Semigroup Forum (2024) 109:38-59
https://doi.org/10.1007/s00233-024-10434-w

RESEARCH ARTICLE

n

Check for
updates

Schur-Weyl dualities for the rook monoid: an approach via
Schur algebras

Carlos A. M. André’ . Inés Legatheaux Martins'

Received: 20 October 2023 / Accepted: 22 April 2024 / Published online: 23 May 2024
© The Author(s) 2024

Abstract

The rook monoid, also known as the symmetric inverse monoid, is the archetypal
structure when it comes to extend the principle of symmetry. In this paper, we establish
a Schur—Weyl duality between this monoid and an extension of the classical Schur
algebra, which we name the extended Schur algebra. We also explain how this relates
to Solomon’s Schur—Weyl duality between the rook monoid and the general linear
group and mention some advantages of our approach.

Keywords Schur-Weyl duality - Rook monoid - Schur algebras - Representation
theory of associative algebras - Tensor spaces

1 Introduction

Throughout this article, FF is a field of characteristic zero unless explicitly specified
and V is a d-dimensional vector space over [F. The symmetric group S, acts on the
tensor space ®"V by place permutations. By fixing a basis of V, GL(V) can be
identified with the general linear group of all d x d non-singular matrices with entries
in I, herein denoted G4. If V is the natural module for the group algebra FG, then
G4 acts diagonally on ®” V. This action commutes with that of S, on ®"V by place
permutations. In case F = C, Schur [38] established that each action generates the
full centralizer of the other on End p(®”" V'), a result which was made popular by Weyl
[45]. This seminal example of a double centralizer phenomenon, now known as the
classical Schur—Weyl duality, provides a deep insight on the interactions between the
representation theories of G4 and S,,.
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Results of Thrall [43], De Concini and Procesi [7], Carter and Lusztig [4] and Green
[16] show that the classical Schur—Weyl duality remains true if I is an infinite field
of any characteristic. More recently, the classical Schur—Weyl duality was extended
to sufficiently large finite fields by Benson and Doty [1].

These results can be better understood in the context of Schur algebras [16]. Implicit
in zero characteristic in Schur’s Ph.D thesis [37], Schur algebras were defined over
arbitrary infinite fields by J. A. Green in his seminal monograph [16]. The Schur
algebra Sy(d, n) can be identified with the centralizer algebra End s, (®" V) of IF'S,,
on ®"V with respect to place permutations and the family {Sr(d, r)},>( completely
determines the polynomial representations of FG ;. Moreover, Sg(d, n) is an important
example of a cellular algebra [15]. Thus, the classical Schur—Weyl duality can be stated
in terms of these finite-dimensional algebras in a very general setting.

There are numerous other examples of “Schur—Weyl dualities". For instance, in
characteristic zero, the centralizer algebras associated with the diagonal action of
subgroups of G4 such as the orthogonal group O, and the symmetric group S; on ®"V
are, respectively, the Brauer algebra [3] and the partition algebra [24,27-29] (see also
[22]). As before, the translation of these results in the language of Schur algebras and
their generalizations has widely expanded our knowledge of the properties of these
algebras in the modular case (see, among many others, [2, 8, 13]).

In 2002, Solomon [40] established a Schur—Weyl duality between G, and an impor-
tant finite inverse monoid. Inverse monoids were introduced in [44] as a natural
generalization of groups to deal with aspects of symmetry which the latter could
not capture (see [26] for further details on this viewpoint). The archetypal example of
such a structure is the symmetric inverse monoid, also called the rook monoid [39].

For our purposes, the rook monoid R, is the set of all bijective partial maps from
n = {1, ..., n} to itself under the usual composition of partial functions. It contains
S, and it is isomorphic to the monoid under matrix multiplication of all n x n matrices
with at most one entry equal to 1y in each row and in each column and zeros elsewhere.
It plays the same rdle for inverse monoids that S, does for groups and thus it is the
archetypal structure when it comes to extend the principle of symmetry.

In his influential article [40], L. Solomon proved that R,, acts on tensors by “place
permutations”. More precisely, he showed that, if F has characteristic zero and d > n,
FR, acts as the centralizer algebra for the action of G4 on ®"*U, where U = V @ Uy
is the direct sum of the natural d-dimensional module V and the trivial module Uj.

Since its publication, this result proved to be a special case of an important Schur—
Weyl duality on tensor spaces for the Hecke algebra analog for R,,, known as the g-rook
monoid (see [20, 35, 41] and references therein). It also influenced other authors into
establishing Schur—Weyl dualities between R, and other finite inverse semigroups
[25]. Moreover, it led to the investigation of a number of interesting algebras. For
instance, the centralizer algebras associated with the restriction of the action of G4
on ®"U to subgroups such as the orthogonal subgroup O, and the symmetric S, are,
respectively, the rook Brauer algebra [21, 30] and the rook partition algebra [18].

The main purpose of this article is to show that Solomon’s Schur—Weyl duality for
R, and G4 can be stated in terms of an extension of the classical Schur algebra.
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40 C.A. M. André, I. L. Martins

We achieve this by defining an F-algebra Sy(d, n) which we call the extended Schur
algebra and which satisfies

Sp(d,m) = P Se(d. r).

r=0

We then prove that Sr(d, n) determines the homogeneous polynomial representations
of FG, of degree at most n, a result that holds for arbitrary infinite fields. Finally,
we establish a Schur—Weyl duality between Sy(d, n) and R, on ®"U, whend > n
and F has zero characteristic. To show that our viewpoint provides a deeper insight
on the representation theory of R, and its interactions to those of general linear and
symmetric groups, we also mention some applications of our approach.

This paper is organized as follows. Section 2 begins with a brief overview on (split)
semisimple algebras, double centralizer theory and classical Schur—Weyl duality. This
is followed by a description of structural aspects of the classical Schur algebra Sx(d, n)
and an outline of the representation theory of the rook monoid R,,.

In Sect. 3, we view G5 C G441 under a natural embedding and we explain how
the restriction of the diagonal action of G441 on ®"U to G4 gives rise to the extended
Schur algebra Sr(d, n). After describing this algebra’s structure, we prove that the
module category for Sy(d, n) is equivalent to the category of homogeneous polynomial
G 4-modules of degree at most . Finally, we establish a Schur—Weyl duality on ®"U
between Si(d, n) and FR,,. We end by explaining how this result relates to Solomon’s
Schur—Weyl duality [40] and mentioning some consequences of our approach.

We should note that some of the techniques used herein apply to infinite fields of
any characteristic. The fact that our main result relies on the semisimplicity of the
monoid algebra of R, has made us decide to work in characteristic zero. However,
since we hope to treat the modular case in the near future, we have pointed out all the
results in this article that remain true for arbitrary infinite fields.

2 Preliminaries

2.1 Double centralizer theory and classical Schur-Weyl duality

Henceforth, the term “module" refers to a finite-dimensional left module unless explic-
itly stated otherwise and F is a field of characteristic zero. Let A be a finite-dimensional

split semisimple algebra over FF. By classical Artin—-Wedderburn theory [6, Theorem
3.34], this means that there is an isomorphism of F-algebras

A= P My, (),

AEA
for some finite index set A and positive integers d,. For each A € A, there is, up

to isomorphism, one simple .A-module S, and {S) : A € A} is a complete set of
representatives of the isomorphism classes of simple modules of .A.
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If M is a finite-dimensional .A-module, its decomposition into simple .A-modules

is given by
M = PmS,, ¢y
AeA

where m, is a non-negative integer called the multiplicity of > in M. We say that A € A
appears in M if M contains a submodule isomorphic to S (that is, if m; > 0).

Let p : A — Endp(M) be the representation corresponding to the .A-module M
with decomposition given by Expression (1). The centralizer algebra of A on M is
the finite-dimensional F-algebra

End 4(M) = {¢ € Endp(M) : pp(a) = p(a)¢p, for all a € A}.

The action of End 4(M) on M defined by ¢ - x = ¢(x), with ¢ € End 4(M) and
x € M, turns M into an End 4 (M)-module. Since the actions of .4 and End 4(M) on
M commute, p induces a homomorphism of F-algebras p : A — Endgnq 4 (1) (M).
In case M is a right .A-module, the corresponding homomorphism is obtained via the
representation p : A° — Endp(M) of A° on M, where A° is the opposite algebra of
A.

The next theorem summarizes the basic dual relationship between the [F-algebras
A and End 4 (M) and can be found (with a different formulation) in [6, Section 3.D].

Theorem 1 (Double Centralizer Theorem) Let A be a finite-dimensional split semisim-
ple F-algebra and let {S, : L € A} be a complete set of representatives of the
isomorphism classes of simple A-modules with dimgp(S)) = d,, forall A € A. Let M
be an A-module such that M = @ m; Sy, with A = {A € A :mj, > 0}. Then:

red

(a) There is an isomorphism of F-algebras End 4 (M) = @ M.y, (F); in particular,
End 4(M) is a finite-dimensional (split) semisimple Ig—ecjl\lgebra;
(b) AsanEnd o(M)-module, M = @ d) E;, where, for each . € A/, E) is a simple
ren
End 4 (M)-module of dimension m;;
(c) If M is a faithful A-module, the corresponding representation p : A — Endp(M)
induces an isomorphism of F-algebras

A = End gng a1y (M),

i.e., the actions of A and End 4 (M) on M generate the full centralizer of the other
in Endp(M).

Schur—Weyl duality is a cornerstone of representation theory that amounts to two
double centralizer results which involve the symmetric and general linear groups.

Since F has characteristic zero, it is known that the group algebra of the symmetric
group F'S,, is a split semisimple algebra of dimension n ! (see, for example, [23, The-
orem 5.9.]). On the other hand, the isomorphism classes of simple modules for FS),
are indexed by partitions of 7.
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42 C.A. M. André, I. L. Martins

By a partition of n, we mean a sequence A = (A1, A2, ..., A;) of weakly decreasing
non-negative integers (A1 > A2 > ... > A; > 0) whose sum is equal to n. We refer to
M, ..., Az as the parts of A and write A |- n to indicate that A is a partition of n.

Let V be an F-space of dimension d. For reasons that will become apparent later,
we view ®"V as aright FS,,-module on which S, acts by place permutations as

(v1®...®vn)-o:vg(1)®...®vg(n), 2)

forallvy,...,v, € Vando € S,.

Let G4 be the general linear group of all d x d invertible matrices with entries in
IF. If V has as F-basis {ey, ..., eq}, we consider the natural left action of G4 on V,
defined on basis elements by

d
g-ej:Zci,j(g)ei, forge Ggand j=1,...,d, 3)

i=1

where, forall 1 <i,j <d, ¢;j : G4 — T is the coordinate function which sends
a matrix in G4 to its (i, j)-th entry. It follows that G4 acts on ®"V via the diagonal
action

g (M®..QV) =g 11®...0g Uy, )

forall vy, ...,v, € Vand g € Gy.

Hence, ®"V is both a left FG z-module and a right IF'S,,-module via place permuta-
tions. Itis easily seen that these actions commute. Incase F = C, the following theorem
goes back to Schur’s famous 1927 article [38]. As mentioned in the introduction, the
result holds over infinite fields of any characteristic.

Theorem 2 Let V be a d-dimensional vector space over F and regard "V both as
the left diagonal TG 4-module and the right FS,,-module by place permutations. Let
o : FGys — Endp(®"V) and p : (FS,;)° — Endr(®"V) be the corresponding
representations. Then:

(a) p(FG4) = Endps, (®"V);
(b) p(FS,)) = Endrg,(®"V);
(c) if d > n, then p is injective and thus it induces an isomorphism of F-algebras

(FS,)° ZEndpg,(®"V).

2.2 The classical Schur algebra

Throughout this paper, we shall adopt Green’s viewpoint [16] on the polynomial
representations of G4 and hence work with Schur algebras (see also [31]). All of the
results presented in this section are valid for infinite fields of arbitrary characteristic.

Forall 1 <i,j < d,letc;j : G4 — T be the previously defined (i, j)-th
coordinate function. The polynomial algebra A(d) = F[¢; ; : 1 < i, j < d] has the
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structure of a bialgebra with comultiplication and counit given by

d

Acij) =Y cix®crj and €(cij) =8 .
k=1

For each non-negative integer n, let A(d, n) be the F-subspace of homogeneous
polynomials of degree n. The bialgebra .A(d) has a natural grading as

Ad) = P Add. n).

n>0

Since each A(d, n) has the structure of a subcoalgebra of A(d), its linear dual
A(d,n)* = Homp(A(d, n); F) is an associative algebra over F which we denote
Sk(d, n) and call the (classical) Schur algebra.

We shall need some notation. If n > 1, recall thatn = {1, ... , n}. We write I'y(d)
for the set of all maps @ : n — d, identifying each o with the n-tuple (« (1), ..., «¢(n))
or, equivalently, (¢, ..., ;). The symmetric group S, acts on the right on I'p(d) by
the rule o = (Ag(1), ..., % @), for o« = (a1,...,0,) € I'n(d) and o € §,.
Similarly, S, acts on therighton I'p (d) X' (d) by (@, B)o = (a0, Bo). Ifa, B, y, v €
I'n(d), o« ~ B meansthat ¢ and g are in the same S, -orbit of ', (d) and («, 8) ~ (y, v)
means that (o, 8) and (y, v) are in the same Sy,-orbit of I'p(d) x 'y (d).

The space A(d, n) has as an F-basis the set of all monomials of degree 7 in the d>
variables ¢; ;. Each such monomial can be written as ¢y g = ¢q g, - - - Ca,,, fOr some
o, B € I'n(d) and there is an “equality” rule [16, Equation (2.1b)]

Cap = Cyv if and only if (o, B) ~ (y,v), ©)

foralle, B, y, v € I'n(d). Let 2,, be an arbitrary set of representatives of the S, -orbits
of 'n(d) x T'n(d). Hence, {cq,g : (a, B) € ,} is an F-basis of A(d, n) and thus

2 _
d“+n 1>' ©)

n

dimy (A(d, n)) = (

We write {£4,8 : (o, B) € ©,} for the F-basis of Sx(d, n) dual to that of A(d, n). Of
course, dimy(Sg(d, n)) = dimy(A(d, n)) and, for all o, B, v, v € T'h(d),

Eyp =&,y if and only if (a, B) ~ (v, v). )

The algebra structure on Sy(d, n) is the dual of the coalgebra structure on A(d, n).
This implies the following rule for the multiplication in Sr(d, n),

Enlcap) = Y &Cay)nlcy.p).

y€ln(d)

forall @, B € I'h(d) and &, n € Sr(d, n).
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4 C.A.M. André, I. L. Martins

The importance of Schur algebras stems from the fact that they determine the
finite-dimensional polynomial representations of FG,. We say that a representation
p : FG4 — Endp(W) on an F-space W is polynomial if its coefficient functions
lie in A(d) and homogeneous of degree n if its coefficient functions lie in A(d, n).
Following Schur’s arguments for F = C, J. A. Green proved that every polynomial
representation of FG is a direct sum of homogeneous ones [16, Theorem 2.2c] and
that the category of Sr(d, n)-modules is equivalent to the category of homogeneous
polynomial modules of FG, of degree n (see [16, pp. 23-25]).

For our purposes, we focus on the FG ;-module ®" V' with action given by Expres-
sion (4).If {ey, ..., eq} is an F-basis of V, then {€® = ea()®...Qeqm) - a € I'n(d)}
is an F-basis of ®" V. Hence, the left diagonal FG4-action can be expressed as

g- e? = Z ca,ﬂ(g)egb, for g € G4 and B € I'y(d).
aeln(d)

Since the ¢y g all lie in A(d, n), this amounts to saying that ®" V' is a polynomial
FG z-module which is homogeneous of degree n. As a left Sg(d, n)-module,

ge? = Z E(ca,p)e?, for £ € Sp(d,n) and B € I'n(d). (3)
«€ln(d)

It is easily seen that the previous Sy(d, n)-action commutes with the right action of
S, on ®"V given by place permutations. In truth, the Schur—Weyl duality between G4
and S, on ®”"V can be stated in terms of Sr(d, n). The proof of the first isomorphism
exhibited in the following theorem can be found in [16, Theorem 2.6c]. The other
isomorphism follows from [4, p. 209, Lemma] and [16, Section 2.4].

Theorem 3 Let V be a d-dimensional vector space over F. Regard "V both as a
left Sy(d, n)-module with action given by Equality (8) and a right FS,-module with
action given by Equality (2). If d > n, then each action generates the full centralizer
of the other on Endp(®" V) and, as F-algebras,

Sr(d,n) = Endpg, (®"V) and (FS,)° = End s;(4.n)(Q@"V).

2.3 Representations of the rook monoid

The representation theory of finite inverse semigroups was established in the 1950’s
by Munn [32-34] and Ponizovskii [36]. For the special case of the rook monoid, their
results were furthered and deepened in zero characteristic by L. Solomon [40].
Recall that n = {1, ..., n}. Our convention for the multiplication in R, is that the
composition o T of the elements o, T € R, is defined by first applying T and then o.

If o € Ry, we write D(0) < n for the domain of ¢ and R(o) € n for its range.

For inst _ (12345 (12345
or 1nstance, o = 4592 _ ana 7 = 312 — —

D(o) ={2,3,4}, R(c) ={2,4,5}and D(r) = R(r) = {1, 2, 3}.

are elements of R5 with
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We agree that R, contains a map €5 with empty domain and range which behaves
as a zero element in R,,. With this convention, it is easy to see that

IRi| =f(’j>2r!

r=0

If o € R,, we define the rank of o, denoted rk(o), as the size of its domain. We
adopt the convention that the only element in R, of rank zero is €5 and that So = {ey}
is a group with a single element. Note that any o € R, of rank # is a permutation of
n and thus S, € R,. A minute’s thought reveals that S, € R, forr =0, 1,...,n.

The set of idempotents of R, is the commutative submonoid of all the partial
identities €x : X — X, with X C n. For each X C n, exR,€x is a monoid with
identity €x, whose group of units Gy is called the maximal subgroup of R, at €.

Two idempotents €y and €y are said to be isomorphic if Gx = Gy as groups. If
0 <r <mnand X C nis aset of size r, it is not hard to verify that

Gx={o€eR,:Dlc)=R(0c)=X}=S,.

Thus, each maximal subgroup of R,, can be identified with some symmetric group S;.
In order to classify the isomorphisms classes of simple modules of FR,,, we shall
need some notation. If ¢ € R,,, we define the inverse of o, denoted o ~, as the only
element of R,, which satisfies D(c ™) = R(c) and 6070 = €p(q).
If0 <r <nand X C nis a set of size r, we denote by ty the unique order-
preserving bijection between r and X (identifying 0 with the empty set). Note that any
o € R, of rank r with D(0) = X and R(0) = Y can be mapped to S, via

p(o) = youix.

In particular, p(ex) = €r € S;, for all X C n of size r.

For our purposes, we also need to introduce special algebras. If 1 < r < n, let
M @) (IF'S;) be the [F-algebra of all matrices with rows and columns indexed by subsets
I, J of n of size r and entries in F'S,. If » = 0, we identify M(f) (FS,) with IF. Set

R = @ M) (FS)). ©
r=0

Ifl <r<mnandl,J C naresuchthat |[I| =|J| =r,let E; ; be the standard
matrix with €, € S, in position (I, J) and zeros elsewhere. If r = 0, set I = Ey g.
It is clear that R, has as F-basis

n
UtoErs:oes. 1.0 cn it =1/ =r). (10)
r=0

The following result is essentially due to Munn [32, 34] and Ponizovskii [36]
although it can be found explicitly in [40, Lemma 2.17] and [42, Theorem 4.4].
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46 C.A. M. André, I. L. Martins

Theorem 4 Let F be a field of characteristic zero. There is an isomorphism of F-
algebras ¢ : FR, — R, given by

¢()= > ploex)Eox)x

XCD(o)

with inverse given on basis elements o € S, and E; j with |I| = |J| =r by

¢ @Ern =Y (D" 007)ex.

XcJ
In particular, FR,, is a finite-dimensional (split) semisimple algebra over FF.

As a consequence of the previous theorem, the isomorphism classes of simple
modules of R, are in one-to-one correspondence with those of its maximal subgroups.
In order to highlight the constructive aspect of Theorem 4, we express this result in
terms of matrix representations of FR,,.

Let u - r with0 < r < nandlet p, : FS, — M(F) be an irreducible matrix
representation of 'S,.. If r = 0, we agree that there is an empty partition u = (0) and
the corresponding irreducible representation of 'Sy is given by p(o) (ep) = 1.

It follows from Theorem 4 that p,, induces a matrix representation of IF R,;, denoted
by pj, : FRy — M, () (F), and given by

pr@) = Y pup(@€x)ERey). Dioex)- (11)
XCn,|X|=r,
rk(ocex)=r

forall o € R,,. The previous expression is due to L. Solomon (see Eq. 2.26 in [40]). In

the setting of finite inverse semigroups, Munn [34] showed that these representations
determine the isomorphism type of FR,,.

Theorem 5 (Munn) Let I be a field of characteristic zero. The set
{0, :ntr, forall0 <r <nj

is a complete set of inequivalent irreducible matrix representations of FR,,. Thus, the
isomorphism classes of simple modules of ¥Ry, are indexed by the set of partitions

{ubFr: 0<r <n}

3 Representing the rook monoid and the extended Schur algebra on
tensors

Throughout this section, [F is a field of characteristic zero, d and n are positive integers
such thatd > n and G is viewed as the subgroup of G ;1 of all matrices of the form
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g0

01}’
where g € G4. All the results exposed in Sects. 3.1 and 3.2 remain valid if IF is replaced
by an infinite field of any characteristic.

3.1 A natural restriction

Let U = V @ Uy be an F-space of dimension d + 1, where V and Uy are seen
as subspaces of U of respective dimensions d and 1. As before, {e;, ..., es} is an
arbitrary but fixed basis of V and Uy = Fe, for some vector e, € U which turns
{e1, ..., eq, ex} into an F-basis of U. We assume the linear ordering 1 <2 < ... <
d < o0.

It follows from Sect. 2 that ®"U is a finite-dimensional homogeneous polynomial
FG 4+1-module of degree n via the diagonal action of G441 on " U (see Eq. (4) with
d replaced by d 4 1). We study this action’s restriction to G.

To do so, we need some notation. Let | <r <mandletX ={x; <...<x}Cn
be a set of size r. We write 'y (d) for the set of all maps & : X — d identifying
a € I'x(d) with the r-tuple (@ (x1), ..., a(x;)) € d". We also agree that '(d) has a
single element which is identified with the empty set.

If a, B € I'x(d), then cy g = Ca(x)),f(x1) - - - Caln,). B(xy) € A(d, r) is as before a
monomial of degree r in the d? variables ¢;, j- If tx is the unique order-preserving
bijection between r and X (see Sect.2.3), the same monomial can be written as

Ca,p = Caiy,fix = Calix(1)),Bx (1) - - - Calix(r),Bx () = Cy,vs (12)

where y = aty,v = Bix € I't(d).

This notation is particularly useful to represent the F-basis of ®”U induced by
{e1,...,ed,e00}. If X C nand o € I'y(d), the decomposable tensor eg? e Q"U is
defined as €2 = eg(1) ® ... ® ea(n), where the map @ : n — d U {00} is given by

. a@) ifieX,
a(i) = .
o0  otherwise.

It is clear that ®" U has as an F-basis the set {eﬁ? ca € I'y(d), X C n}. For
instance, if d = 6,n =5, X = {1,3,5} and @ = (6, 2,2) € I'(1,3,5(6), then the
corresponding basis element of ®U is given by

6 =ec®ex @2 ® e ®er €RU.

Proposition 6 Let U be a (d + 1)-dimensional vector space over F. The restriction to
G4 of the left diagonal action of Gg+1 on " U is given by

g ef = Y cop(g)es, forallg € G4, € Tx(d)and X Cn. (13)
aelx(d)
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48 C.A. M. André, I. L. Martins

Proof Let g € G4. Under the identification G; < G441, the natural action of g on
basis elements of U becomes

d
g-ej :Zc,-,j(g)e,-+0.eoo, forj=1,...,d, and g - exo = €00

i=1

We turn to the action of g on basis elements of the diagonal FG ;4 1-module " U.
If X :ﬂ,thenwehavegw%’ =g o ®...0 ¢ ex :e?.Letl <r <nand
let X = {x; < ... < x:} € nbeasetofsize r. If B € I'x(d), the correspond-
ing basis element of ®*U is e? = ep) ® ... @ €p,, wWhere E :n — dU {oo}
is defined as above. It follows that g - eg;) = eco, for all i ¢ X and also that

g e? =g-eg Q..0g- €3 € Z aaeS’, for some a, € F. It is now easy
aely(d)
to see that

gef = Y (Catnpen(® - Catipn @l = Y caplg)el,
aelx(d) a€ly(d)

where ¢y g € A(d, r), forall a € I'x (d).

Each g € G, gives rise to a linear transformation 1 (g) on ®”"U and the corre-
sponding representation ¥ : Gy — Endp(®"U) of G4 can be extended by linearity
toFG4. Assuch, ¥ : FG; — Endp(®"U) is a homomorphism of F-algebras and we
may write S(Gg4) to designate the subalgebra 1 (FG,) of Endr(®"U). The algebra
S(Gy) is intimately related to the extended Schur algebra which we now introduce.

3.2 The extended Schur algebra

The coefficient space produced by the action of Gz on ®" U described in Proposition 6
suggests that ®" U can be seen as a representation of a special Schur algebra.

Let Ap(d) =< cap: (o, B) € I'x(d) xI'x(d), X S n > be the F-space spanned
by all the monomials ¢, g of degree at most # in the variables ¢; ;. A moment’s thought
and Eq. (12) reveal that Ay, (d) is the direct sum of the first 741 homogeneous F-spaces
A(d, r) of the graded bialgebra A(d).

It follows that Ay (d) has as an F-basis the set of all distinct monomials of degree
r with 0 < r < n. By Eq. (5), we index this basis with the set Qo U Q1 U ... U Q,,
where Q¢ = I'y(d) x I'g(d) and each 2,, with 1 < r < n, is a set of representatives
of the S,-orbits of I'yx(d) x I'r(d).

As mentioned previously, each A(d, r) is a subcoalgebra of A(d). Thus, Ay (d)
inherits a coalgebra structure with comultiplication and counit given, respectively, by

Alcap) = Y Cay®cyp and €(Cap) = Sup, (14)
yelx(@
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forall ¢, B € I'x(d) and X C n. By a standard fact, it follows that
An(d)* = Homy (Ay(d); F)

is an associative F-algebra of finite dimension.

Definition 1 Let d and n be positive integers. The extended Schur algebra for d and
n over the field F, denoted Sr(d, n), is the associative F-algebra of finite dimension
given by the linear dual Sy(d, n) = Ap(d)* = Homy (A (d); F).

n
Since Ap(d) = @ A(d, r), it follows that Sy(d, n) can be regarded as the F-

r=0
algebra

P Se@. ),
r=0

where each Sr(d, r) is a classical Schur algebra. Indeed, if £ € Sg(d, r), we identify
n
& with an element of Sg(d,n) = @ A(d, r)* by making it zero on all monomials

r=0
whose degree is different from ». Under this identification,

(Jteup : (@.B) € @)

r=0

is the F-basis of Sg(d, n) which is dual to the F-basis of Ay (d) given by

fcas : (@.B) € 2}

r=0

d2
Combined with Eq. (6), this implies that dimp (Sr(d, n)) = ( + n> Indeed,
n

n n n d2 -1 d2
> dimg (Sx(d, 1)) = Z:;dimlg (A, r) = Z( +rr ) - ( j")

r=0 r=0

IfO<r <nanda, B € I't(d), &,p is the element of Sr(d, n) given by

1 ifr =kand («, B) ~ (y,V)

. (15)
0 otherwise,

Sa,ﬂ(cy,v) = {

for all y,v € I'k(d) and 0 < k < n. As with the classical case (see Eq. (7)), if
0 <k <nand«k, ¢ € I'k(d), we also have an equality rule to take into account,
namely,
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§up = &c,c ifandonlyif r =k and (o, B) ~ (x, 5).

n

For now, it is enough to work with the index set U I'+(d), since it follows from

r=0
Eq. (12) and (15) that, for o, B € I'x(d) with X C n such that | X| =7,

%-a,ﬂ = Eollx,ﬂlx = %-y,v € 'S]F(da n)a (16)

withy = atx,v = Bix € I't(d) and tx : r — X defined as before.

The multiplication in Sr(d, n) follows from the coalgebra structure on Ay (d) and
hence from Eq. (14). Thus, if &, n € Sr(d, n), the product £n is defined on any
monomial ¢y g, with o, B € I'x(d) and X C n, by

En(cap) = Y. ECayInicyp). 17)

yelx(d)

The unit element € € Sg(d, n) is given by €(c) = c¢(ly), for all ¢ € Ay(d). Note
n

that € € Sy(d, n) can be expressed as € = Z €, where €, is the identity of Sg(d, r).
r=0
We now turn to the tensor space ®"U and show that it can be given the structure
of a left Sg(d, n)-module. We have however a stronger statement.

Proposition 7 The category of finite-dimensional FG ;-modules whose coefficient
n

functions lie in Ay(d) = @ A(d, r) is equivalent to that of Sr(d, n)-modules.
r=0

Proof Let g € G4. Forany X Cnanda, 8 € I'x(d), define eg(cq,p) = co,p(g). By
linear extension, the map e, : ¢ = c(g) is a well-defined linear homomorphism of
Sr(d,n) = Homy (Ay(d); F).If g, g’ € Gy, itis clear from Eq. (17) thategeyr = eggr
and e;, = € € Sr(d, n). Hence, the map e : g — ¢, can be linearly extended to an
F-algebra homomorphism ¢ : FG; — Sr(d, n).

We assume that any map f : G4 — [F is identified with its unique linear extension
f :FG4 — . Under this assumption, if k € FGy, then ¢; : Ap(d) — F is given by
er(c) = c(k), for all ¢ € Ay(d). The arguments in [16, Proposition 2.4b, (i)] apply
mutatis mutandis to e : FG4 — Ap(d)* and hence e is surjective.

We now show that f : FG; — T belongs to Ay (d) if and only if f(k) = 0, for
all k € kere. If f € Ay(d) and k € kere, then ¢; = 0 and ex(f) = f(k) = O.
Conversely, let f : FG; — T be such that f(k) = 0, for all k € kere. Since e is
surjective, for all £ € Sg(d, n), there is some k € FG, such that & = ¢;. Hence, we
define y € Sp(d,n)* by y(&) = y(ex) = f(k), for all k € FG,. The condition that
f(k) = 0, for all k € ker e ensures that y is a well-defined element of Sg(d, n)*.
Since Ap(d) is finite-dimensional, we have that Ap(d) = Ap(d)™ = Sr(d, n)* and
hence there is some ¢ € Ap(d) such that y = c. Let k € FGy, then f(k) = y(ex) =
er(c) = c(k) and thus ¢ = f € Ay (d).
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Let V be a finite-dimensional left FG;-module with basis {v, : b € B} and
associated action g - vy = Z Qq.p(8)vy, for all b € B and g € G,4. Suppose that

aeB
Qa.p € An(d), forall a,b € B. Then g (k) = 0, for all k € kere and all a, b € B.
The action

eg - Up = Z eg(Qa,b)Va,

acB

forall g € G4, b € B, turns V into a left Sg(d, n)-module. Indeed, for all £ €
Sy(d, n), there is k € FG, such that § = ¢;. If £ = ¢, = ey for k' € FG, then
k—k ekereand a, p(k — k') =0foralla, b € B. Hence, e (ag.p) = ep (g p) for
all a, b € B and the Sg(d, n)-action is well defined.

Conversely, if V is a left Sr(d, n)-module with basis {v, : b € B} and associated
action & - vp = Zé(oza,h)va, forall b € B and all £ € Sg(d, n), then V can be

aeB
viewed as an FGz-module with action given by

g vp=eg v =Y p(@va

aeB

forallg € Gy and all b € B, where e, =& € Sy(d, n) and a,,5(g) = &(as,p). Once
again, the previous properties show that o, , € An(d) and this action is well-defined.
The proof is complete and we can now identify both categories by the simple rule:
k-v=e;-v, forallk € FG; and v € V, where V is an object of either categories.

It follows from the proof of this result that the left action of Sy(d, n) on ®"U is
given, for £ € Sy(d,n), B € 'x(d) and X C n, by

gef = Y Ecapled. (18)

aely(d)

We end this section with an important fact which follows from the semisimplicity
of the classical Schur algebras.

Proposition 8 The extended Schur algebra Sy(d, n) is a semisimple algebra over F.

n
Proof Asreferred previously, we may regard Sy(d, n) as EB Sr(d, r),where Sg(d, r)

r=0
is the classical Schur algebra. A proof of the semisimplicity of Sg(d, r) can be found
in [16, Corollary (2.6¢)] and hence the semisimplicity of Sr(d, n) follows.

3.3 Schur-Weyl duality between the rook monoid and the extended Schur algebra
In what follows, we describe the centralizer algebra End s (4 n)(®"U) of Sk(d, n) on

the left module ®” U on which Sr(d, n) acts according to Eq. (18). Throughout this
section, [F is a field of characteristic zero.
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For each X C n, we denote by Wy the F-subspace of ®"U spanned by all the
decomposable tensors €2, with @ € 'x(d). Since {¢Q : & € I'x(d), X C n}is an
F-basis of ®"U, we have the following direct sum decomposition

Q" U = ED Wy. (19)

XCn

It follows from Eq. (18) that the left action of an arbitrary § € Sg(d, n) on ¢, with
a € T'x(d), is such that £ € Wx. Hence, Wy is an Sg(d, n)-submodule of ®"U
and (19) is a decomposition of ®"*U as a direct sum of left Sy(d, n)-submodules.

The next result shows how End s(4,n)(®" U) decomposes into its building blocks.

Lemmal Let U = V @ Fex, be an F-space of dimension d + 1 such that V is a
d-dimensional F-subspace of U.

(a) If 0 < r < n, the tensor space Q" V is a left Sr(d, n)-module for which there is
an isomorphism of F-algebras

Ends;@.n)(®"V) = (FS,)°.

(b) If0 <r <nand X C nisasetof sizer, then, as Sr(d, n)-modules, Wx = Q" V.
(c) There is a left S¥(d, n)-module isomorphism such that

n
&'U =P (”) ® Vv
r
r=0

where (n) Q" V means a direct sum of ('rl) copies of V.
r

Proof (a) If r = 0, we agree that ®°V = T with trivial left Sp(d, n)-action and right
FSp-action. If » > 1, we view ®" V both as a left Sr(d, r)-module (via Eq. (8)) and a
right [F'S,-module with respect to place permutations. The Sg(d, r)-action on ®"V is
easily extended to an Sy(d, n)-action by defining £w = 0, for all w € ®"V and all
& € Sp(d, k) with k # r. It follows that End 54 n)(®" V) = End 5.(4,/)(®" V) and,
by Theorem 3, End 5, (4.n)(®" V) = (FS,)°. (b) The case r = 01is trivial since Wy =
Fef . Letr > 1.If X = {x; <... < x,} Cnisofsizer, themap Tx : Wy —> ®"V
defined by Ty (eg‘? ) =eqx) ®...®eqy(x), foralla € I'x (d), and extended linearly to
Wy, is easily seen to be a left Sr(d, n)-module isomorphism. (c) This follows from
(a) and (b) and the direct sum decomposition described in Equality (19).

It is worth noting that the previous lemma remains valid for arbitrary infinite fields.
Recall that the algebra of matrices

Ru =@ M) ES»)

r=0

has an FF-basis given by Equality (10) and that R, is isomorphic to FR,, (Theorem 4).
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Lemma2 Let U be an F-space of dimension d + 1. Let o € I'x(d) for some X C n
and let € be the corresponding basis element of ®"U. If o € S, and I, J C n are
such that |I| = |J| = r, define

2. (0Er ) = ax,,eﬁm,, if 1 <r<nand ¢ .(0E; ) =dxgey, if r =0.
J

(20)
Then Eq. (20) gives Q"U a right R,,-module structure for which the action of R,
commutes with that of Sy(d, n) on " U.

Proof Let X C nandw« € I'x(d). By the multiplication rules in R, it suffices to check
that (20) defines an action for basis elements of R, in the same block ./\/l( )(FS,)
The case r = Qis trivial. If r > 1,1leto, t € S, and I, J, K, L C n be sets of size r.
Then

® _ ®
(e «(0E; ) (TEK,L) = 5X,15K,J€(mlm;)(LKnL) dk,s(8x, Iem “”L)

=8k, 7(€2 . (0TE1 ) = e2 . ((0E ))(TEK.L))-

We also have that e® . 1, = e®.erEx x =e® = ¢%, where
ouXerLX
n
=3 X atr

r=01Y|=r

This proves that Expression (20) defines a right action of R,, on ®"U.

As to the second statement, let X C nwith |[X| =r,8 € 'x(d) and & € Sp(d, n).
It is enough to prove that (Se?) (0E; ) = E(e? «(0Ey y)) forall o € S, and all
I,J Cnofsizer. Since, forafixedo € S, ¢ € [';(d) if and only if y = aiLjoL; €
'y (d) and, in such case, cq. g = ¢ y.Buoty , we have

Ee) (CEr)= Y Ecap)e (0EL)= Y Elcap)@Bxie® )

aly G’L
aely(d) aelx(d)
= D OxECy pop)ey =EGx €] ) =E(Ef (@ EL).
velx(d)

The next two results are a Schur—Weyl duality analog for the extended Schur algebra
n

Sr(d, m) and the matrix algebra R, = @) M r)(FS;) on @"U
r=0

Theorem 9 Let U be an F-space of dimension d + 1. Let Sg(d, n) act on @ U as in
Eq. (18) and let p : (R,)° — Endp(®"U) be the representation defined in Lemma
2.Ifd > n, then

P (Rn)° — End g4 (®"U)

is an isomorphism of F-algebras.
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Proof We start by showing that dimp(R,)° = dimp (End Spd.n) (®"U )). This
follows from Lemma 1 since, as an F-algebra, End s (4 n)(®"U) is isomorphic to

oo (EB( >® v EB( ) ) = D M) Ends; 0. @"V))
r=0

r=0

= P M) (EFS)°).

r=0

n 2
Thus dim ¢ (End s.4,m (®"U)) = ) (") rl = dim#(Ry) = dim((Ry)°).
r
r=0
It remains to show that o : (R;)° — End s,.(4,n)(®"U) is injective. Let M € R,
be such that p (M) = 0. By Expression (10), there are well-determined af ; € IF such

that .
M:Z Z Za?J(UEI’])'

k=0 1,JCn, oeS;
|1|=|J|=k
Fix 0 < r < n and choose an arbitrary X C n of size r. Let « = €y e I'x(d).
Slnce d > n, it follows that €y is a well-defined element of "'y (d). Then e e "U
and €% = 0. This implies that

M = Z > D aised ("E”)_ZZ“XJLXJL =0

k=0 1,JCn, o€ JCn, o€S;
[1=|J]=k [J|=r

For any J C nof size r and any 0, 7 € S, tixot; = 1xti; if and only if o = 7.
Moreover, forany K C nofsizer,y € 'k (d) and 8 € I'j(d), we have that ef? = e?
if and only if K = J and y = B. Hence, the left-hand side of the above equation is
a linear combination of distinct elements of the F-basis {¢® : v € I'x(d), X < n} of
®"U. We deduce that aX ;=0,forallo € S, and J C n of size r. Since r and X
were chosen arbitrarially, we conclude that a§, 7= =0,forall0 <r <n,allo € S,

and all X, J C nsuchthat |[X|=|J|=r. Hence M = 0.

Corollary 1 Let U = V & Fex be an F-space of dimension d + 1 such that V is a
d-dimensional F-subspace of U. The centralizer algebra of R,, on Q" U is isomorphic
to Sv(d, n), that is, as F-algebras,

Sr(d,n) = Endg, (®"U).

Proof Since R, is a finite-dimensional (split) semisimple F-algebra, the assertion
follows from Theorem 9 and the Double Centralizer Theorem (Theorem 1). ]

We now make use of the isomorphism of F-algebras of Theorem 4 to establish the
promised Schur—Weyl duality between Sg(d, n) and FR,, on Q"U
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Theorem 10 Let U be an F-vector space of dimension d + 1 and let Sz(d, n) act on
®"U as in Eq. (18). Forall 0 € R, and all @ € Tx(d) with X C n, define

.o = |%0 FXCRE@) Q1)
¢ 0 otherwise.

If d > n, then the left action of Sy(d, n) and the right action of FR,, defined by Eq.
(21) on ®"U generate the full centralizers of each other on Endr(®"U). In addition,
there are isomorphisms of F-algebras such that

Sk(d,n) = Endpg,(®"U) and (FR,)° = End 54,0 (®"U).

Proof Let ¢ : FR, — R, be the F-algebra isomorphism of Theorem 4. By Lemma
2 and Theorem 4, therule z -0 = z. ¢ (0), forall z € ®'U and o € R, turns U
into a right F R,,-module. With this right IF R,,-action, the result follows from Theorem
9 and Corollary 1 and the fact that ¢ is an isomorphism of F-algebras. The previous
right F R,-action reduces to Expression (21) for basis elements of 2 of ®"U, where
o € I'y(d) for some X C n. This can be verified by

ef o=l o)=Y €& .®@eNEsn)= ), Sx1€h o,
JED(o) JCD(o)

Let us illustrate how an element of R,, acts on ®" U with an example. If d =n =5
and o = (5,2,2) € I'x(5) with X = {l, 4, 5}, the corresponding basis element of
®>U is given by

€?=€5®eoo®eoo®ez®ez.

12345
s _ 1 24),thenX C R(o) =1{1,2,4,5} and

ao = (2,5,2) e I'y(5), where Y = {1, 3, 5}. Hence,

If 0 € Rs is the element 0 =

e?-a:ef?a=ez®eoo®e5®eoo®eze®5U.

On the other hand, if o € S, € R,, Expression (21) becomes e® - o = ¢ _, for

all « € T'x(d) and X C n. This is the usual right S,-action by plgce permu(:gtions
on ®"U. Indeed, if uy, ..., u, are vectors in U, there are well-determined uy x € IF
suchthatu; ® ... @ u, = Z Z Uug. xel. Since o € S, we have that
XCnaely(d)
Us() ® ... QUgm) = Z Z Mﬁg—l’g(y)eg = Z Z ua,xef’a,
YCn BeTy (d) XCnaelx(d)
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an equality obtained by reindexation (¢ = fo~! & B = ao and o(Y) = X, for all
X C n). This implies that

(u1®...®un)'0=u0(1)®...®ug(n).

Thus, the restriction of the right R,-action on ®"U given by Expression (21) to S, is
the usual right action of S, on ®"U by place permutations.

Although it is a lengthy computation, it is possible to show that the R,-action on
®"U by “place permutations" defined by L. Solomon in [40, Eq. (5.5)] turns into
Expression (21) for basis elements of ®” U . The reader should be aware that Solomon
makes use of a different convention than ours when it comes to compose in R,,. This
means that Theorem 10 is a reformulation in the setting of Schur algebras of Solomon’s
important Schur—Weyl duality between G4 and R, on ®"U [40, Theorem 5.10].

4 Some remarks

(a) The theory of generalised Schur algebras was introduced by S. Donkin in a series
of articles starting in the mid 1980’s [9-11]. Given a reductive Lie algebra g,
let L[ be the universal enveloping algebra of g and let 11 be a finite saturated set
of dominant weights. This means that whenever A €11 and & < X in the usual
dominance order, we have . € 1. A generalised Schur algebra Sr(11) is a quotient
/7, where 7 is the ideal of I which consists of all elements of L[ annihilating
every simple l-module of highest weight belonging to 1. Each Sg(r1) depends
only on [F and 1 and is a quasi-hereditary algebra (or, equivalently, the module
category for Sy (1) is a highest-weight category in the sense of Cline, Parshall and
Scott [5]). Classical Schur algebras are generalised Schur algebras [9, 10]. If we
take g to be gl,; and 11 to be the set of partitions of r with at most d parts with r
ranging from O to n, Sp(1) can be identified with Sr(d, n). Hence, the extended
Schur algebra is a generalised Schur algebra in Donkin’s sense.

(b) Let S(Gy4) be the algebra introduced after Proposition 6 as the image of the homo-
morphism of algebras ¢ : FG; — Endp(®"U). If we regard ®"U as a right
F R,,-module with action given by Eq. (21), similar arguments to those given in the
proof of Theorem 9 make it possible to show that S(G4) = End g, (®"U). On the
other hand, it follows from Theorem 10 that Sz(d, n) = End g, (®"U). As such,
the extended Schur algebra Sy(d, n) is the image in End p(®"U) of the action of
FG4 given by Eq. (13) on ®"U and hence it can be identified with S(Gy). This
explains in part why the Schur algebra approach is so useful. Indeed, in compari-
son with Solomon’s Schur—Weyl duality between FG 4 and FR,, on " U [40], our
result can be stated in terms of a finite-dimensional F-algebra and there is no loss
of information in replacing FG by its quotient S(G4) = Sr(d, n).

(c) Inrecentyears, S. Doty and A. Giaquinto [12] established new instances of Schur—
Weyl duality on ®"U between Artin’s braid group B, and a certain subalgebra
P, (q) of the partition algebra P, (¢) on 2n nodes depending on a parameter g for
F = C. The specialisation at ¢ = 1 of P;,(¢) is isomorphic to CR,, and thus their
results are closely related to ours. Nevertheless, their methodology is different
and our approach is self-contained and independent of [12]. In Section 11, they
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(d)

introduce analogues of Schur algebras that allow them to state their results in terms
of finite-dimensional algebras. In the spirit of remark (b) and [17], they define the
classical Schur algebra Sc(d + 1, n) as the algebra End cg, (®"U) appearing
in classical Schur-Weyl duality. They also introduce a Schur algebra analogue
depending on a parameter g by considering the image of the representation of
CB44+1 on ®"U. Denoted by S/q (d + 1, n), this algebra can be identified with
End p;(4)(®"U) by Schur—Weyl duality. As a consequence, at ¢ = 1, S’q d+
1,n) = Endp/(1)(®"U) = End g, (®"U) and S’(I(d + 1, n) is a subalgebra of
Sc(d + 1, n). In terms of our notation, at ¢ = 1, S’q (d + 1, n) is yet another
manifestation of the extended Schur algebra S¢(d, n) as a subalgebra of Sc(d +
1,n).

It is worth noting that our approach opens up new possibilities for better under-
standing the extent of the interactions between the representation theories of rook
monoids, general linear groups, symmetric groups and (extended) Schur algebras:

e On one hand, our starting point was to view G4 as a subgroup of G44;. This
implies that a simple FG ;41-module is also an FG ;-module. Hence, it makes
sense considering its decomposition into simple FG ;-modules. In the language
of Schur algebras, this amounts to decomposing a simple Sy(d 4 1, n)-module
into simple Sg(d, n)-modules and determining the corresponding multiplici-
ties. This procedure is known as a branching rule for Sp(d,n) C Sr(d + 1, n)
(see [19] and [14, Chapter 8]). Since both Sy(d,n) and Sy(d + 1, n) are
finite-dimensional semisimple F-algebras, the branching rule for Sx(d, n) €
Sy(d+1, n) is the same as that for End s,(4+1,n) (®"U) € End s;(4.n) (®"U)
[19, Theorem 1.7.]. By Theorem 10, this means that it is possible to derive
concise proofs of combinatorial formulas for multiplicities associated with the
restriction to S, C R, of irreducible characters of R,. In the near future, we
hope to publish these proofs and recover in an economical way some of the
results in [40, Section 3].

e Another upshot of our approach is that we may use the tools associated with
Schur algebras to give a construction of the irreducible modules of the rook
monoid realized on tensors which is analogous to that of the dual Specht
modules for the symmetric group. Indeed, we may apply Green’s techniques
[16, Chapter 6] and define an idempotent ¢ € Sy(d, n) which satisfies the
algebra isomorphism ¢Sy (d, n)¢ = FR,,. The idempotent ¢ induces a functor
between the module categories for Sr(d, n) and FR,, and we can make use
of this functor to build a complete set of simple modules for FR,, from the
Carter-Lusztig Sg(d, n)-modules [4] realized on ®"U, obtaining an analog
for R, of the dual Specht modules for S,, [16]. We also expect to exhibit this
construction in the near future.

e Finally, in this article, we have laid the foundations for studying the modular
representations of the rook monoid on tensors. Although Theorem 4 was stated
in characteristic zero and our Schur-Weyl duality between R, and Sy(d, n)
on ®"U relies heavily on this result, it is possible to show that a Schur—Weyl
duality between (a subalgebra of) FR, and Sy(d, n) on a tensor space can be
established for infinite fields.
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