U and X be two Hilbert spaces;

A be the generator of a s.c. semigroup e
At on X; keAtk � Me

!t
; t � 0; B : U !

[D(A�)]0 be such that

u!
Z t

0

e
A(t��)

Bu(�)d� : L2(0; T ;U)! C([0; T ];X) (5.3.46)

continuously for some, hence any, T > 0; equivalently [12; Appendix A],Z T

0

kB�
e
A�t
xk2Udt � cTkxk2X ; x 2 X: (5.3.47)

Then, for all � 2 C such that Re � > !; we have [25, Chapter 7],

kR(�;A)BkL(U ;X) = kB�
R(��;A�)kL(X;U) � constp

Re�
: (5.3.48)

For completeness, we give a proof. First, as in [12; 25, Chapter 7], assumptions

(5.3.47) implies Z 1

0

e
(Re�)tkB�

e
A�t
xk2Udt � c!kxk2; for Re � > !: (5.3.49)
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This follows by splitting
R1
0

=
P

n

R (n+1)T

nT
; details in [12]. Next, at �rst for x 2

D(A�); we compute via Schwarz inequality

kB�
R(��;A�)xkU =






Z 1

0

e
���t
B
�
e
A�t
x dt






U

(5.3.50)

�
�Z 1

0

e
�(Re �)t

dt

�1
2
�Z 1

0

e
�(Re �)tkB�

e
A�t
xk2Udt

�1
2

(5.3.51)

(by (5.3.49)) � cp
Re�

kxk; Re � > !; (5.3.52)

and (5.3.52) is then extended to all x 2 X; thus proving (5.3.48).

Remark 5.3.3. Here we justify the last statement of Step 5, just below

Eqn. (5.3.29). Let A be the generator of a s.c. group e
At on the Banach space

X: Assume that A has compact resolvent, so that its (point) spectrum f�ng1n=1 is

contained in a vertical strip �d � Re � � d of the complex plane, 0 � d < 1:

�n = an + i!n; janj � d: Then we have that with Re � = a �xed and jaj > d

kR(� = a+ i�; A)kL(X) does not tend to zero as � !1: (5.3.53)

Indeed, let feng1n=1 be the corresponding normalized eigenvectors. Then for � =

a+ iv; a; v real, jaj > d we obtain

R(�;A)en =
en

�� �n
; kR(� = a+ iv; A)enk2X =

1

(a� an)2 + (v � !n)2
: (5.3.54)

Selecting the points �n = a + i!n; with jaj � d � � > 0;

kR(�n = a+ i!n; A)kL(Y ) � kR(�n = a + i!n; A)enkX

=
1

ja� anj2 �
1

�2
> 0; n = 1; 2; : : :

9>=
>; (5.3.55)

and (5.3.55) implies (5.3.53).

5.4. Analysis of the fz;  g-problem: compactness of K
 in (1.3.28).

Proof of Theorem 1.3.3 (i)

The goal of the present subsection is to show the following result contained in the

statement of Theorem 1.3.3 (i).

Theorem 5.4.1. With reference to the operator K
 in (1.3.28), we have for

[w0; w1; �0] = y0 2 Y
;
[z(t); zt(t);  (t)] = K
(t)y0 = [bK1(t)+K2(t)+K3(t)]y0 : compact Y
 ! Y
 (5.4.1)
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(dependence of Ki on 
 is suppressed ) where, explicitly, for each t > 0;

K1(t)y0 =

Z t

0

e
A
;s(t��)

2
4 0

C
�1

 AG2(�(�)j�)

0

3
5d� : compact Y
 ! Y
; (5.4.2)

K2(t)y0 =

Z t

0

e
A
;s(t��)

2
64

�C�1

 �(�)

�C�1

 �C�1


 �(�)

��C�1

 �(�)

3
75d� : compact Y
 ! Y
; (5.4.3)

K3(t)y0 =

2
4 0

�C�1

 �(t)

0

3
5+ e

A
;st

2
4 0

C
�1

 �0

0

3
5 : compact Y
 ! Y
 : (5.4.4)

Proof. We return to (1.3.28) and obtain by integrating by parts in t

Z t

0

e
A
;s(t��)

2
4 0

C
�1

 �t(�)

0

3
5d�

=

8<
:eA
;s(t��)

2
4 0

�C�1

 �(�)

0

3
5
9=
;

�=t

�=0

�
Z t

0

e
A
;s(t��)A


2
4 0

C
�1

 �(�)

0

3
5d�:

9>>>>>>>>>=
>>>>>>>>>;

(5.4.5)

Invoking the form of A
 in (1.3.26), where we may replace �AN

� � � @

@�

�
by �

(recall the statement below (1.3.18)), we see that (5.4.5) yields the decomposition

(5.4.1), with Ki de�ned as in (5.4.2) { (5.4.4). Thus, it remains to show compactness

of each term.

K3(t) : K3(t) in (5.4.3) is plainly compact on Y
; see (1.3.21), since �(t) 2
L2(
) for each t � 0 for y0 2 Y
 by the semigroup generation of the original thermo-

elastic problem in Proposition 1.3.1 (ii), and C
�1

 : L2(
) ! D(C
) = H

2(
) ,!
compact H1(
) = D(C

1

2

 ):

K2(t) : We analyze the three terms in Y
 = D(A 1
2 )�D(C

1
2

 )� L2(
) :

A 1
2C

�1

 �(�) = (A 1

2C
�1

 )A� 1

2

R (A
1
2

R�(�));

C
� 1
2


 �C�1

 �(�) = (C

� 1
2


 �C�1

 )A� 1

2

R (A
1
2

R�(�));

�C�1

 �(�) = (�C�1


 )A� 1

2

R (A
1

2

R�(�));

9>>>>=
>>>>;

(5.4.6)

A 1
2C

�1

 2 L(L2(
)) by (5.1.3); A

1
2

R� 2 L2(0; T ;L2(
)) by (5.1.4);

A� 1
2

R compact on L2(
):

9=
; (5.4.7)
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Thus, we conclude by (5.4.6), (5.4.7), that

2
64

C
�1



C
�1

 �C�1




�C�1



3
75 : compact H1(
) = D(A

1
2

R)! Y
: (5.4.8)

Hence, (5.4.8) used in (5.4.3), with y0 ! A
1
2

R� continuous Y
 ! L2(0; T ;L2(
));

shows that K2(t) is compact on Y
 by invoking the proof of [36] based on Mazur's

theorem.

K1(t) : By (5.1.6), we have �j� 2 L2(0; T ;H
1
2 (�)); hence by (1.3.17),

A 7
8
��
G2(�j�) 2 L2(0; T ;L2(
)) continuously in y0 2 Y
; moreover, [C

� 1
2


 A 1
4 ] 2

L(L2(
)) (has a bounded extension in L2(
)) by (5.1.3). Thus, we see that

C
�1

 AG2( � j�) = C

� 1
2


 (C
� 1
2


 A 1
4 )A� 1

8
+�(A 7

8
��
G2)( � j�) :

compact H1(
)! H
1
2 (�)! D(C

1
2

 );

9=
; (5.4.9)

as A� 1
8
+� is compact on L2(
): Using (5.4.9) in (5.4.2), we conclude again as in the

proof of [36], based on Mazur's theorem, that K2(t) is compact on Y
: Theorem 5.4.1

is proved.

6. Implications of the structural decomposition on exact controllability

The structural decomposition of Theorem 1.1.2 and Theorem 1.2.2 has additional

implications also on the issue of exact controllability of a thermo-elastic dynamics,

which is subject to a control action. This was already exploited in the speci�c case

of clamped/Dirichlet B.C. with interior control in [9]. Our considerations here are

abstract and of a general nature and encompass the case of [9]. For lack of space, we

only limit ourselves to a brief, incomplete sketch here.

6.1. From approximate controllability to exact controllability

In this subsection, we let U (control space) and X (state space) be a Hilbert and

a Banach space, respectively. We shall follow into the following abstract setting,

already essentially contained in, say, [30, p. 119-120].

Proposition 6.1.1. Let J = S +Q; where:

(i) J is a closed operator U � D(J) ! X with dense range R(J) = X

(approximate controllability ); equivalently, with trivial null space of the adjoint

J
� : N (J�) = f0g;

(ii) S is a closed, surjective operator: U � D(S) onto X; where D(S) = D(J);
(iii) Q is a compact operator: U ! X:

Then, J is surjective U � D(J) onto X (exact controllability ).
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Proof. We may restrict to the Hilbert space ~U = [N (S)]
?
; the orthogonal com-

plement in U of the null space N (S) of S; so that S is injective and surjective:
~U \ D(S) onto X; with bounded inverse S�1 from X onto ~U \ D(S) (by the open

mapping theorem). Write

Ju = Su+Qu = [I +QS
�1]Su; u 2 ~U \ D(S): (6.1.1)

Since S[ ~U \ D(S)] = X by hypothesis (ii), we see by (6.1.1) that in order to show

surjectivity of J : ~U \ D(J) onto X; it suÆces to establish surjectivity of the

bounded operator V � [I + QS
�1] : X onto X; i.e., equivalently [34, p. 235], that

V
� = I + S

��1
Q
� is bounded below

kV �
xk = k[I + S

��1
Q
�]xk � ckxk; c > 0; 8 x 2 X: (6.1.2)

We now prove (6.1.2). First we notice that V
� is injective X ! X : V

�
x =

x + S
��1

Q
�
x = 0; x 2 X; ) x = 0; since equivalently J

�
x = S

�
x + Q

�
x =

0; x 2 D(J�)) x = 0; which holds true by hypothesis (i). This says that (�1) is not
an eigenvalue of the compact operator S��1Q� (by (iii)); thus (�1) belongs to the

resolvent set of S��1Q� and the inverse [I +S
��1

Q
�]�1 exists as a bounded operator

X ! X: This, then, establishes (6.1.2), as desired.

6.2. Applications to thermo-elastic problems

Distributed control (bounded control operator). We return to the thermo-

elastic dynamics of Sections 1.1 and 1.2. Set U = L2(0; T ;U); U a Hilbert

(control) space, and X = Y1;
 the mechanical state space de�ned in Eqn. (1.1.18)

and Eqn. (1.2.10), respectively. Let A 
 be the thermo-elastic generator de�ned by

(1.1.14) and (1.2.8), respectively; and let A 1;
 be the corresponding operator (1.1.19),

respectively (1.2.16) of the associated damped Kircho� equation (1.1.17), respectively

(1.2.14). We presently take a bounded control operator B 2 L(U ;Y
); Y
 as in

(1.1.12) or (1.2.9), respectively. According to the structural decomposition result of

Theorem 1.1.2, Eqn. (1.1.21) and Theorem 1.2.2, Eqn. (1.2.23), we take

Ju � �m

Z T

0

e
A 
 (T�t)Bu(t)dt; Su �

Z T

0

e
A 1;
 (T�t)�mBu(t)dt; (6.2.1)

Qu = �m

Z T

0

K
(T � t)Bu(t)dt; (6.2.2)

where �m is the orthogonal projection Y
 ! Y1;
 : [w0; w1; �0] ! [w0; w1] onto the

mechanical state space, and where K
(t) is the compact operator, for all t > 0;

Y
 ! Y
 in Eqn. (1.1.22), (2.29), and, respectively, in (1.2.24), (3.35). Thus, �mK


is the �rst (mechanical) component in (2.29) or (3.35), respectively. Since B is

bounded, it follows readily that Q : U ! Y1;
 = X is compact, and hypothesis (iii)

in Proposition 6.1.1 is veri�ed. Moreover, under several choices of the operator B;
e.g., B = [0; I; 0]; U = L2(
); or U = L2(!); ! = a boundary layer of 
 as in

[9] (mechanical distributed control), we have both that: (a) S is surjective ~U onto

X = Y1;
 (i.e., the damped Kircho� problem is exactly controllable), and J has dense

60



Lasiecka and Triggiani

range in X = Y1;
 (i.e., the thermo-elastic problem is approximately controllable in

the mechanical variables). Thus, assumptions (i) and (ii) of Proposition 6.1.1 hold

true in these cases. Then, Proposition 6.1.1 yields, in fact, an exact controllability

result in the mechanical variables. A rather routine soft argument, e.g., [2], based also

on the original approximate controllability property of the thermo-elastic problem on

all variables, then permits to conclude with exact controllability in the mechanical

variables fw;wtg and simultaneous approximate controllability of the thermal vari-

able �: In the case of Section 4.2 (clamped/Dirichlet B.C.) this exact/approximate

controllability conclusion was obtained in [9], in the interior control case, through

more ad hoc arguments.

Unbounded (boundary) control operator: hinged mechanical/Dirichlet

thermal B.C. (Section 4.1), and clamped mechanical/Dirichlet thermal

B.C. (Section 4.2). We now consider the thermo-elastic dynamics of Section 4.1

and Section 4.2, subject to a control operator such as it arises in the modeling of

many boundary/point control problems. As before, let �m[v1; v2; v3] = [v1; v2] be the

projection Y
 ! Y1;
 and let ��
m[v1; v2] = [v1; v2; 0] be its adjoint Y1;
 ! Y
: Let

Bm : continuous U ! [D(A 1;
 )]
0
; duality with respect to Y1;
; satisfy the abstract

trace condition [29],

B�meA 1;
 t : continuous Y1;
 ! L2(0; T ;U); (6.2.3)

equivalently, [29],

u!
Z t

0

e
A
�

1;
 (t��)Bmu(�)d� : continuous L2(0; T ;U)! Y1;
: (6.2.4)

Applying the structural decomposition Theorem 1.2.2, Eqn. (1.2.23), we can write

with y0 = [w0; w1; 0], in the above notation:

B�m�me
A 
 ty0 = B�meA 1;
 t�my0 + B�m�mK
(t)y0; t > 0; (6.2.5)

where by (3.35) on K
 and (3.5) on Lt;

�mK
(t)y0=Lt�; B�m�mK
(t)y0=B�mLt�=B�m
Z t

0

e
A 1;
 (t��)

�
0

�C�1

 �t(�)

�
d�: (6.2.6)

By duality on (6.2.5), we introduce the operators J; S and Q of Proposition 6.1.1

Ju = �m

Z T

0

e
A �
 (T�t)��

mBmu(t)dt; Su =

Z T

0

e
A �1;
 (T�t)Bmu(t)dt; (6.2.7)

Qu = �m

Z T

0

K�

(T � t)��

mBmu(t)dt; (6.2.8)

where we have chosen to consider the dynamics of the adjoint thermo-elastic semi-

group. We next show that Q is compact: L2(0; T ;U) ! Y1;
: This will be more

conveniently established by duality.
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Proposition 6.2.1. For the settings of Section 4.1 and Section 4.2, under as-

sumption (6.2.3), we have that

Q
� � B�m�mK
(t) : compact Y1;
 � 0! L2(0; T ;U): (6.2.9)

Proof. Step 1. With H = L2(
) and y0 = [w0; w1; 0] 2 Y
 we have under

assumption (6.2.3),

Z T

0

kB�m�mK
(t)y0k2Udt =
Z T

0

kB�mLt�k2Udt � CT

Z T

0

kC� 1

2

 �t(�)k2Hd�: (6.2.10)

The proof uses (6.2.6), a change in the order of integration, and hypothesis (6.2.3).

Details are omitted.

Step 2. The map

y0 = [w0; w1; 0] 2 Y
 ! C
� 1

2

 �t 2 L2(0; T ;H) is compact: (6.2.11)

To show (6.2.11), we recall that in the abstract setting of Section 1.2 and Section 3

with y0 = [w0; w1; 0] 2 Y
; we have, see (3.41):

�t 2 L2(0; T ;H) and �tt 2 L2(0; T ; [D(B)]0); (6.2.12)

C
� 1

2

 �t 2 L2(0; T ;D(C

1

2

 )); injection D(C

1

2

 )! H is compact; (6.2.13)

while, in the present setting of Section 4.1 and Section 4.2, we have, moreover, that

B = C (see (4.1.2) and (4.2.2)). Thus, the right-hand side of (6.2.12) yields

C
�1
�tt 2 L2(0; T ;H) and C

� 1
2


 �tt 2 L2(0; T ; [D(C 1
2 )]0): (6.2.14)

Then, Aubin's Lemma [1, p = 2] yields (6.2.11) from (6.2.13), (6.2.14).

Step 3. Using (6.2.11) in (6.2.10) yields (6.2.9), as desired.

Proposition 6.2.1 veri�es assumption (iii) in Proposition 6.1.1. As to the other

two assumptions, the following considerations are relevant. In the two cases in ques-

tion|with mechanical boundary conditions which are either hinged or clamped,

as in Section 4.1 and Section 4.2|there are known cases of boundary exact con-

trollability of conservative Kircho� equations in natural state spaces [19, 26], whose

proof readily extends ([37] and references therein) to cover damped Kircho� equa-

tions. This then provides speci�c boundary operators Bm for which the operator S

in (6.2.7) is surjective onto a natural state space. Thus, assumption (ii) of Propo-

sition 6.1.1 holds true in these cases. Finally, for assumption (i) of Proposition

6.1.1|approximate controllability of the corresponding thermo-elastic problems|

the recent unique continuation results for thermo-elastic equations in [16] would, by

duality, provide relevant information on this issue. In the hinged/Dirichlet case of

Section 4.1, the precise spectral decomposition of the thermo-elastic operator [6] is

also useful here for backward continuation.
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Finally, when the boundary operator Bm does not satisfy condition (6.2.3)

|e.g., the case of thermo-elastic equations with so-called free B.C.|the present

argument does not seem applicable. However, in the speci�c case of thermo-elastic

equations with free B.C., a direct approach succeeds [2] in achieving the relevant

continuous observability inequality, which by duality is equivalent to exact control-

lability. Prior work in [18] had obtained, in this case, exact controllability of the

mechanical variables in the case of `small' coupling parameter. Null boundary exact

controllability results with clamped/hinged mechanical B.C. are given in [14].

Appendix A: Second proof of (3.24)

As to the second term in (3.17), since any sine operator absorbs the positive square

root of the negative of its generator, we have (C�1

 A)

1
2S0;
( � ) : continuous Z
 !

C([0; T ];Z); and hence, recalling (3.16)

z(t) =

Z t

0

(C�1

 A)

1
2S0;
(t� �)C�1


 B�t(�)d� 2 C([0; T ];Z
 = D(C
1

2

 )): (A.1)

Thus, invoking (H.3) = (1.2.5), if we can show that

(C�1

 A)

1
2 : continuous Z
 � D(C

1
2

 ) = D(A 1

2 )! H; (A.2)

then it follows from (A.1), (A.2) that

(C�1

 A)

Z t

0

S0;
(t� �)C�1

 B�t(�)d� 2 C([0; T ];H): (A.3)

In this case, (3.17), and hence (3.15), are then proved, as desired. We �nally show

(A.2). First, we notice that as an operator on Z
 � D(C
1

2

 ) = D(A 1

4 ); see (A.2), the

positive self-adjoint cosine operator C�1

 A has domain DZ
 (C

�1

 A) given by

DZ
 (C
�1

 A) = fx 2 Z
 : C�1


 Ax 2 D(C
1
2

 )g

= fx 2 Z
 : C� 1
2


 A
1

4A
3

4x 2 Hg = D(A 3

4 );

9=
; (A.4)

with D(A 3
4 ) with respect to H; as usual, since C�1


 A
1
4 is an isomorphism on H by

(H.3) = (1.2.5), and Z
 = D(A 1

4 ) � D(A 3

4 ): Thus, by (3.21), DZ
 (C
�1

 A) is A

1

2 -

smoother then Z = D(A 1
4 ) : DZ
 (C

�1

 A) = A

� 1
2Z
: It follows that DZ
((C

�1

 A)

1
2 );

with respect to Z
; is DZ
 ((C
�1

 A)

1
2 ) = A

� 1
4Z
 = D(A 1

2 ): Then, the dual spaceh
DZ
 ((C

�1

 A)

1
2 )
i0
Z


; duality with respect to the pivot space Z
 = D(A 1
4 ); ish

DZ
 ((C
�1

 A)

1
2 )
i0
Z


= H; as desired. Therefore, if z 2 Z
; then (C�1

 A)

1
2 z 2 H;

continuously, and (3.17) is proved.
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