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Abstract
We study the structure of strongly 2-chained semigroups, which can be defined alterna-
tively as semigroups whose regular elements are completely regular. The main result
is a semilattice decomposition of these semigroups in terms of ideal extensions of
completely simple semigroups by poor semigroups and idempotent-free semigroups.

Keywords Chains of idempotents · Completely regular elements · Ideal extensions ·
Semilattice decompositions

1 Introduction and notations

This article proposes a study of semigroups whose regular elements are completely
regular. These semigroups can also be defined by means of E-chains of idempotents
of size 2. Due to this property, they are called strongly 2-chained semigroups. Com-
mutative semigroups and semigroups with central idempotents are strongly 2-chained
semigroups. Strongly 2-chained semigroups also appear naturally in the study of vari-
ant semigroups (Theorem1.3), free idempotent-generated semigroups (Example 2.10),
or in ring theory [37–39, 46, 48, 49]. Our main result is a semilattice decomposition of
strongly 2-chained semigroups into poor ideal extensions of completely simple semi-
groups and idempotent-free semigroups. This result can be seen as the non-regular
analog of Clifford’s theorem [14], which decomposes completely regular semigroups
into semilattices of completely simple semigroups. Up to now, such a semilattice
decomposition had only been extended to non-regular semigroups under the addi-
tional assumption of π -regularity (where every element has a power that is regular)

Communicated by Victoria Gould.

B Xavier Mary
xavier.mary@parisnanterre.fr

1 Laboratoire Modal’X, Université Paris Nanterre, 92000 Nanterre, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00233-023-10394-7&domain=pdf


On the structure of semigroups... 693

[7, 9, 68–70, 74, 79, 80, 87]. Our decomposition is also applied to certain subclasses
defined by E-chains of idempotents of size 1.

We first recall themain notions of semigroup theory that will be used throughout the
article. In this paper, S denotes a semigroup, and E(S) denotes the set of idempotents
of S. By S1 we mean the monoid generated by S.

Let a be an element of a semigroup S. An element x of S that is a solution to
the equation axa = a is called an inner inverse of a, and an element x of S that is
a solution to xax = x is called an outer inverse of a. If both equations axa = a
and xax = x hold, then x is called a reflexive inverse of a. The element a ∈ S is
regular if it has an inner inverse x . In this case, b = xax is a reflexive inverse of a. A
particular solution to axa = a, xax = x, ax = xa is unique if it exists and is usually
called the group inverse of a, denoted by a#. We denote the set of regular elements of
S by reg(S) and the set of group invertible elements (also called completely regular
elements) by Gr(S). A semigroup S is (completely) regular if all its elements are
(completely) regular.

Green’s preorders and relations [35] have proved fundamental in the early devel-
opment of semigroup theory, notably in the study of regular semigroups. They are
defined upon principal (left, right, two-sided) ideals—or divisibility—as follows. For
elements a and b of S,

a ≤L b ⇐⇒ S1a ⊆ S1b ⇐⇒ (∃x ∈ S1) a = xb;
a ≤R b ⇐⇒ aS1 ⊆ bS1 ⇐⇒ (∃x ∈ S1) a = bx;
a ≤J b ⇐⇒ S1aS1 ⊆ S1bS1 ⇐⇒ (∃x, y ∈ S1) a = xby.

Observe that

≤J = ≤L ◦ ≤R = ≤R ◦ ≤L = ≤L ∨ ≤R .

When a ≤J b, we also say that b divides a and we denote b | a. The intersection of
the preorders ≤L and ≤R is also a preorder, denoted by ≤H. If ≤K is any of these
preorders, then aK b if a ≤K b and b ≤K a, and Ka = {b ∈ S | bK a} denotes the
K-class of a. The relations L and R commute, so that their join equals their product

D = L ∨ R = R ◦ L = L ◦ R.

This enables us to describe D-classes as egg-boxes, each row (respectively column)
corresponding to an R-class (respectively L-class), and each case to an H-class. By
Green’s lemma [35], any two H-classes within a single D-class are isomorphic. If a
D-class contains a regular element, then all elements of the class are regular. In the
following figures of egg-box diagrams ofD-classes, gray boxes will denote groupH-
classes, and idempotents will be bold. As an illustration, the Fig. 1 depicts theD-class
of a regular element a ∈ S with reflexive inverse b ∈ S (so that ab, ba ∈ E(S)).
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694 X. Mary

a ab
ba b

Fig. 1 D-class of a with reflexive inverse b

The following result will be fundamental in the sequel.

Lemma 1.1 ([35, Theorem 7], [52, Theorem 3]) Let a, b ∈ S. Then ab ∈ Ra ∩ Lb if
and only if Rb ∩ La contains an idempotent. In this case

aHb = Hab = HaHb = Hab = Ra ∩ Lb.

In particular, aH a2 (a is completely regular) if and only if Ha contains an idempotent,
in which case Ha is a group.

The first part of Lemma 1.1 is usually known as Miller and Clifford’s theorem,
whereas its last part is known as Green’s theorem. If ab ∈ Ra ∩ Lb, then one says
that ab is a trace product. Miller and Clifford’s theorem is related to the question of
stability. We refer the reader to [1, 24, 41] for a more detailled discussion regarding
stable semigroups. According to [24], an element x of a semigroup S is right-stable
(respectively left-stable) if, for all y ∈ S, x J xy implies x R xy (respectively x J yx
implies x L yx). An element is stable if it is both left and right-stable, and a semigroup
is (left, right) stable if each of its elements is (left, right) stable. In a stable semigroup,
D = J . In general, only the inclusion D ⊆ J holds.

Green’s preorders and relations take interesting formswhen applied to idempotents,
and are a crucial notion regarding biordered sets [23, 60–62, 66]. In turn, biordered sets
are essential to study idempotent-generated semigroups, in particular the free ones.
Since 1980, numerous authors have focused on investigating these free idempotent-
generated semigroups, with a particular emphasis on their maximal subgroups [10,
33, 34, 50, 63]. More recently, the word problem on such semigroups has also been
explored [17, 18, 21]. Given e, f ∈ E(S), it is well-known that e ≤L f if and only
if e f = e, in which case we also denote e ω� f . Dually, e ≤R f if and only if
f e = e, in which case we also denote e ωr f . The notation comes from the fact
that the natural partial order ω on the set of idempotents of a semigroup is defined
by e ω f ⇐⇒ e ω� f and e ωr f . Nambooripad [60] noticed that, for all
e ∈ E(S), τ �(e) : f �→ e f (respectively τ r (e) : f �→ f e), defined whenever f ω� e
(respectively f ωr e), is a partially defined idempotent transformation on the set E(S)

that respects the partial orders ω� and ωr . Let τ = {(τ �(e), τ r (e)
) |e ∈ E(S)} be this

set of partial transformations. The quadruple E = (
E (S) , ω�, ωr , τ

)
is precisely the

biordered set of the semigroup S. Biordered sets can also be defined abstractly as
certain quadruples E = (

E, ω�, ωr , τ
)
satisfying certain axioms [60]. Shortly after

their introduction as such quadruples by Nambooripad, Clifford has shown that the
two preorders and the associated partial transformations induce naturally and in a one-
to-one fashion a partial product ∗ on the set E that satisfies further axioms. It is now
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more common to call this partial algebra E = (E, ∗) a biordered set [16, 23, 61]. We
will say that e and f are left associates, and write e ∼� f , if e ω� f and f ω� e (that is
e f = e and f e = f ). This is equivalent to eL f . The term “associates” traces back to
Clifford [15], who called two elements a, b ∈ S left associates if they are L-related. It
was (re)introduced by Nielsen [65] for idempotents only in the context of ring theory.
Nielsen used the notation ∼� because, in the case of a ring R, e ∼� f if and only if
f = ue for some invertible element u ∈ R. And, classically, two idempotents e, f of
R are conjugate, denoted e ∼ f , if f = ueu−1 for some invertible element u ∈ R.
Back to the semigroup case, we will say that two idempotents e, f ∈ E(S) are right
associates, denoted e ∼r f , if e ωr f and f ωr e. The main reason for keeping two
distinct notations L and ∼� is the following: whereas L and R commute, this is not
the case for ∼� and ∼r . We will denote by ∼r� the product ∼r ◦ ∼�; that is e ∼r� f if
there exists h ∈ E(S) such that e ∼r h ∼� f . Dually ∼�r=∼� ◦ ∼r , that is e ∼�r f
if there exists h ∈ E(S) such that e ∼� h ∼r f .

Composition of left and right association leads to the notions of E-paths and E-
chains, introduced by Nambooripad [61] (see also [51, 57]), and of chains of associate
idempotents [39, 48], which are of great importance in ring theory. An E-path in S is
a sequence of idempotents (e1, e2, . . . , en) of S such that ei (∼r ∪ ∼�) ei+1 for all
i = 1, . . . , n−1. An equivalence relation is introduced on the set of E-paths by adding
or removing inessential idempotents, where an idempotent ei of a path (e1, e2, . . . , en)
is inessential if ei−1 ∼r ei ∼r ei+1 or ei−1 ∼� ei ∼� ei+1. An E-chain is then the
equivalence class of an E-path relative to this equivalence relation. It is proved in
[61] that each E-chain ( f1, f2, . . . , fm) has a unique canonical representative of the
form (e1, e2, . . . , en), where every vertex is essential. Such a sequence is called an
n-chain of associate idempotents in [39]. More precisely, if the chain starts with left
associates, then e1 ∼� e2 ∼r . . . en where the symbols alternate between left and
right association, and it is called a left n-chain. Dually, a chain of size n starting with
∼r is a right n-chain. Chains of associated idempotents have gained interest in ring
theory, notably because of two properties. Firstly, in the case of rings, the relation
of left association admits various interesting forms, see [39, Lemma 3.1] and [44,
Section 21]. It follows that chains of idempotents of a ring are easier to handle than in
the semigroup case. For instance, they can be characterized using some “generalized
Euclidean algorithm” [38]. Secondly, they relate to properties of direct summands
of modules. Let M be a module, and let A, B be any two direct summands of M .
Then A = eM and B = f M for some e, f idempotents of R = End(M), ring of
endomorphisms of M . By definition, A = eM and B = f M are perspective if they
have a common complementary summand (A⊕C = M = B⊕C for some submodule
C ofM). This holds precisely when e and f are right 3-chained [39, 48]. Along similar
lines, e ∼�r f and e ∼r� f if and only if A and B “share all their complements” [39],
meaning that for any submodule C of M , A ⊕ C = M ⇐⇒ B ⊕ C = M .

In the sequel, we will also need the notion of primitive idempotents. An idempotent
e ∈ E(S) is primitive if f ω e (e f = f = f e) for some f ∈ E(S) implies e = f . A
semigroup is primitive if all its idempotents are primitive. Recall that a semigroupwith
no proper two-sided ideal is called simple. Equivalently, S is simple if and only if J is
the universal relation on S. A simple semigroupwith a primitive idempotent is actually
a primitive semigroup and termed completely simple. Equivalently, completely simple
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696 X. Mary

semigroups are the completely regular and simple semigroups. In terms of stability,
completely simple semigroups are the stable and simple semigroups.

As is well-known, two idempotents e, f ∈ E(S) are D-related if and only if the
left (equivalently right) S-acts Se and S f are isomorphic. This is also equivalent to
the existence of a, b ∈ S such that ab = e and ba = f . In this case, a′ = aba
and b′ = bab are reflexive inverses (a′b′a′ = a′, b′a′b′ = b′) such that e = a′b′
and f = b′a′. If eD f we say that e and f are isomorphic idempotents, and write
e � f . Unlike association, which depends only on the biordered set of idempotents,
isomorphism depends on the ambient semigroup in general.1 As previously noted, this
implies, by Green’s lemma, that the subgroups He and H f are isomorphic.

In this paper, we will focus on semigroups in which the regular elements are com-
pletely regular. By Lemma 1.1, this condition is equivalent to the following property:
for any two isomorphic idempotents e, f ∈ E(S), e ∼r� f and e ∼�r f . Follow-
ing the ring definition of Khurana and Nielsen [39, Definition 3.7], we refer to such
semigroups as strongly 2-chained semigroups, meaning that any two isomorphic idem-
potents are related by a left 2-chain and a right 2-chain. More precisely, we deduce
from Lemma 1.1 the following result (also stated in [48, Corollary 4.10]).

Corollary 1.2 Let S be a semigroup. The following statements are equivalent:

(1) S is strongly 2-chained;
(2) reg(S) = Gr(S) (regular elements are completely regular);
(3) Regular D-classes of S are completely simple subsemigroups of S.

Proof (1) ⇒ (2) : Assume (1) and let a ∈ reg(S), with reflexive inverse b. Then
ab, ba are isomorphic idempotents. By (1), ab ∼r e ∼� ba for some idempotent
e ∈ E(S). Since also aR ab and a L ba, we have that a, e ∈ Rab ∩ Lba . It follows
that aH e. By Lemma 1.1, a is completely regular. Figure 2 depicts the D-class of a.

a, e ab
ba b

Fig. 2 Egg-box diagram showing that a is completely regular

(2) ⇒ (3) : Assume (2) and consider a regular D-class D. Let a, b ∈ D. Then
a L x R b for some x ∈ D. As x is regular it is completely regular by (2), and Hx =
La ∩ Rb contains an idempotent by Lemma 1.1. It follows that ab ∈ Ra ∩ Lb ⊆ D by
Lemma 1.1 (Fig. 3), andD is a semigroup. As in any semigroupD ⊆ J , the semigroup
D is simple. As it is also completely regular by (2), it is completely simple.

1 For idempotent-generated semigroups however, two idempotents are isomorphic if and only if they are
related by a (possibly long) chain of associate idempotents. This follows from Fitz-Gerald results on regular
products of idempotents [26].
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a ab
x b

Fig. 3 Egg-box diagram showing that ab is a trace product

(3) ⇒ (1) : Finally, assume (3) and let e, f be isomorphic idempotents of S.
Consider the regular D-class D = De. By assumption, D is a completely simple
semigroup. As eD f , we have that eR x L f for some x ∈ D. But D is completely
simple, hence x is completely regular. By Lemma 1.1, it follows that x H g for some
g ∈ E(S). Consequently, e ∼r g ∼� f and e ∼r� f (Fig. 4).

e x, g
f

Fig. 4 Egg-box diagram showing that e ∼r� f

By dual arguments, e ∼�r f , and S is strongly 2-chained. ��
Strong 2-chaining can thus easily be read on the egg-box diagram of the semigroup.

Recall that for a semigroup (S, .), the variant semigroup S at a ∈ S is Sa = (S, .a)

with sandwich operation x .a y = xay. Figure5 (see [19, Figure 3]) presents the egg-
box diagram of the variant semigroups T a

4 of the full transformation semigroup T4,

Fig. 5 Variant semigroups T a
4 , a = [1, 1, 2, 2] (top) and a = [1, 2, 2, 2] (bottom)
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698 X. Mary

Fig. 6 MJ231
32 (Z2)

with a = [1, 1, 2, 2] and a = [1, 2, 2, 2]. As previously, on the figure, the group
H-classes (those that contain an idempotent) are the gray boxes. One observes two
regular D-classes, whose H-classes all contain an idempotent. Thus, T a

4 is strongly
2-chained.

By the same arguments, MJ231
32 (Z2) (semigroup of 3-by-2 rectangular matrices

over the two-element field Z2 under a certain sandwich operation) is also strongly
2-chained (Fig. 6, see [20, Figure 4]). For a precise definition ofMJ231

32 (Z2), we refer
to [20, Section 4].

That the three previous variant semigroups are strongly 2-chained actually results
from a general phenomenon. Indeed, in each case, they are variant semigroups at
idempotent elements e ∈ E(S) such that eSe is completely regular. The following
theorem was suggested to the author by J. East.

Theorem 1.3 Let S be a semigroup, and let e ∈ E(S). Then the variant semigroup
Se = (S, .e), with sandwich operation x .e y = xey, is strongly 2-chained iff the local
submonoid eSe of S is strongly 2-chained.

Proof We denote any of Green’s relations K in Se with a superscript: aKe b if and
only if a and b are K-related in Se. First, suppose that the local submonoid eSe is
strongly 2-chained. Let x ∈ reg(Se) be a regular element with inner inverse x ′ ∈ Se.
We prove that x is completely regular in Se. By Lemma 1.1, it is sufficient to prove that
x He x . As x = x .ex ′.ex = xex ′ex , we see that x R xe and x L ex . We also observe
that ex = exex ′ex , so that ex R exe. Dually, xeL exe. And exe = (exe)(ex ′e)(exe),
so that exe ∈ reg(eSe). By Corollary 1.2, we have that exe is completely regular in
eSe, hence in S. We deduce from Lemma 1.1 that Hexe = Rex ∩ Lxe contains an
idempotent. Still by Lemma 1.1, (xe)(ex) = xex ∈ Rxe ∩ Lex = Hx (Fig. 7).

x, xex xe
ex exe

Fig. 7 Egg-box diagram showing that xex H x

Thus, x = xexs for some s ∈ S1, so that x = xe(xexs)s = x .ex .e(xs2). Therefore,
it holds that x Re x .ex . Dually, we can prove that x Le x .ex , thereby showing that

123



On the structure of semigroups... 699

x .ex He x . It follows that x is completely regular in Se, and we conclude by Corollary
1.2.

Conversely, suppose that Se is strongly 2-chained, and let x ∈ reg(eSe). Then
x = xx ′x for some x ′ = ex ′e ∈ eSe, and x = xex ′ex . Thus, we see that x =
x .ex ′.ex ∈ reg(Se). By Corollary 1.2, we have that x ∈ Gr(Se). Therefore, there exists
x# ∈ Se such that x .ex#.ex = x , x#.ex .ex# = x# and x .ex# = x#.ex . Equivalently,
we have that x = xex#ex , x#exex# = x# and xex# = x#ex . Also, as x = exe, we
have that ex = xe = x . Let x ′′ = ex#e ∈ eSe.2 We have that x = xex#ex = xx ′′x ,
x ′′ = ex#e = ex#exex#e = x ′′xx ′′ and xx ′′ = exex#e = ex#exe = x ′′x . This
proves that x ′′ is the group inverse of x in eSe. We conclude by Corollary 1.2 that eSe
is strongly 2-chained. ��

In the sequel, we may consider certain standard constructions: direct products, 0-
direct unions, Rees quotients or Rees matrix semigroups with sandwich matrix P =
(1). We leave the proof of the following results as an exercise for the reader.

Lemma 1.4 Direct products (respectively 0-direct unions, Rees quotients, Rees matrix
semigroups with P = (1)) of strongly 2-chained semigroups are strongly 2-chained.

If every two isomorphic idempotents of a semigroup S are related by either a left or
a right 2-chain (that is, for all e, f ∈ E(S), e � f implies e ∼�r f or e ∼r� f ) then
we say that S is weakly 2-chained. We will also consider the subclasses of strongly
(respectively weakly, respectively left, respectively right) 1-chained semigroups. A
semigroup is strongly (respectively weakly, respectively left, respectively right) 1-
chained if any two isomorphic idempotents e � f satisfy e ∼� f and e ∼r f
(respectively e ∼� f or e ∼r f , respectively e ∼� f , respectively e ∼r f ). The
definition of chained semigroups extends to larger chains. Results on these semigroups
can be found in [48], which also discusses ring theoretical aspects. In fact, many recent
results have been proved regarding 2, 3 and 4-chained rings [30, 38, 39, 43, 46, 48,
49].

The rest of the paper is divided as follows. In Sect. 2, we expose succinctly
the general theory of semilattice decompositions, and describe the finest semilattice
congruence on a semigroup. We also recall the main results obtained so far for com-
pletely regular and completely π -regular semigroups (whose definition is recalled in
Sect. 2). Then, in a second time, we characterize semilattice indecomposable strongly
2-chained semigroups. We thereby obtain a semilattice decomposition of strongly
2-chained semigroups into poor ideal extensions of completely simple semigroups
and idempotent-free semigroups. In Sect. 3, we apply the results obtained in Sect. 2
to derive the structure of weakly and strongly 1-chained semigroups. The case of
strongly 2-chained semigroups with the additional property that (certain) products of
idempotents are idempotents is also considered.

2 Incidentally, we can deduce from the previous equations that x# = ex#e, so that, ultimately, x ′′ = x#.
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2 Semilattices decomposition of strongly 2-chained semigroups

Decomposition of mathematical objects into smaller “simple” pieces has profoundly
irrigated all mathematical fields. In the context of semigroup theory, semilattices
decompositions play a prominent role3. By definition, a semilattice decomposition
of a semigroup S is a decomposition S = ⋃

α∈Y Sα , where Y is a semilattice (com-
mutative semigroup of idempotents), the Sα are pairwise disjoint semigroups, and
SαSβ ⊆ Sαβ (∀α, β ∈ Y ). In this direction, the case of completely regular semigroups
can surely be considered as one of the first (after the Rees–Sushkevich theorem on
completely simple semigroups [72, 76]) and one of the most elegant results in the
realm of pure semigroup theory.

Theorem 2.1 ([14, Theorems 1 and 2]) Let S be a semigroup. Then the following
statements are equivalent:

(1) S is a completely regular semigroup (S = Gr(S));
(2) S is a union of groups;
(3) S is a semilattice of completely simple semigroups.

This fundamental structure theorem has been inspiring the community for decades.
In 1955, Tamura and Kimura [82] proved that every semigroup has a greatest semi-
lattice decomposition. And one year later, Tamura [78, Theorem 7] proved that each
component of the greatest semilattice decomposition is semilattice indecomposable,
where a semigroup S is semilattice indecomposable if every semilattice homomorphic
image of S is trivial. Equivalently, S is semilattice indecomposable if the finest semi-
lattice congruence is the universal relation on S. The finest semilattice congruence was
first described by Yamada [88], and then refined by Tamura in 1972 [79]. The power
divisibility relation → is defined as follows: a → b ⇐⇒ bn ∈ S1aS1 for some
n > 0. We also define →∞ as the transitive closure of →. The main result of [79] is
that the finest semilattice congruence σ on a semigroup S is the symmetric closure of
→∞:

a σ b ⇐⇒ a →∞ b and b →∞ a.

Interestingly, Putcha proved in 1974 that one can permute transitive closure and sym-
metric closure in Tamura’s construction of σ . Define - as the symmetric closure of
→:

a−b ⇐⇒ a → b and b → a.

Then σ is the transitive closure −∞ of the relation - [70, Theorem 1.1]. Other charac-
terizations exist. In [67], Petrich describes σ in terms of completely prime ideals and
filters, while in [13], Bogdanović and Ćirić describe σ by means of principal radicals.

3 Actually, Tamura proved in 1966 [77] that the set of identities x2 = x, xy = yx , which defines semi-
lattices, is the only proper set of identities, T , that provides for any semigroup a T -decomposition into
T -indecomposable subsemigroups. This major result is a compelling explanation for the prominent role
that semilattice decompositions play in the structure theory of semigroups.
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Some special semilattice decompositions have also been investigated by the afore-
mentioned authors [8, 12, 68–70, 80, 81, 83, 84]. Their decompositions rely on the
Archimedean condition, where a semigroup S is Archimedean if, for any a, b ∈ S,
there exists n ∈ N such that an ∈ S1bS1. Equivalently, S is Archimedean if and only
if → is the universal relation on S. Putcha [69, Theorem 2.2] proved in particular that
a semigroup S is a semilattice of Archimedean semigroups if and only if it satisfies
condition (P): for any a, b ∈ S, if a | b then a2 | bm for some m ∈ N. The proof was
completed by Tamura [80, Theorem 1]. In the same article, Tamura also proved two
important results. Firstly, Archimedean semigroups are semilattice indecomposable
[80, Proposition 4]. Secondly, the condition (P) is equivalent with transitivity of →
[80, Proposition 7]. Semilattices of Archimedean semigroups are now called Putcha
semigroups [59]. An interested reader can consult [53] for a survey of the topic.

Several more decompositions have been discovered by Shevrin [74], Galbiati and
Veronesi [29, 87], and Bogdanović and Ćirić [7], which apply to semigroups sat-
isfying a power regularity condition. A semigroup S in which every element has a
power that is regular is known as a quasi-regular semigroup, an eventually regular
semigroup, or a π -regular semigroup (where π stands for “power”). Similarly, semi-
groups in which every element has a power that lies in a subgroup go by a variety
of names, including epigroups, group-bound semigroups, quasi-periodic semigroups,
or completely π -regular semigroups. We shall use the terminology “(completely) π -
regular semigroups” in the sequel. Semigroups that are both completely π -regular
and Archimedean are called completely Archimedean semigroups. The next theorem
subsumes the results obtained by the aforementioned authors under the π -regularity
condition. For a comprehensive survey of the topic, we refer the reader to [9].

Theorem 2.2 ([9, Theorem 5.7]) Let S be a semigroup. Then the following statements
are equivalent:

(1) S is π -regular and reg(S) = Gr(S);
(2) S is completely π -regular and a semilattice of Archimedean semigroups;
(3) S is a semilattice of completely Archimedean semigroups.

Theorem 2.2 and the classes of semigroups therein need some comments.

• The semigroups of Theorem 2.2 are sometimes called Galbiati–Veronesi–Shevrin
semigroups [5] or uniformly π -regular semigroups [9].

• π -regularity is a very general finiteness condition on semigroups, originally intro-
duced by Arens and Kaplansky [3] in the context of rings. An important result due
to Edwards [25] is that Lallement’s lemma4 [42] holds in π -regular semigroups.
Completely π -regular semigroups are a natural extension of finite and periodic
semigroups (since any finite semigroup is periodic, and any element in a periodic
semigroup has a power that is idempotent). They are largely studied in semigroup
theory [22, 36, 45, 58, 68, 74, 75]. By [24, Proposition 7], completely π -regular
semigroups are stable. They also appear naturally in module and ring theory ([2,
4, 11, 40, 64, 86]. Algebraic algebras over a field, Artinian rings (in particular the

4 Lallement’s lemma states that every idempotent congruence class of a regular semigroup contains an
idempotent.
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simple ones, that are the full matrix rings over a division ring) and perfect rings
are completely π -regular. A module satisfies Fitting’s lemma if and only if its
endomorphism ring is completely π -regular. And among commutative rings, the
completely π -regular ones are those with Krull dimension 0.

• Most proofs of Theorem 2.2 rely on the various characterizations of the finest
semilattice congruence σ . Another approach, used in [87], is to study directly
extensions of Green’s relations in the special case of π -regular semigroups, and
then prove a semilattice congruence property. This approach aligns more closely
with Clifford’s original approach, but tailored to π -regular semigroups. It has
also been successfully applied in other contexts, resulting in the identification
of numerous additional semilattice decompositions through the analysis of other
extended Green’s relations [27, 47, 73].

In the following, our purpose is to improve Theorems 2.1 and 2.2 by removing
the regularity and π -regularity assumptions. To prove our semilattice decomposition
theorem, we first need the following stability result.

Lemma 2.3 Let S be a strongly 2-chained semigroup, and let x ∈ reg(S) and y ∈ S.
Then:

(1) if x J xy then x R xy;
(1’) if x J yx then x L yx.

In particular, x is stable and Dx = Jx .

Proof Weprove (1); the proof of (1′) is dual. Let x ∈ reg(S) and y ∈ S. The semigroup
S is strongly 2-chained by assumption, so that x ∈ reg(S) is completely regular by
Corollary 1.2. Therefore x admits a group inverse x#. Suppose that x J xy. Then
x = uxyv for some u, v ∈ S1. Let e = xx#, f = (x#xyv)(x#ux). We have that
x = uxyv = xx#x and x# = x#xx#. Thus,

f 2 = (x#xyv)(x#ux)(x#xyv)(x#ux) = (x#xyv)(x#uxyv)(x#ux)

= (x#xyv)(x#xx#ux) = (x#xyv)(x#ux) = f ,

and f is idempotent. Let a = (ux) and b = (x#xyvx#). Then

e = xx# = (uxyv)x# = (uxx#xyv)x# = (ux)(x#xyvx#) = ab.

Since also

f = (x#xyv)(x#ux) = (x#xyvx#)(ux) = ba,

we have that e, f are isomorphic idempotents. As ab = e, ba = f and bab = f b =
be = b, it follows that Lx ∩ R f = Le ∩ R f contains the regular element b. But, by
Corollary 1.2, regular elements are completely regular. It follows that b is completely
regular. Thus, by Lemma 1.1, we deduce that Hb = Lx ∩ R f contains an idempotent.
By Lemma 1.1 again, we have that x f ∈ Rx ∩ L f . But x f = (xy)(vx#ux), so that
x f ≤R xy. Finally, we observe that x ≤R x f ≤R xy ≤R x , so that x R xy (Fig. 8).
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x, x#, e = ab a, xf xy
b f = ba

Fig. 8 Egg-box diagram showing that x ∈ reg(S) is left stable

As a consequence of (1) and (1′), we see that the element x is stable. By [24,
Theorem 8], we deduce that Dx = Jx . ��

Next, we consider divisibility. Recall that a | b if b ∈ S1aS1, that is b = yaz for
some y, z ∈ S1.

Lemma 2.4 Let S be a semigroup, and let x ∈ S and e ∈ E(S) be such that x | e.
Then:

(1) there exists f D e such that f ≤R x;
(1’) there exists gD e such that g ≤L x.

Proof We prove (1). The second result (1′) is dual. Let x ∈ S and e ∈ E(S) be
such that x | e. Then e = yxz for some y, z ∈ S1. Let a = (yxz)y = ey and
b = (xz)(yxz) = xze. Then ab = (yxz)3 = e3 = e. Let f = ba = xzey. Then
f ≤R x . Also

f 2 = xzeyxzey = xze3y = xzey = f ,

so that f ∈ E(S). It follows that e = ab and f = ba are isomorphic idempotents,
that is f D e. ��
Lemma 2.5 Let S be a strongly 2-chained semigroup, and let e ∈ E(S) and x ∈ S be
such that x | e. Then xn | e for any n ≥ 1.

Proof We prove the lemma by induction on n. For n = 1 there is nothing to prove. For
n = 2, by Lemma 2.4, there exists e′ ∈ E(S) such that e′ D e and e′ ≤R x . Choose
such e′. By definition of the preorder ≤R, it holds that e′ = xy for some y ∈ S1. Let
a = x , b = yxy and f = ba = (yx)2 = ye′x . Then

f 2 = (yx)4 = y(xy)3x = ye′x = f ,

so that f is an idempotent. Since e′ = e′2 = ab, we deduce that e′ and f are isomorphic
idempotents. By assumption, S is strongly 2-chained, and it follows that e′ ∼�r f and
e′ ∼r� f . Therefore, there exist g, h ∈ E(S) such that e′ ∼� g ∼r f and e′ ∼r

h ∼� f . It follows that R f ∩ Le′ and Re′ ∩ L f both contain idempotents (respectively
the idempotents g and h). Consider the product f e′ = (yx)2(xy) = (yxy)x2y. By
Clifford and Miller’s theorem (Lemma 1.1), f e′ ∈ R f ∩ Le′ since Re′ ∩ L f contains
the idempotent h. It follows that e′ = u f e′ for some u ∈ S1. Now e′ D e so that
e = vw, e′ = wv for some v,w ∈ S1. In particular, e = e2 = vwvw = ve′w.
Finally, e = ve′w = v(u f e′)w = (vuyxy)x2(yw) and x2 | e (Fig. 9).
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e = vw v
w e′ = wv = xy = ab h, x = a

g, b = yxy, fe′ = (yxy)x2y f = ba

Fig. 9 Egg-box diagram showing that x2|e

Wefinally prove the induction step. Let n ≥ 1, and suppose that xn | e. By applying
the previous result to x ′ = xn , we obtain that (x ′)2 = x2n | e, so that e = yx2nz for
some y, z ∈ S1. It follows that e = yxn+1xn−1z and xn+1 | e. ��

Corollary 2.6 Let S be a strongly 2-chained semigroup, and let x ∈ S and e ∈ E(S)

be such that x →∞ e. Then x | e.
Proof We first prove a reduction step. Let x, y ∈ S be such that x → y → e. Then
x | yn for some n ≥ 1, and y | e since e is idempotent. By Lemma 2.5, yn | e. It
follows that x | yn | e. But divisibility is a transitive relation, so that x | e.
Assume now that x →∞ e. Then there exist p ≥ 1 and x1, · · · , xp ∈ S such that

x → x1 → · · · → xp → e.

By applying the reduction step p times from the right, we obtain that x | e. ��
We are now almost in a position to state and prove our main result. But first, we

have to consider the structure of a strongly 2-chained, semilattice indecomposable
semigroup. Recall that a minimal two-sided ideal of S is unique if it exists and is
called the kernel of S.

Proposition 2.7 Let S be a strongly 2-chained, semilattice indecomposable semigroup
with an idempotent e ∈ E(S). Then De is the completely simple kernel of S. Also, any
two idempotents of S are isomorphic.

Proof Consider the finest semilattice congruence σ on S. By [79], this congruence is
the reflexive closure of →∞: (∀a, b ∈ S) a σ b ⇐⇒ a →∞ b and b →∞ a.
Since S is semilattice indecomposable, we have that σ is the universal relation. Con-
sider the regularD-class D = De of e. We prove that D is the kernel of S. To this end,
let s, t ∈ S1, d D e and let x = sdt . Then d | x by construction. Also, we have that
e | d. Thus, it holds that e | x . On the other hand, it follows from universality of σ that
x →∞ e. Thus, x | e by Corollary 2.6. We proved that e | x and x | e, that is x J e.
But S is strongly 2-chained and e is regular, so that De = Je by Lemma 2.3. Thus,
x ∈ D, and D is an ideal of S. It is completely simple by Corollary 1.2. Consequently,
D is a minimal two-sided ideal of S, that is the kernel if S.

Finally, since a kernel is unique if it exists, any two D-classes of idempotents
coincide. It follows that any two idempotents of S are D-related (isomorphic). ��
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The final ingredient to our next result is the following theorem due to Tamura.

Theorem 2.8 [78, Theorem 7] If a semilattice decomposition of a semigroup S,
S = ⋃

α∈Y Sα , is greatest, then each class Sα is a semilattice indecomposable semi-
group. Conversely if each Sα is semilattice indecomposable, then such a semilattice
decomposition of S is greatest.

Now we have all the prerequisites to prove the main theorem of the paper, that
describes the greatest semilattice decomposition of a strongly 2-chained semigroup.

Theorem 2.9 Let S be a semigroup. Then the following statements are equivalent:

(1) S is strongly 2-chained;
(2) S is a semilattice of semilattice indecomposable semigroups Sα with the following

property: each Sα has at most one regular D-class Dα , that is the completely
simple kernel of the component Sα;

(3) S is a semilattice of semigroups Sα with the following property: each Sα has at
most one regular D-class Dα , that is a completely simple semigroup;

(4) Regular elements of S are completely regular.

Proof (1) ⇒ (2) : Consider the finest semilattice congruence σ on S, and its asso-
ciated greatest semilattice decomposition. By Theorem 2.8, the components of the
decomposition (the σ -classes) are semilattice indecomposable. Since D ⊆ σ , the
components of the semilattice either contain no regular elements, or they contain at
least one regularD-class. In the latter case, they contain at least one idempotent (recall
that any regular D-class contains at least one idempotent).
Therefore, we consider hereafter a component T = σe of the semilattice that contains
an idempotent e ∈ E(S). We first prove that T is a strongly 2-chained semigroup. Let
f , g be isomorphic idempotents in T . Then e = ab, f = ba for some a, b ∈ T . Thus,
since T ⊆ S, we have that e and f are isomorphic in S. By strong 2-chaining, there
exist h, k ∈ E(S) such that f ∼� h ∼r g and f ∼r k ∼� g. In particular, f = f h
and h = h f . Since σ is a semilattice congruence, we deduce that f = f h σ h f = h.
Dually, f = k f σ f k = k. Finally, h, k ∈ T = σe = σ f and T is strongly 2-chained.
We have proved that T is a strongly 2-chained, semilattice indecomposable semigroup
with an idempotent e ∈ E(S). By Proposition 2.7, De is the completely simple kernel
of T . Consider a second regular D-class D′ of T . Then it contains an idempotent f
and D′ = D f . But all idempotents of T are isomorphic by Proposition 2.7, so that
f D e. Thus D f = De is the only regular class of T .

(2) ⇒ (3) : Straightforward.
(3) ⇒ (4) :Let a ∈ S be a regular element. Then a belongs to the unique regularD-

class D of σa . By assumption, D is a completely simple semigroup, and, in particular,
it is completely regular. Consequently, a is completely regular.

(4) ⇒ (1) : This is Corollary 1.2. ��
Example 2.10 Let S be an idempotent-generated, completely regular semigroup. We
let E = E(S) be its set of idempotents, and E = (E, ω�, ωr , τ ) be its biordered set.
It is known that the free idempotent-generated semigroup IG(E) has the following
properties (see for instance [34]):
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(1) its set of idempotents E (IG (E)), usually denoted by Ē , is in one-to-one corre-
spondence with E (via a map φ). We denote by ē ∈ Ē the preimage of e ∈ E by
φ;

(2) the bijective map φ : Ē → E can be uniquely extended to a surjective5 semigroup
homomorphism ψ : IG(E) � S;

(3) any two idempotents ē, f̄ ∈ Ē are left (respectively right) associates if and only
if e, f ∈ E are left (respectively right) associates in S;

(4) any two idempotents ē, f̄ ∈ Ē are isomorphic in IG(E) if and only if e, f are
isomorphic in S.

As S is strongly 2-chained by Corollary 1.2, it follows from (3) and (4) that IG(E)

is strongly 2-chained. By Theorem 2.1, S admits a semilattice decomposition S =⋃
α∈Y Sα , with all the Sα completely simple semigroups. Also, σ = J = D in this

case, so that the components Sα are the D-classes of S, and the decomposition is the
greatest one.
Consider the canonical quotient map q : S � S/σ = Y . Then q ◦ψ : IG(E) � S �
Y provides us with a semilattice decomposition of IG(E). Denote by ρ the kernel of
q ◦ ψ . By construction, it is a semilattice congruence, and any ρ-class is of the form

Tα = (q ◦ ψ)−1(α) = ψ−1(Sα).

As Sα is completely simple, it contains an idempotent e ∈ E . By (1) and (2), ē ∈ Tα .
Now, let f̄ ∈ Ē be a second idempotent in Tα . Then f ∈ Sα and f , e are isomorphic
in E . By (4), ē and f̄ belong to the same D-class in IG(E).

Finally, all components Tα induced by the semilattice congruence ρ contain a
unique regular D-class, that is a completely simple semigroup by Corollary 1.2. This
proves that ρ induces a semilattice decomposition that satisfies the assumption (3) of
Theorem 2.9.

Example 2.11 We specialize Example 2.10, and consider the setting of Example 2
in [10]. Let Y be the three-element semilattice (free semilattice generated by two
elements e, f , the last element being e f = f e = �, zero of the semilattice). Y is
trivially a completely regular, idempotent-generated semigroup, with greatest semi-
lattice decomposition Y = ⋃

α∈Y {α}. Let E be the associated biordered set. Then
IG(E) =< ē, f̄ |ē2 = ē, f̄ 2 = f̄ >�̄, whose elements are words over the alphabet
{ē, f̄ } alternating the symbols ē and f̄ , with a zero �̄ adjoined. The semilattice Y
induces the semilattice decomposition IG(E) = ⋃

α∈Y Tα (Fig. 10), where: Te = {ē}
and T f = { f̄ } are completely simple semigroups; T� = {�̄, ē f̄ , f̄ ē, ē f̄ ē, f̄ ē f̄ , · · · }
has a unique regular D-class, the idempotent �̄.

5 If S is not idempotent-generated, then the result holds but without the surjectivity assumption. In this
case, the image of IG (E) by ψ is the subsemigroup S′ = 〈E〉 of S generated by its idempotents.
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Fig. 10 IG(E) = ⋃
α∈Y Tα

This is, however, not the greatest semilattice decomposition of IG(E). Indeed,
T� is not semilattice indecomposable. The greatest semilattice decomposition is
IG(E) = ⋃

α∈Y 0 Tα (Fig. 11), where: Y 0 is the semilattice Y with a new zero 0
adjoined; Ue = {ē}, U f = { f̄ } and U0 = {�̄} are completely simple semigroups;
U� = {ē f̄ , f̄ ē, ē f̄ ē, f̄ ē f̄ , · · · } has no regular element.

Theorem 2.9 has other formulations, but we need to introduce more definitions. A
semigroup with a single idempotent is called unipotent, and poor if this unique idem-
potent is a zero of the semigroup.A semigroupwithout idempotents is idempotent-free,
or simply an IF-semigroup. The semigroup S is E-inversive [85] (or E-dense [28]) if,
for every a ∈ S, ax ∈ E(S) for some x ∈ S. Equivalently, by [55, Theorem 3.1], S
is E-inversive if any element a has an outer inverse (bab = b for some b ∈ S). Semi-
groups with 0 and π -regular semigroups are E-inversive. Indeed, if anban = an for
some n ≥ 1, then a(an−1b) ∈ E(S). When a semigroup S contains a two-sided ideal
I , one can form the Rees quotient S/I , and we say that S is an ideal extension of the
semigroup I by the semigroup S/I . According to Theorem 2.9, a strongly 2-chained
semigroup S admits a greatest semilattice decomposition S = ⋃

α∈Y Sα , where each
component Sα contains either no regular D-class or a single one Dα , that is the com-
pletely simple kernel of Sα . Thus, the semigroups Sα are either IF-semigroups, or they
are ideal extensions of the completely simple semigroup Dα by the poor semigroup
Sα/Dα . Such ideal extensions (by poor semigroups) are also called poor extensions.
Poor extensions of completely simple semigroups have been characterized by [56,
Theorem 4.2] as primitive E-inversive semigroups. Therefore, we obtain the follow-
ing corollary.

Fig. 11 IG(E) = ⋃
α∈Y 0 Uα (Greatest semilattice decomposition)
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Corollary 2.12 Let S be a semigroup. Then the following statements are equivalent:

(1) S is strongly 2-chained (equivalently reg(S) = Gr(S));
(2) S is a semilattice of IF-semigroups and primitive E-inversive semigroups;
(3) m S is a semilattice of IF-semigroups and poor extensions of completely simple

semigroups.

Moreover, we can choose the components in the previous decompositions to be semi-
lattice indecomposable.

Example 2.13 Let T be a poor semigroup. Let also I ,
 be two sets, and consider
S = M(I , T ,
), the associated Rees matrix semigroup with sandwich matrix P =
(1). Then the following equality holds: reg(S) = (I , 0,
) = E(S). It follows that
K = reg(S) is the completely simple kernel of S, and a rectangular band. In particular,
S is strongly 2-chained. As the Rees quotient S/K is a poor semigroup, we have
that S is a poor extension of the completely simple semigroup K . Consider T =⋃

α∈Y Tα any semilattice decomposition of T , with T0 the component of 0. Then
S = ⋃

α∈Y M(I , Tα,
) is a semilattice decomposition of S, where the components
are idempotent-free exceptM(I , T0,
), which is a poor extension of the completely
simple semigroup K . If we start with the greatest semilattice decomposition of T , then
we obtain the greatest semilattice decomposition of S.

Example 2.14 We specialize Example 2.13 as follows. Let A and B be semilattice
indecomposable IF-semigroups (for instance disjoint copies of the free monogenic
semigroup), and let T = A ∪̇ B ∪̇ 0 be the 0-direct union of A and B. Let also
I ,
 be two sets and S = M(I , T ,
) be the associated Rees matrix semigroup
with sandwich matrix P = (1). Then S is a poor extension of the completely simple
semigroupM(I , 0,
) by the 0-direct unionM(I , A,
) ∪̇ M(I , B,
) ∪̇ {0}. As A
and B are semilattice indecomposable, we finally deduce that the greatest semilattice
decomposition of S is given by Fig. 12.

The semigroupsM(I , A,
) andM(I , B,
) are semilattice indecomposable IF-
semigroups, while M(I , 0,
) is a completely simple semigroup.

Fig. 12 Greatest semilattice decomposition ofM(I , A ∪̇ B ∪̇ 0, 
)

3 Semilattices decomposition of strongly and weakly 1-chained
semigroups

In this final section, we turn our attention to certain subclasses of strongly 2-chained
semigroups. Indeed, by using Theorem 2.9 and Corollary 2.12, we will be able to
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obtain a semilattice decomposition of certain strongly 2-chained semigroups enjoying
additional properties. We will first address the case of strongly and weakly 1-chained
semigroups. Then, at the end of the section, strongly 2-chained semigroups where
(certain) products of idempotents are idempotents will be studied.

Recall that, by definition, S is strongly 1-chained if isomorphic idempotents are left
and right associates. But H-classes contain at most one idempotent. Therefore, S is
strongly 1-chained if and only if isomorphic idempotents are equal. These semigroups
have appeared in the literature under the name viable semigroups [71]. We also recall
the following definitions. A homogroup is a semigroup that has a kernel which is a
group. An ideal I of S is a retract of S if there exists an homomorphism of S onto I
which leaves each element of I fixed. In this case, we also say that the extension S of I
is retractive (or a retract extension). By [32, Theorem 2.10], a homogroup is the same
as a retract extension of a group. Unipotent homogroups have been characterized by
[56, Theorem 3.1] (see also [54, Theorem 4.1 and Theorem 4.3]).

Theorem 3.1 Let S be a semigroup. Then the following statements are equivalent:

(1) S is E-inversive and has a single idempotent;
(2) S is a poor (retract) extension of a group;
(3) S is an unipotent homogroup.

The following corollary characterizes strongly 1-chained semigroups in terms of
certain semilattice decompositions. The equivalences (3) ⇐⇒ (5) ⇐⇒ (7) were
obtained directly by Putcha and Weissglass [71, Theorem 6].

Corollary 3.2 Let S be a semigroup. Then the following statements are equivalent:

(1) S is strongly 1-chained;
(2) S is a semilattice of IF-semigroups and unipotent homogroups;
(3) S is a semilattice of IF-semigroups and unipotent semigroups;
(4) S is a semilattice of IF-semigroups and unipotent E-inversive semigroups;
(5) S is a semilattice of IF-semigroups and poor (retract) extensions of groups;
(6) Inner inverses are commuting inverses (aba = a ⇒ ab = ba (∀a, b ∈ S));
(7) S is viable (ab, ba ∈ E(S) ⇒ ab = ba (∀a, b ∈ S)).

Moreover, we can choose the components in the previous decompositions to be semi-
lattice indecomposable.

Proof By Theorem 3.1, (5) ⇔ (4) ⇔ (2) ⇒ (3). We prove the remaining chain of
implications (3) ⇒ (6) ⇒ (7) ⇒ (1) ⇒ (5).
(3) ⇒ (6) : Supppose (3), and let a, b ∈ S be such that aba = a. Since S a semilattice
of IF-semigroups andunipotent semigroups, it follows that the isomorphic idempotents
e = ab and f = ba are in the same component. But this component is unipotent,
hence e = f .
(6) ⇒ (7) : Suppose (6) and let a, b ∈ S be such that ab, ba ∈ E(S). Let a′ = aba.
Then a′ba′ = a′. It follows from (6) that a′b = ba′. But a′b = abab = (ab)2 = ab
and dually, ba′ = ba; thus, ab = ba.
(7) ⇒ (1) : Suppose (7) and let e, f be isomorphic idempotents. Then e = ab and
f = ba for some a, b ∈ S; thus, e = ab = ba = f . In particular, e ∼r f and e ∼� f .
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(1) ⇒ (5) : Suppose (1). Then S is strongly 2-chained, hence a semilattice of IF-
semigroups and poor extensions of completely simple semigroups by Corollary 2.12.
But, by (1), isomorphic idempotents of S are equal. Thus, each completely simple
semigroup in the decomposition is unipotent, hence a group. ��
Example 3.3 Consider the setting of Example 2.11. The semilattice Y = {e, f , �}
is strongly 1-chained; Therefore, so is IG(E). The first semilattice decomposition
obtained in Example 2.11 is IG(E) = ⋃

α∈Y Tα where: Te = {ē} and T f = { f̄ } are
groups; T� = {�̄, ē f̄ , f̄ ē, ē f̄ ē, f̄ ē f̄ , · · · } is a unipotent homogroup.
Its greatest semilattice decomposition is IG(E) = ⋃

α∈Y 0 Uα , where:Ue = {ē},U f =
{ f̄ } and U0 = {�̄} are groups; U� = {ē f̄ , f̄ ē, ē f̄ ē, f̄ ē f̄ , · · · } is an IF-semigroup.

By similar arguments, we obtain the structure of weakly 1-chained semigroups.
A left group is a left simple semigroup (a semigroup with no proper left ideal) that
contains an idempotent. Equivalently, it is the direct product of a left zero semigroup
(where ab = a for all a, b in S) and a group. The notion of a right group is dual to
that of a left group.

Corollary 3.4 Let S be a semigroup. Then the following statements are equivalent:

(1) S is weakly 1-chained;
(2) S is a semilattice of IF-semigroups and poor extensions of left and right groups;
(3) S satisfies the quasi-identity:

aba = a ⇒ {ab2a2 = a = a2b or a2b2a = a = ba2} (∀a, b ∈ S).

Proof (1) ⇒ (2) : Assume that S is weakly 1-chained. Then S is strongly 2-chained,
hence a semilattice of IF-semigroups and poor extensions of completely simple semi-
groups. Let T be one of these completely simple semigroups. It contains an idempotent,
so that we have to prove that it is left or right simple. If S is unipotent, it is a group. So,
suppose that it contains at least two distinct idempotents e, f . By weak 1-chaining,
either e ∼� f or e ∼r f , but not both (otherwise e = f ). Suppose that e ∼� f , and
let a ∈ T . Since T is completely simple, a is completely regular. By Lemma 1.1, aHg
for some idempotent g ∈ E(T ). As T is a completely simple, we have that e and g are
isomorphic, so that e ∼� g or e ∼r g by weak 1-chaining. Symmetrically f ∼� g or
f ∼r g. Suppose that f ∼� g. Then e ∼� f ∼� g and e ∼� g. Alternatively, suppose
that f ∼r g. Since f and e are not right associates, we have that e and g are not right
associates. Thus, e ∼� g. It follows that, in both cases, e ∼� g, and a L gL e. Finally,
all elements of T are L-related to e, and T is left simple. In the second case e ∼r f ,
then T would be right simple. This proves (2).

(2) ⇒ (3) :Assume (2) and let a, b ∈ S be such that aba = a. Then the isomorphic
idempotents e = ab, f = ba are in the same component, hence either L orR-related.
In the first case, e f = e and f e = f , that is ab2a = ab and ba2b = ba. Multiplying
the first equation on the right by a yields ab2a2 = aba = a. Multiplying the second
equation on the left by a yields a2b = a. The second case is dual.

(3) ⇒ (1) : Assume (3) and let e, f ∈ E(S) be isomorphic idempotents. Then
e = ab and f = ba for some a ∈ reg(S) and some reflexive inverse b of a. By
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(3), either ab2a2 = a = a2b or a2b2a = a = ba2. In the first case, we have that
a = ab2a2 and a2b = a. Therefore, ab = ab2a2b = ab2a. Equivalently e = e f .
Also, f e = ba2b = ba = f . Thus, e ∼� f . The second case is dual. ��

The same arguments yield that S is left 1-chained if and only if S is a semilattice
of IF-semigroups and poor extensions of left groups, if and only if S satisfies the
quasi-identity:

aba = a ⇒ ab2a2 = a = a2b (∀a, b ∈ S).

The right case is dual.

Example 3.5 Consider the matrix semigroup

S =
({0, 1} N

0 {0, 1}
)

=
{(

e n
0 f

)
| e, f ∈ {0, 1}, n ∈ N

}
.

Let A /∈ {
(
1 0
0 1

)
,

(
0 0
0 0

)
} be a regular element of S. Then A =

(
1 n
0 0

)
or A =

(
0 n
0 1

)

for some n ∈ N. In particular, reg(S) = E(S). In the first case, A is idempotent and

its inner inverses are of the form B =
(
1 p
0 f

)
for some p ∈ N and f ∈ {0, 1}. It then

holds that BA = A = A2, so that

A2B2A = ABBA = ABA = A and BA2 = BA = A.

The second case is dual, and the cases A =
(
1 0
0 1

)
or A =

(
0 0
0 0

)
are straightforward.

We thus deduce from Corollary 3.4 that S is weakly 1-chained.
We now produce a semilattice decomposition of the form of Corollary 3.4. We let Y
be the semilattice shown in Fig. 13.

We let also

S1 =
{(

1 0
0 1

)}
, S∗ =

(
1 N

∗
0 1

)
=

〈(
1 1
0 1

)〉
,

Fig. 13 Semilattice Y
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Fig. 14 Greatest semilattice decomposition of S =
({0, 1} N

0 {0, 1}
)

S� =
(
0 N

0 1

)
, Sr =

(
1 N

0 0

)
, S0 =

(
0 N

0 0

)
.

Then S = ⋃
α∈Y Sα is a semilattice decomposition of S with S1 a group, S∗ a mono-

genic IF-semigroup, S� a left zero semigroup, Sr a right zero semigroup and S0 a
poor semigroup (precisely a nilsemigroup); see Fig. 14. As all the components are
semilattice indecomposable, the decomposition is actually the greatest semilattice
decomposition of S.

In case the semigroup is additionally π -regular, then there are no IF-components,
and the ideal extensions are nil-extensions. We notably recover with Corollary 3.2 the
semilattice decomposition of uniformly-π -inverse semigroups (strongly 1-chained π -
regular semigroups in our terminology) into nil-extensions of groups of Bogdanović
et al. [9, Theorem 5.10]. We also derive from Corollary 3.4 that weakly 1-chained
π -regular semigroups are semilattices of nil-extensions of left and right groups. If the
semigroup is regular, we recover the celebrated result of Clifford that a completely
regular semigroup with commuting idempotents (also known as a Clifford semigroup)
is a semilattice of groups. Also, weakly 1-chained regular semigroups are semilattices
of left and right groups. Some more characterizations of these semigroups are the
content of [6, Theorem 3.3]. Left (respectively right) 1-chained regular semigroups
are semilattices of left (respectively right) groups.

We finally consider some other specific subclasses of strongly 2-chained semi-
groups.Recall that a rectangular band B is a semigroup satisfying the identityaba = a
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for all a, b in B. Rectangular groups, which are direct products of a rectangular band
and a group, lie between completely simple semigroups and (left, right) groups. It is
well-known that rectangular groups are precisely the completely simple semigroups
that are also orthodox, meaning they are regular and their product of idempotents are
idempotents [31, Theorem 1.6]. This characterization allows us to describe semilat-
tices of IF-semigroups and poor extensions of rectangular groups.

Corollary 3.6 Let S be a semigroup. Then the following statements are equivalent:

(1) S is strongly 2-chained, and satisfies the quasi-identity:

aba = a ⇒ a2b2a2 = a2 (∀a, b ∈ S);

(2) S is a semilattice of IF-semigroups and poor extensions of rectangular groups;
(3) S satisfies the quasi-identity:

aba = a ⇒ ab2a2 = a (∀a, b ∈ S);

(3’) S satisfies the quasi-identity:

aba = a ⇒ a2b2a = a (∀a, b ∈ S).

Proof (1) ⇒ (2) : Assume (1). By assumption, S is strongly 2-chained, so that
S is a semilattice of semigroups without idempotents and poor extensions of com-
pletely simple semigroups by Corollary 2.12. Consider one of these completely
simple semigroups T , and let e, f ∈ E(T ). As T is completely simple, it holds
thatD = J = T × T . Thus, eD f . It follows that e, f are isomorphic in T , meaning
that e = ab, f = ba for some a, b ∈ T with b being a reflexive inverse of a. In
particular, it holds that aba = a, so that a2b2a2 = a2 by (1). By multiplying both
sides by b on the left and on the right, we obtain that ba2b2a2b = ba2b, which is
equivalent to ( f e)( f e) = f e. Hence, T is an orthodox semigroup.

(2) ⇒ (3) : Assume (2) and let a, b ∈ S be such that aba = a. Firstly, as
rectangular groups are completely simple, S is strongly 2-chained by Corollary 2.12.
By Corollary 1.2, the regular element a is then group invertible, with group inverse a#.
Secondly, the isomorphic idempotents ab and ba are in the same component sinceD ⊆
J ⊆ σ , finest semilattice congruence. Finally, since rectangular groups are orthodox,
the product (ba)(ab) is idempotent; therefore, ba2b2a2b = ba2b. Multiplying both
sides by a on the left and on the right yields a2b2a2 = a2. Multiplying on the left by
a# yields ab2a2 = a.

(3) ⇒ (1) : Assume (3) and let a, b ∈ S be such that aba = a. Then ab2a2 = a
by (3), and multiplying on the left by a yields a2b2a2 = a2. We now prove that the
regular element a of S is completely regular. Since ab2a2 = a, it follows that a L a2.
Let b′ = bab. Then b′ab′ = b′, and we deduce that b′a2b′2 = b′ by (3). Multiplying
both sides by a on the left and on the right yields a2b′2a = ab′a = a and aR a2.
Finally, aH a2. It follows that a is completely regular by Green’s theorem (Lemma
1.1). We conclude by Corollary 1.2 that S is strongly 2-chained.
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Finally, observe that (1) and (2) are self-dual statements. Thus they are also equiv-
alent to the dual statement (3′) of (3). ��

Example 3.7 Consider the semigroup of Example 2.13. We observed that S =
M(I , T ,
) is a poor extension of the completely simple semigroup K = M(I , 0,
),
with K a rectangular band. Thus statement (2) of Corollary 3.6 is valid, and (3) should
also be valid. We prove directly that the quasi-identity aba = a ⇒ ab2a2 = a
is satisfied. So, let a, b ∈ S be such that aba = a. Then a is regular, hence
a ∈ K = reg(S). As K is an ideal of S, we have that ba ∈ K . Finally, we deduce that
ab2a2 = a(ba)a = a since K is a rectangular band.

More specifically, it may happen that the whole of E(S) is closed under product
(one says that S is an E-semigroup), or even a commutative set (S is E-commutative).

Proposition 3.8 Let S be a semigroup. Then:

(1) S is strongly 2-chained and an E-semigroup if and only if reg(S) is a completely
regular and orthodox subsemigroup of S;

(2) S is strongly 2-chained and E-commutative if and only if reg(S) is a Clifford
subsemigroup of S, if and only if S is strongly 1-chained and an E-semigroup.

Proof If S is E-commutative or an E-semigroup, then products of idempotents are
idempotents hence regular. As is well known, this implies that products of regular
elements are regular.

(1) Suppose that S is strongly 2-chained and an E-semigroup. Then reg(S) is a sub-
semigroup of S. It is completely regular by Corollary 1.2. It is orthodox as a regular
E-semigroup. The converse implication is straightforward by Corollary 1.2.

(2) To prove (2), we prove a chain of implications. Firstly, suppose that S is strongly 2-
chained and E-commutative. Then reg(S) is a subsemigroup of S. It is completely
regular by Corollary 1.2. As it is also E-commutative, it is a Clifford semigroup.
Secondly, suppose that reg(S) is a Clifford semigroup. Then it is a semilattice
of groups. Let e = ab and f = ba be isomorphic idempotents. Then e, f are
idempotents in the same group, hence they are equal. It follows that S is strongly
1-chained and E-commutative, let alone an E-semigroup.
Finally, suppose that S is strongly 1-chained and anE-semigroup.Then S is trivially
strongly 2-chained. Let e and f be idempotents of S. As S is an E-semigroup, we
have that e f and f e are idempotents. They are isomorphic by construction, hence
equal by strong 1-chaining. ��
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