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Abstract
This paper is concerning with the study of stability involving a thermoelastic system
with internal nonlinear localized damping. The main novelty of the paper is to intro-
duce to the study of thermoelastic system the general Wentzell boundary conditions
associated to the internal heat equation. This boundary condition takes into account
that there is a boundary source of heat which depends on the heat flow along the
boundary, the heat flux across the boundary, and the temperature at the boundary. The
tools are the use of multipliers with the construction of appropriate perturbed energy
functionals.

Keywords Stability · Thermoelastic system · Wentzell boundary conditions ·
Existence and uniqueness of solution

1 Introduction

Let � ⊂ R
N be an open, bounded and connected set, N ≥ 2, with smooth boundary

� = �0 ∪ �1 such that �0 ∩ �1 = ∅. In this paper we study the following problem

utt − c�u + div(θ) + ρ(x)g(ut ) = 0 in � × (0,∞), (1)

θt − �θ + div(ut ) = 0 in � × (0,∞), (2)

u = 0 on � × (0,∞), (3)

θ = 0 on �0 × (0,∞), (4)

θt − αθ − β��θ + β
∂θ

∂ν
= 0 on �1 × (0,∞), (5)
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u(x, 0) = u0(x), ut (x, 0) = u1(x), θ(x, 0) = θ0(x) x ∈ �, (6)

where � and �� are, respectively, the Laplace and Laplace-Beltrami operators in the
spatial variable; ν is the outward unit normal vector at �; c is a positive real number;
α, β : �1 → R are positive and continuous functions; u0, u1, and θ0 are the initial
data; and ρ is a nonnegative function responsible for the localized damping effect.

The problem (1, 2) is a n-dimensional version of the classical one-dimensional
thermoelastic system

utt − uxx + γ θx = 0 in (0, L) × (0,∞), (7)

θt − kθxx + γ θxt = 0 in (0, L) × (0,∞), (8)

where u is the displacement, θ is the temperature deviation from the reference temper-
ature, and γ and k are positive constants depending on thematerial. The system (7)–(8)
was studied for instance by Dafermos [17], Liu and Zheng [33, 34] and Rivera [35].
In [33, 35] the authors proved that, even in the absence of damping term, the energy
associated to the problem decays. The n-dimensional case was studied by Clark, San
Gil Jutuca, and Milla Miranda [12] and Apolaya, Clark, and Feitosa [1]. In [12] the
authors proved the exponential stability with the damping term acting on a boundary
portion of the domain. In [1] they studied the system without damping, the authors
also considered a time-dependent coefficient multiplying the Laplace operator.

More recently Braz e Silva, Clark, and Frota [6] proved the existence, uniqueness,
and asymptotic behavior of global solutions for the following thermoelastic system
with nonlocal nonlinearities under the acoustic boundary conditions

utt − c�u + λ|u|ρu + (a · ∇)θ = 0 in � × (0,∞), (9)

θt − β

(∫
�

θ dx

)
�θ + (a · ∇)ut = 0 in � × (0,∞), (10)

u = 0 on �0 × (0,∞), (11)

ut + f1δt t + f2δt + f3δ = 0 on �0 × (0,∞), (12)
∂u

∂ν
− δt + η(·, ut ) = 0 on �1 × (0,∞), (13)

where β, f1, f2, f3, and η are known functions, c, ρ, and λ are constants, and a is a
known vector of RN . In [6], to prove the existence and uniqueness of solutions the
authors employed the Faedo-Galerkin method and the energy method, respectively,
with no restrictions on the geometry of the domain. To prove that the energy associated
to the problem is uniformly stable, the authors used some usual restrictions on the
geometry of the domain. Problems with acoustic boundary conditions can be found in
[4, 5, 8, 20–22, 25, 32, 39, 43] and references therein. We highlight the work of Frota
and Goldstein [22] which was the pioneer paper studying nonlinear problems.

On the other hand, the boundary condition (5) is associated to the following equation

Au + β∂an u + γ u − qβ��u = 0 on �, (14)
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736 A. Vicente

where A is a second order uniformly elliptic operator defined by

Au =
N∑

i, j=1

∂i (ai j (x)∂ j u) = ∇ · (a(x)∇)u,

here a = (ai j (·))1≤i, j≤N and ai j are real valued functions, ∂an u is the conormal
derivative of u with respect to the matrix a, and γ and β are continuously differen-
tiable functions. Problems with the boundary condition (14) has been studied by many
authors. See [13–16, 18, 19] and references therein. They are called into the literature
the general Wentzell boundary conditions (GWBC). Recently, Romanelli [36] called
these the Goldstein–Wentzell boundary conditions (GWBC). See also the works of
Cavalcanti, Lasiecka, and Toundykov [10, 11].

Concerning theGWBCwewould like to cite the paperwhich is ourmainmotivation
to study the system (1–6). In [26], G. R. Goldstein gives new derivations of the heat
and wave equations which incorporate the boundary conditions into the formulation
of the problems. She makes several descriptions on classical boundary conditions as
well as on the general Wentzell and dynamic boundary conditions. Our motivation is
precisely Sect. 3 of the paper where she considered the heat equation and GWBC. For
the reader’s convenience we rewrite the ideas of G. R. Goldstein here. It is well known
that the linear heat equation on a domain � is given by

(ρcθ)t = κ�θ + s, (15)

where θ(x, t) represents the temperature at position x ∈ � at time t ≥ 0; κ is the
thermal conductivity constant, ρ is the density of the material, c is the heat capacity of
the material, and s represents a heat source. We suppose that there exists a heat source
acting on the boundary of the region �. Moreover, we suppose that the source should
depend on the heat flow along the boundary, the heat flux across the boundary and the
temperature at the boundary. If we take it into account, then the boundary condition
becomes

θt = a(x)��θ − b(x)
∂θ

∂ν
+ c(x)θ on �, (16)

where a, b, and c are known functions. The Laplace-Beltrami operator describes the
heat flux along the boundary and, since c > 0, the term cθ represents a heat source on
the boundary.

Therefore, observing (15, 16), the main goal of the present paper is to incorpo-
rate into the thermoelastic system the equation (5) which takes into account the heat
flow along the boundary, the heat flux across the boundary, and the temperature at the
boundary. The result extends the preview literature involving the thermoelastic system,
because, to the best of our knowledge, it is the first concerning the GWBC associated
to the heat equation. We would like to mention that the present paper extends the
discussion started by Bras Silva, Clark, and Frota [6]. Indeed, [6] was the first paper
concerning some dynamics on a boundary portion using the acoustic boundary con-
ditions. But their boundary equation is associated to the internal wave equation (and
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δ models the boundary behaviour) while in our manuscript the boundary equation is
associated to the internal heat equation (and itmodels the temperature at the boundary).
Our work also extends in some direction the paper of Kasri [30] where a thermoelastic
system with static Wentzell boundary conditions was studied. We highlight that in
[30] the boundary equation also is associated to the internal wave equation.

The tools of our work are the use of multipliers with the construction of appropriate
perturbed energy functionals.We consider that the function g satisfies the assumptions
introduced by Lasiecka and Tataru [31]. Due to the localized damping effect and the
presence of nonhomogeneos boundary conditions, there are some technical difficulties
to overcome.

Finally, we cite the work of Frota, Medeiros, and Vicente [23] which studied
problems with acoustic boundary conditions to non-locally reacting boundary. This
boundary condition involves the Laplace–Beltrami operator and it is associated to the
motion of the boundary. See also [2, 24, 27–29, 38, 40–42].

The paper is organized as follows. In Sect. 2 we present the notation and the exis-
tence theorem. In Sect. 3 we prove the stability result, the main theorem of the paper.

2 Notations and existence of solution

As described in the introduction, in this section we present the notations and an exis-
tence theorem. We suppose that the following assumptions hold.
Assumption 1. The function ρ satisfies

ρ(x) ≥ ρ0 > 0 a.e. in ω, (17)

where ω is a neighborhood, in �, of �1.
Assumption 2. The function g is continuous and monotone increasing such that

{
g(s)s > 0 for all s �= 0,

c1|s| ≤ |g(s)| ≤ c2|s| for all |s| ≥ 1,
(18)

for some positive constants c1, c2.
We recall that Assumption 2 is the classical one introduced by Lasiecka and Tataru

[31].
We denote by ‖·‖L2(�) the usual norm in the Hilbert space L2(�) endowedwith the

inner product (u, v)L2(�) = ∫
�
u(x)v(x) dx . We consider H1

0 (�), which is a Hilbert
space with the inner product

(u, v)H1
0 (�) =

∫
�

c∇u · ∇v dx .
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738 A. Vicente

We also consider the subspace of H1(�), denoted by V , as the closure of C1(�)

such that u|�0 = 0 in the strong topology of H1(�), i.e.,

V = {u ∈ C1(�); u|�0 = 0}H
1(�)

.

Weknow that the Poincaré inequality holds inV , thus there exists a positive constant
cp such that

∫
�

u2 dx ≤ cp

∫
�

|∇u|2 dx,

for all u ∈ V . Therefore, the space V can be endowed with the norm, ‖∇ · ‖L2(�),
induced by the inner product

(u, v)V =
∫
�

∇u · ∇v dx,

which is equivalent to usual norm of H1(�). The dual space of V is denoted by V ′.
Finally, we define

L2
β(�1) =

⎧⎪⎨
⎪⎩u : � → R;

∫
�1

1

β
u2 d� < ∞

⎫⎪⎬
⎪⎭ ,

which is endowed with the inner product

(u, v)L2
β (�1)

=
∫
�1

1

β
uv d�,

and norm

‖u‖L2
β (�1)

=
⎛
⎜⎝
∫
�1

1

β
u2 d�

⎞
⎟⎠

1/2

.

We denote by γ0 : H1(�) → H
1
2 (�) the trace map of order zero and by γ1 :

H1(�) → H− 1
2 (�) the trace map of order one, i.e. γ1(·) = ∂·

∂ν
.

We define

H = H1
0 (�) × L2(�) × L2(�) × L2

β(�1)
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with the inner product and norm given by

((u, v, θ, z), (r , s, μ, p))H = (u, r)H1
0 (�) + (v, s)L2(�) + (θ, μ)L2(�) + (z, p)L2

β(�1)

and

‖(u, v, θ, z)‖2H = ‖u‖2
H1
0 (�)

+ ‖v‖2L2(�)
+ ‖θ‖2L2(�)

+ ‖z‖2
L2

β(�1)
.

Finally, we define the operator A : D(A) ⊂ H → H by

A

⎛
⎜⎜⎝
u
v

θ

z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

v

c�u − div(θ) − ρ(x)g(v)

�θ − div(v)

β��z + αz − β ∂θ
∂ν

⎞
⎟⎟⎠ ,

where

D(A)=
{
(u, v, θ, z) ∈ H; v ∈ H1

0 (�), θ ∈ V , c�u−div(θ)−ρ(·)g(v) ∈ L2(�),

�θ − div(v) ∈ L2(�), β��z + αz − β
∂θ

∂ν
∈ L2

β(�1), γ0(θ) = z
}
.

Therefore, the problem (1–6) can be written as

d

dt
U (t) = AU (t) in (0,∞), (19)

U (0) = U0, (20)

where U = (u, v, θ, γ0(θ))T and U0 = (u0, u1, θ0, γ0(θ0))T ∈ D(A). To prove that
(19–20) has solution, it suffices to show that the operatorA−δ I is maximal dissipative
on H for some positive real number δ. To prove that the operator is dissipative, we
define yi = (ui , vi , θi , zi )T ∈ D(A), i = 1, 2, y = (u, v, θ, z) = y1− y2.We observe
that

(Ay1 − Ay2, y1 − y2)H − δ(y1 − y2, y1 − y2)H

=
∫
�

c∇v · ∇v dx +
∫
�

[c�u − div(θ) − ρ(x)(g(v1) − g(v2))]v dx

+
∫
�

(�θ − div(v))θ dx +
∫
�1

(
β��θ + αθ − β

∂θ

∂ν

)
θ
1

β
d�

−δ(y1 − y2, y1 − y2)H ≤ 0,

for δ large enough. Thus, the operator A − δ I is dissipative.
To show thatA−δ I is maximal dissipative it is sufficient to prove that the operator

λI −A is ontoH for some λ > δ. Thus, let (x1, x2, x3, x4) be an arbitrary element of
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740 A. Vicente

H. We are going to prove that there exists (u, v, θ, z) ∈ D(A) such that

(λI − A)

⎛
⎜⎜⎝
u
v

θ

z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
x1
x2
x3
x4

⎞
⎟⎟⎠ , (21)

for some positive λ. We define A : D(A) ⊂ L2(�) → L2(�) by

Au = −c�u,

where D(A) = H1
0 (�) ∩ H2(�). To deal with the heat equation, we define B :

D(B) ⊂ L2(�) → L2(�) by

Bθ = −�θ,

where

D(B) =
{
ψ ∈ L2(�); �ψ ∈ L2(�), ψ|�0 = 0,

∂ψ

∂ν |�1
= 0

}
.

Let N : L2
β(�1) → H1(�) be the Neumann operator such that φ �→ Nφ, where

Nφ is the solution of

⎧⎪⎨
⎪⎩

�Nφ = 0 in �,
∂Nφ

∂ν
= φ on �1,

Nφ = 0 on �0.

Therefore, (21) becomes

λv + 1
λ
Av + div(θ) + ρ(x)g(v) = x2 − 1

λ
Ax1

λθ + B
(
θ + N

(
β��θ+αθ−λθ

β

))
+ div(v) = x3 − BN

(
x4
β

)
.

(22)

Moreover, this problem can be written as

(F + C + M)

(
v

θ

)
=

(
x2 − 1

λ
Ax1

x3 − BN
(
x4
β

)
)

, (23)

where F : H1
0 (�) × V → H−1(�) × V ′ is the duality mapping of L2(�) × L2(�)

given by

F

(
v

θ

)
=

( 1
λ
A 0
0 B

)(
v

θ

)
,
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C : H1
0 (�) × V → H−1(�) × V ′ is the bounded, hemicontinuous and monotone

operator defined by

C

(
v

θ

)
=

(
λ div

div λ + N
(

β�� ·+α·−λ·
β

)
)(

v

θ

)
,

and M : H1
0 (�) × V → H−1(�) × V ′ is the maximal monotone (see [7]) operator

given by

M

(
v

θ

)
=

(
ρ(x)g(v)

0

)
. (24)

Since M is maximal monotone andC is monotone and hemicontinuous, we can use
Corollary 1.3 of Barbu [3, page 48] to conclude that C + M is maximal monotone.
From this and as F is a duality mapping, we can use Theorem 1.2 of Barbu [3,
page 39] to infer that R(F + C + M) is all of H−1(�) × V ′. Thus, there exists
(v, θ) ∈ H1

0 (�) × V such that (23) holds. Consequently, (22) also holds. Defining
u = x1+v

λ
and z = γ0(θ), we have that (u, v, θ, z) ∈ D(A) satisfies (21). Therefore,

A−δ I is maximal dissipative. From nonlinear semigroup theory, there exists a unique
solutionU ∈ C([0, T ]; D(A)) of (19)–(20) for any T > 0 finite (see Showalter [37]).
Summarizing, we have the following result.

Theorem 2.1 (Existence and uniqueness) Assume that Assumptions 1 and 2 hold. If
(u0, u1, θ0, γ0(θ0)) ∈ D(A), then (1–6) has a unique solution (u, ut , θ, γ0(θ)) ∈
C([0, T ]; D(A)), for all T > 0.

3 Stability

In this section, we prove the main result. We start by defining the energy associated
to the problem (1–6) by

E(t) = 1

2

⎛
⎜⎝
∫

�

u2t dx + c
∫
�

|∇u|2 dx +
∫
�

θ2 dx +
∫
�1

1

β
θ2 d�

⎞
⎟⎠ . (25)

To prove the stability it is necessary to make more two assumptions.
Assumption 3. Let x0 be a fixed point of RN . We define

m(x) = (x − x0) · ν,

for all x ∈ R
N . We consider that the boundary � of � is given by

�0 = {x ∈ �; m · ν < 0} and �1 = {x ∈ �; m · ν ≥ 0}.
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742 A. Vicente

Since the trace map γ0 is continuous, there exists a positive constant ctr such that

∫
�1

θ2 d� ≤ ctr

∫
�

|∇θ |2 dx, (26)

for all θ ∈ V .
Assumption 4. We suppose that α and β satisfy

max
x∈�1

|α(x)| ≤
min
x∈�1

|β(x)|
2ctr

. (27)

Lemma 3.1 Suppose that Assumptions 1, 2, and 3 hold. Suppose that
(u0, u1, θ0, γ0(θ0)) ∈ D(A) and let (u, ut , θ, γ0(θ)) be the solution of (1–6) given by
Theorem 2.1 and E(t) the energy defined in (25). Then, we have

E ′(t) +
∫
�

|∇θ |2 dx +
∫
�1

|∇�θ |2 d� −
∫
�1

α

β
θ2 d� +

∫
�

ρ(x)g(ut )ut dx = 0,

(28)

for all t ≥ 0. Moreover, if Assumption 4 holds, then

E ′(t) ≤ 0, (29)

for all t ≥ 0.

Proof Multiplying (1) by ut and integrating over �, we have

1

2

d

dt

⎛
⎝∫

�

u2t dx + c
∫
�

|∇u|2 dx
⎞
⎠ +

∫
�

utdiv(θ) dx +
∫
�

ρ(x)g(ut )ut dx = 0.

(30)

Multiplying (2) by θ and integrating over �, we obtain

1

2

d

dt

∫
�

θ2 dx +
∫
�

|∇θ |2 dx −
∫
�1

∂θ

∂ν
θ d� +

∫
�

θdiv(ut ) dx = 0. (31)

From (5), we infer

−
∫
�1

∂θ

∂ν
θ d� =

∫
�1

1

β
(θt − β��θ − αθ) θ d�

= 1

2

d

dt

∫
�1

1

β
θ2 d� +

∫
�1

|∇�θ |2 d� −
∫
�1

α

β
θ2 d�. (32)
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Moreover, we also have

∫
�

utdiv(θ) dx = −
∫
�

θdiv(ut ) dx . (33)

Combining (30–33), we infer

E ′(t) +
∫
�

|∇θ |2 dx +
∫
�1

|∇�θ |2 d� −
∫
�1

α

β
θ2 d� +

∫
�

ρ(x)g(ut )ut dx = 0.

(34)

Using the inequality (26), we have

∫
�1

α

β
θ2 d� ≤

ctr max
x∈�1

|α(x)|
min
x∈�1

|β(x)|
∫

�1

|∇θ |2 dx . (35)

Thus

E ′(t) +
⎛
⎜⎝1

2
−

ctr max
x∈�1

|α(x)|
min
x∈�1

|β(x)|

⎞
⎟⎠

∫
�

|∇θ |2 dx

+
∫
�1

|∇�θ |2 d� +
∫

�

ρ(x)g(ut )ut dx ≤ 0. (36)

From (34), (36), Assumptions 2 and 4, we conclude the proof. ��
Now, for each ε > 0, we define the perturbed energy by

Eε(t) = E(t) + ε�(t), (37)

where

�(t) = 2
∫

�

utm · ∇u dx + (N − 1)
∫

�

utu dx . (38)

Our decay result follows the ideas of Lasiecka and Tataru [31] which gives us
general decay rates. This idea was used by many authors, see for instance Cavalcanti,
Domingos Cavalcanti and Lasiecka [9], where one can find examples of explicit decay
rates. It is well known that, thanks to Assumption 2 it is possible to build a concave,
strictly increasing function ϕ such that ϕ (0) = 0 and

ϕ (sg(s)) ≥ s2 + g2(s), for |s| < 1. (39)
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744 A. Vicente

We define

ϕ̃(·) = ϕ
( ·
meas (ω × (0, T ))

)
. (40)

Since ϕ̃ is monotone increasing, we have that MI + ϕ̃ is invertible for all M ≥ 0.
We define

p(x) = (MI + ϕ̃)−1 (Lx) , (41)

where L = (C meas(ω × (0, T )))−1 and C is a specific positive constant. The func-
tion p is positive, continuous and strictly increasing with p(0) = 0. We also consider
the function

q(x) = x − (I + p)−1 (x) .

Finally, let S(t) be the solution of the following ordinary differential equation

d

dt
S(t) + q(S(t)) = 0, S(0) = E(0). (42)

Theorem 3.1 (Stability) Assume that Assumptions 1, 2, 3, and 4 hold. Suppose that
(u0, u1, θ0, γ0(θ0)) ∈ D(A) and let (u, ut , θ, γ0(θ)) be the solution of (1–6) given by
Theorem 2.1, then there exists a T0 > 0 such that for any T > T0 the energy satisfies

E(t) ≤ S
( t

T
− 1

)
,

for all t > T , with lim
t→∞ S(t) = 0, decreasing monotonically (S(t) is the solution of

(42)).

Proof Taking the derivative of Eε, we have

E ′
ε(t) ≤ −1

2

∫
�

|∇θ |2 dx −
∫

�

ρ(x)g(ut )ut dx

+ ε

∫
�

utt [2m · ∇u + (N − 1)u] dx

+ ε

∫
�

ut [2m · ∇ut + (N − 1)ut ] dx . (43)

Since u is a solution of (1–6), we have

∫
�

utt u dx =
∫
�

[c�u − div(θ) − ρ(x)g(ut )]u dx
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= −c
∫
�

|∇u|2 dx −
∫
�

u div(θ) dx −
∫
�

ρ(x)g(ut )u dx . (44)

Moreover

2
∫
�

utm · ∇ut dx = −N
∫
�

u2t dx +
∫
�

m · νu2t d�. (45)

Observing the identity

2
∫
�

�u m · ∇u dx = (N − 2)
∫
�

|∇u|2 dx + 2
∫
�

∂u

∂ν
m · ∇u d� −

∫
�

m · ν|∇u|2 d�

and that u is a solution of (1–6), we infer

2
∫
�

utt m · ∇u dx

= c(N − 2)
∫

�

|∇u|2 dx + 2c
∫
�

∂u

∂ν
m · ∇u d�

− c
∫
∂�

m · ν|∇u|2 d� − 2
∫

�

div(θ) m · ∇u dx − 2
∫

�

ρ(x)g(ut ) m · ∇u dx .

As u = 0 on �, it holds

|∇u|2 =
∣∣∣∣∂u∂ν

∣∣∣∣
2

and
∂u

∂ν
m · ∇u = m · ν

(
∂u

∂ν

)2

on �.

Therefore

2
∫
�

utt m · ∇u dx = c(N − 2)
∫
�

|∇u|2 dx + c
∫

�

m · ν

(
∂u

∂ν

)2

d�

− 2
∫
�

div(θ) m · ∇u dx − 2
∫
�

ρ(x)g(ut ) m · ∇u dx . (46)

Using (44–46) into (43), we obtain

E ′
ε(t) ≤ −1

2

∫
�

|∇θ |2 dx −
∫

�

ρ(x)g(ut )ut dx

+ ε

[
c(N − 2)

∫
�

|∇u|2 dx + c
∫

�

m · ν

(
∂u

∂ν

)2

d�

− 2
∫

�

div(θ) m · ∇u dx − 2
∫

�

ρ(x)g(ut ) m · ∇u dx − c(N − 1)
∫

�

|∇u|2 dx
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−(N − 1)
∫

�

udiv(θ) dx − (N − 1)
∫

�

ρ(x)g(ut )u dx −
∫

�

u2t dx

]
. (47)

Now, we are going to estimate the term c
∫
�
m · ν

(
∂u
∂ν

)2
d�. We consider ω̂ a

neighborhood of �1 in � such that

ω̂ ∩ � ⊂ ω.

Let h ∈ (W 1,∞(�))N be a vector field such that

⎧⎨
⎩
h = ν on �1
h · ν ≥ 0, a. e. on �

h = 0 in � \ ω̂.

We define

E1(t) = 2
∫
�

uth · ∇u dx . (48)

Thus

E ′
1(t) = 2

∫
�

uth · ∇ut dx + 2
∫

�

utt h · ∇u dx

= −
∫
�

div(h) u2t dx +
∫
�

h · ν u2t d� + 2
∫
�

[c�u − div(θ)

− ρ(x)g(ut )]h · ∇u dx . (49)

Using Gauss’ theorem and observing the definition of the vector field h, we have

2c
∫
�

�u h · ∇u dx = c
∫
�

div(h)|∇u|2 dx + c
∫
�1

(
∂u

∂ν

)2

d�

−2c
∫
�

∂u

∂xi

∂h j

∂xi

∂u

∂x j
dx, (50)

where h = (h1, h2, . . . , hN ). Combining (49) with (50), we infer

c
∫
�

m · ν

(
∂u

∂ν

)2

d� ≤ c
∫

�1

m · ν

(
∂u

∂ν

)2

d� ≤ cM1

∫
�1

(
∂u

∂ν

)2

d�

= M1

⎡
⎣E ′

1(t) +
∫

�

div(h)[u2t − c|∇u|2] dx + 2c
∫
�

∂u

∂xi

∂h j

∂xi

∂u

∂x j
dx
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+2
∫
�

div(θ) h · ∇u dx + 2
∫
�

ρ(x)g(ut ) h · ∇u dx

⎤
⎦ , (51)

where M1 = max
x∈�

|m(x)|. From (47) and (51), we obtain

E ′
ε(t) ≤ −1

2

∫
�

|∇θ |2 dx −
∫

�

ρ(x)g(ut )ut dx + ε

⎧⎨
⎩c(N − 2)

∫
�

|∇u|2 dx

+ M1

⎡
⎣E ′

1(t) +
∫

�

div(h)[u2t − c|∇u|2] dx + 2c
∫
�

∂u

∂xi

∂h j

∂xi

∂u

∂x j
dx

+2
∫
�

div(θ) h · ∇u dx + 2
∫

�

ρ(x)g(ut ) h · ∇u dx

⎤
⎦

− 2
∫
�

div(θ) m · ∇u dx − 2
∫

�

ρ(x)g(ut ) m · ∇u dx − c(N − 1)
∫
�

|∇u|2 dx

−(N − 1)
∫
�

u div(θ) dx − (N − 1)
∫
�

ρ(x)g(ut )u dx −
∫
�

u2t dx

⎫⎬
⎭ . (52)

The next step is to estimate the term
∫
ω̂

|∇u|2 dx . Thus, we define a function
η : � → R such that

⎧⎪⎪⎨
⎪⎪⎩

η = 0 a. e. in � \ ω

η = 1 a. e. in ω̂

0 ≤ η ≤ 1
|∇η|2

η
∈ L∞(ω).

We also define

E2(t) =
∫
�

η utu dx .

Taking the derivative of E2, we have

c
∫
ω̂

|∇u|2 dx ≤ −2E ′
2(t) + 2

∫
�

η u2t dx + c
∫
�

|∇η|2
η

u2 dx

− 2
∫

�

η u div(θ) dx + 2
∫
�

η uρ(x)g(ut ) dx .
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For each λ > 0, we have

∫
�

η u div(θ) dx ≤ C(λ)

∫
�

|∇θ |2 dx + λE(t).

Thus

c
∫
ω̂

|∇u|2 dx≤−2E ′
2(t)+2

∫
�

η u2t dx+c
∫

�

|∇η|2
η

u2 dx+2
∫
�

η uρ(x)g(ut ) dx

+ C(λ)

∫
�

|∇θ |2 dx + λE(t). (53)

On the other hand, we have

2
∫
�

div(θ) h · ∇u dx + 2
∫
�

div(θ) h · ∇u dx − (N − 1)
∫
�

u div(θ) dx

≤ C(λ)

∫
�

|∇θ |2 dx + λE(t) (54)

and

2M1

∫
�

ρ(x)g(ut ) h · ∇u dx + 2
∫
�

ρ(x)g(ut ) m · ∇u dx

+(N − 1)
∫
�

ρ(x)g(ut )u dx

≤ C(λ)

∫
�

ρ(x)g2(ut ) dx + λE(t). (55)

Therefore, (52–55) give

E ′
ε(t) ≤ −

(
1

2
− C(λ)ε

)∫
�

|∇θ |2 dx −
∫
�

ρ(x)g(ut )ut dx − ε [2 − Cλ] E(t)

+M1ε
[
E ′
1(t) − 2E ′

2(t)
] + 2M0ε

∫
�

ηu2t dx

+Cε

∫
�

u2 dx + εC(λ)

∫
�

ρ(x)g2(ut ) dx . (56)
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Defining

�̃(t) = �(t) + M1E1(t) − 2M1E2(t), (57)

Ẽε(t) = E(t) + ε�̃(t), (58)

and choosing λ small enough, we infer

Ẽ ′
ε(t) + εC2E(t)

≤ −
(
1

2
− C1ε

)∫
�

|∇θ |2 dx + Cε

∫
�

u2 dx + εC
∫

�

ρ(x)[u2t + g2(ut )] dx .

(59)

It is not difficult to prove that there exists a positive constant C̃ such that

|Ẽε(t) − E(t)| ≤ C̃εE(t), (60)

for all t ≥ 0 and for ε > 0 small enough.
Integrating (59) from 0 to T and observing (60), we have

(1 − C̃ε)E(T ) + εC2

∫ T

0
E(t) dt

≤ (1 + C̃ε)E(0) −
(
1

2
− C1ε

) T∫
0

∫
�

|∇θ |2 dx dt

+Cε

∫ T

0

∫
�

u2 dx dt + εC
∫ T

0

∫
�

ρ(x)[u2t + g2(ut )] dx dt . (61)

Since E(t) is decreasing, we have that

T E(T ) ≤
∫ T

0
E(t) dt .

Thus, we infer

(1 + ε(C2T − C̃))E(T )

≤ (1 + C̃ε)E(0) −
(
1

2
− C1ε

) T∫
0

∫
�

|∇θ |2 dx dt

+Cε

∫ T

0

∫
�

u2 dx dt + εC
∫ T

0

∫
�

ρ(x)[u2t + g2(ut )] dx dt . (62)
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On the other hand, Lemma 3.1 gives us

E(0) = E(T ) +
T∫

0

∫
�

|∇θ |2 dx dt +
∫ T

0

∫
�1

|∇�θ |2 d� dt

−
T∫

0

∫
�1

α

β
θ2 d� dt +

T∫
0

∫
�

ρ(x)g(ut )ut dx dt . (63)

Substituting (63) into (62) and choosing ε small enough, we obtain

ε(C2T − 2C̃)E(T ) ≤ (1 + C̃ε)
[ ∫ T

0

∫
�

|∇θ |2 dx dt +
T∫

0

∫
�1

|∇�θ |2 d� dt

+
T∫

0

∫
�

ρ(x)g(ut )ut dx dt −
∫ T

0

∫
�1

α

β
θ2 d� dt

]

+ Cε

T∫
0

∫
�

u2 dx dt + εC
∫ T

0

∫
�

ρ(x)[u2t + g2(ut )] dx dt . (64)

Choosing T > 0 such that C2T − 2C̃ > 0 and using the continuity of the trace
map, we have

E(T ) ≤ C

⎡
⎢⎣

T∫
0

∫
�

|∇θ |2 dx dt +
∫ T

0

∫
�1

|∇�θ |2 d� dt

+ε

∫ T

0

∫
�

u2 dx dt + ε

T∫
0

∫
�

ρ(x)[u2t + g2(ut )] dx dt

⎤
⎦ , (65)

for ε > 0 small enough.
Now, we are going to estimate the low order term

∫ T
0

∫
�

u2 dx dt . We claim that

there exists a positive constant C such that

∫ T

0

∫
�

u2 dx dt

≤ C

⎡
⎢⎣

T∫
0

∫
�

{ρ(x)[u2t + g2(ut )] + |∇θ |2} dx dt +
∫ T

0

∫
�1

|∇�θ |2 d� dt

⎤
⎥⎦ . (66)
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Indeed, suppose that (66) does not hold. Let (u0k, u1k, θ0k, γ0(θ0k))k∈N be a
sequence of initial data and (uk, u′

k, θk, γ0(θk))k∈N the corresponding solutions of
(1–6) such that

Ek(0) ≤ C, (67)

for all k ∈ N, and one has

lim
k→∞

∫ T
0

∫
�
u2k dx dt∫ T

0

∫
�
{ρ(x)[(u′

k)
2 + g2(u′

k)] + |∇θk |2} dx dt + ∫ T
0

∫
�1

|∇�θk |2 d� dt
=∞,

(68)

where ′ denotes the derivative with respect to the variable t and

Ek(t) = 1

2

⎛
⎜⎝
∫
�

(u′
k)

2 dx + c
∫
�

|∇uk |2 dx +
∫
�

θ2k dx +
∫
�1

1

β
θ2k d�

⎞
⎟⎠ . (69)

From (67) and (68), we have

∫ T

0

∫
�

{ρ(x)[(u′
k)

2 + g2(u′
k)] + |∇θk |2} dx dt +

∫ T

0

∫
�1

|∇�θk |2 d� dt → 0, (70)

as k → ∞. Observing (65), (67), and (70), we infer

Ek(t) ≤ C, (71)

for all k ∈ N and for all t ≥ 0. Estimating (71) yields subsequences of (uk)k∈N and
(θk)k∈N, that we still denote in the same way, and functions (u, θ), such that

uk
∗
⇀ u in L∞(0, T ; H1

0 (�)), (72)

u′
k

∗
⇀ u′ in L∞(0, T ; L2(�)), (73)

θk
∗
⇀ θ in L∞(0, T ; L2(�)), (74)

as k → ∞. Since H1
0 (�) is compactly embedded in L2(�), from the Aubin–Lions

Theorem, we have

uk → u in L2(0, T ; L2(�)), (75)

as k → ∞. On the other hand, from (70) we have

θk → 0 in L2(0, T ; V ), (76)
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as k → ∞. Thus (74) and (76) allow us to conclude that θ = 0.
At this point we are going to separate the proof into two cases.

Case u �= 0.
For each k ∈ N, (uk, θk) is a solution of

u′′
k − c�uk + div(θk) + ρ(x)g(u′

k) = 0 in � × (0, T ), (77)

θ ′
k − �θk + div(u′

k) = 0 in � × (0, T ), (78)

uk = 0 on � × (0, T ), (79)

θk = 0 on �0 × (0, T ), (80)

θ ′
k − β��θk + β

∂θk

∂ν
− αθk = 0 on �1 × (0, T ). (81)

Taking to the limit, as k → ∞, and observing (70) and (76), we obtain

u′′ − c�u = 0 in � × (0, T ), (82)

u = 0 on � × (0, T ), (83)

u′ = 0 on ω × (0, T ). (84)

Taking the derivative, with respect to t , and denoting by v = u′, we have

v′′ − c�v = 0 in � × (0, T ), (85)

v = 0 on � × (0, T ), (86)

v = 0 on ω × (0, T ). (87)

Therefore uniqueness arguments give us that v = u′ = 0 in � × (0, T ). Thus u′′ = 0
in � × (0, T ). Consequently (82)–(83) becomes

−�u = 0 in � × (0, T ), (88)

u = 0 on � × (0, T ). (89)

This allows us to conclude that u = 0, which is a contradiction.
Case u = 0. For each k ∈ N, we define

ck =
(∫ T

0

∫
�

u2k dx dt +
∫ T

0

∫
�

|∇θk |2 dx dt +
∫ T

0

∫
�1

|∇�θk |2 d� dt

) 1
2

, (90)

ũk = uk
ck

, and θ̃k = θk

ck
. (91)

From (75) and (76), we infer

ck → 0, (92)
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as k → ∞. Moreover, we also have

∫ T

0

∫
�

ũ2k dx dt +
∫ T

0

∫
�

|∇ θ̃k |2 dx dt +
∫ T

0

∫
�1

|∇�θ̃k |2 d� dt = 1, (93)

for all k ∈ N.
The convergence (70) gives us

∫ T

0

∫
�

{ρ(x)[(ũ′
k)

2 + g2(u′
k)

ck
] + |∇ θ̃k |2} dx dt +

∫ T

0

∫
�1

|∇�θ̃k |2 d� dt → 0,

(94)

as k → ∞. Therefore

√
ρũ′

k → 0 in L2(0, T ; L2(�)), (95)

√
ρ
g(u′

k)√
ck

→ 0 in L2(0, T ; L2(�)), (96)

θ̃k → 0 in L2(0, T ; V ), (97)

as k → ∞.
Adapting the proof of Lemma 3.1, it is possible to verify that

Ek(0) = Ek(T ) −
∫ T

0

∫
�

|∇θk |2 dx dt −
∫ T

0

∫
�1

|∇�θk |2 d� dt

+
∫ T

0

∫
�1

α

β
θ2k d� dt −

∫ T

0

∫
�

ρ(x)g(u′
k)u

′
k dx dt . (98)

On the other hand, analogously to (65), we infer

Ek(T ) ≤ C

[∫ T

0

∫
�

u2k dx dt +
∫ T

0

∫
�

ρ(x)[(u′
k)

2 + g2(u′
k)] dx dt

+
∫ T

0

∫
�1

|∇�θk |2 d� dt +
∫ T

0

∫
�

|∇θk |2 dx dt

]
. (99)

Now for each k ∈ N, we define

Ẽk(t) = Ek(t)

ck
.

Thus since Ek(t) is decreasing and observing (98) and (99), we have

Ẽk(t) ≤ Ẽk(0) ≤ C + C
∫ T

0

∫
�

ρ(x)

(
(ũ′

k)
2 + g2(u′

k)

ck

)
dx dt, (100)
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for all t ∈ [0, T ]. From (94) and (100), we conclude that

Ẽk(t) ≤ C, (101)

for all k ∈ N and t ∈ [0, T ].
Therefore, the estimate (101) yields subsequences of (ũk)k∈N and (θ̃k)k∈N, that we

still denote in the same way, and functions (ũ, θ̃ ), such that

ũk
∗
⇀ ũ in L∞(0, T ; H1

0 (�)), (102)

ũ′
k

∗
⇀ ũ′ in L∞(0, T ; L2(�)), (103)

θ̃k
∗
⇀ θ̃ in L∞(0, T ; L2(�)), (104)

as k → ∞. Since H1
0 (�) is compactly embedded in L2(�), from the Aubin-Lions

Theorem, we have

ũk → ũ in L2(0, T ; L2(�)), (105)

as k → ∞. From (97) and (104), we conclude that

θ̃ = 0. (106)

For each k ∈ N, (ũk, θ̃k) is a solution of

ũ′′
k − c�ũk + div(θ̃k) + ρ(x)

g(u′
k)

ck
= 0 in � × (0, T ), (107)

θ̃ ′
k − �θ̃k + div(ũ′

k) = 0 in � × (0, T ), (108)

ũk = 0 on � × (0, T ), (109)

θ̃k = 0 on �0 × (0, T ), (110)

θ̃ ′
k − β��θ̃k + β

∂θ̃k

∂ν
− αθ̃k = 0 on �1 × (0, T ). (111)

Taking to the limit, as k → ∞, and observing (95)–(97), and (102)–(106), we
obtain

ũ′′ − c�ũ = 0 in � × (0, T ), (112)

ũ = 0 on � × (0, T ), (113)

ũ′ = 0 on ω × (0, T ). (114)

Thus, we can use the same arguments of the case u �= 0 and to conclude that ũ = 0.
This and (106) give a contradiction with (93).

Therefore the claim (66) is proved. Combining (65) with (66), we obtain

E(T ) ≤ C
[ ∫ T

0

∫
�

|∇θ |2 dx dt
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+
∫ T

0

∫
�1

|∇�θ |2 d� dt +
∫ T

0

∫
�

ρ(x)[u2t + g2(ut )] dx dt
]
. (115)

Define

ωA = {(x, t) ∈ ω × (0, T ); |ut (x, t)| > 1}

and

ωB = (ω × (0, T )) \ ωA.

Using Assumptions 1 and 2, we obtain

∫
ωA

(u2t + g2(ut )) dx dt ≤
(
c−1
1 + c2

ρ0

)∫ T

0

∫
�

ρ(x)g(ut )ut dx dt .

From (39), we have

∫
ωB

(u2t + g2(ut )) dx dt ≤
∫

ωB

ϕ(g(ut )ut ) dx dt .

Using Jensen’s inequality, we obtain

∫
ωB

(u2t + g2(ut )) dx dt

≤ meas(ω × (0, T ))ϕ

(
1

meas(ω × (0, T ))

∫ T

0

∫
ω

ρ(x)g(ut )ut dx dt

)

≤ meas(ω × (0, T ))ϕ̃

(∫ T

0

∫
ω

ρ(x)g(ut )ut dx dt

)
.

Thus

∫
ω

(u2t + g2(ut )) dx dt ≤
(
c−1
1 + c2

ρ0

)∫ T

0

∫
�

ρ(x)g(ut )ut dx dt

+meas(ω × (0, T ))ϕ̃

(∫ T

0

∫
ω

ρ(x)g(ut )ut dx dt

)
.

Since ϕ̃ is increasing and

∫ T

0

∫
�

|∇θ |2 dx dt +
∫ T

0

∫
�1

|∇�θ |2 d� dt −
∫ T

0

∫
�1

α

β
θ2 dx dt ≥ 0
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we infer

∫
ω

(u2t + g2(ut )) dx dt ≤
(
c−1
1 + c2

ρ0

)
� + meas(ω × (0, T ))ϕ̃ (�) , (116)

where

� =
∫ T

0

∫
�

ρ(x)g(ut )ut dx dt +
∫ T

0

∫
�

|∇θ |2 dx dt

+
∫ T

0

∫
�1

|∇�θ |2 d� dt −
∫ T

0

∫
�1

α

β
θ2 dx dt .

Therefore, (115) and (116) give us that

E(T ) ≤ C

(
c−1
1 + c2

ρ0

)
� + Cmeas(ω × (0, T ))ϕ̃ (�) . (117)

Since L = 1
Cmeas(ω×(0,T ))

and M = a−1
1 +a2

ρ0meas(ω×(0,T ))
, we have

E(T ) ≤ M

L
� + 1

L
ϕ̃(�).

Since p, defined in (41), is increasing, we obtain

p(E(T )) ≤ �.

This and Lemma 3.1 give us that

p(E(T )) + E(T ) ≤ E(0).

This inequality and Lemma 3.3 of Lasiecka and Tataru [31] give us the result. ��
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