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Abstract
We study the equational theories and bases of meets and joins of several varieties of
plactic-like monoids. Using those results, we construct sublattices of the lattice of
varieties of monoids, generated by said varieties. We calculate the axiomatic ranks of
their elements, obtain plactic-like congruences whose corresponding factor monoids
generate varieties in the lattice, and determine which varieties are joins of the vari-
ety of commutative monoids and a finitely generated variety. We also show that the
hyposylvester and metasylvester monoids generate the same variety as the sylvester
monoid.

Keywords Plactic-like monoids · Varieties · Equational theories · Finite bases ·
Axiomatic ranks · Lattices of varieties

1 Introduction

Plactic-like monoids, whose elements can be uniquely identified with combinatorial
objects, have been the focus of intense study in recent years, in particular with regard
to their equational theories. The initial motivation to study this was to obtain natural
examples of finitely-generated polynomial-growth semigroups that did not satisfy
non-trivial identities, as an alternative to the constructions given in [34]. The plactic
monoid, whose elements can be viewed as semistandard Young tableaux, was defined
by Lascoux and Schützenberger [26], and found to have important applications in
several different subjects, such as representation theory [14], symmetric functions
[28] and crystal bases [4]. Its finite-rank versions were candidates for the previously
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4 T. Aird, D. Ribeiro

mentioned problem. However, after some initial results on the rank 2 and 3 cases [21,
23, 25], Johnson and Kambites [24] gave faithful representations of said monoids in
monoids of upper triangular matrices over the tropical semiring, which are known to
satisfy non-trivial identities [20, 31, 35]. On the other hand, Cain et al. [7] gave a
lower bound for the length of identities satisfied by plactic monoids of finite rank,
dependent on said rank, thus showing that the infinite-rank case does not satisfy any
non-trivial identity. Furthermore, the first author [1] showed that plactic monoids of
different ranks generate different varieties, by obtaining a new set of identities satisfied
by these monoids.

The study of equational theories has extended to other plactic-like monoids, that
arise in the context of combinatorial Hopf algebras whose bases are indexed by com-
binatorial objects. Of note, the hypoplactic monoid hypo [29], the sylvester and
#-sylvester monoids sylv and sylv# [18], the Baxter monoid baxt [13] and the left
and right stalactic monoids lTg and rTg [19] have been studied by several authors
(including the second author, in joint work with Cain and Malheiro) and different
means [6, 8–10, 17]. It was shown that, within each of these classes, monoids of
rank greater than or equal to 2 generate the same variety, and full characterisations of
equational theories, finite bases and axiomatic ranks were obtained for each case.

Following on the authors’ work on factor monoids of the free monoid by meets
and joins of left and right stalactic congruences [2], where it was shown that the
varieties generated by these monoids are, respectively, the varietal join and meet of
the varieties generated by the left and right stalactic monoids, we propose the study
of the sublattice of the lattice of varieties of monoids generated by varieties of these
plactic-like monoids, so as to understand the underlying connections between these
monoids, as well as to motivate the study of congruences given by meets and joins of
plactic-like congruences.

The paper is organised as follows: Necessary background is given in Sect. 2. We
then study three sublattices of the lattice of varieties of monoids in the following three
sections. In each section, we first study the varietal meets and joins arising from the
generators, with regards to their equational theories, finite bases, if they are generated
by factor monoids of the free monoid by meets and joins of plactic-like congruences,
and whether they are the varietal join of the variety of commutative monoids and a
finitely generated variety, or if they are not contained in any such varietal join. Then,we
prove the correctness of the lattice given at the start of the section, and finally, we obtain
the axiomatic ranks of the varieties in the lattice. In Sect. 3, we study the sublattice
generated by the varieties generated, respectively, by the #-sylvester, sylvester, left
stalactic and right stalactic monoids. Then, in Sect. 4, we add a generator, the variety
generated by the hypoplactic monoid. Finally, in Sect. 5, we add another generator, the
variety defined by the identity xzxyty ≈ xzyxty. We then show, in Sect. 6, that the
hyposylvester and metasylvester monoids, recently introduced by Novelli and Thibon
[30], generate the same variety as the sylvester monoid, and conclude our paper in
Sect. 7 with some corollaries and an open question, as well as the collected results in
Table 1.
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Lattices of varieties of plactic-like monoids 5

2 Background

2.1 Words

Let N = {1, 2, . . . } denote the set of natural numbers, without zero. For n ∈ N, we
denote by [n] the set {1 < · · · < n}.

For any non-empty finite or countable set X , we denote by X ∗ the free monoid
generated by X , that is, the set of all words over X under concatenation. We refer to
X as an alphabet, and its elements as letters. The empty word is denoted by ε. For a
wordw ∈ X ∗, we denote its length by |w| and, for each x ∈ X , we denote the number
of occurrences of x in w by |w|x . We say x is a simple letter of w if |w|x = 1. The
subset of X of letters x such that |w|x ≥ 1 is called the support of w, denoted by
supp(w), and the function from X to N0 given by x �→ |w|x is called the content of
w, denoted by cont(w).

For words u, v ∈ X ∗ we say that u is a factor of v if there exist v1, v2 ∈ X ∗ such
that v = v1uv2, and that u is a subsequence of v if there exist u1, . . . , uk ∈ X and
v1, . . . , vk+1 ∈ X ∗ such that u = u1 · · · uk and v = v1u1v2 · · · vkukvk+1.

Given a congruence ρ on X ∗ and a word w, we denote its congruence class by
[w]ρ .

2.2 Identities and varieties

For a general background on universal algebra, see [3, 5]. For recent results on varieties
of semigroups and monoids, see [15, 27]. The following background is given in the
context of monoids.

An identity over an alphabet of variables X is a formal equality u ≈ v, where
u, v ∈ X ∗. A variable x is said to occur in an identity if x occurs in at least one of
the sides of the identity, and is said to be a simple variable in the identity if it is a
simple letter of each side of the identity. An identity u ≈ v is non-trivial if u �= v,
and balanced if cont(u) = cont(v). Two words with the same content must have the
same length, hence we say the length of a balanced identity is the length of its left or
right-hand side. Two identities are equivalent if one can be obtained from the other
by renaming variables or swapping both sides of the identities.

A monoid M satisfies the identity u ≈ v if for every morphism ψ : X ∗ → M ,
we have ψ(u) = ψ(v). We refer to these morphisms as evaluations. Notice that if M
satisfies u ≈ v, then it satisfies any other identity obtained by removing all occurrences
of a variable in u ≈ v. If an evaluation ψ is such thatψ(u) �= ψ(v), we sayψ falsifies
the identity. A word u is an isoterm for M if no non-trivial identity of the form u ≈ v
is satisfied by M . The identity-checking problem of M is the combinatorial decision
problem of deciding whether an identity is satisfied or not by M . Its time complexity
is measured in terms of the size of the input, that is, the sum of the lengths of each
side of the formal equality.

The set of identities that are satisfied by all monoids in a class K is called its
equational theory, and the class ofmonoids that satisfy all identities in a set of identities
� is called its variety. By Birkhoff’s HSP-theorem, a class of monoids is a variety
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6 T. Aird, D. Ribeiro

if and only if it is closed under taking homomorphic images, submonoids and direct
products. We say an identity is satisfied by a variety if it lies in its equational theory,
and a word is an isoterm for a variety if it is an isoterm for at least one monoid in
said variety. A subvariety is a subclass of a variety that is itself a variety. A variety is
generated by a monoid M if it is the smallest variety containing M , and is denoted
by VM . The identity-checking problem of VM is equivalent to that of M . A variety is
finitely generated if it is generated by a finite monoid.

The variety of commutative monoids, denoted by COM, is defined by the set of
all balanced identities. A variety is overcommutative if it contains the variety of all
commutative monoids. As such, all identities satisfied by an overcommutative variety
are balanced.

A congruence ≡ on a monoid M is fully invariant if a ≡ b implies f (a) ≡ f (b),
for every a, b ∈ M and every endomorphism f of M . Equational theories over an
alphabet X are fully invariant congruences on X ∗ (see, for example, [5, II§14]), and
any variety is generated by the factor monoid of X ∗ by its equational theory. An
identity u ≈ v is a consequence of a set of identities � if, for 1 ≤ i ≤ k, there exist
words pi ,qi , ri , si ,wi ,wk+1 ∈ X ∗ and endomorphisms ψi of X ∗ such that u = w1,
v = wk+1 and

wi = riψi (pi )si and wi+1 = riψi (qi )si ,

where pi ≈ qi or qi ≈ pi are in �. Notice that any consequence of a set of balanced
identities must also be balanced. An equational basis of a variety is a subset of its
equational theory whose set of consequences is the equational theory itself. We denote
a variety with equational basis � by V� . A variety is finitely based if it admits a finite
equational basis. The axiomatic rank of a variety is the least natural number such
that the variety admits a basis where the number of distinct variables occurring in
each identity of the basis does not exceed said number. A finitely based variety is
hereditarily finitely based if it only has finitely based subvarieties, and a monoid is
hereditarily finitely based if it generates a hereditarily finitely based variety.

The class of all varieties of monoids forms a lattice under set-theoretical inclusion,
denoted byMON. Given two varieties V andW, the equational theory of the varietal
meetV∧W is the join of the equational theories ofV andW, and the equational theory
of the varietal join V ∨ W is the meet of their equational theories. Since equational
theories are fully invariant congruences, the meet of two equational theories is their
intersection. Furthermore, if both V and W are finitely based, then V ∧ W is also
finitely based, and admits the union of the respective finite bases for V and W as
a finite basis. Notice that the join of two finitely generated varieties is also finitely
generated, since the direct product of the finite generators is not only finite, but also
generates the join.

2.3 Properties defining equational theories

Let u ≈ v be an identity over the alphabet of variables X , such that u and v share the
same support and simple variables. We say u ≈ v satisfies the property
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Lattices of varieties of plactic-like monoids 7

(Cpre) if, for any variable x ∈ supp(u ≈ v), the shortest prefix of u where x occurs
has the same content as the shortest prefix of v where x occurs;

(Csuf ) if, for any variable x ∈ supp(u ≈ v), the shortest suffix of u where x occurs
has the same content as the shortest suffix of v where x occurs;

(Sub2) if u and v share the same subsequences of length at most 2;
(Rst1,v) if, for any variable x ∈ supp(u ≈ v), the word obtained from u by restricting

it to x and its simple variables is the same as that obtained from v;
(Spre) if, for any variable x ∈ supp(u ≈ v), the shortest prefix of u where x occurs

has the same support as the shortest prefix of v where x occurs;
(Ssuf ) if, for any variable x ∈ supp(u ≈ v), the shortest suffix of u where x occurs

has the same support as the shortest suffix of v where x occurs;
(S1,pre) if, for any simple variable x ∈ supp(u ≈ v), the shortest prefix of u where x

occurs has the same support as the shortest prefix of v where x occurs;
(S1,suf ) if, for any simple variable x ∈ supp(u ≈ v), the shortest suffix of u where x

occurs has the same support as the shortest suffix of v where x occurs;
(Rst1) if the word obtained from u by restricting it to its simple variables is the same

as that obtained from v.

Clearly, some of these properties are stronger than others. For example, an identity
satisfying property (Sub2) also satisfies property (S1,pre), as with the case of xzxytx ≈
xzyxtx , but the converse does not necessarily hold, as with the case of x2y ≈ xyx .
The following diagram illustrates the connections between these properties:

(Cpre) (Csuf )

(Spre) (Sub2) (Rst1,v) (Ssuf )

(S1,pre) (S1,suf )

(Rst1)

These properties define equational theories (see, for example, [12] and [33]), some
of which are of finitely-generated varieties: Consider the four-element monoids J 1

and
←−
J 1 given by the monoid presentations 〈a, b | ab = 0, ba = a, b2 = b〉 and

〈a, b | ab = a, ba = 0, b2 = b〉, respectively. On one hand, it was shown by Edmunds
[11] that J 1 is finitely based by the set of identities

{x2 ≈ x3, yx2 ≈ xyx, x2y2 ≈ y2x2}.

On theother hand,Gusev andVernikov [16, Proposition4.2] showed that the equational
theory defined by the dual set of these identities is described by (S1,pre). From these
two results, we obtain the following:

123



8 T. Aird, D. Ribeiro

Lemma 2.1 The equational theory of VJ 1 is the set of identities that satisfy (S1,suf ),
and the equational theory of V←−

J 1
is the set of identities that satisfy (S1,pre).

Notice that if we only consider balanced identities, then property (Rst1,v) is equiva-
lent to the following: for any simple variable x ∈ supp(u ≈ v), the shortest prefix of u
where x occurs has the same content as the shortest prefix of v where x occurs. As we
mostly deal with balanced identities, we will predominantly work with this equivalent
definition. On the other hand, property (Sub2) is equivalent to the following property,
denoted by P1,2 in [33]: for any variables x, y ∈ supp(u ≈ v), the first occurrence of
x occurs before the last occurrence of y in u if and only if it does so in v.

Remark 2.2 It is clear that checking if a balanced identity satisfies any of the properties
(Cpre)–(Rst1), or any combination of them, can be done in polynomial time.

2.4 Plactic-like monoids

‘Plactic-like’ monoids are an informal class of monoids whose elements can be bijec-
tively identified with certain combinatorial objects. Its namesake is the plactic monoid
[26], also known as the monoid of Young tableaux. In this work, we will approach
these monoids from a syntactic perspective, as plactic-like monoids can be defined
as factors of the free monoid, over a finite or countable alphabet, by their respective
plactic-like congruences. To be precise, for a plactic-like congruence ≡, the infinite
rank plactic-like monoid is the factor monoid N

∗/≡, and the plactic-like monoid of
finite rank n is the factor monoid [n]∗/≡.

The #-sylvester and sylvester congruences [13, 18] are generated, respectively, by
the relations

Rsylv# = {(buac, buca) : a < b ≤ c,u ∈ N
∗} and

Rsylv = {(caub, acub) : a ≤ b < c,u ∈ N
∗}.

The #-sylvester monoids of countable rank and finite rank n are denoted, respectively,
by sylv# and sylv#n , while the sylvester monoids of countable rank and finite rank n
are denoted, respectively, by sylv and sylvn .

For a word w ∈ N
∗ and a, b ∈ supp(w) such that a < b, we say w has an a-b

left precedence (of index k) if w = w1bw2, where |w1|a = k and |w1|c = 0, for all
a < c ≤ b. Two words are ≡sylv# -congruent if and only if they share the same content
and left precedences [10, Proposition 2.10].

Similarly, we say w has a b-a right precedence (of index k) if w = w1aw2, where
|w2|b = k and |w2|c = 0, for all a ≤ c < b. Two words are ≡sylv-congruent if and
only if they share the same content and right precedences [10, Proposition 2.7].

The following was proven independently in [10, Theorems 4.1 and 4.2] and [17,
Lemma 3.3 and Theorem 3.4]:

Theorem 2.3 The equational theory of Vsylv# is the set of balanced identities that
satisfy the property (Cpre), and the equational theory of Vsylv is the set of balanced
identities that satisfy the property (Csuf ).
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Lattices of varieties of plactic-like monoids 9

Proposition 2.4 ([6, Proposition 6.6 (3)]) Neither Vsylv# nor Vsylv are contained in
the join of COM and any finitely generated variety.

The following was proven independently in [10, Theorems 4.16 and 4.17], [6,
Theorem 6.7 and Remark 6.8] and [17, Theorem 3.4]:

Theorem 2.5 The varietyVsylv# admits a finite equational basis consisting of the iden-
tity

xzytxy ≈ xzytyx, (L2)

and the variety Vsylv admits a finite equational basis consisting of the identity

xyzxty ≈ yxzxty. (R2)

Corollary 2.6 ([10, Corollary 4.22]) The axiomatic rank of Vsylv# and Vsylv is 4.

TheBaxter congruence [13] is themeet of the sylvester and#-sylvester congruences,
and it is generated by the relation

Rbaxt = {
(cudavb, cuadvb) : a ≤ b < c ≤ d,u, v ∈ N

∗}

∪ {
(budavc, buadvc) : a < b ≤ c < d,u, v ∈ N

∗}.

The Baxter monoids of countable rank and finite rank n are denoted, respectively, by
baxt and baxtn .

Two words are ≡baxt-congruent if and only if they share the same content and left
and right precedences [10, Corollary 2.11].

As a consequence of [13, Proposition 3.7], we have that Vsylv# ∨ Vsylv = Vbaxt.
The following was proven independently in [10, Theorem 4.3] and [17, Lemma 3.3

and Theorem 3.8]:

Theorem 2.7 The equational theory ofVbaxt is the set of balanced identities that satisfy
the properties (Cpre) and (Csuf ).

Proposition 2.8 ([6, Proposition 6.10 (4)]) The variety Vbaxt is not contained in the
join of COM and any finitely generated variety.

The following was proven independently in [10, Theorem 4.18], [6, Theorem 6.11]
and [17, Theorem 3.8]:

Theorem 2.9 The varietyVbaxt admits a finite equational basis consisting of the iden-
tities

xzytxyr xsy ≈ xzytyxr xsy, (O2,2)

xzytxyrysx ≈ xzytyxrysx . (T2,2)

Corollary 2.10 ([10, Corollary 4.24]) The axiomatic rank of Vbaxt is 6.
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10 T. Aird, D. Ribeiro

The hypoplactic congruence [29] is the join of the sylvester and #-sylvester congru-
ences and, as such, generated by the relationsRsylv# ∪Rsylv. The hypoplactic monoids
of countable rank and finite rank n are denoted, respectively, by hypo and hypon .

For a wordw ∈ N
∗ and a, b ∈ supp(w) such that a < b and there is no c ∈ supp(w)

such that a < c < b, we sayw has a b-a inversion if it admits the subsequence ba. Two
words are ≡hypo-congruent if and only if they share the same content and inversions
[29, Subsection 4.2].

By the following results, we can see that Vhypo is not the meet of Vsylv# and Vsylv:

Theorem 2.11 ([9, Theorem4.1])The equational theory ofVhypo is the set of balanced
identities that satisfy the property (Sub2).

The variety J2, generated by the five-element monoid of all order-preserving and
extensive transformations of the three-element chain, is defined by the set of identities
that satisfy property (Sub2) [36, Theorem 2].

Corollary 2.12 ([9, Corollary 4.4]) The variety Vhypo is the varietal join of COM and
J2.

Theorem 2.13 ([9, Theorem 4.8]) The variety Vhypo admits a finite equational basis
consisting of the identities (L2), (R2) and

xyxzx ≈ x2yzx . (M3)

Remark 2.14 The identity (M3) is different from its corresponding identity given in
[9, Theorem 4.8], however they are consequences of one another, thus we can replace
one with another and still obtain a basis for Vhypo.

Corollary 2.15 ([9, Corollary 4.12]) The axiomatic rank of Vhypo is 4.

The left-stalactic and right-stalactic congruences [2, 19] are generated, respectively,
by the relations

RlSt = {(auab, auba) : a, b ∈ N,u ∈ N
∗} and

RrSt = {(abua, baua) : a, b ∈ N,u ∈ N
∗}.

The left-stalacticmonoids of countable rank and finite rank n are denoted, respectively,
by lSt and lStn , while the right-stalactic monoids of countable rank and finite rank n
are denoted, respectively, by rSt and rStn .

Two words are ≡lSt-congruent if and only if they share the same content and order
of first occurrences of symbols [19, Subsection 3.7]. Similarly, two words are ≡rSt-
congruent if and only if they share the same content and order of last occurrences of
symbols.

The following was proven independently in [6, Corollary 4.6] and
[17, Lemma 2.1 and Theorem 2.3]:

Corollary 2.16 The equational theory ofVlSt is the set of balanced identities that satisfy
the property (Spre), and the equational theory of VrSt is the set of balanced identities
that satisfy the property (Ssuf ).
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Lattices of varieties of plactic-like monoids 11

The variety of left (resp. right) regular band monoids LRB (resp. RRB) is defined
by the set of identities that satisfy property (Spre) (resp. (Ssuf )) [12], and is generated by
the left (resp. right) flip-flop monoid, a two-element left (resp. right) zero semigroup
with an identity adjoined [32, Proposition 7.3.2].

Corollary 2.17 ([6, Corollary 4.6 (2)]) The variety VlSt is the varietal join of COM
and LRB, and the variety VrSt is the varietal join of COM and RRB.

The following was proven independently in [6, Corollary 4.6] and [17, Theo-
rem 2.3]:

Corollary 2.18 The varietyVlSt admits a finite equational basis consisting of the iden-
tity

xyx ≈ x2y, (L1)

and the variety VrSt admits a finite equational basis consisting of the identity

xyx ≈ yx2. (R1)

Corollary 2.19 The axiomatic rank of VlSt and VrSt is 2.

Proof Follows from Corollary 2.18, and VlSt and VrSt being overcommutative. ��
The meet-stalactic congruence [2] is the meet of the left and right-stalactic congru-

ences, and it is generated by the relation

RmSt = {
(bubavb, buabvb) : a, b ∈ N,u, v ∈ N

∗}

∪ {
(auabvb, aubavb) : a, b ∈ N,u, v ∈ N

∗}.

The meet-stalactic monoids of countable rank and finite rank n are denoted, respec-
tively, bymSt and mStn .

Two words are≡mSt-congruent if and only if they share the same content and order
of first and last occurrences of symbols.

As a consequence of [2, Proposition 7.3], we have that VrSt ∨ VlSt = VmSt.

Corollary 2.20 ([2, Corollary 7.5]) The equational theory ofVmSt is the set of balanced
identities that satisfy the properties (Spre) and (Ssuf ).

The variety of regular band monoids RB is the varietal join of LRB and RRB.
Thus, it is defined by the set of identities satisfying both properties (Spre) and (Ssuf ),
and generated by the direct product of the left and right flip-flop monoids.

Corollary 2.21 ([2, Corollary 7.13]) The varietyVmSt is the varietal join ofCOM and
RB.

Corollary 2.22 ([2, Corollary 7.7]) The variety VmSt admits a finite equational basis
consisting of the identities (M3) and

xzxyty ≈ xzyxty. (M2)
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12 T. Aird, D. Ribeiro

Corollary 2.23 ([2, Corollary 7.10]) The axiomatic rank of VmSt is 4.

The join-stalactic congruence [2] is the join of the left-stalactic and right-stalactic
congruences and, as such, generated by the relations RlSt ∪ RrSt. The join-stalactic
monoids of countable rank and finite rank n are denoted, respectively, by jSt and jStn .

Two words are ≡jSt-congruent if and only if they share the same content and order
of simple letters [2, Proposition 3.2].

Another consequence of [2, Proposition 7.3] is that VrSt ∧ VlSt = VjSt.

Corollary 2.24 ([2, Corollary 7.15])The equational theory ofVjSt is the set of balanced
identities that satisfy the property (Rst1).

Consider themonoid S({ab}), theRees factormonoid over the ideal ofN∗ consisting
of all words that are not factors of ab, which is a finite monoid with zero. The variety
VS({ab}) is defined by the set of identities that satisfy property (Rst1) (see [33, Table 1]).

Corollary 2.25 The variety VjSt is the varietal join of COM and VS({ab}).

Corollary 2.26 ([2, Corollary 7.17]) The variety VjSt admits a finite equational basis
consisting of the identities (L1) and (R1).

Corollary 2.27 ([2, Corollary 7.18]) The axiomatic rank of VjSt is 2.

Proposition 2.28 ([2, Proposition 7.19])VjSt is the unique cover ofCOM in the lattice
of all varieties of monoids.

3 Sublattice ofMON generated by Vsylv# , Vsylv, VlSt and VrSt.

In this section, we construct L1, the sublattice of MON generated by the varieties
Vsylv# , Vsylv, VlSt and VrSt. We start by studying the equational theories and bases of
all possible varietal meets and joins obtained from the generators, and then from the
obtained elements together with the generators, then we show that no more varieties
occur in the lattice and the covers arewell-defined, andfinallyweobtain their axiomatic
ranks.

Theorem 3.1 The Hasse diagram of L1 is given in Fig.1.

To simplify the notation, we denoteVsylv# ∧Vsylv by S. This variety has been studied
by Sapir [33], in a different context. The next result follows from Theorem 2.5:

Corollary 3.2 The variety S admits a finite equational basis consisting of the identities
(L2) and (R2).

Proposition 3.3 ([33, Proposition6.2])The equational theory ofS is the set of balanced
identities that satisfy the properties (Sub2) and (Rst1,v).

In order to construct the lattice, we begin by determining which varieties are incom-
parable, as these have non-trivial meets and joins:
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Lattices of varieties of plactic-like monoids 13

Fig. 1 Sublattice L1 of MON generated by the varieties generated by the #-sylvester, sylvester, and left
and right stalactic monoids

Lemma 3.4 The following statements hold:

(i) VlSt, VrSt and S are pairwise incomparable and contain VjSt;
(ii) VmSt, Vsylv# and Vsylv are pairwise incomparable and contained in Vbaxt;
(iii) VlSt is incomparable with Vsylv and contained in VmSt and Vsylv# ;
(iv) VrSt is incomparable with Vsylv# and contained in VmSt and Vsylv;
(v) S is incomparable with VmSt and contained in Vsylv# and Vsylv.

Proof It is clear that that VlSt and VrSt (resp. Vsylv# and Vsylv) are incomparable,
since they are defined by dual identities. Furthermore, VlSt (resp. VrSt) is contained
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14 T. Aird, D. Ribeiro

in Vsylv# (resp. Vsylv), by Theorem 2.3 and Corollary 2.16. By Corollary 2.24 and
Proposition 3.3, VjSt is contained in S, and by Theorem 2.7 and Corollary 2.20, VmSt
is contained in Vbaxt.

ByCorollary 2.22 andProposition3.3, the identity (M3) is satisfiedbyVjSt,VlSt,VrSt
and VmSt, but not by S,Vsylv,Vsylv# or Vbaxt. Furthermore, by Theorem 2.5, (R2) is
satisfied by Vsylv and S, and (L2) is satisfied by Vsylv# and S. However, by Corol-
lary 2.16, (R2) is not satisfied by VlSt or VmSt, and (L2) is not satisfied by VrSt or
VmSt. ��

3.1 Varietal meets

Proposition 3.5 The variety VlSt ∧Vsylv admits a finite equational basis consisting of
the identities (L1) and

x2y2 ≈ y2x2, (M4)

and the varietyVrSt∧Vsylv# admits a finite equational basis consisting of the identities
(R1) and (M4).

Proof By Theorem 2.5 and Corollary 2.18, VlSt ∧ Vsylv admits an equational basis
consisting of (L1) and (R2). Note that

x2y2 ≈ xyxy ≈ yx2y ≈ y2x2

is satisfied by VlSt ∧ Vsylv, as the first and third identities are consequences of (L1),
and the second is a consequence of (R2). Moreover,

xyzxty ≈ x2y2zt ≈ y2x2zt ≈ yxzxty

is in the equational theory given by (L1) and (M4), as the first and third identities are
consequences of (L1), and the second is a consequence of (M4).

Hence, (L1) and (M4) form an equational basis for VlSt ∧ Vsylv. A dual argument
works for the case of VrSt ∧ Vsylv# . ��
Proposition 3.6 The equational theory of VlSt ∧Vsylv is the set of balanced identities
that satisfy the property (S1,pre), and the equational theory of VrSt ∧ Vsylv# is the set
of balanced identities that satisfy the property (S1,suf ).

Proof Clearly, the identities (L1) and (M4), which form an equational basis for
VlSt ∧ Vsylv by Proposition 3.5, satisfy property (S1,pre). As such, all identities in
the equational theory of VlSt ∧ Vsylv satisfy this property as well.

Let u ≈ v be a balanced identity satisfying property (S1,pre). By Theorem 2.5 and
Corollary 2.16, we have that VlSt ∧ Vsylv satisfies the identities (L2), (R2) and (M2).
As such, it follows from [27, Proposition 11.2] that

VlSt ∧ Vsylv ∧ V{u≈v} = VlSt ∧ Vsylv ∧ V�
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Lattices of varieties of plactic-like monoids 15

for some set � of non-trivial identities of the form

xe0
r∏

i=1

(hi x
ei ) ≈ x f0

r∏

i=1

(hi x
fi ),

which are balanced and satisfy property (S1,pre). Notice that, in [27, Proposition 11.2],
two sets of identities, of different forms, are given. The identities in the second set are
consequences of the identity (R2), so we do not need to consider them in this case.
Clearly, identities in� are consequences of the identity (L1) and so, by Proposition 3.5,
they are satisfied by VlSt ∧ Vsylv. Hence,

VlSt ∧ Vsylv ∧ V{u≈v} = VlSt ∧ Vsylv

and, therefore, u ≈ v is satisfied by VlSt ∧ Vsylv. A dual argument works for the case
of VrSt ∧ Vsylv# . ��
Proposition 3.7 The variety VlSt ∧ Vsylv is generated by the factor monoid
N

∗/(≡lSt ∨ ≡sylv), and the variety VrSt ∧ Vsylv# is generated by the factor monoid
N

∗/(≡rSt ∨ ≡sylv# ).

Proof It is clear thatN∗/(≡lSt ∨ ≡sylv) ∈ VlSt∧Vsylv, since it is a homomorphic image
of both lSt and sylv. On the other hand, let u ≈ v be a non-trivial identity satisfied by
N

∗/(≡lSt ∨ ≡sylv). Clearly, it is a balanced identity, and if no variable occurring in it
is simple, it trivially satisfies (S1,pre).

Suppose, in order to obtain a contradiction, that there exist x, y ∈ supp(u ≈ v)
such that x is simple and y occurs before x in u, but not in v. Consider the evaluationψ

such that x �→ [1](≡lSt∨≡sylv), y �→ [2](≡lSt∨≡sylv) and z �→ [ε](≡lSt∨≡sylv), for any other

variable z ∈ supp(u ≈ v). Then, the only word in ψ(v) is 12|v|y , since no reordering
of 12|v|y starts with the letter 1 or has a 2-1 right precedence of index |v|y , and as such,
12|v|y forms a singleton class in both lSt and sylv. Hence, ψ falsifies the identity, and
we obtain a contradiction.

Hence, all identities in the equational theory of N∗/(≡lSt ∨ ≡sylv) satisfy (S1,pre),
and the result follows. A dual argument works for the case of VrSt ∧ Vsylv# . ��
Corollary 3.8 The variety VlSt ∧ Vsylv is the varietal join of COM and V←−

J 1
, and the

variety VrSt ∧ Vsylv# is the varietal join of COM and VJ 1 .

Proof Follows from Lemma 2.1 and Proposition 3.6. ��
Corollary 3.9 The variety VmSt ∧ S admits a finite equational basis consisting of the
identities (L2), (R2), (M2) and (M3).

Proof Follows from Corollaries 2.22 and 3.2. ��
Proposition 3.10 The equational theory of VmSt ∧ S is the set of balanced identities
that satisfy the properties (S1,pre) and (S1,suf ).
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16 T. Aird, D. Ribeiro

Proof Clearly, the identities (L2), (R2), (M2) and (M3), which form an equational basis
for VmSt ∧ S by Corollary 3.9, satisfy both properties (S1,pre) and (S1,suf ). As such,
all identities in the equational theory of VmSt ∧ S satisfy these properties as well.

Let u ≈ v be a balanced identity satisfying properties (S1,pre) and (S1,suf ). It follows
from [27, Proposition 11.2] that

VmSt ∧ S ∧ V{u≈v} = VmSt ∧ S ∧ V�

for some set � of non-trivial identities of the form

xe0
r∏

i=1

(hi x
ei ) ≈ x f0

r∏

i=1

(hi x
fi ),

which are balanced and satisfy properties (S1,pre) and (S1,suf ). Clearly, the identities
in � are consequences of the identity (M3) and so, by Corollary 3.9, they are satisfied
by VmSt ∧ S. Hence,

VmSt ∧ S ∧ V{u≈v} = VmSt ∧ S

and, therefore, u ≈ v is satisfied by VmSt ∧ S. ��
Corollary 3.11 The variety VmSt ∧ S is the varietal join of COM and V←−

J 1×J 1
.

Proof Follows from Lemma 2.1 and Proposition 3.10. ��
Proposition 3.12 The variety VmSt ∧ S is generated by the factor monoid
N

∗/(≡hypo ∨ ≡mSt).

Proof It is clear thatN∗/(≡hypo ∨ ≡mSt) ∈ VmSt∧S, since it is a homomorphic image
of mSt, sylv# and sylv.

Let u ≈ v be a non-trivial identity satisfied by N
∗/(≡hypo ∨ ≡mSt). Suppose now

that x, y ∈ supp(u ≈ v) are such that x is simple and y occurs after x in u, but not
in v. For ψ : x �→ [2](≡hypo∨≡mSt), y �→ [1](≡hypo∨≡mSt) and z �→ [ε](≡hypo∨≡mSt), for

any other variable z ∈ supp(u ≈ v), since no reordering of 12|v|y starts with the letter
1, all reorderings have a 2-1 inversion, thus the only word inψ(v) is 12|v|y . Therefore,
ψ falsifies the identity, hence u ≈ v satisfies (S1,suf ). By dual reasoning, this identity
satisfies (S1,pre), and the result follows. ��
Corollary 3.13 The variety VmSt ∧ Vsylv# admits a finite equational basis consisting
of the identities (L2), (M2) and (M3), and the variety VmSt ∧ Vsylv admits a finite
equational basis consisting of the identities (R2), (M2) and (M3).

Proof Follows from Theorem 2.5 and Corollary 2.22. ��
Proposition 3.14 The equational theory ofVmSt∧Vsylv# is the set of balanced identities
that satisfy the properties (Spre) and (S1,suf ), and the equational theory ofVmSt∧Vsylv
is the set of balanced identities that satisfy the properties (Ssuf ) and (S1,pre).
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Lattices of varieties of plactic-like monoids 17

Proof Clearly, the identities (L2), (M2) and (M3), which form an equational basis for
VmSt ∧ Vsylv# by Proposition 3.5, satisfy properties (Spre) and (S1,suf ). As such, all
identities in the equational theory of VmSt ∧ Vsylv# satisfy these properties as well.

Let u ≈ v be a balanced identity satisfying properties (Spre) and (S1,suf ). As such,
it follows from [27, Proposition 11.2] that

VmSt ∧ Vsylv# ∧ V{u≈v} = VmSt ∧ Vsylv# ∧ V�

for some set � of non-trivial identities of the form

xe0
r∏

i=1

(hi x
ei ) ≈ x f0

r∏

i=1

(hi x
fi ),

which are balanced and satisfy properties (Spre) and (S1,suf ). Notice that, in this case,
the second set of identities given in [27, Proposition 11.2] do not satisfy property
(Spre). Clearly, identities in � are consequences of the identities (L2) and (M3) and
so, by Corollary 3.13, they are satisfied by VmSt ∧ Vsylv# . Hence,

VmSt ∧ Vsylv# ∧ V{u≈v} = VmSt ∧ Vsylv#

and, therefore, u ≈ v is satisfied by VmSt ∧ Vsylv# . A dual argument works for the
case of VmSt ∧ Vsylv. ��

Corollary 3.15 The varietyVmSt∧Vsylv# is the varietal join ofCOM and LRB∨VJ 1 ,
and the variety VmSt ∧ Vsylv is the varietal join of COM and RRB ∨ V←−

J 1
.

Proof Follows from Lemma 2.1, Corollaries 2.16 and 2.17, and Proposition 3.14. ��

Proposition 3.16 The variety VmSt ∧ Vsylv# is generated by the factor monoid
N

∗/(≡mSt ∨ ≡sylv# ), and the variety VmSt ∧ Vsylv is generated by the factor monoid
N

∗/(≡mSt ∨ ≡sylv).

Proof It is clear that N∗/(≡mSt ∨ ≡sylv# ) ∈ VmSt ∧Vsylv# , since it is a homomorphic

image of both mSt and sylv#.
Let u ≈ v be a non-trivial identity satisfied by N

∗/(≡mSt ∨ ≡sylv# ). By a dual
reasoning to that given in the proof of Proposition 3.7, this identity satisfies (S1,suf ).

Suppose now that x, y ∈ supp(u ≈ v) are such that y occurs before the first
occurrence of x in u, but not in v. For ψ : x �→ [1](≡mSt∨≡sylv# ), y �→ [2](≡mSt∨≡sylv# )

and z �→ [ε](≡mSt∨≡sylv# ), for any other variable z ∈ supp(u ≈ v), we have that words
in ψ(v) start with the letter 1, but words in ψ(u) start with 2, thus they do not share
the same left precedences. Therefore, ψ falsifies the identity, hence u ≈ v satisfies
(Spre), and the result follows. A dual argument works for the case of VmSt ∧ Vsylv. ��
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18 T. Aird, D. Ribeiro

3.2 Varietal joins

Corollary 3.17 The equational theory of VrSt ∨ Vsylv# is the set of balanced identities
that satisfy the properties (Cpre) and (Ssuf ), and the equational theory of VlSt ∨ Vsylv
is the set of balanced identities that satisfy the properties (Csuf ) and (Spre).

Proof Follows from Theorem 2.3 and Corollary 2.16. ��
Corollary 3.18 The variety VrSt ∨ Vsylv# is generated by the factor monoid
N

∗/(≡rSt ∧ ≡sylv# ), and the variety VlSt ∨ Vsylv is generated by the factor monoid
N

∗/(≡lSt ∧ ≡sylv).

Proposition 3.19 The variety VrSt ∨Vsylv# admits a finite equational basis consisting
of the identities

xzytxyry ≈ xzytyxry, (O2,1)

xzytxyr x ≈ xzytyxr x, (E2,1)

and the varietyVlSt∨Vsylv admits a finite equational basis consisting of the identities

xzxytxry ≈ xzyxtxry, (O1,2)

xzxytyr x ≈ xzyxtyr x . (E1,2)

Proof Clearly, the identities (O2,1) and (E2,1) satisfy both properties (Cpre) and (Ssuf ).
So, as these properties define the equational theory of VrSt ∨Vsylv# by Corollary 3.17,
all consequences of these identities satisfy these properties as well.

We now show that any balanced non-trivial identity satisfying (Cpre) and (Ssuf )
must be a consequence of (O2,1) and (E2,1). The proof will be by induction, in the
following sense: We order identities by the length of the common suffix of both sides
of the identity, with the induction being on the length of the prefix up to the common
suffix.

The base case for the induction is the identities of the form

xyxyw ≈ xyyxw,

where x, y ∈ X and w ∈ X+. Notice that x or y must occur in w by (Ssuf ), hence
the identity is a consequence of either (O2,1) and (E2,1), depending on whether x or y
occur in w.

Now, let u ≈ v be a balanced non-trivial identity satisfying (Cpre) and (Ssuf ), of
length n ≥ 5, such that the common suffixw ∈ X ∗ of u and v is such that |w| ≤ n−4.
Since u ≈ v is a non-trivial identity, we must have

u = u′xw and v = v′w,
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Lattices of varieties of plactic-like monoids 19

for some x ∈ X and u′, v′ ∈ X+ such that x is not the last variable of v′. Furthermore,
u and v share the same content, hence x occurs in v′. Therefore, we can write

v′ = v′
1xv

′
2,

for some words v′
1 ∈ X ∗, v′

2 ∈ (X \{x})+.
Notice that supp(xv′

2) ⊆ supp(v′
1) by (Cpre). If x does not occur in w, then

supp(v′
2) ⊆ supp(w) by (Ssuf ). Thus, the identity v′

1xv
′
2w ≈ v′

1v
′
2xw is a conse-

quence of (O2,1) or (E2,1), depending on whether x or all the variables of v′
2 occur in

w, and where x and variables of v′
2 occur in v

′
1.

As previously mentioned, any consequence of (O2,1) and (E2,1) must also satisfy
properties (Cpre) and (Ssuf ). As such, v ≈ v′

1v
′
2xw satisfies said properties. By the

definition of u ≈ v, we can then conclude that the identity u ≈ v′
1v

′
2xw is a balanced

identity of length n ≥ 5, satisfying (Cpre) and (Ssuf ), with a common suffix of length
|w|+1. As such, by the induction hypothesis, it is a consequence of (O2,1) and (E2,1),
and so is u ≈ v. A dual argument works for the case of VlSt ∨ Vsylv. ��

In the following, we only give the sketches of proofs for results on characterisations
of equational bases, as they follow the same reasoning as the one given in the previous
proof. For the induction steps, we assume identities u ≈ v are such that

u = u′xw and v = v′
1xv

′
2w,

for some x ∈ X and u′ ∈ X+, v′
1 ∈ X ∗, v′

2 ∈ (X \{x})+, where w ∈ X ∗ is the
common suffix.

Corollary 3.20 The equational theory of VmSt ∨S is the set of balanced identities that
satisfy the properties (Sub2), (Rst1,v), (Spre) and (Ssuf ).

Proof Follows from Corollary 2.20 and Proposition 3.3. ��
Proposition 3.21 The variety VmSt ∨ S admits a finite equational basis consisting of
the identities (O1,2), (E1,2), (O2,1) and (E2,1).

Proof Clearly, the identities (O1,2), (E1,2), (O2,1) and (E2,1) satisfy properties (Spre),
(Ssuf ), (Sub2) and (Rst1,v), which define the equational theory of VmSt ∨ S by Corol-
lary 3.20. Now, we prove by induction that any identity satisfying these properties is
a consequence of said identities.

The base case for the induction is the identities of the form

xyxw ≈ xxyw.

Notice that x and y must occur in w by (Sub2) and (Rst1,v), respectively. Thus, the
identity is a consequence of either (O1,2) and (E1,2), depending on where x and y
occur in w.

Let u ≈ v be a balanced non-trivial identity satisfying (Spre), (Ssuf ), (Sub2) and
(Rst1,v), of length n ≥ 5, with common suffix w ∈ X ∗ such that |w| ≤ n − 3. Notice
that no variable in xv′

2 is simple by (Rst1,v), thus x must occur in v′
1 or w.
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If x does not occur in v′
1, then we have supp(v′

2) ⊆ supp(v′
1) ∩ supp(w) by (Spre)

and (Sub2). Thus, the identity v′
1xv

′
2w ≈ v′

1v
′
2xw is a consequence of a subset of

(O1,2) and (E1,2), depending on where x and the variables of v′
2 occur in w.

On the other hand, if x does not occur in w, then supp(v′
2) ⊆ supp(v′

1) ∩ supp(w)

by (Sub2) and (Ssuf ). Thus, v′
1xv

′
2w ≈ v′

1v
′
2xw is a consequence of a subset of (O2,1)

and (E2,1), depending on where x and the variables of v′
2 occur in v

′
1.

Finally, if x occurs in both v′
1 and w, then v′

1xv
′
2w ≈ v′

1v
′
2xw is a consequence of

a subset of (O1,2), (E1,2), (O2,1) and (E2,1), depending on where x and the variables
of v′

2 occur in v
′
1 or w. The result follows. ��

Corollary 3.22 The equational theory of VlSt ∨ S is the set of balanced identities that
satisfy the properties (Sub2), (Rst1,v) and (Spre), and the equational theory ofVrSt ∨S
is the set of balanced identities that satisfy the properties (Sub2), (Rst1,v) and (Ssuf ).

Proof Follows from Corollary 2.16 and Proposition 3.3. ��
Proposition 3.23 The varietyVlSt∨S admits a finite equational basis consisting of the
identities (O1,2), (E1,2), and (L2), and the variety VrSt ∨ S admits a finite equational
basis consisting of the identities (O2,1), (E2,1), and (R2).

Proof Clearly, the identities (O1,2), (E1,2) and (L2) satisfy properties (Spre), (Sub2)
and (Rst1,v), which define the equational theory of VlSt ∨ S by Corollary 3.22. Now,
we prove by induction that any identity satisfying these properties is a consequence
of said identities.

The base case for the induction is the identities of the form

xyxw ≈ xxyw.

Notice that x and y must occur in w by (Sub2) and (Rst1,v), respectively. Thus, the
identity is a consequence of either (O1,2) and (E1,2), depending on where x and y
occur in w.

Let u ≈ v be a balanced non-trivial identity satisfying (Spre), (Sub2) and (Rst1,v),
of length n ≥ 4, with common suffix w ∈ X ∗ such that |w| ≤ n − 3. Notice that
no variable in xv′

2 is simple by (Rst1,v), thus x must occur in v′
1 or w. If x does not

occur in v′
1, then we have supp(v

′
2) ⊆ supp(v′

1)∩ supp(w) by (Spre) and (Sub2). Thus,
the identity v′

1xv
′
2w ≈ v′

1v
′
2xw is a consequence of a subset of (O1,2) and (E1,2),

depending on where x and the variables of v′
2 occur in w.

On the other hand, if x does not occur in w, then supp(v′
2) ⊆ supp(v′

1) by (Sub2).
Thus, v′

1xv
′
2w ≈ v′

1v
′
2xw is a consequence of (L2).

Finally, if x occurs in both v′
1 andw, then v

′
1xv

′
2w ≈ v′

1v
′
2xw is a consequence of a

subset of (O1,2), (E1,2) and (L2), depending on where x and the variables of v′
2 occur

in v′
1 or w. The result follows. A dual argument works for the case of VrSt ∧ S. ��

3.3 Proving Theorem 3.1

The following results allow us to conclude the proof of Theorem 3.1, by showing
that the lattice L1 has no missing varieties, and the covers are well-determined. We
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only state the results that do not follow immediately from algebraic manipulation
or previously established strict containments of varieties. Recall that, if any three
elements a, b, c of a partial order are such that a < b and c is incomparable with
both a and b, then c is also incomparable with any element between a and b, and if
b < a ∨ c (resp. a > b ∧ c), then b ∨ c = a ∨ c (resp. a ∧ c = b ∧ c).

Lemma 3.24 The following statements hold:

(i) VmSt ∧ S is incomparable with VlSt and VrSt;
(ii) VmSt ∨ S is incomparable with Vsylv# and Vsylv;
(iii) VlSt ∧ Vsylv is incomparable with VrSt ∧ Vsylv# and VrSt;
(iv) VrSt ∧ Vsylv# is incomparable with VlSt ∧ Vsylv and VlSt;
(v) VrSt ∨ Vsylv# is incomparable with VlSt ∨ Vsylv and Vsylv;
(vi) VlSt ∨ Vsylv is incomparable with VrSt ∨ Vsylv# and Vsylv# ;
(vii) VmSt ∧ Vsylv# is incomparable with S, VrSt and Vsylv;
(viii) VmSt ∧ Vsylv is incomparable with S, VlSt and Vsylv# ;
(ix) VlSt ∨ S is incomparable with VmSt, VrSt and Vsylv;
(x) VrSt ∨ S is incomparable with VmSt, VlSt and Vsylv# .

Proof By Proposition 3.10, the identity xy2x ≈ yx2y is satisfied by VmSt ∧ S, while
neither (L1) nor (R1) are. Moreover, by Corollary 2.16, (L1) is satisfied by VlSt, (R1)
is satisfied by VrSt, and xy2x ≈ yx2y is satisfied by neither of them. Therefore, (i)
holds.

By Corollary 3.20, the identity xyxyxy ≈ x2yxy2 is satisfied by VmSt ∨ S, but
neither (L2) nor (R2) are. However, by Theorem 2.3, (R2) is satisfied by Vsylv, (L2) is
satisfied by Vsylv# , and xyxyxy ≈ x2yxy2 is satisfied by neither of them. Thus, (ii)
holds.

By Corollary 2.24 and Proposition 3.6, (L1) is satisfied by VlSt ∧ Vsylv but neither
by VrSt ∧ Vsylv# nor VrSt, and (R1) is satisfied by VrSt ∧ Vsylv# and VrSt but not by
VlSt ∧ Vsylv. Hence (iii) holds. Case (iv) holds by a dual argument.

By Theorem 2.7 and Corollary 3.17, (O2,1) is satisfied by VrSt ∧Vsylv# , but neither
by VlSt ∨ Vsylv nor Vsylv, and (O1,2) is satisfied by VlSt ∧ Vsylv and Vsylv, but not by
VrSt ∨ Vsylv# . As such, (v) holds. Case (vi) holds by a dual argument.

By Proposition 3.14, (L2) and (M2) are satisfied by VmSt ∧ Vsylv# . By Proposi-
tion 3.3, (M2) is not satisfied by S, and by Theorem 2.3 and Corollary 2.16, (L2) is
satisfied by neither VrSt nor Vsylv. On the other hand, by the same results, (R2) is
satisfied by S, VrSt and Vsylv, but not by VmSt ∧ Vsylv# . Therefore, (vii) holds. Case
(viii) holds by a dual argument.

By Corollary 3.22, (L2) is satisfied by VlSt ∨ S. By Corollary 2.20 and the results
mentioned in the previous paragraph, (L2) is satisfied by neither VmSt, VrSt nor Vsylv.
On the other hand, (R2) is satisfied by VrSt and Vsylv, but not by VmSt ∧ Vsylv# .
Furthermore, (M2) is satisfied byVmSt, but not byVlSt∨S. Therefore, (ix) holds. Case
(x) holds by a dual argument. ��
Lemma 3.25 The following equalities hold:

(i) VlSt ∧ Vsylv = (VmSt ∧ S) ∧ VlSt;
(ii) VrSt ∧ Vsylv# = (VmSt ∧ S) ∧ VrSt;
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(iii) VmSt ∧ S = (VlSt ∧ Vsylv) ∨ (VrSt ∧ Vsylv# );
(iv) VmSt ∧ Vsylv# = VlSt ∨ (VrSt ∧ Vsylv# ) = VmSt ∧ (VlSt ∨ S);
(v) VmSt ∧ Vsylv = VrSt ∨ (VlSt ∧ Vsylv) = VmSt ∧ (VrSt ∨ S);
(vi) VrSt ∨ Vsylv# = (VmSt ∨ S) ∨ Vsylv# ;
(vii) VlSt ∨ Vsylv = (VmSt ∨ S) ∨ Vsylv;
(viii) VmSt ∨ S = (VrSt ∨ Vsylv# ) ∧ (VlSt ∨ Vsylv);
(ix) VlSt ∨ S = Vsylv# ∧ (VlSt ∨ Vsylv) = (VmSt ∧ Vsylv# ) ∨ S;
(x) VrSt ∨ S = Vsylv ∧ (VrSt ∨ Vsylv# ) = (VmSt ∧ Vsylv) ∨ S.

Proof Cases (i) and (ii) follow fromTheorem 2.5 and Corollaries 2.18 and 3.9, as (L2),
(M2), and (M3) are consequences of (L1), and (R2), (M2), and (M3) are consequences
of (R1).

Case (iii) follows from Propositions 3.6 and 3.10.
The first equalities in cases (iv) and (v) follow from Corollary 2.16 and Proposi-

tions 3.10 and 3.14 as (Spre) implies (S1,pre) and (Ssuf ) implies (S1,suf ). The second
equalities follow fromCorollary 2.22 and Proposition 3.23 as (O2,1), (E2,1),(O1,2) and
(E1,2) are consequences of either (M2) or (M3).

Cases (vi) and (vii) follow fromTheorem 2.3 and Corollaries 3.17 and 3.20 as (Cpre)
implies (Spre), (Sub2), and (Rst1,v), and (Csuf ) implies (Ssuf ), (Sub2), and (Rst1,v).

Case (viii) follows from Propositions 3.19 and 3.21.
The first equalities in cases (ix) and (x) follow from Theorem 2.5 and Proposi-

tions 3.21 and 3.23, as (O2,1) and (E2,1) are consequences of (L2), and (O1,2) and
(E1,2) are consequences of (R2). The second equalities follow from Propositions 3.3
and 3.14 as (Sub2) and (Rst1,v) both imply (S1,pre) and (S1,suf ). ��

The correctness of Theorem 3.1 then follows from Lemmas 3.24 and 3.25.

3.4 Axiomatic ranks

Lemma 3.26 The shortest non-trivial identity, with n variables, satisfied by VmSt ∧ S,
is of length n + 2.

Proof Let u ≈ v be a non-trivial identity, with |supp(u ≈ v)| = n, satisfied by
VmSt ∧ S. By Proposition 3.10, u ≈ v is balanced, thus we can write u = wxu′ and
v = wyv′, where x, y ∈ X and w,u′, v′ ∈ X ∗ are such that x occurs in v′ and y
occurs in u′. Furthermore, if x is simple, then y also occurs in w by (S1,pre), and in v′
(after x) by (S1,suf ). As such, at least one variable is non-simple, and if it is the only
non-simple variable, it must occur at least three times, from which we conclude that
the length of u ≈ v is at least n + 2.

On the other hand, by Proposition 3.10, for variables x, y, a1, . . . , an−2 ∈ X , the
identity

xyxa1 · · · an−2x ≈ xxya1 · · · an−2x,

of length n + 2, is satisfied by VmSt ∧ S. The result follows. ��
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The proof of the following result uses the same technique as the one given in the
proof of [2, Proposition 7.9], using Proposition 3.10 and Lemma 3.26 accordingly, so
we omit it.

Lemma 3.27 None of the identities (L2), (M2) or (R2) is a consequence of the set
of non-trivial identities, satisfied by VmSt ∧ S, over an alphabet with four variables,
excluding itself and equivalent identities.

Lemma 3.28 The shortest non-trivial identity, with n variables, satisfied by VlSt ∨ S
or VrSt ∨ S, is of length n + 2.

Proof This follows from Lemma 3.26, which gives the lower bound, and Corol-
lary 3.22, since for variables x, y, a1, . . . , an−2 ∈ X , the identity

xya1 · · · an−2xy ≈ xya1 · · · an−2yx,

of length n + 2, is satisfied by VlSt ∨ S. ��
Lemma 3.29 Neither of the identities (O1,2), (E1,2), (O2,1) or (E2,1) is a consequence
of the set of non-trivial identities satisfied by VlSt ∨ S, in the case of the first two, and
VrSt∨S otherwise, over an alphabet with five variables, excluding itself and equivalent
identities.

Proof LetS be the set of all non-trivial identities, satisfied byVlSt∨S, over an alphabet
with five variables. By definition, (O1,2) is a consequence of S. As such, there exists
a non-trivial identity u ≈ v in S, and a substitution ψ , such that

xzxytxry = w1ψ(u)w2,

where w1,w2 are words over the five-variable alphabet, and ψ(u) �= ψ(v). We can
assume,without loss of generality, thatψ does notmap any variable to the emptyword.
By Lemma 3.28, any proper factor of xzxytxry is an isoterm for VmSt ∧ S, with the
possible exceptions of xzxytxr , zxytxry, xzxytx and xytxry. By Corollary 3.22,
in particular property (Rst1,v), it is clear that if xzxytxr (resp. zxytxry) is not an
isoterm, then xzxytx (resp. xytxry) is also not. On one hand, xzxytx is an isoterm by
(Rst1,v), since the only non-simple variable is x . On the other, xytxry is an isoterm by
(Rst1,v) and (Spre). Hence, w1 and w2 are the empty word, that is, xzxytxry = ψ(u).

Since cont(xzxytxry) = ( x y z t r
3 2 1 1 1

)
and, by Lemma 3.28, there is a lower bound

on the length of identities satisfied by VlSt ∨ S, we can conclude that, up to renaming
of variables, x occurs at least twice and at most thrice, y occurs at least once and at
most twice, and z, t and r can each occur at most once in u ≈ v. Furthermore, if x
occurs only twice, then y occurs twice and, on the other hand, if y occurs only once,
then x occurs thrice.

Notice that, since all factors of length 2 of xzxytxry are distinct, then ψ(x) = x
and ψ(y) = y. As such, ψ(ztr) can have at most one occurrence of x or y. Thus,
since the shortest factor of xzxytxry where z and t occur is zxyt , at least z and t (or
r ) occur in u ≈ v. Assume, without loss of generality, that t occurs.
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Suppose x only occurs twice in u ≈ v. If x occurs in ψ(z), then ψ(t) = t , which
implies that r occurs in u ≈ v and ψ(r) = r . But ψ(z) �= xz since zxytxry is an
isoterm andψ(z) = zx since xzytxry is an isoterm by (Spre), hence x cannot occur in
ψ(z). On the other hand, if x occurs in ψ(t), then ψ(t) = t x or ψ(t) = t xr , which is
impossible since xzxyty is an isoterm by (Sub2). By the same reasoning, if r occurs
in u ≈ v, x cannot occur inψ(r). Therefore, x must occur thrice in u ≈ v. Then, since
all factors of xzxytxry where at least two of z, t or r occur also have an occurrence
of x , we can conclude that z, t and r all occur in u ≈ v. Furthermore, ψ(z) = z.

Suppose now that y occurs only once in u ≈ v. Then, either ψ(t) = yt or ψ(r) =
r y. Neither case can happen, since xzxtxry and xzxytx are isoterms by (Rst1,v).
Thus, y occurs twice in u ≈ v, and ψ(t) = t and ψ(r) = r .

As such, since we are considering only substitutions that do not map variables to
the empty word, we have thatψ is only a renaming of variables. Notice that xzxytxry
is the left-hand side of a non-trivial identity satisfied by VlSt ∨ S if and only if the
right-hand side is xzyxtxry, by Corollary 3.22. Hence u ≈ v is equivalent to (O1,2).

The proof for the case of (E1,2) follows a similar reasoning. By dual reasoning, we
prove the cases of (O2,1) and (E2,1). ��
Corollary 3.30 The axiomatic rank of the varieties

(i) VlSt ∧ Vsylv and VrSt ∧ Vsylv# is 2;
(ii) S, VmSt ∧ Vsylv# , VmSt ∧ Vsylv, and VmSt ∧ S is 4;
(iii) VrSt ∨ Vsylv# , VlSt ∨ Vsylv, VmSt ∨ S, VlSt ∨ S, and VrSt ∨ S is 5.

Proof Case (i) follows from Proposition 3.5 and these varieties being overcommuta-
tive, while case (ii) follows from Corollaries 3.2, 3.9 and 3.13 and Lemma 3.27, and
case (iii) follows from Propositions 3.19, 3.21 and 3.23 and Lemma 3.29. ��

4 Sublattice ofMON generated by Vsylv# , Vsylv, VlSt, VrSt and Vhypo

We now consider the lattice L2, obtained from L1 by adding a new generator Vhypo.

Theorem 4.1 The Hasse diagram of L2 is given in Fig.2.

4.1 Varietal meets and joins

Corollary 4.2 The equational theory of Vhypo ∨ VlSt is the set of balanced identities
that satisfy the properties (Sub2) and (Spre), and the equational theory ofVhypo∨VrSt
is the set of balanced identities that satisfy the properties (Sub2) and (Ssuf ).

Proof Follows from Theorem 2.11 and Corollary 2.16. ��
Corollary 4.3 The variety Vhypo ∨ VlSt is the varietal join of COM and J2 ∨ LRB,
and the variety Vhypo ∨ VrSt is the varietal join of COM and J2 ∨ RRB.

Proof Follows from Corollaries 2.12 and 2.17. ��
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Fig. 2 SublatticeL2 ofMON generated by the varieties respectively generated by the #-sylvester, sylvester,
left and right stalactic, and hypoplactic monoids. The points in red correspond to the elements that are not
in L1
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Corollary 4.4 The varietyVhypo∨VlSt is generatedby the factormonoidN∗/(≡hypo ∧ ≡lSt),
and the variety Vhypo ∨ VrSt is generated by the factor monoid N

∗/(≡hypo ∧ ≡rSt).

Proposition 4.5 The variety Vhypo ∨ VlSt admits a finite equational basis consisting
of the identities (M3) and (L2), and the varietyVhypo ∨VrSt admits a finite equational
basis consisting of the identities (M3) and (R2).

Proof Clearly, the identities (M3) and (L2) satisfy properties (Spre) and (Sub2), which
define the equational theory ofVhypo∨VlSt by Corollary 4.2. Now, we prove by induc-
tion that any identity satisfying these properties is a consequence of said identities.

The base case for the induction is the identities of the form

xxyw ≈ xyxw.

Since x must occur in w by (Sub2), the identity is a consequence of (M3).
Let u ≈ v be a balanced non-trivial identity satisfying (Spre) and (Sub2), of length

n ≥ 4, with common suffix w ∈ X ∗ such that |w| ≤ n − 3. Clearly, if x occurs in
both v′

1 and w, then the identity v
′
1xv

′
2w ≈ v′

1v
′
2xw is a consequence of (M3). In this

case, there are only two deduction steps: we have

v′
1xv

′
2w ≈ v′′

1x
2v′′

2w ≈ v′
1v

′
2xw,

for v′′
1 ∈ X ∗, v′′

2 ∈ (X \{x})+.
If x is simple or it occurs in w but not in v′

1, then supp(v
′
2) ⊆ supp(v′

1) ∩ supp(w)

by (Sub2) alone in the first case and by and (Spre) as well in the second. As such,
v′
1xv

′
2w ≈ v′

1v
′
2xw is a consequence of (M3).

On the other hand, if x occurs in v′
1 but not inw, then we have supp(v

′
2) ⊆ supp(v′

1)

by (Sub2). Thus, v′
1xv

′
2w ≈ v′

1v
′
2xw is a consequence of (L2). The result follows. A

dual argument works for the case of Vhypo ∨ VrSt. ��
Corollary 4.6 The equational theory of Vhypo ∨ VmSt is the set of balanced identities
that satisfy the properties (Sub2), (Spre) and (Ssuf ).

Proof Follows from Theorem 2.11 and Corollary 2.20. ��
Corollary 4.7 The variety Vhypo ∨ VmSt is the varietal join of COM and J2 ∨ RB.

Proof Follows from Corollaries 2.12 and 2.21. ��
Corollary 4.8 The variety Vhypo ∨ VmSt is generated by the factor monoid
N

∗/(≡hypo ∧ ≡mSt).

Proposition 4.9 The variety Vhypo ∨VmSt admits a finite equational basis consisting
of the identity (M3).

Proof Clearly, the identity (M3) satisfies properties (Spre), (Ssuf ) and (Sub2), which
define the equational theory of Vhypo ∨ VmSt by Corollary 4.6. Now, we prove by
induction that any identity satisfying these properties is a consequence of said identity.
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The base case for the induction is the identities of the form

xxyw ≈ xyxw.

Since x must occur in w by (Sub2), the identity is a consequence of (M3).
Let u ≈ v be a balanced non-trivial identity satisfying (Spre), (Ssuf ) and (Sub2), of

length n ≥ 4, with common suffix w ∈ X ∗ such that |w| ≤ n − 3. If x does not occur
in both v′

1 andw, then all variables in v
′
2 do: if x is simple, by (Sub2); if x occurs in v′

1
but not in w, by (Sub2) and (Ssuf ); if x occurs in w but not in v′

1, by (Spre) and (Sub2).
Thus, the identity v′

1xv
′
2w ≈ v′

1v
′
2xw is a consequence of (M3). The result follows.

��

4.2 Proving Theorem 4.1

In order to prove Theorem 4.1, we require the following two lemmas that show that
the lattice L2 has no missing varieties, and all the covers are well-determined.

Lemma 4.10 The following statements hold

(i) Vhypo is incomparable with VlSt, VrSt, and VmSt;
(ii) Vhypo ∨ VlSt is incomparable with S, VmSt, VrSt and Vsylv;
(iii) Vhypo ∨ VrSt is incomparable with S, VmSt, VlSt and Vsylv# ;
(iv) Vhypo ∨ VmSt is incomparable with S, Vsylv# and Vsylv.

Proof By Theorem 2.11 and Corollary 4.2, the identity (L2) is satisfied by Vhypo and
Vhypo ∨VlSt and (R2) is satisfied byVhypo andVhypo ∨VrSt, but, by Theorem 2.3 and
Corollaries 2.16 and 2.20, (L2) is satisfied by neither Vsylv, VrSt nor VmSt, and (R2)
is satisfied by neither Vsylv# , VlSt, nor VmSt. Moreover, by Corollary 4.6, the identity
(M3) is satisfied byVhypo∨VlSt,Vhypo∨VrSt andVhypo∨VmSt, but neither byVsylv# ,
Vsylv nor S, due to Proposition 3.3.

Similarly, by Theorem 2.3 and Proposition 3.3, the identity (L2) is satisfied by
Vsylv# and S, and (R2) is satisfied by Vsylv and S, but, by Corollaries 4.2 and 4.6, (L2)
is satisfied by neither Vhypo ∨ VrSt nor Vhypo ∨ VmSt and (R2) is satisfied by neither
Vhypo ∨ VlSt nor Vhypo ∨ VmSt. Moreover, by Corollaries 2.16 and 2.20, the identity
(M2) is satisfied by VlSt, VrSt and VmSt, but, by Theorem 2.11, is satisfied by neither
Vhypo, Vhypo ∨ VlSt nor Vhypo ∨ VrSt. ��
Lemma 4.11 The following equalities hold:

(i) Vhypo = S∧(Vhypo∨VmSt) = (Vhypo∨VlSt)∧Vsylv = (Vhypo∨VrSt)∧Vsylv# ;
(ii) Vhypo ∨ VlSt = Vhypo ∨ (VmSt ∧ Vsylv# ) = (VlSt ∨ S) ∧ (Vhypo ∨ VmSt) =

Vsylv# ∧ (Vhypo ∨ VmSt);
(iii) Vhypo ∨ VrSt = Vhypo ∨ (VmSt ∧ Vsylv) = (VrSt ∨ S) ∧ (Vhypo ∨ VmSt) =

Vsylv ∧ (Vhypo ∨ VmSt);
(iv) Vhypo ∧ VmSt = (Vhypo ∨ VlSt) ∧ (VmSt ∧ Vsylv) = (Vhypo ∨ VrSt) ∧ (VmSt ∧

Vsylv# ) = VmSt ∧ S.

123



28 T. Aird, D. Ribeiro

Proof The first equality in case (i) follows from Theorem 2.13, Corollary 3.2 and
Proposition 4.9, while the second and third equalities follow from Theorem 2.5 and
Proposition 4.5.

The first equalities in cases (ii) and (iii) follow fromTheorem 2.11, Proposition 3.14
and Corollary 4.2. The second equalities follow from Propositions 3.23, 4.5 and 4.9, as
(O2,1), (E2,1),(O1,2) and (E1,2) are consequences of (M3). The third equalities follow
from Theorem 2.5.

The first and second equalities in case (iv) follow from Theorem 2.13, Corol-
laries 2.22 and 3.13, and Proposition 4.5, while the third equality follows from
Corollary 3.9. ��

The correctness of Theorem 4.1 then follows from Theorem 3.1 and Lemmas 4.10
and 4.11.

4.3 Axiomatic ranks

Lemma 4.12 The identity (M3) is not a consequence of the set of non-trivial identities,
satisfied by VmSt ∧ S, over an alphabet with two variables.

Proof Let S be the set of all non-trivial identities, satisfied by VmSt ∧ S, over an
alphabet with two variables. Suppose, in order to obtain a contradiction, that (M3) is
a consequence of S. As such, there exists a non-trivial identity u ≈ v in S, and a
substitution ψ , such that

xyxzx = w1ψ(u)w2,

where w1,w2 are words over the two-variable alphabet, and ψ(u) �= ψ(v). We can
assume, without loss of generality, that ψ does not map any variable to the empty
word. By Lemma 3.26, any proper factor of xyxzx is an isoterm for VmSt ∧ S, hence
w1 and w2 are the empty word, that is, xyxzx = ψ(u).

Since cont(xyxzx) = ( x y z
3 1 1

)
and, by Lemma 3.26, there is a lower bound on the

length of identities satisfied by VmSt ∧ S, we can conclude that, up to the renaming of
variables, x occurs exactly thrice and y occurs exactly once in u ≈ v. But all factors
of length 2 of xyxzx are distinct and have an occurrence of x , hence ψ(x) and ψ(y)
must be single variables. As such, the length of u is different from that of xyxzx , and
we obtain a contradiction. Therefore, (M3) is not a consequence of S. ��
Corollary 4.13 The axiomatic rank of Vhypo ∨ VlSt and Vhypo ∨ VrSt is 4, and the
axiomatic rank of Vhypo ∨ VmSt is 3.

Proof The first case follows from Lemma 3.27 and Proposition 4.5, and the second
case follows from Proposition 4.9 and Lemma 4.12. ��

5 Sublattice ofMON generated by Vsylv# , Vsylv, VlSt, VrSt, Vhypo andM2

Let M2 be the variety that admits a finite equational basis consisting of the identity
(M2). We now construct the lattice L3, by adding to L2 a new generator M2.
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Fig. 3 SublatticeL3 ofMON generated by the varieties respectively generated by the #-sylvester, sylvester,
left and right stalactic, and hypoplactic monoids, and the variety M2. The points in blue correspond to the
elements that are not in L2

Theorem 5.1 The Hasse diagram of L3 is given in Fig.3.

5.1 Varietal meets and joins

The varieties exclusive to L3 have been widely studied, in particular, by Sapir [33]:

Corollary 5.2 ([33, Corollary 6.6 (i)]) The equational theory of M2 is the set of bal-
anced identities that satisfy the properties (Rst1,v), (Spre) and (Ssuf ).

Corollary 5.3 The variety M2 ∧ Vsylv# admits a finite equational basis consisting of
the identities (M2) and (L2), and the variety M2 ∧ Vsylv admits a finite equational
basis consisting of the identities (M2) and (R2).
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Proof Follows from the definition of M2 and Theorem 2.5. ��
Corollary 5.4 ([33, Corollary 6.6 (ii)–(iii)]) The equational theory of M2 ∧ Vsylv#

is the set of balanced identities that satisfy the properties (Rst1,v) and (Spre), and
the equational theory of M2 ∧ Vsylv is the set of balanced identities that satisfy the
properties (Rst1,v) and (Ssuf ).

Corollary 5.5 The variety M2 ∧ S admits a finite equational basis consisting of the
identities (M2), (L2), and (R2).

Proof Follows from the definition of M2 and Corollary 3.2. ��
Proposition 5.6 ([33, Proposition 6.1]) The equational theory of M2 ∧ S is the set of
balanced identities that satisfy the property (Rst1,v).

Proposition 5.7 The variety M2 ∧ S is not contained in the join of COM and any
finitely generated variety.

Proof Let F be the (relatively) free monoid of rank 2 in M2 ∧ S, over the alphabet
{x, y}. Suppose, in order to obtain a contradiction, that F is contained in the join of
COM and a finitely generated variety. Then, F is the image of a submonoid L of
a direct product of copies of N and copies of a finite monoid under some surjective
homomorphism φ : L → F . Let a, b ∈ L such that φ(a) = x and φ(b) = y. Then,
there exist p, q ∈ N with p �= q such that bp = bq in the finite part, as such, bpabq

and bqabp are equal in L . However, their images under φ are y pxyq and yq xy p,
respectively. As the identity y pxyq ≈ yq xy p does not satisfy property (Rst1,v), it is
not satisfied by the varietyM2 ∧S. Thus, y pxyq and yq xy p are not equal in F , giving
a contradiction. ��

As a consequence, it follows that any variety containingM2∧S is also not contained
in the join of COM and any finitely generated variety.

5.2 Proving Theorem 5.1

We now prove Theorem 5.1, to do this, we require two lemmas that show that lattice
L3 has no missing varieties, and all the covers are well defined.

Lemma 5.8 The following statements hold:

(i) M2 is incomparable with Vhypo, Vhypo ∨ VmSt, Vsylv# and Vsylv;
(ii) M2 ∧ Vsylv# is incomparable with VrSt, Vhypo, Vhypo ∨ VmSt and Vsylv;
(iii) M2 ∧ Vsylv is incomparable with VlSt, Vhypo, Vhypo ∨ VmSt and Vsylv# ;
(iv) M2 ∧ S is incomparable with VlSt, VrSt, Vhypo and Vhypo ∨ VmSt.

Proof By the definition of M2, the identity (M2) is satisfied by M2, M2 ∧ Vsylv# ,
M2 ∧ Vsylv, and M2 ∧ S. On the other hand, by Theorem 2.11, (M2) is not satisfied
by Vhypo, hence, it is satisfied by neither Vhypo ∨ VmSt, Vsylv# nor Vsylv. Moreover,
by Corollaries 2.16 and 5.4, the identity (L2) is satisfied by M2 ∧ Vsylv# and M2 ∧ S
but not by VrSt, and (R2) is satisfied by M2 ∧ Vsylv and M2 ∧ S but not by VlSt.
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Similarly, by Proposition 4.6, the identity (M3) is satisfied byVhypo ∨VmSt but, by
Proposition 5.6, is not satisfied by M2 ∧ S, and therefore is satisfied by neither M2,
M2 ∧ Vsylv# nor M2 ∧ Vsylv. By Theorem 2.3 and Corollary 5.4, the identity (R2) is
satisfied by Vsylv but neither byM2 ∧Vsylv# norM2 and (L2) is satisfied by Vsylv# but
neither by M2 ∧ Vsylv nor M2. ��

Lemma 5.9 The following equalities hold:

(i) M2 = VmSt ∨ (M2 ∧ S) = (M2 ∧ Vsylv# ) ∨ VrSt = (M2 ∧ Vsylv) ∨ VlSt;
(ii) M2∧Vsylv# = M2∧(VlSt∨S) = (VmSt∧Vsylv# )∨(M2∧S) = VlSt∨(M2∧S);
(iii) M2 ∧Vsylv = M2 ∧ (VrSt ∨S) = (VmSt ∧Vsylv)∨ (M2 ∧S) = VrSt ∨ (M2 ∧S);
(iv) M2∨Vhypo = (M2∧Vsylv# )∨(Vhypo∨VrSt) = (M2∧Vsylv)∨(Vhypo∨VlSt) =

VmSt ∨ S;
(v) M2 ∧ Vhypo = VmSt ∧ S;
(vi) M2 ∧ (Vhypo ∨ VmSt) = VmSt;
(vii) (M2 ∧ S) ∨ Vhypo = S.

Proof The first equality in case (i) follows from the definition of M2, Corollary 2.20
and Proposition 5.6, while the second and third equalities follow fromCorollaries 2.16
and 5.4.

The first equalities in cases (ii) and (iii) follow from the definition of M2 and
Proposition 3.23. The second equalities follow from Propositions 3.14 and 5.6, while
the third equalities follow from Corollary 2.16.

The first and second equalities in case (iv) follow from Corollaries 4.2 and 5.4,
while the third equality follows from Corollary 3.20.

Case (v) follows from the definition of M2, Theorem 2.13 and Corollary 3.9.
Case (vi) follows from the definition of M2, Corollary 2.22 and Proposition 4.9.
Case (vii) follows from Theorem 2.11 and Propositions 3.3 and 5.6. ��

The correctness of Theorem 5.1 then follows from Theorem 4.1 and Lemmas 5.8
and 5.9.

5.3 Axiomatic ranks

Corollary 5.10 The axiomatic rank of the varieties M2, M2 ∧ Vsylv# , M2 ∧ Vsylv and
M2 ∧ S is 4.

Proof The result follows from the definition ofM2, Lemma 3.27, and Corollaries 5.3
and 5.5. ��

6 Equational theories of hyposylvester andmetasylvester monoids

We now look at two recently introduced plactic-like monoids, the hyposylvester and
metasylvester monoids, closely connected to the sylvester monoid, and show that they
generate the same variety.
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The hyposylvester and metasylvester congruences [30] are generated, respectively,
by the relations

Rhs = {(caub, acub) : a ≤ b < c,u ∈ N
∗}

∪ {(buac, buca) : a < b < c,u ∈ N
∗}, and

Rms = {(abua, baua) : a < b,u ∈ N
∗}

∪ {(buacvb, bucavb) : a < b < c,u, v ∈ N
∗}.

The hyposylvester monoids of countable rank and finite rank n are denoted, respec-
tively, by hs and hsn , while the metasylvester monoids of countable rank and finite
rank n are denoted, respectively, by ms and msn .

Proposition 6.1 The hyposylvester monoids of rank greater than or equal to 2 gener-
ates the same variety as the infinite-rank sylvester monoid.

Proof Notice that the relations Rhs and Rsylv coincide when restricting them to a
two-letter alphabet. Therefore, hs2 = sylv2. On the other hand, since Rsylv ⊆ Rhs,
we have that u ≡sylv v implies u ≡hs v, thus hs is a homomorphic image of sylv.
Therefore, we have that

Vhs ⊆ Vsylv = Vsylv2 = Vhs2 ⊆ Vhs.

Hence, Vhs = Vsylv. ��
Notice that the previous proof can be generalised to show that any monoid obtained

by adding relations to Rsylv that require at least three different letters generates the
same variety as sylv.

Proposition 6.2 The metasylvester monoids of rank greater than or equal to 2 gener-
ates the same variety as the infinite-rank sylvester monoid.

Proof On one hand, it is clear that the sylvester congruence contains the metasylvester
congruence, hence sylv is a homomorphic image ofms. As such, all identities satisfied
byms must be satisfied by sylv. On the other hand,ms satisfies the identity (R2): We
can use the first defining relation of Rms,

abua ≡ms baua,

for a < b,u ∈ N
∗, to show that the words obtained from xyzxty and yxzxty by

replacing each variable by a word overN are ≡ms-congruent. Notice that, if x or y are
replaced by the empty word, the evaluations are the same, and if x and y are replaced
by non-empty words, then all letters occurring in the evaluations of the prefixes xy and
yx also occur in the evaluation of the common suffix zxty. Thus, we can reorder the
letters in the evaluation of xy, using the first defining relation, to obtain the evaluation
of yxzxty from the evaluation of xyzxty. Therefore, since ms satisfies an identity
that forms a basis for the equational theory of sylv, then all identities satisfied by sylv
must be satisfied byms. The result follows. ��
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7 Concluding remarks

The varieties M2 ∧ Vsylv# and M2 ∧ Vsylv are the only maximal hereditarily finitely
based overcommutative varieties of monoids [27, Theorem 1.60]. In L3, VmSt and
Vhypo are the minimal varieties that are not hereditarily finitely based: Consider the
varieties J1 and J2 generated, respectively, by the Rees factor monoids of N∗ over the
ideals of all words that are not factors of xzxyty, and of xzytxy or xyzxty. These
varieties are not finitely based, but in fact, they areminimal non-finitely based varieties,
or limit varieties [22, Proposition 5.1]. A consequence of [22, Lemma 3.3] is that a
variety contains J1 (resp. J2) if and only if xzxyty is an isoterm (resp. xzytxy and
xyzxty are isoterms) of its equational theory. It is easy to check that xzxyty is an
isoterm for Vhypo, and xzytxy and xyzxty are isoterms for VmSt.

Corollary 7.1 VmSt is the minimal non-hereditarily finitely based variety in L1, and
VmSt and Vhypo are the minimal non-hereditarily finitely based varieties in L2 and
L3.

From the characterisations of equational theories of varieties in L3, collected in the
second column of Table 1, and Remark 2.2, we have the following:

Corollary 7.2 The identity-checking problem of any variety in L3 is decidable in poly-
nomial time.

Examples of finite bases for the varieties in L3 are collected in the third column of
Table 1. The number of variables occurring in each basis is equal to its corresponding
axiomatic rank, given in the fourth column.

In the fifth column of Table 1, we give congruences built from plactic-like con-
gruences, whose corresponding factor monoids generate varieties in L3. Notice that
no congruences were obtained for any variety in between, and including,M2 ∧ S and
VmSt ∨ S. To obtain such a congruence for a variety V, we either take the meet of
congruences corresponding to two varieties whose join is V, in which case the result
is immediate, or we take the join of congruences corresponding to two varieties whose
meet is V, in which case, we need to verify if the factor monoid indeed generates the
variety. For example, as mentioned in Sect. 2.4, the hypoplactic congruence is the join
of the #-sylvester and sylvester congruences, however, hypo does not generate S. If
one can find a plactic-like monoid that generates M2 ∧ S, then one can immediately
obtain congruences for the unknown cases.

Question 7.3 Is there a plactic-like monoid that generates M2 ∧ S?

As a consequence of Theorem 5.1 and Proposition 5.7 on one hand, and Corol-
laries 2.12, 2.17, 2.21, 2.25, 3.8, 3.11, 3.15, 4.3 and 4.7 on the other, we have the
following:

Theorem 7.4 Let V be a variety in L3. Then, V is the varietal join of COM and a
finitely generated variety if and only if V does not contain the variety M2 ∧ S, or
equivalently, is contained in the variety Vhypo ∨VmSt. Otherwise, is not contained in
any varietal join of COM and a finitely generated variety.
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Table 1 Results on the varieties in L3

Variety Eq. properties Finite basis Ax. rank Plactic-like F.g.v.

Vbaxt (Cpre),(Csuf ) xzytxyr xsy ≈ xzytyxr xsy 6 ≡baxt N.c.

xzytxyrysx ≈ xzytyxrysx

VrSt ∨ Vsylv# (Cpre),(Ssuf ) xzytxyry ≈ xzytyxry 5 ≡rSt ∧ ≡sylv# N.c.

xzytxyr x ≈ xzytyxr x

VlSt ∨ Vsylv (Spre),(Csuf ) xzxytxry ≈ xzyxtxry 5 ≡lSt ∧ ≡sylv N.c.

xzxytyr x ≈ xzyxtyr x

Vsylv# (Cpre) xzytxy ≈ xzytyx 4 ≡sylv N.c.

Vsylv (Csuf ) xyzxty ≈ yxzxty 4 ≡sylv N.c.

VmSt ∨ S (Sub2),(Rst1,v),(Spre),(Ssuf ) xzytxyry ≈ xzytyxry 5 ? N.c.

xzytxyr x ≈ xzytyxr x

xzxytxry ≈ xzyxtxry

xzxytyr x ≈ xzyxtyr x

VlSt ∨ S (Sub2),(Rst1,v),(Spre) xzxytxry ≈ xzyxtxry 5 ? N.c.

xzxytyr x ≈ xzyxtyr x

xzytxy ≈ xzytyx

VrSt ∨ S (Sub2),(Rst1,v),(Ssuf ) xzytxyry ≈ xzytyxry 5 ? N.c.

xzytxyr x ≈ xzytyxr x

xyzxty ≈ yxzxty

M2 (Rst1,v),(Spre),(Ssuf ) xzxyty ≈ xzyxty 4 ? N.c.

Vhypo ∨ VmSt (Sub2),(Spre),(Ssuf ) xyxzx ≈ x2yzx 3 ≡hypo ∧ ≡mSt J2 ∨ RB

M2 ∧ Vsylv# (Rst1,v),(Spre) xzxyty ≈ xzyxty 4 ? N.c.

xzytxy ≈ xzytyx

M2 ∧ Vsylv (Rst1,v),(Ssuf ) xzxyty ≈ xzyxty 4 ? N.c.

xyzxty ≈ yxzxty

Vhypo ∨ VlSt (Sub2),(Spre) xyxzx ≈ x2yzx 4 ≡hypo ∧ ≡lSt J2 ∨ LRB

xzytxy ≈ xzytyx

Vhypo ∨ VrSt (Sub2),(Ssuf ) xyxzx ≈ x2yzx 4 ≡hypo ∧ ≡rSt J2 ∨ RRB

xyzxty ≈ yxzxty

S (Sub2),(Rst1,v) xzytxy ≈ xzytyx 4 ? N.c.

xyzxty ≈ yxzxty

VmSt (Spre),(Ssuf ) xyxzx ≈ x2yzx 4 ≡mSt RB

xzxyty ≈ xzyxty

VmSt ∧ Vsylv# (Spre),(S1,suf ) xzytxy ≈ xzytyx 4 ≡mSt ∨ ≡sylv#LRB ∨ VJ1

xyxzx ≈ x2yzx

xzxyty ≈ xzyxty
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Table 1 continued

Variety Eq. properties Finite basis Ax. rank Plactic-like F.g.v.

VmSt ∧ Vsylv (S1,pre),(Ssuf ) xyzxty ≈ yxzxty 4 ≡mSt ∨ ≡sylv RRB ∨ V←−
J1

xyxzx ≈ x2yzx

xzxyty ≈ xzyxty

Vhypo (Sub2) xyxzx ≈ x2yzx 4 ≡hypo J2

xzytxy ≈ xzytyx

xyzxty ≈ yxzxty

M2 ∧ S (Rst1,v) xzxyty ≈ xzyxty 4 ? N.c.

xzytxy ≈ xzytyx

xyzxty ≈ yxzxty

VlSt (Spre) xyx ≈ x2y 2 ≡lSt LRB

VrSt (Ssuf ) xyx ≈ yx2 2 ≡rSt RRB

VmSt ∧ S (S1,pre),(S1,suf ) xzytxy ≈ xzytyx 4 ≡hypo ∨ ≡mSt V←−
J1×J1

xyzxty ≈ yxzxty

xyxzx ≈ x2yzx

xzxyty ≈ xzyxty

VlSt ∧ Vsylv (S1,pre) xyx ≈ x2y 2 ≡lSt ∨ ≡sylv V←−
J1

x2y2 ≈ y2x2

VrSt ∧ Vsylv# (S1,suf ) xyx ≈ yx2 2 ≡rSt ∨ ≡sylv# VJ1

x2y2 ≈ y2x2

VjSt (Rst1) xyx ≈ x2y 2 ≡jSt VS({ab})
xyx ≈ yx2

The second column gives the properties that define the equational theories; the fifth gives plactic-like
congruences whose corresponding factor monoids generate the varieties; the sixth states if a variety is the
join of COM and a finitely generated variety (giving said variety) or if it is not contained in such a join
(‘N.c.’ stands for ‘not contained’)

Exactly half of the varieties in L3 are the varietal join of COM and a finitely
generated variety. The sixth column of Table 1 either gives the varietal join, or states
that the variety is not contained in such a join.
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