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Abstract
The rook monoid, also known as the symmetric inverse monoid, is the archetypal
structure when it comes to extend the principle of symmetry. In this paper, we establish
a Schur–Weyl duality between this monoid and an extension of the classical Schur
algebra, which we name the extended Schur algebra. We also explain how this relates
to Solomon’s Schur–Weyl duality between the rook monoid and the general linear
group and mention some advantages of our approach.

Keywords Schur–Weyl duality · Rook monoid · Schur algebras · Representation
theory of associative algebras · Tensor spaces

1 Introduction

Throughout this article, F is a field of characteristic zero unless explicitly specified
and V is a d-dimensional vector space over F. The symmetric group Sn acts on the
tensor space ⊗n V by place permutations. By fixing a basis of V , GL(V ) can be
identified with the general linear group of all d × d non-singular matrices with entries
in F, herein denoted Gd . If V is the natural module for the group algebra FGd , then
Gd acts diagonally on ⊗n V . This action commutes with that of Sn on ⊗n V by place
permutations. In case F = C, Schur [38] established that each action generates the
full centralizer of the other on End F(⊗n V ), a result which was made popular byWeyl
[45]. This seminal example of a double centralizer phenomenon, now known as the
classical Schur–Weyl duality, provides a deep insight on the interactions between the
representation theories of Gd and Sn .

Communicated by Antonio Malheiro.

B Inês Legatheaux Martins
ilegatheaux@yahoo.co.uk

Carlos A. M. André
caandre@ciencias.ulisboa.pt

1 Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Campo Grande,
Edifício C6, Piso 2, 1749-016 Lisboa, Portugal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00233-024-10434-w&domain=pdf
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Results of Thrall [43], De Concini and Procesi [7], Carter and Lusztig [4] andGreen
[16] show that the classical Schur–Weyl duality remains true if F is an infinite field
of any characteristic. More recently, the classical Schur–Weyl duality was extended
to sufficiently large finite fields by Benson and Doty [1].

These results can be better understood in the context of Schur algebras [16]. Implicit
in zero characteristic in Schur’s Ph.D thesis [37], Schur algebras were defined over
arbitrary infinite fields by J. A. Green in his seminal monograph [16]. The Schur
algebra S F(d, n) can be identified with the centralizer algebra End FSn (⊗n V ) of FSn

on ⊗n V with respect to place permutations and the family {S F(d, r)}r≥0 completely
determines the polynomial representations ofFGd .Moreover,S F(d, n) is an important
example of a cellular algebra [15]. Thus, the classical Schur–Weyl duality can be stated
in terms of these finite-dimensional algebras in a very general setting.

There are numerous other examples of “Schur–Weyl dualities". For instance, in
characteristic zero, the centralizer algebras associated with the diagonal action of
subgroups ofGd such as the orthogonal group Od and the symmetric group Sd on⊗n V
are, respectively, theBrauer algebra [3] and the partition algebra [24, 27–29] (see also
[22]). As before, the translation of these results in the language of Schur algebras and
their generalizations has widely expanded our knowledge of the properties of these
algebras in the modular case (see, among many others, [2, 8, 13]).

In 2002, Solomon [40] established a Schur–Weyl duality between Gd and an impor-
tant finite inverse monoid. Inverse monoids were introduced in [44] as a natural
generalization of groups to deal with aspects of symmetry which the latter could
not capture (see [26] for further details on this viewpoint). The archetypal example of
such a structure is the symmetric inverse monoid, also called the rook monoid [39].

For our purposes, the rook monoid Rn is the set of all bijective partial maps from
n = {1, . . . , n} to itself under the usual composition of partial functions. It contains
Sn and it is isomorphic to the monoid under matrix multiplication of all n ×n matrices
with at most one entry equal to 1F in each row and in each column and zeros elsewhere.
It plays the same rôle for inverse monoids that Sn does for groups and thus it is the
archetypal structure when it comes to extend the principle of symmetry.

In his influential article [40], L. Solomon proved that Rn acts on tensors by “place
permutations". More precisely, he showed that, if F has characteristic zero and d ≥ n,
FRn acts as the centralizer algebra for the action of Gd on ⊗nU , where U = V ⊕ U0
is the direct sum of the natural d-dimensional module V and the trivial module U0.

Since its publication, this result proved to be a special case of an important Schur–
Weyl duality on tensor spaces for theHecke algebra analog for Rn , known as the q-rook
monoid (see [20, 35, 41] and references therein). It also influenced other authors into
establishing Schur–Weyl dualities between Rn and other finite inverse semigroups
[25]. Moreover, it led to the investigation of a number of interesting algebras. For
instance, the centralizer algebras associated with the restriction of the action of Gd

on ⊗nU to subgroups such as the orthogonal subgroup Od and the symmetric Sd are,
respectively, the rook Brauer algebra [21, 30] and the rook partition algebra [18].

The main purpose of this article is to show that Solomon’s Schur–Weyl duality for
Rn and Gd can be stated in terms of an extension of the classical Schur algebra.
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40 C. A. M. André, I. L. Martins

Weachieve this by defining anF-algebraS F(d,n)whichwe call the extended Schur
algebra and which satisfies

S F(d,n) ∼=
n⊕

r=0

S F(d, r).

We then prove that S F(d,n) determines the homogeneous polynomial representations
of FGd of degree at most n, a result that holds for arbitrary infinite fields. Finally,
we establish a Schur–Weyl duality between S F(d,n) and Rn on ⊗nU , when d ≥ n
and F has zero characteristic. To show that our viewpoint provides a deeper insight
on the representation theory of Rn and its interactions to those of general linear and
symmetric groups, we also mention some applications of our approach.

This paper is organized as follows. Section 2 begins with a brief overview on (split)
semisimple algebras, double centralizer theory and classical Schur–Weyl duality. This
is followed by a description of structural aspects of the classical Schur algebraS F(d, n)

and an outline of the representation theory of the rook monoid Rn .
In Sect. 3, we view Gd ⊆ Gd+1 under a natural embedding and we explain how

the restriction of the diagonal action of Gd+1 on⊗nU to Gd gives rise to the extended
Schur algebra S F(d,n). After describing this algebra’s structure, we prove that the
module category forS F(d,n) is equivalent to the categoryof homogeneous polynomial
Gd -modules of degree at most n. Finally, we establish a Schur–Weyl duality on ⊗nU
between S F(d,n) and FRn . We end by explaining how this result relates to Solomon’s
Schur–Weyl duality [40] and mentioning some consequences of our approach.

We should note that some of the techniques used herein apply to infinite fields of
any characteristic. The fact that our main result relies on the semisimplicity of the
monoid algebra of Rn has made us decide to work in characteristic zero. However,
since we hope to treat the modular case in the near future, we have pointed out all the
results in this article that remain true for arbitrary infinite fields.

2 Preliminaries

2.1 Double centralizer theory and classical Schur–Weyl duality

Henceforth, the term “module" refers to a finite-dimensional left module unless explic-
itly stated otherwise andF is a field of characteristic zero. LetA be a finite-dimensional
split semisimple algebra over F. By classical Artin–Wedderburn theory [6, Theorem
3.34], this means that there is an isomorphism of F-algebras

A ∼=
⊕

λ∈�

Mdλ(F),

for some finite index set � and positive integers dλ. For each λ ∈ �, there is, up
to isomorphism, one simple A-module Sλ and {Sλ : λ ∈ �} is a complete set of
representatives of the isomorphism classes of simple modules of A.
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If M is a finite-dimensional A-module, its decomposition into simple A-modules
is given by

M ∼=
⊕

λ∈�

mλSλ, (1)

wheremλ is a non-negative integer called themultiplicity of λ in M . We say that λ ∈ �

appears in M if M contains a submodule isomorphic to Sλ (that is, if mλ > 0).
Let ρ : A → End F(M) be the representation corresponding to the A-module M

with decomposition given by Expression (1). The centralizer algebra of A on M is
the finite-dimensional F-algebra

EndA(M) = {φ ∈ End F(M) : φρ(a) = ρ(a)φ, for all a ∈ A}.

The action of EndA(M) on M defined by φ · x = φ(x), with φ ∈ EndA(M) and
x ∈ M , turns M into an EndA(M)-module. Since the actions ofA and EndA(M) on
M commute, ρ induces a homomorphism of F-algebras ρ : A → EndEndA(M)(M).
In case M is a rightA-module, the corresponding homomorphism is obtained via the
representation ρ : A◦ → EndF(M) of A◦ on M , where A◦ is the opposite algebra of
A.

The next theorem summarizes the basic dual relationship between the F-algebras
A and EndA(M) and can be found (with a different formulation) in [6, Section 3.D].

Theorem 1 (Double Centralizer Theorem) LetA be a finite-dimensional split semisim-
ple F-algebra and let {Sλ : λ ∈ �} be a complete set of representatives of the
isomorphism classes of simple A-modules with dimF(Sλ) = dλ, for all λ ∈ �. Let M
be an A-module such that M ∼=

⊕

λ∈�
′
mλSλ, with �

′ = {λ ∈ � : mλ > 0}. Then:

(a) There is an isomorphism of F-algebras EndA(M) ∼=
⊕

λ∈�
′
Mmλ(F); in particular,

EndA(M) is a finite-dimensional (split) semisimple F-algebra;
(b) As an EndA(M)-module, M ∼=

⊕

λ∈�
′
dλEλ, where, for each λ ∈ �

′
, Eλ is a simple

EndA(M)-module of dimension mλ;
(c) If M is a faithful A-module, the corresponding representation ρ : A → End F(M)

induces an isomorphism of F-algebras

A ∼= EndEndA(M)(M),

i.e., the actions of A and EndA(M) on M generate the full centralizer of the other
in End F(M).

Schur–Weyl duality is a cornerstone of representation theory that amounts to two
double centralizer results which involve the symmetric and general linear groups.

Since F has characteristic zero, it is known that the group algebra of the symmetric
group FSn is a split semisimple algebra of dimension n ! (see, for example, [23, The-
orem 5.9.]). On the other hand, the isomorphism classes of simple modules for FSn

are indexed by partitions of n.
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42 C. A. M. André, I. L. Martins

By a partition of n, we mean a sequence λ = (λ1, λ2, . . . , λt ) of weakly decreasing
non-negative integers (λ1 ≥ λ2 ≥ . . . ≥ λt ≥ 0) whose sum is equal to n. We refer to
λ1, . . . , λt as the parts of λ and write λ � n to indicate that λ is a partition of n.

Let V be an F-space of dimension d. For reasons that will become apparent later,
we view ⊗n V as a right FSn-module on which Sn acts by place permutations as

(v1 ⊗ . . . ⊗ vn) · σ = vσ(1) ⊗ . . . ⊗ vσ(n), (2)

for all v1, . . . , vn ∈ V and σ ∈ Sn .
Let Gd be the general linear group of all d × d invertible matrices with entries in

F. If V has as F-basis {e1, . . . , ed}, we consider the natural left action of Gd on V ,
defined on basis elements by

g · e j =
d∑

i=1

ci, j (g)ei , for g ∈ Gd and j = 1, . . . , d, (3)

where, for all 1 ≤ i, j ≤ d, ci, j : Gd → F is the coordinate function which sends
a matrix in Gd to its (i, j)-th entry. It follows that Gd acts on ⊗n V via the diagonal
action

g · (v1 ⊗ . . . ⊗ vn) = g · v1 ⊗ . . . ⊗ g · vn, (4)

for all v1, . . . , vn ∈ V and g ∈ Gd .
Hence, ⊗n V is both a left FGd -module and a right FSn-module via place permuta-

tions. It is easily seen that these actions commute. In caseF = C, the following theorem
goes back to Schur’s famous 1927 article [38]. As mentioned in the introduction, the
result holds over infinite fields of any characteristic.

Theorem 2 Let V be a d-dimensional vector space over F and regard ⊗n V both as
the left diagonal FGd-module and the right FSn-module by place permutations. Let
ρ : FGd → End F(⊗n V ) and ρ̂ : (FSn)◦ → End F(⊗n V ) be the corresponding
representations. Then:

(a) ρ(FGd) = End FSn (⊗n V );
(b) ρ̂(FSn)) = End FGd (⊗n V );
(c) if d ≥ n, then ρ̂ is injective and thus it induces an isomorphism of F-algebras

(FSn)◦ ∼= End FGd (⊗n V ).

2.2 The classical Schur algebra

Throughout this paper, we shall adopt Green’s viewpoint [16] on the polynomial
representations of Gd and hence work with Schur algebras (see also [31]). All of the
results presented in this section are valid for infinite fields of arbitrary characteristic.

For all 1 ≤ i, j ≤ d, let ci, j : Gd → F be the previously defined (i, j)-th
coordinate function. The polynomial algebra A(d) ≡ F[ci, j : 1 ≤ i, j ≤ d] has the
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structure of a bialgebra with comultiplication and counit given by

�(ci, j ) =
d∑

k=1

ci,k ⊗ ck, j and ε(ci, j ) = δi, j .

For each non-negative integer n, let A(d, n) be the F-subspace of homogeneous
polynomials of degree n. The bialgebra A(d) has a natural grading as

A(d) =
⊕

n≥0

A(d, n).

Since each A(d, n) has the structure of a subcoalgebra of A(d), its linear dual
A(d, n)∗ = Hom F(A(d, n);F) is an associative algebra over F which we denote
S F(d, n) and call the (classical) Schur algebra.

We shall need some notation. If n ≥ 1, recall that n = {1 , . . . , n}. We write 
n(d)

for the set of all maps α : n → d, identifying each α with the n-tuple (α(1), . . . , α(n))

or, equivalently, (α1, . . . , αn). The symmetric group Sn acts on the right on 
n(d) by
the rule ασ = (ασ(1), . . . , ασ(n)), for α = (α1, . . . , αn) ∈ 
n(d) and σ ∈ Sn .
Similarly, Sn acts on the right on
n(d)×
n(d) by (α, β)σ = (ασ, βσ). Ifα, β, γ, ν ∈

n(d),α ∼ β means thatα andβ are in the same Sn-orbit of
n(d) and (α, β) ∼ (γ, ν)

means that (α, β) and (γ, ν) are in the same Sn-orbit of 
n(d) × 
n(d).
The space A(d, n) has as an F-basis the set of all monomials of degree n in the d2

variables ci, j . Each such monomial can be written as cα,β = cα1,β1 . . . cαn ,βn for some
α, β ∈ 
n(d) and there is an “equality” rule [16, Equation (2.1b)]

cα,β = cγ,ν if and only if (α, β) ∼ (γ, ν), (5)

for all α, β, γ, ν ∈ 
n(d). Let�n be an arbitrary set of representatives of the Sn-orbits
of 
n(d) × 
n(d). Hence, {cα,β : (α, β) ∈ �n} is an F-basis of A(d, n) and thus

dim F (A(d, n)) =
(

d2 + n − 1

n

)
. (6)

We write {ξα,β : (α, β) ∈ �n} for the F-basis of S F(d, n) dual to that of A(d, n). Of
course, dim F(S F(d, n)) = dim F(A(d, n)) and, for all α, β, γ, ν ∈ 
n(d),

ξα,β = ξγ,ν if and only if (α, β) ∼ (γ, ν). (7)

The algebra structure on S F(d, n) is the dual of the coalgebra structure onA(d, n).
This implies the following rule for the multiplication in S F(d, n),

ξη(cα,β) =
∑

γ∈
n(d)

ξ(cα,γ )η(cγ,β),

for all α, β ∈ 
n(d) and ξ, η ∈ S F(d, n).
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44 C. A. M. André, I. L. Martins

The importance of Schur algebras stems from the fact that they determine the
finite-dimensional polynomial representations of FGd . We say that a representation
ρ : FGd → End F(W ) on an F-space W is polynomial if its coefficient functions
lie in A(d) and homogeneous of degree n if its coefficient functions lie in A(d, n).
Following Schur’s arguments for F = C, J. A. Green proved that every polynomial
representation of FGd is a direct sum of homogeneous ones [16, Theorem 2.2c] and
that the category of S F(d, n)-modules is equivalent to the category of homogeneous
polynomial modules of FGd of degree n (see [16, pp. 23–25]).

For our purposes, we focus on the FGd -module ⊗n V with action given by Expres-
sion (4). If {e1, . . . , ed} is an F-basis of V , then {e⊗

α = eα(1)⊗ . . .⊗eα(n) : α ∈ 
n(d)}
is an F-basis of ⊗n V . Hence, the left diagonal FGd -action can be expressed as

g · e⊗
β =

∑

α∈
n(d)

cα,β(g)e⊗
α , for g ∈ Gd and β ∈ 
n(d).

Since the cα,β all lie in A(d, n), this amounts to saying that ⊗n V is a polynomial
FGd -module which is homogeneous of degree n. As a left S F(d, n)-module,

ξe⊗
β =

∑

α∈
n(d)

ξ(cα,β)e⊗
α , for ξ ∈ S F(d, n) and β ∈ 
n(d). (8)

It is easily seen that the previous S F(d, n)-action commutes with the right action of
Sn on⊗n V given by place permutations. In truth, the Schur–Weyl duality between Gd

and Sn on ⊗n V can be stated in terms of S F(d, n). The proof of the first isomorphism
exhibited in the following theorem can be found in [16, Theorem 2.6c]. The other
isomorphism follows from [4, p. 209, Lemma] and [16, Section 2.4].

Theorem 3 Let V be a d-dimensional vector space over F. Regard ⊗n V both as a
left S F(d, n)-module with action given by Equality (8) and a right FSn-module with
action given by Equality (2). If d ≥ n, then each action generates the full centralizer
of the other on End F(⊗n V ) and, as F-algebras,

S F(d, n) ∼= End FSn (⊗n V ) and (FSn)◦ ∼= EndSF(d,n)(⊗n V ).

2.3 Representations of the rookmonoid

The representation theory of finite inverse semigroups was established in the 1950’s
by Munn [32–34] and Ponizovskiı̆ [36]. For the special case of the rook monoid, their
results were furthered and deepened in zero characteristic by L. Solomon [40].

Recall that n = {1, . . . , n}. Our convention for the multiplication in Rn is that the
composition στ of the elements σ, τ ∈ Rn is defined by first applying τ and then σ .
If σ ∈ Rn , we write D(σ ) ⊆ n for the domain of σ and R(σ ) ⊆ n for its range.

For instance, σ =
(
1 2 3 4 5
− 4 5 2 −

)
and τ =

(
1 2 3 4 5
3 1 2 − −

)
are elements of R5 with

D(σ ) = {2, 3, 4}, R(σ ) = {2, 4, 5} and D(τ ) = R(τ ) = {1, 2, 3}.
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We agree that Rn contains a map ε∅ with empty domain and range which behaves
as a zero element in Rn . With this convention, it is easy to see that

|Rn| =
n∑

r=0

(
n

r

)2

r !

If σ ∈ Rn , we define the rank of σ , denoted rk(σ ), as the size of its domain. We
adopt the convention that the only element in Rn of rank zero is ε∅ and that S0 = {ε∅}
is a group with a single element. Note that any σ ∈ Rn of rank n is a permutation of
n and thus Sn ⊆ Rn . A minute’s thought reveals that Sr ⊆ Rn , for r = 0, 1, . . . , n.

The set of idempotents of Rn is the commutative submonoid of all the partial
identities εX : X → X , with X ⊆ n. For each X ⊆ n, εX RnεX is a monoid with
identity εX , whose group of units G X is called the maximal subgroup of Rn at εX .

Two idempotents εX and εY are said to be isomorphic if G X ∼= GY as groups. If
0 ≤ r ≤ n and X ⊆ n is a set of size r , it is not hard to verify that

G X = {σ ∈ Rn : D(σ ) = R(σ ) = X} ∼= Sr .

Thus, each maximal subgroup of Rn can be identified with some symmetric group Sr .
In order to classify the isomorphisms classes of simple modules of FRn , we shall

need some notation. If σ ∈ Rn , we define the inverse of σ , denoted σ−, as the only
element of Rn which satisfies D(σ−) = R(σ ) and σ−σ = εD(σ ).

If 0 ≤ r ≤ n and X ⊆ n is a set of size r , we denote by ιX the unique order-
preserving bijection between r and X (identifying 0with the empty set). Note that any
σ ∈ Rn of rank r with D(σ ) = X and R(σ ) = Y can be mapped to Sr via

p(σ ) = ι−Y σ ιX .

In particular, p(εX ) = εr ∈ Sr , for all X ⊆ n of size r .
For our purposes, we also need to introduce special algebras. If 1 ≤ r ≤ n, let

M(n
r)

(FSr ) be the F-algebra of all matrices with rows and columns indexed by subsets
I , J of n of size r and entries in FSr . If r = 0, we identify M(n

r)
(FSr ) with F. Set

Rn =
n⊕

r=0

M(n
r)

(FSr ). (9)

If 1 ≤ r ≤ n and I , J ⊆ n are such that |I | = |J | = r , let EI ,J be the standard
matrix with εr ∈ Sr in position (I , J ) and zeros elsewhere. If r = 0, set 1F = E∅,∅.
It is clear that Rn has as F-basis

n⋃

r=0

{σ EI ,J : σ ∈ Sr , I , J ⊆ n, |I | = |J | = r}. (10)

The following result is essentially due to Munn [32, 34] and Ponizovskiı̆ [36]
although it can be found explicitly in [40, Lemma 2.17] and [42, Theorem 4.4].
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46 C. A. M. André, I. L. Martins

Theorem 4 Let F be a field of characteristic zero. There is an isomorphism of F-
algebras φ : FRn → Rn given by

φ(σ) =
∑

X⊆D(σ )

p(σεX )Eσ(X),X

with inverse given on basis elements σ ∈ Sr and EI ,J with |I | = |J | = r by

φ−1(σ EI ,J ) =
∑

X⊆J

(−1)|J |−|X |(ιI σ ι−J )εX .

In particular, FRn is a finite-dimensional (split) semisimple algebra over F.

As a consequence of the previous theorem, the isomorphism classes of simple
modules of Rn are in one-to-one correspondence with those of its maximal subgroups.
In order to highlight the constructive aspect of Theorem 4, we express this result in
terms of matrix representations of FRn .

Let μ � r with 0 ≤ r ≤ n and let ρμ : FSr → Mk(F) be an irreducible matrix
representation of FSr . If r = 0, we agree that there is an empty partition μ = (0) and
the corresponding irreducible representation of FS0 is given by ρ(0)(ε∅) = 1F.

It follows from Theorem 4 that ρμ induces a matrix representation of FRn , denoted
by ρ∗

μ : FRn → Mk (n
r)

(F), and given by

ρ∗
μ(σ ) =

∑

X⊆n,|X |=r ,
rk(σεX )=r

ρμ(p(σεX ))ER(σεX ),D(σεX ), (11)

for all σ ∈ Rn . The previous expression is due to L. Solomon (see Eq. 2.26 in [40]). In
the setting of finite inverse semigroups, Munn [34] showed that these representations
determine the isomorphism type of FRn .

Theorem 5 (Munn) Let F be a field of characteristic zero. The set

{ρ∗
μ : μ � r , for all 0 ≤ r ≤ n}

is a complete set of inequivalent irreducible matrix representations of FRn. Thus, the
isomorphism classes of simple modules of FRn are indexed by the set of partitions

{μ � r : 0 ≤ r ≤ n}

3 Representing the rookmonoid and the extended Schur algebra on
tensors

Throughout this section, F is a field of characteristic zero, d and n are positive integers
such that d ≥ n and Gd is viewed as the subgroup of Gd+1 of all matrices of the form
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[
g 0
0 1

]
,

where g ∈ Gd . All the results exposed in Sects. 3.1 and 3.2 remain valid ifF is replaced
by an infinite field of any characteristic.

3.1 A natural restriction

Let U = V ⊕ U0 be an F-space of dimension d + 1, where V and U0 are seen
as subspaces of U of respective dimensions d and 1. As before, {e1, . . . , ed} is an
arbitrary but fixed basis of V and U0 = Fe∞ for some vector e∞ ∈ U which turns
{e1, . . . , ed , e∞} into an F-basis of U . We assume the linear ordering 1 < 2 < . . . <

d < ∞.
It follows from Sect. 2 that ⊗nU is a finite-dimensional homogeneous polynomial

FGd+1-module of degree n via the diagonal action of Gd+1 on ⊗nU (see Eq. (4) with
d replaced by d + 1). We study this action’s restriction to Gd .

To do so, we need some notation. Let 1 ≤ r ≤ n and let X = {x1 < . . . < xr } ⊆ n
be a set of size r . We write 
X (d) for the set of all maps α : X → d identifying
α ∈ 
X (d) with the r -tuple (α(x1), . . . , α(xr )) ∈ dr . We also agree that 
∅(d) has a
single element which is identified with the empty set.

If α, β ∈ 
X (d), then cα,β = cα(x1),β(x1) . . . cα(xr ),β(xr ) ∈ A(d, r) is as before a
monomial of degree r in the d2 variables ci, j . If ιX is the unique order-preserving
bijection between r and X (see Sect. 2.3), the same monomial can be written as

cα,β = cαιX ,βιX = cα(ιX (1)),β(ιX (1)) . . . cα(ιX (r)),β(ιX (r)) = cγ,ν, (12)

where γ = αιX , ν = βιX ∈ 
r(d).
This notation is particularly useful to represent the F-basis of ⊗nU induced by

{e1, . . . , ed , e∞}. If X ⊆ n and α ∈ 
X (d), the decomposable tensor e⊗
α ∈ ⊗nU is

defined as e⊗
α = eα̂(1) ⊗ . . . ⊗ eα̂(n), where the map α̂ : n → d ∪ {∞} is given by

α̂(i) =
{

α(i) if i ∈ X ,

∞ otherwise.

It is clear that ⊗nU has as an F-basis the set {e⊗
α : α ∈ 
X (d), X ⊆ n}. For

instance, if d = 6, n = 5, X = {1, 3, 5} and α = (6, 2, 2) ∈ 
{1,3,5}(6), then the
corresponding basis element of ⊗5U is given by

e⊗
α = e6 ⊗ e∞ ⊗ e2 ⊗ e∞ ⊗ e2 ∈ ⊗5U .

Proposition 6 Let U be a (d + 1)-dimensional vector space over F. The restriction to
Gd of the left diagonal action of Gd+1 on ⊗nU is given by

g · e⊗
β =

∑

α∈
X (d)

cα,β(g)e⊗
α , for all g ∈ Gd , β ∈ 
X (d) and X ⊆ n. (13)
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Proof Let g ∈ Gd . Under the identification Gd ≤ Gd+1, the natural action of g on
basis elements of U becomes

g · e j =
d∑

i=1

ci, j (g)ei + 0 .e∞, for j = 1, . . . , d, and g · e∞ = e∞.

We turn to the action of g on basis elements of the diagonal FGd+1-module ⊗nU .
If X = ∅, then we have g · e⊗

∅ = g · e∞ ⊗ . . . ⊗ g · e∞ = e⊗
∅ . Let 1 ≤ r ≤ n and

let X = {x1 < . . . < xr } ⊆ n be a set of size r . If β ∈ 
X (d), the correspond-
ing basis element of ⊗nU is e⊗

β = eβ̂(1) ⊗ . . . ⊗ eβ̂(n), where β̂ : n → d ∪ {∞}
is defined as above. It follows that g · eβ̂(i) = e∞, for all i /∈ X and also that

g · e⊗
β = g · eβ̂(1) ⊗ . . . ⊗ g · eβ̂(n) ∈

∑

α∈
X (d)

aαe⊗
α , for some aα ∈ F. It is now easy

to see that

g · e⊗
β =

∑

α∈
X (d)

(cα(x1),β(x1)(g) . . . cα(xr ),β(xr )(g))e⊗
α =

∑

α∈
X (d)

cα,β(g)e⊗
α ,

where cα,β ∈ A(d, r), for all α ∈ 
X (d).

Each g ∈ Gd gives rise to a linear transformation ψ(g) on ⊗nU and the corre-
sponding representation ψ : Gd → End F(⊗nU ) of Gd can be extended by linearity
to FGd . As such, ψ : FGd → End F(⊗nU ) is a homomorphism of F-algebras and we
may write S(Gd) to designate the subalgebra ψ(FGd) of End F(⊗nU ). The algebra
S(Gd) is intimately related to the extended Schur algebra which we now introduce.

3.2 The extended Schur algebra

The coefficient space produced by the action of Gd on⊗nU described in Proposition 6
suggests that ⊗nU can be seen as a representation of a special Schur algebra.

LetAn(d) =< cα,β : (α, β) ∈ 
X (d)×
X (d), X ⊆ n > be the F-space spanned
by all themonomials cα,β of degree at most n in the variables ci, j . Amoment’s thought
andEq. (12) reveal thatAn(d) is the direct sumof the first n+1 homogeneousF-spaces
A(d, r) of the graded bialgebra A(d).

It follows that An(d) has as an F-basis the set of all distinct monomials of degree
r with 0 ≤ r ≤ n. By Eq. (5), we index this basis with the set �0 ∪ �1 ∪ . . . ∪ �n ,
where �0 = 
∅(d) × 
∅(d) and each �r , with 1 ≤ r ≤ n, is a set of representatives
of the Sr -orbits of 
r(d) × 
r(d).

As mentioned previously, each A(d, r) is a subcoalgebra of A(d). Thus, An(d)

inherits a coalgebra structure with comultiplication and counit given, respectively, by

�(cα,β) =
∑

γ∈
X (d)

cα,γ ⊗ cγ,β and ε(cα,β) = δα,β, (14)
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for all α, β ∈ 
X (d) and X ⊆ n. By a standard fact, it follows that

An(d)∗ = HomF (An(d);F)

is an associative F-algebra of finite dimension.

Definition 1 Let d and n be positive integers. The extended Schur algebra for d and
n over the field F, denoted S F(d,n), is the associative F-algebra of finite dimension
given by the linear dual S F(d,n) = An(d)∗ = HomF (An(d);F).

Since An(d) =
n⊕

r=0

A(d, r), it follows that S F(d,n) can be regarded as the F-

algebra

n⊕

r=0

S F(d, r),

where each S F(d, r) is a classical Schur algebra. Indeed, if ξ ∈ S F(d, r), we identify

ξ with an element of S F(d,n) =
n⊕

r=0

A(d, r)∗ by making it zero on all monomials

whose degree is different from r . Under this identification,

n⋃

r=0

{ξα,β : (α, β) ∈ �r }

is the F-basis of S F(d,n) which is dual to the F-basis of An(d) given by

n⋃

r=0

{cα,β : (α, β) ∈ �r }.

Combined with Eq. (6), this implies that dim F (S F(d,n)) =
(

d2 + n

n

)
. Indeed,

n∑

r=0

dim F (S F(d, r)) =
n∑

r=0

dim F (A(d, r)) =
n∑

r=0

(
d2 + r − 1

r

)
=

(
d2 + n

n

)
.

If 0 ≤ r ≤ n and α, β ∈ 
r(d), ξα,β is the element of S F(d,n) given by

ξα,β(cγ,ν) =
{
1 if r = k and (α, β) ∼ (γ, ν)

0 otherwise,
(15)

for all γ, ν ∈ 
k(d) and 0 ≤ k ≤ n. As with the classical case (see Eq. (7)), if
0 ≤ k ≤ n and κ, ς ∈ 
k(d), we also have an equality rule to take into account,
namely,
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ξα,β = ξκ,ς if and only if r = k and (α, β) ∼ (κ, ς).

For now, it is enough to work with the index set
n⋃

r=0


r(d), since it follows from

Eq. (12) and (15) that, for α, β ∈ 
X (d) with X ⊆ n such that |X | = r ,

ξα,β = ξαιX ,βιX = ξγ,ν ∈ S F(d,n), (16)

with γ = αιX , ν = βιX ∈ 
r(d) and ιX : r → X defined as before.
The multiplication in S F(d,n) follows from the coalgebra structure on An(d) and

hence from Eq. (14). Thus, if ξ, η ∈ S F(d,n), the product ξη is defined on any
monomial cα,β , with α, β ∈ 
X (d) and X ⊆ n, by

ξη(cα,β) =
∑

γ∈
X (d)

ξ(cα,γ )η(cγ,β). (17)

The unit element ε ∈ S F(d,n) is given by ε(c) = c(Id), for all c ∈ An(d). Note

that ε ∈ S F(d,n) can be expressed as ε =
n∑

r=0

εr , where εr is the identity of S F(d, r).

We now turn to the tensor space ⊗nU and show that it can be given the structure
of a left S F(d,n)-module. We have however a stronger statement.

Proposition 7 The category of finite-dimensional FGd-modules whose coefficient

functions lie in An(d) =
n⊕

r=0

A(d, r) is equivalent to that of S F(d,n)-modules.

Proof Let g ∈ Gd . For any X ⊆ n and α, β ∈ 
X (d), define eg(cα,β) = cα,β(g). By
linear extension, the map eg : c �→ c(g) is a well-defined linear homomorphism of
S F(d,n) = HomF (An(d);F). If g, g′ ∈ Gd , it is clear fromEq. (17) that egeg′ = egg′
and eId = ε ∈ S F(d,n). Hence, the map e : g �→ eg can be linearly extended to an
F-algebra homomorphism e : FGd → S F(d,n).

We assume that any map f : Gd → F is identified with its unique linear extension
f : FGd → F. Under this assumption, if k ∈ FGd , then ek : An(d) → F is given by
ek(c) = c(k), for all c ∈ An(d). The arguments in [16, Proposition 2.4b, (i)] apply
mutatis mutandis to e : FGd → An(d)∗ and hence e is surjective.

We now show that f : FGd → F belongs to An(d) if and only if f (k) = 0, for
all k ∈ ker e. If f ∈ An(d) and k ∈ ker e, then ek = 0 and ek( f ) = f (k) = 0.
Conversely, let f : FGd → F be such that f (k) = 0, for all k ∈ ker e. Since e is
surjective, for all ξ ∈ S F(d,n), there is some k ∈ FGd such that ξ = ek . Hence, we
define y ∈ S F(d,n)∗ by y(ξ) = y(ek) = f (k), for all k ∈ FGd . The condition that
f (k) = 0, for all k ∈ ker e ensures that y is a well-defined element of S F(d,n)∗.
Since An(d) is finite-dimensional, we have that An(d) ∼= An(d)∗∗ = S F(d,n)∗ and
hence there is some c ∈ An(d) such that y = c. Let k ∈ FGd , then f (k) = y(ek) =
ek(c) = c(k) and thus c = f ∈ An(d).
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Let V be a finite-dimensional left FGd -module with basis {vb : b ∈ B} and
associated action g · vb =

∑

a∈B

αa,b(g)va , for all b ∈ B and g ∈ Gd . Suppose that

αa,b ∈ An(d), for all a, b ∈ B. Then αa,b(k) = 0, for all k ∈ ker e and all a, b ∈ B.
The action

eg · vb =
∑

a∈B

eg(αa,b)va,

for all g ∈ Gd , b ∈ B, turns V into a left S F(d,n)-module. Indeed, for all ξ ∈
S F(d,n), there is k ∈ FGd such that ξ = ek . If ξ = ek = ek′ for k′ ∈ FGd , then
k − k′ ∈ ker e and αa,b(k − k′) = 0 for all a, b ∈ B. Hence, ek(αa,b) = ek′(αa,b) for
all a, b ∈ B and the S F(d,n)-action is well defined.

Conversely, if V is a left S F(d,n)-module with basis {vb : b ∈ B} and associated
action ξ · vb =

∑

a∈B

ξ(αa,b)va , for all b ∈ B and all ξ ∈ S F(d,n), then V can be

viewed as an FGd -module with action given by

g · vb = eg · vb =
∑

a∈B

αa,b(g)va,

for all g ∈ Gd and all b ∈ B, where eg = ξ ∈ S F(d,n) and αa,b(g) = ξ(αa,b). Once
again, the previous properties show that αa,b ∈ An(d) and this action is well-defined.
The proof is complete and we can now identify both categories by the simple rule:
k · v = ek · v, for all k ∈ FGd and v ∈ V , where V is an object of either categories.

It follows from the proof of this result that the left action of S F(d,n) on ⊗nU is
given, for ξ ∈ S F(d,n), β ∈ 
X (d) and X ⊆ n, by

ξe⊗
β =

∑

α∈
X (d)

ξ(cα,β)e⊗
α . (18)

We end this section with an important fact which follows from the semisimplicity
of the classical Schur algebras.

Proposition 8 The extended Schur algebra S F(d,n) is a semisimple algebra over F.

Proof As referred previously,wemay regardS F(d,n) as
n⊕

r=0

S F(d, r), whereS F(d, r)

is the classical Schur algebra. A proof of the semisimplicity of S F(d, r) can be found
in [16, Corollary (2.6e)] and hence the semisimplicity of S F(d,n) follows.

3.3 Schur–Weyl duality between the rookmonoid and the extended Schur algebra

In what follows, we describe the centralizer algebra EndSF(d,n)(⊗nU ) of S F(d,n) on
the left module ⊗nU on which S F(d,n) acts according to Eq. (18). Throughout this
section, F is a field of characteristic zero.
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For each X ⊆ n, we denote by WX the F-subspace of ⊗nU spanned by all the
decomposable tensors e⊗

α , with α ∈ 
X (d). Since {e⊗
α : α ∈ 
X (d), X ⊆ n} is an

F-basis of ⊗nU , we have the following direct sum decomposition

⊗n U =
⊕

X⊆n

WX . (19)

It follows from Eq. (18) that the left action of an arbitrary ξ ∈ S F(d,n) on e⊗
α , with

α ∈ 
X (d), is such that ξe⊗
α ∈ WX . Hence, WX is an S F(d,n)-submodule of ⊗nU

and (19) is a decomposition of ⊗nU as a direct sum of left S F(d,n)-submodules.
The next result shows how EndSF(d,n)(⊗nU ) decomposes into its building blocks.

Lemma 1 Let U = V ⊕ Fe∞ be an F-space of dimension d + 1 such that V is a
d-dimensional F-subspace of U.

(a) If 0 ≤ r ≤ n, the tensor space ⊗r V is a left SF(d,n)-module for which there is
an isomorphism of F-algebras

EndSF(d,n)(⊗r V ) ∼= (FSr )
◦.

(b) If 0 ≤ r ≤ n and X ⊆ n is a set of size r , then, as SF(d,n)-modules, WX ∼= ⊗r V .
(c) There is a left SF(d,n)-module isomorphism such that

⊗nU ∼=
n⊕

r=0

(
n

r

)
⊗r V

where

(
n

r

)
⊗r V means a direct sum of

(n
r

)
copies of ⊗r V .

Proof (a) If r = 0, we agree that ⊗0V = F with trivial left S F(d,n)-action and right
FS0-action. If r ≥ 1, we view ⊗r V both as a left S F(d, r)-module (via Eq. (8)) and a
right FSr -module with respect to place permutations. The S F(d, r)-action on ⊗r V is
easily extended to an S F(d,n)-action by defining ξw = 0, for all w ∈ ⊗r V and all
ξ ∈ S F(d, k) with k �= r . It follows that EndSF(d,n)(⊗r V ) ≡ EndSF(d,r)(⊗r V ) and,
by Theorem 3, EndSF(d,n)(⊗r V ) ∼= (FSr )

◦. (b) The case r = 0 is trivial since W∅ =
Fe⊗

∅ . Let r ≥ 1. If X = {x1 < . . . < xr } ⊆ n is of size r , the map TX : WX → ⊗r V
defined by TX (e⊗

α ) = eα(x1) ⊗ . . .⊗eα(xr ), for all α ∈ 
X (d), and extended linearly to
WX , is easily seen to be a left S F(d,n)-module isomorphism. (c) This follows from
(a) and (b) and the direct sum decomposition described in Equality (19).

It is worth noting that the previous lemma remains valid for arbitrary infinite fields.
Recall that the algebra of matrices

Rn =
n⊕

r=0

M(n
r)

(FSr )

has an F-basis given by Equality (10) and thatRn is isomorphic to FRn (Theorem 4).
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Lemma 2 Let U be an F-space of dimension d + 1. Let α ∈ 
X (d) for some X ⊆ n
and let e⊗

α be the corresponding basis element of ⊗nU. If σ ∈ Sr and I , J ⊆ n are
such that |I | = |J | = r , define

e⊗
α � (σ EI ,J ) = δX ,I e⊗

αιI σ ι−J
, if 1 ≤ r ≤ n and e⊗

α � (σ EI ,J ) = δX ,∅e⊗
∅ , if r = 0.

(20)
Then Eq. (20) gives ⊗nU a right Rn-module structure for which the action of Rn

commutes with that of S F(d,n) on ⊗nU.

Proof Let X ⊆ n andα ∈ 
X (d). By themultiplication rules inRn , it suffices to check
that (20) defines an action for basis elements of Rn in the same block M(n

r)
(FSr ).

The case r = 0 is trivial. If r ≥ 1, let σ, τ ∈ Sr and I , J , K , L ⊆ n be sets of size r .
Then

(e⊗
α � (σ EI ,J )) � (τ EK ,L) = δX ,I δK ,J e⊗

(αιI σ ι−J )(ιK τ ι−L )
= δK ,J (δX ,I e⊗

αιI στ ι−L
)

= δK ,J (e⊗
α � (στ EI ,L)) = e⊗

α � ((σ EI ,J )(τ EK ,L)).

We also have that e⊗
α � 1Rn = e⊗

α � εrEX ,X = e⊗
αιX εrι

−
X

= e⊗
α , where

1Rn =
n∑

r=0

∑

|Y |=r

εrEY ,Y .

This proves that Expression (20) defines a right action of Rn on ⊗nU .
As to the second statement, let X ⊆ n with |X | = r , β ∈ 
X (d) and ξ ∈ S F(d,n).

It is enough to prove that (ξe⊗
β ) � (σ EI ,J ) = ξ(e⊗

β � (σ EI ,J )) for all σ ∈ Sr and all

I , J ⊆ n of size r . Since, for a fixed σ ∈ Sr , α ∈ 
I (d) if and only if γ = αιI σ ι−J ∈

J (d) and, in such case, cα,β = cγ,βιI σ ι−J

, we have

(ξe⊗
β ) � (σ EI ,J ) =

∑

α∈
X (d)

ξ(cα,β)(e⊗
α � (σ EI ,J )) =

∑

α∈
X (d)

ξ(cα,β)(δX ,I e⊗
αιI σ ι−J

)

=
∑

γ∈
X (d)

δX ,J ξ(cγ,βιI σ ι−J
)e⊗

γ = ξ(δX ,J e⊗
βιI σ ι−J

) = ξ(e⊗
β � (σ EI ,J )).

The next two results are a Schur–Weyl duality analog for the extended Schur algebra

S F(d,n) and the matrix algebra Rn =
n⊕

r=0

M(n
r)

(FSr ) on ⊗nU .

Theorem 9 Let U be an F-space of dimension d + 1. Let S F(d,n) act on ⊗nU as in
Eq. (18) and let ρ : (Rn)

◦ → End F(⊗nU ) be the representation defined in Lemma
2. If d ≥ n, then

ρ : (Rn)◦ → EndSF(d,n)(⊗nU )

is an isomorphism of F-algebras.
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Proof We start by showing that dim F(Rn)◦ = dim F

(
EndSF(d,n)(⊗nU )

)
. This

follows from Lemma 1 since, as an F-algebra, EndSF(d,n)(⊗nU ) is isomorphic to

HomSF(d,n)

(
n⊕

r=0

(
n

r

)
⊗r V ;

n⊕

r=0

(
n

r

)
⊗r V

)
∼=

n⊕

r=0

M(n
r)

(EndSF(d,n)(⊗r V ))

∼=
n⊕

r=0

M(n
r)

((FSr )
◦).

Thus dim F

(
EndSF(d,n)(⊗nU )

) =
n∑

r=0

(
n

r

)2

r ! = dim F(Rn) = dim F((Rn)◦).

It remains to show that ρ : (Rn)◦ → EndSF(d,n)(⊗nU ) is injective. Let M ∈ Rn

be such that ρ(M) = 0. By Expression (10), there are well-determined aσ
I ,J ∈ F such

that

M =
n∑

k=0

∑

I ,J⊆n,
|I |=|J |=k

∑

σ∈Sk

aσ
I ,J (σ EI ,J ).

Fix 0 ≤ r ≤ n and choose an arbitrary X ⊆ n of size r . Let α = εX ∈ 
X (d).
Since d ≥ n, it follows that εX is a well-defined element of 
X (d). Then e⊗

α ∈ ⊗nU
and e⊗

α � M = 0. This implies that

e⊗
α � M =

n∑

k=0

∑

I ,J⊆n,
|I |=|J |=k

∑

σ∈Sk

aσ
I ,J e⊗

α � (σ EI ,J ) =
∑

J⊆n,
|J |=r

∑

σ∈Sr

aσ
X ,J e⊗

ιX σ ι−J
= 0.

For any J ⊆ n of size r and any σ, τ ∈ Sr , ιXσ ι−J = ιXτ ι−J if and only if σ = τ .
Moreover, for any K ⊆ n of size r , γ ∈ 
K (d) and β ∈ 
J (d), we have that e⊗

γ = e⊗
β

if and only if K = J and γ = β. Hence, the left-hand side of the above equation is
a linear combination of distinct elements of the F-basis {e⊗

ν : ν ∈ 
X (d), X ⊆ n} of
⊗nU . We deduce that aσ

X ,J = 0, for all σ ∈ Sr and J ⊆ n of size r . Since r and X
were chosen arbitrarially, we conclude that aσ

X ,J = 0, for all 0 ≤ r ≤ n, all σ ∈ Sr

and all X , J ⊆ n such that |X | = |J | = r . Hence M = 0.

Corollary 1 Let U = V ⊕ Fe∞ be an F-space of dimension d + 1 such that V is a
d-dimensional F-subspace of U. The centralizer algebra of Rn on ⊗nU is isomorphic
to S F(d,n), that is, as F-algebras,

S F(d,n) ∼= EndRn (⊗nU ).

Proof Since Rn is a finite-dimensional (split) semisimple F-algebra, the assertion
follows from Theorem 9 and the Double Centralizer Theorem (Theorem 1). ��

We now make use of the isomorphism of F-algebras of Theorem 4 to establish the
promised Schur–Weyl duality between S F(d,n) and FRn on ⊗nU .
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Theorem 10 Let U be an F-vector space of dimension d + 1 and let S F(d,n) act on
⊗nU as in Eq. (18). For all σ ∈ Rn and all α ∈ 
X (d) with X ⊆ n, define

e⊗
α · σ =

{
e⊗
ασ if X ⊆ R(σ )

0 otherwise.
(21)

If d ≥ n, then the left action of S F(d,n) and the right action of FRn defined by Eq.
(21) on ⊗nU generate the full centralizers of each other on End F(⊗nU ). In addition,
there are isomorphisms of F-algebras such that

S F(d,n) ∼= End FRn (⊗nU ) and (FRn)◦ ∼= EndSF(d,n)(⊗nU ).

Proof Let φ : FRn → Rn be the F-algebra isomorphism of Theorem 4. By Lemma
2 and Theorem 4, the rule z · σ = z � φ(σ), for all z ∈ ⊗nU and σ ∈ Rn , turns ⊗nU
into a right FRn-module. With this right FRn-action, the result follows from Theorem
9 and Corollary 1 and the fact that φ is an isomorphism of F-algebras. The previous
right FRn-action reduces to Expression (21) for basis elements of e⊗

α of ⊗nU , where
α ∈ 
X (d) for some X ⊆ n. This can be verified by

e⊗
α · σ = e⊗

α � φ(σ) =
∑

J⊆D(σ )

e⊗
α � (p(σεJ )Eσ(J ),J ) =

∑

J⊆D(σ )

δX ,J e⊗
αεσ(J )σ εJ

.

Let us illustrate how an element of Rn acts on ⊗nU with an example. If d = n = 5
and α = (5, 2, 2) ∈ 
X (5) with X = {1, 4, 5}, the corresponding basis element of
⊗5U is given by

e⊗
α = e5 ⊗ e∞ ⊗ e∞ ⊗ e2 ⊗ e2.

If σ ∈ R5 is the element σ =
(
1 2 3 4 5
5 − 1 2 4

)
, then X ⊆ R(σ ) = {1, 2, 4, 5} and

ασ = (2, 5, 2) ∈ 
Y (5), where Y = {1, 3, 5}. Hence,

e⊗
α · σ = e⊗

ασ = e2 ⊗ e∞ ⊗ e5 ⊗ e∞ ⊗ e2 ∈ ⊗5U .

On the other hand, if σ ∈ Sn ⊆ Rn , Expression (21) becomes e⊗
α · σ = e⊗

ασ , for
all α ∈ 
X (d) and X ⊆ n. This is the usual right Sn-action by place permutations
on ⊗nU . Indeed, if u1, . . . , un are vectors in U , there are well-determined uα,X ∈ F

such that u1 ⊗ . . . ⊗ un =
∑

X⊆n

∑

α∈
X (d)

uα,X e⊗
α . Since σ ∈ Sn , we have that

uσ(1) ⊗ . . . ⊗ uσ(n) =
∑

Y⊆n

∑

β∈
Y (d)

uβσ−1,σ (Y )e
⊗
β =

∑

X⊆n

∑

α∈
X (d)

uα,X e⊗
ασ ,
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an equality obtained by reindexation (α = βσ−1 ⇔ β = ασ and σ(Y ) = X , for all
X ⊆ n). This implies that

(u1 ⊗ . . . ⊗ un) · σ = uσ(1) ⊗ . . . ⊗ uσ(n).

Thus, the restriction of the right Rn-action on ⊗nU given by Expression (21) to Sn is
the usual right action of Sn on ⊗nU by place permutations.

Although it is a lengthy computation, it is possible to show that the Rn-action on
⊗nU by “place permutations" defined by L. Solomon in [40, Eq. (5.5)] turns into
Expression (21) for basis elements of ⊗nU . The reader should be aware that Solomon
makes use of a different convention than ours when it comes to compose in Rn . This
means that Theorem10 is a reformulation in the setting of Schur algebras of Solomon’s
important Schur–Weyl duality between Gd and Rn on ⊗nU [40, Theorem 5.10].

4 Some remarks

(a) The theory of generalised Schur algebras was introduced by S. Donkin in a series
of articles starting in the mid 1980’s [9–11]. Given a reductive Lie algebra g,
let U be the universal enveloping algebra of g and let � be a finite saturated set
of dominant weights. This means that whenever λ ∈ � and μ ≤ λ in the usual
dominance order, we have μ ∈ �. A generalised Schur algebra SF(�) is a quotient
U/I, where I is the ideal of U which consists of all elements of U annihilating
every simple U-module of highest weight belonging to �. Each SF(�) depends
only on F and � and is a quasi-hereditary algebra (or, equivalently, the module
category for SF(�) is a highest-weight category in the sense of Cline, Parshall and
Scott [5]). Classical Schur algebras are generalised Schur algebras [9, 10]. If we
take g to be gld and � to be the set of partitions of r with at most d parts with r
ranging from 0 to n, SF(�) can be identified with S F(d,n). Hence, the extended
Schur algebra is a generalised Schur algebra in Donkin’s sense.

(b) Let S(Gd) be the algebra introduced after Proposition 6 as the image of the homo-
morphism of algebras ψ : FGd → End F(⊗nU ). If we regard ⊗nU as a right
FRn-module with action given by Eq. (21), similar arguments to those given in the
proof of Theorem 9make it possible to show that S(Gd) = End FRn (⊗nU ). On the
other hand, it follows from Theorem 10 that S F(d,n) = End FRn (⊗nU ). As such,
the extended Schur algebra S F(d,n) is the image in End F(⊗nU ) of the action of
FGd given by Eq. (13) on ⊗nU and hence it can be identified with S(Gd). This
explains in part why the Schur algebra approach is so useful. Indeed, in compari-
son with Solomon’s Schur–Weyl duality between FGd and FRn on⊗nU [40], our
result can be stated in terms of a finite-dimensional F-algebra and there is no loss
of information in replacing FGd by its quotient S(Gd) = S F(d,n).

(c) In recent years, S. Doty and A. Giaquinto [12] established new instances of Schur–
Weyl duality on ⊗nU between Artin’s braid group Bd+1 and a certain subalgebra
P ′

n(q) of the partition algebra Pn(q) on 2n nodes depending on a parameter q for
F = C. The specialisation at q = 1 of P ′

n(q) is isomorphic to CRn and thus their
results are closely related to ours. Nevertheless, their methodology is different
and our approach is self-contained and independent of [12]. In Section 11, they
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introduce analogues of Schur algebras that allow them to state their results in terms
of finite-dimensional algebras. In the spirit of remark (b) and [17], they define the
classical Schur algebra SC(d + 1, n) as the algebra EndCSn (⊗nU ) appearing
in classical Schur-Weyl duality. They also introduce a Schur algebra analogue
depending on a parameter q by considering the image of the representation of
CBd+1 on ⊗nU . Denoted by S ′

q(d + 1, n), this algebra can be identified with
EndP ′

n(q)(⊗nU ) by Schur–Weyl duality. As a consequence, at q = 1, S ′
q(d +

1, n) = EndP ′
n(1)(⊗nU ) = EndCRn (⊗nU ) and S ′

q(d + 1, n) is a subalgebra of
SC(d + 1, n). In terms of our notation, at q = 1, S ′

q(d + 1, n) is yet another
manifestation of the extended Schur algebra SC(d,n) as a subalgebra of SC(d +
1, n).

(d) It is worth noting that our approach opens up new possibilities for better under-
standing the extent of the interactions between the representation theories of rook
monoids, general linear groups, symmetric groups and (extended) Schur algebras:

• On one hand, our starting point was to view Gd as a subgroup of Gd+1. This
implies that a simple FGd+1-module is also an FGd -module. Hence, it makes
sense considering its decomposition into simpleFGd -modules. In the language
of Schur algebras, this amounts to decomposing a simple S F(d +1, n)-module
into simple S F(d,n)-modules and determining the corresponding multiplici-
ties. This procedure is known as a branching rule for S F(d,n) ⊆ S F(d +1, n)

(see [19] and [14, Chapter 8]). Since both S F(d,n) and S F(d + 1, n) are
finite-dimensional semisimple F-algebras, the branching rule for S F(d,n) ⊆
S F(d+1, n) is the same as that for EndSF(d+1,n) (⊗nU ) ⊆ EndSF(d,n) (⊗nU )

[19, Theorem 1.7.]. By Theorem 10, this means that it is possible to derive
concise proofs of combinatorial formulas for multiplicities associated with the
restriction to Sn ⊆ Rn of irreducible characters of Rn . In the near future, we
hope to publish these proofs and recover in an economical way some of the
results in [40, Section 3].

• Another upshot of our approach is that we may use the tools associated with
Schur algebras to give a construction of the irreducible modules of the rook
monoid realized on tensors which is analogous to that of the dual Specht
modules for the symmetric group. Indeed, we may apply Green’s techniques
[16, Chapter 6] and define an idempotent ζ ∈ S F(d,n) which satisfies the
algebra isomorphism ζS F(d,n)ζ ∼= FRn . The idempotent ζ induces a functor
between the module categories for S F(d,n) and FRn and we can make use
of this functor to build a complete set of simple modules for FRn from the
Carter-Lusztig S F(d,n)-modules [4] realized on ⊗nU , obtaining an analog
for Rn of the dual Specht modules for Sn [16]. We also expect to exhibit this
construction in the near future.

• Finally, in this article, we have laid the foundations for studying the modular
representations of the rookmonoid on tensors. Although Theorem 4was stated
in characteristic zero and our Schur-Weyl duality between Rn and S F(d,n)

on ⊗nU relies heavily on this result, it is possible to show that a Schur–Weyl
duality between (a subalgebra of) FRn and SF(d,n) on a tensor space can be
established for infinite fields.
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