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Abstract
In this paper we describe commutative monoids S containing a zero element in which
every ideal is the annihilator of an element of S.
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1 Introduction andmotivation

For a nonempty subset X of a semigroup with a zero element, let Al(X), Ar (X), and
A(X) denote the left annihilator, the right annihilator, and the annihilator of X . A
semigroup S with a zero element is called a dual semigroup if Al(Ar (L)) = L and
Ar (Al(R)) = R are satisfied for every left ideal L and every right ideal R of S. The
notion of a dual semigroup was introduced by S. Schwarz in [6] motivated by Baer’s
notion of a dual ring [1]. By Lemma 2, Al(Ar (L)) = L is satisfied for a left ideal L
of a semigroup S containing a zero element if and only if L is the left annihilator of
a nonempty subset of S. This result and its dual imply that a semigroup S with a zero
element is a dual semigroup if and only if every left ideal of S is the left annihilator of a
nonempty subset of S, and every right ideal of S is the right annihilator of a nonempty
subset of S (Corollary 3). Motivated by Yohe’s notion of a left (resp., right) elemental
annihilator ring, we introduce the notion of a left (resp., right) elemental annihilator
semigroup.We say that a semigroup Swith a zero element is a left elemental annihilator
semigroup if every left ideal of S is the left annihilator of a one-element subset of S. A
right elemental annihilator semigroup is defined analogously. In [7], C.R. Yohe proved
that a commutative ring with a unit element is an elemental annihilator ring if and only
if it is a direct sum of completely primary principal ideal rings. This result motivates
us to investigate commutative elemental annihilator monoids. As a main result of
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746 A. Nagy

our paper we prove that the following three conditions on a nontrivial commutative
monoid S containing a zero element are equivalent: (1) S is an elemental annihilator
semigroup; (2) the unique maximal ideal MS of S is a nilpotent semigroup, and the
orbits of MS under the action by the unit group S× of S form a cyclic nilsemigroup; (3)
the factor semigroup S/J is a cyclic nilsemigroup with an identity adjoined, where
J is Green’s equivalence on S defined by (a, b) ∈ J if and only if a and b generate
the same principal ideal of S.

2 Preliminaries

Let S be a multiplicative semigroup with a zero element 0. By the left annihilator of a
nonempty subset X of S we mean the subset Al(X) = {s ∈ S : sX = {0}}. The right
annihilator Ar (X) of X is defined analogously. It is clear that Al(X) (resp., Ar (X))
is a left (resp., right) ideal of S. If S is commutative, then Al(X) = Ar (X) is called
the annihilator of X and denoted by A(X).

The proofs of the following two lemmas are straightforward and we omit them.

Lemma 1 For an arbitrary nonempty subset X of a semigroup S containing a zero
element, the following two equations hold:

(1) Al(Ar (Al(X))) = Al(X),
(2) Ar (Al(Ar (X))) = Ar (X).

Lemma 2 The following two conditions on a left ideal L of a semigroup S containing
a zero element are equivalent:

(1) Al(Ar (L)) = L,
(2) L is the left annihilator of a nonempty subset of S.

Corollary 3 A semigroup containing a zero element is a dual semigroup if and only if
every left ideal of S is the left annihilator of a nonempty subset of S, and every right
ideal of S is the right annihilator of a nonempty subset of S.

Proof By Lemma 2 and its dual, the assertion of the corollary is obvious. ��
Lemma 4 For an arbitrary element x of a semigroup S containing a zero element,
Al(x) = Al(x ∪ xS) and Ar (x) = Ar (x ∪ Sx).

Proof Let x be an arbitrary element of a semigroup S containing a zero element 0.
If t ∈ Al(x), then t x = 0, hence t x S = {0}. Thus t ∈ Al(x ∪ xS) from which it
follows that Al(x) ⊆ Al(x ∪ xS). It is obvious that Al(x ∪ xS) ⊆ Al(x). Hence
Al(x) = Al(x ∪ xS). The equation Ar (x) = Ar (x ∪ Sx) can be proved in a similar
way. ��

We say that an equivalence relation σ on a semigroup S is a left congruence on
S if (a, b) ∈ σ implies (sa, sb) ∈ σ for every a, b, s ∈ S. The notion of the right
congruence on S is defined analogously.

Let S be a semigroup containing a zero element. Let αAl denote the equivalence
relation on S defined as follows: (a, b) ∈ αAl if and only if Al(a) = Al(b). The
equivalence relation αAr on S is defined analogously.
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On commutative elemental annihilator monoids 747

Proposition 5 Let S be a semigroup with a zero element. Then αAl is a left congruence
on S, and αAr is a right congruence on S.

Proof Assume (a, b) ∈ αAl for elements a, b ∈ S. Let s ∈ S and t ∈ Al(sa) be
arbitrary elements. Then ts ∈ Al(a) = Al(b), and hence t ∈ Al(sb). Thus Al(sa) ⊆
Al(sb). Similarly, Al(sb) ⊆ Al(sa), and consequently Al(sa) = Al(sb), that is,
(sa, sb) ∈ αAl . Hence αAl is a left congruence on S. The proof that αAr is a right
congruence on S is similar. ��

Two elements of a semigroup S are said to beL-equivalent if they generate the same
principal left ideal of S. TheR-equivalence is defined dually. L is a right congruence
and R is a left congruence on an arbitrary semigroup.

Proposition 6 If S is a semigroup containing a zero element, then R ⊆ αAl and
L ⊆ αAr .

Proof Let S be a semigroup containing a zero element. If (a, b) ∈ R for elements
a, b ∈ S, then a ∪ aS = b ∪ bS. Using Lemma 4, we get Al(a) = Al(a ∪ aS) =
Al(b ∪ bS) = Al(b), that is, (a, b) ∈ αAl . Thus R ⊆ αAl . The proof of L ⊆ αAr is
similar. ��
Definition 1 A semigroup S with a zero element is called a left elemental annihilator
semigroup if, for every left ideal L of S, there exists an element x ∈ S such that
L = Al(x). The right elemental annihilator semigroup is defined analogously.

For notions and notations not defined but used in this paper, we refer to the books
[2] and [4].

3 Left elemental annihilator semigroups

Proposition 7 If S is a left elemental annihilator semigroup and L is a left ideal of S,
then we have Al(Ar (L)) = L.

Proof By Lemma 2, it is obvious. ��
By Proposition 7 and its dual, we have the following corollary.

Corollary 8 If a semigroup is a left elemental annihilator semigroup and a right ele-
mental annihilator semigroup, then it is a dual semigroup.

Lemma 9 If a semigroup S is a left elemental annihilator semigroup and a right
elemental annihilator semigroup, then x ∈ Sx and x ∈ xS for every x ∈ S.

Proof See Corollary 8 and [6, Lemma 1.6]. ��
The next proposition is about the relationship between the right congruence αAr

and Green’s right congruence L on a left elemental annihilator semigroup.

Proposition 10 If S is a left elemental annihilator semigroup, then αAr = L.
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748 A. Nagy

Proof Let S be a left elemental annihilator semigroup. Assume (a, b) ∈ αAr for
elements a, b ∈ S. Then, by Lemma 4, Ar (a ∪ Sa) = Ar (a) = Ar (b) = Ar (b ∪ Sb),
and henceAl(Ar (a∪Sa)) = Al(Ar (b∪Sb)). ByProposition 7,we geta∪Sa = b∪Sb.
Thus (a, b) ∈ L, and consequently αAr ⊆ L. By Proposition 6, L ⊆ αAr is satisfied
in an arbitrary semigroup with a zero element. Thus we have αAr = L. ��

For a congruence α on a semigroup S, let [a]α denote the α-class of S containing
the element a of S.

Proposition 11 If α is a congruence on a left elemental annihilator semigroup S
such that [0]α = {0}, then the factor semigroup S/α is a left elemental annihilator
semigroup.

Proof Let S be a left elemental annihilator semigroup. Assume that α is a congruence
on S such that [0]α = {0}. Let L be a left ideal of the factor semigroup S/α. Then
L ′ = {s ∈ S : [s]α ∈ L} is a left ideal of S. Since S is a left elemental annihilator
semigroup, there is an elementb ∈ S such thatAl(b) = L ′.We show thatAl([b]α) = L
from which it already follows that S/α is a left elemental annihilator semigroup. If
[x]α ∈ L , then x ∈ L ′, and hence [x]α[b]α = [xb]α = [0]α . Thus [x]α ∈ Al([b]α), and
consequently L ⊆ Al([b]α). To prove the converse inclusion, assume [y]α ∈ Al([b]α).
Then [yb]α = [y]α[b]α = [0]α , and hence yb = 0 by hypothesis for [0]α . Thus
y ∈ Al(b) = L ′ from which we get [y]α ∈ L . Hence Al([b]α) ⊆ L . Consequently
Al([b]α) = L . ��
Proposition 12 Let α be a congruence on a semigroup S containing a zero element
0 such that [0]α = {0} and the factor semigroup S/α is a left elemental annihilator
semigroup. Then, for every left ideal L of S which is a union of α-classes of S, there
is an element b ∈ S such that Al(b) = L.

Proof Let L be a left ideal of S which is a union of α-classes of S. Let L ′ = {[s]α : s ∈
L}. Then L ′ is a left ideal of S/α. Since S/α is a left elemental annihilator semigroup,
there is an element [b]α ∈ S/α such that Al([b]α) = L ′. We show that Al(b) = L .
Let x ∈ Al(b). Then xb = 0, and hence [x]α[b]α = [xb]α = [0]α which means that
[x]α ∈ Al([b]α) = L ′. Thus x ∈ L , and hence Al(b) ⊆ L . To show the converse
inclusion, assume that y ∈ L be an arbitrary element. Then [y]α ∈ L ′ = Al([b]α)

from which it follows that [yb]α = [y]α[b]α = [0]α . Thus yb = 0 by hypothesis for
[0]α , that is, y ∈ Al(b), and hence L ⊆ Al(b). Consequently L = Al(b) . ��
Theorem 13 Let S be a semigroup containing a zero element, and letα bea congruence
on S such that every left ideal of S is the union of α-classes of S. Then S is a left
elemental annihilator semigroup if and only if the factor semigroup S/α is a left
elemental annihilator semigroup.

Proof Since [0]α = {0} by hypothesis, the assertion of the theorem is an immediate
consequence of Proposition 11 and Proposition 12. ��

By amonoid wemean a semigroup containing an identity element. Let S be a semi-
group and let 1 be a symbol not representing any element of S. Extend the operation
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On commutative elemental annihilator monoids 749

on S to S ∪ 1 such that 11 = 1 and x1 = 1x = x for every x ∈ S. Then S ∪ 1 is
a monoid in which 1 is the identity element. We say that this semigroup is obtained
from the semigroup S by the adjunction of an identity element 1 to S. If S is a semi-
group, then S1 denotes the following monoid: S1 = S if |S| ≥ 2 and S has an identity
element; S1 = S ∪ 1 otherwise. Recall that if S is a one-element semigroup, then S1

is a two-element monoid.

Proposition 14 Let S be a semigroup with a zero element 0 such that S 	= S1. Then
the semigroup S1 is a left elemental annihilator semigroup if and only if every nonzero
left ideal of S is the left annihilator of a nonzero element of S.

Proof Assume that S1 is a left elemental annihilator semigroup. Let L 	= {0} be a left
ideal of S. Then L is a left ideal of S1, and hence there is an element x ∈ S1 such that
Al(x) = L in S1. Since Al(1) = {0} in S1, we have x ∈ S. Since Al(0) = S1 in S1,
we have x 	= 0 and so Al(x) = L is also satisfied in S. Thus every nonzero left ideal
of S is the left annihilator of a nonzero element of S.

Conversely, assume that every nonzero left ideal of S is the left annihilator of a
nonzero element of S. It is clear that, in S1, Al(1) = {0} and Al(0) = S1. Let L be
a left ideal of S1 with L 	= {0} and L 	= S1. Then L is a nonzero left ideal of S and
hence there is a nonzero element x ∈ S such that Al(x) = L in S. It is obvious that
Al(x) = L is also satisfied in S1, because x 	= 0. Consequently S1 is a left elemental
annihilator semigroup. ��

4 Commutative elemental annihilator semigroups

A commutative semigroup S with a zero element is called an elemental annihilator
semigroup if every ideal of S is the annihilator of an element of S.

For an element a of a semigroup S, let J (a) denote the principal ideal of S generated
by a. It is known that J (a) = a ∪ aS ∪ Sa ∪ SaS. If S is commutative, then J (a) =
a ∪ aS. From Lemma 9 it follows that if S is a commutative elemental annihilator
semigroup then J (a) = aS.

A semigroup S is called a principal ideal semigroup if every ideal I of S is principal,
that is, I = J (a) for some a ∈ S.

Theorem 15 Every commutative elemental annihilator semigroup is a principal ideal
semigroup.

Proof Let A be an arbitrary ideal of a commutative elemental annihilator semigroup
S. Since A(A) is an ideal of S, there is an element x ∈ S such that A(A) = A(x).
By Lemmas 4 and 9, A(x) = A(xS). Using Proposition 7, we get A = A(A(A)) =
A(A(x)) = A(A(xS)) = xS, because A and xS are ideals of S. Thus A is a principal
ideal. Consequently S is a principal ideal semigroup. ��
Proposition 16 Let S be a commutative elemental annihilator semigroup. Then, for
arbitrary elements a and b of S, A(b) = aS if and only if A(a) = bS.

Proof Assume A(b) = aS for elements a, b ∈ S. By Proposition 7, Lemmas 4, and
9, A(a) = A(aS) = A(A(b)) = A(A(bS)) = bS. This proves the proposition. ��
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750 A. Nagy

If S is a commutative semigroup, then Green’s equivalences L, R and J are con-
gruences on S, and L = R = J .

Proposition 17 If S is a commutative elemental annihilator semigroup, thenJ = αA,
where αA is the congruence on S defined by (a, b) ∈ αA if and only if A(a) = A(b).

Proof It is an immediate consequence of Proposition 10. ��

5 Commutative elemental annihilator monoids

By Corollary 8, every commutative elemental annihilator monoid is a dual semigroup.
Results related to dual monoids can be found in Chapter 7 of [6], however these results
cannot be used in our investigation. For example, it is assumed in [6, Theorem 7.2]
that the examined dual monoid S contains a nilpotent radical, and it is proved (using
further conditions) that the nilpotent radical is the unique maximal ideal of S such that
the complement of the nilpotent radical in S is a subgroup of S. In our study, we start
from the fact that every nontrivial commutative monoid S containing a zero element is
a disjoint union S = MS ∪ S×, where S× is the unit group of S and MS is the unique
maximal ideal of S. We prove in Theorem 18 that if S is a nontrivial commutative
elemental annihilatormonoid, then themaximal idealMS is nilpotent.Using this result,
we give a characterization of nontrivial commutative elemental annihilator monoids
in Theorem 23.

An element a of a semigroup S with a zero element 0 is said to be nilpotent if
there is a positive integer n such that an = 0. A semigroup containing a zero element
is called a nilsemigroup if all its elements are nilpotent. We say that a semigroup S
containing a zero element 0 is a nilpotent semigroup if there is a positive integer n
such that Sn = {0}.
Theorem 18 If S is a nontrivial commutative elemental annihilator monoid, then the
unique maximal ideal MS of S is a nilpotent semigroup.

Proof Let S be a nontrivial commutative elemental annihilator monoid. Then S is a
principal ideal semigroup by Theorem 15, and hence the ideals of S form a chain
with respect to inclusion by [5, 1.1. Theorem]. Let 0 denote the zero element of S,
and let a be an arbitrary element of MS . We show that a is nilpotent. Let g ∈ S×
be an arbitrary element. Then obviously J (g) = S. Since J (a) ⊆ MS , we have
(a, g) /∈ J . By Proposition 17, J = αA. Thus (a, g) /∈ αA. Since A(g) = {0}, we
have A(a) 	= {0}. Then, by [5, 1.5. Theorem], a is a nilpotent element. Consequently
MS is a nilsemigroup. As every ideal of S is a principal ideal, there exists an element
b ∈ MS such that MS = J (b) = bS. Since b is nilpotent, there is a positive integer
k such that bk = 0. Then, for arbitrary x1, . . . , xk ∈ MS , x1 · · · xk ∈ bk S = {0}, and
hence (MS)

k = {0}. Consequently MS is a nilpotent semigroup. ��
A semigroup S is called a cyclic semigroup if S is generated by a single element of

S. A semigroup S with a zero element is called a cyclic nilsemigroup if S is generated
by a single nilpotent element. A semigroup S is called a cyclic nilsemigroup with an
identity adjoined if S is the result of adjoining an identity to a cyclic nilsemigroup,
i.e., S has an identity 1 and S \ {1} is a cyclic nilsemigroup.
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Proposition 19 Let N be a commutative nilsemigroup. Then every nonzero ideal of N
is the annihilator of a nonzero element of N if and only if N is a cyclic nilsemigroup.

Proof The assertion of the proposition is trivial in that case when N contains one
element. Thus we can suppose that N is nontrivial.

Let N be a nontrivial cyclic nilsemigroup. We show that every nonzero ideal of N
is the annihilator of an element of N . Let N = {b, b2, . . . , bk−1, 0}, where k ≥ 2 is
the least integer with the property bk = 0. The ideals of N are {0} and Nt = J (bt ) =
{bt , . . . , bk−1, 0} (t = 1, . . . , k − 1). Since Nt = A(bk−t ) (t = 1, . . . , k − 1), every
nonzero ideal of N is the annihilator of a nonzero element of N .

To prove the converse assertion, assume that N is a nontrivial commutative nilsemi-
group having the property that every nonzero ideal of N is the annihilator of a nonzero
element of N . Since N 	= N 1, Proposition 14 implies that N 1 is a commutative ele-
mental annihilator monoid. Then, by Theorem 15, N 1 is a principal ideal semigroup.
If I is an ideal of N , then I is an ideal of N 1, and hence there is an element x ∈ N such
that I = xN 1 = x ∪ xN . Thus I is a principal ideal of N . Hence N is a principal ideal
nilsemigroup. Let b be an element of N such that N = b ∪ bN . Since N 	= {0}, we
have b 	= 0. Let k be the least positive integer with the property bk = 0. Then k ≥ 2.
We show that N = {b, b2, . . . , bk−1, 0}. Let t ∈ {1, 2, . . . , k − 1} be an arbitrary
integer. Then bt 	= 0 and Nt 	= {0}. Since Nt = (b ∪ bN )t ⊆ bt ∪ bt N ⊆ Nt , we
have

Nt = bt ∪ bt N .

If bt = bt x for some x ∈ N , then bt = bt xn for every positive integer n, from which
it follows that bt = 0. This is a contradiction. Thus

bt /∈ bt N .

Since Nt+1 = Nt N = (bt ∪ bt N )N = bt N ∪ bt N 2 ⊆ bt N ⊆ Nt+1, we have

bt N = Nt+1.

Thus

N = b ∪ bN = b ∪ N 2 = b ∪ (b2 ∪ b2N ) =
= {b, b2} ∪ b2N = {b, b2} ∪ N 3 = · · · = {b, b2, . . . , bk−1, 0}.

��
Proposition 20 For a commutative nilsemigroup N, the monoid N 1 is an elemental
annihilator semigroup if and only if N is a cyclic nilsemigroup.
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Proof If N is a commutative nilsemigroup, then N 	= N 1. Thus, by Proposition 14,
N 1 is an elemental annihilator semigroup if and only if every nonzero ideal of N is the
annihilator of a nonzero element of N . By Proposition 19, every nonzero ideal of N is
the annihilator of a nonzero element of N if and only if N is a cyclic nilsemigroup. ��

It is obvious that if S is a nontrivial commutative monoid with a zero element, then
the binary relation αorb on S defined by (a, b) ∈ αorb if and only if aS× = bS× is a
congruence on S. The αorb-classes of S are precisely the orbits of S under the action
by the unit group S×. The subgroup S× is a single orbit, and the remaining orbits form
a subsemigroup (in S/αorb) denoted by MS/αorb. Thus S/αorb = (MS/αorb)

1.

Lemma 21 If S is a nontrivial commutative monoid with a zero element, then every
ideal of S is a union of αorb-classes of S.

Proof Let S be a nontrivial commutative monoid with a zero element. Let K be an
arbitrary ideal of S. Assume a ∈ K and (a, b) ∈ αorb for elements a, b ∈ S. Since the
identity element of S× is the identity element of S, we have b ∈ bS× = aS× ⊆ K .
Thus K is a union of αorb-classes of S. ��
Proposition 22 Anontrivial commutativemonoid S with a zero element is an elemental
annihilator semigroup if and only if the factor semigroup S/αorb is an elemental
annihilator semigroup.

Proof By Theorem 13 and Lemma 21, it is obvious. ��
In the next theorem, we characterize nontrivial commutative elemental annihilator

monoids.

Theorem 23 The following three conditions on a nontrivial commutative monoid S
containing a zero element are equivalent.

(1) S is an elemental annihilator semigroup.
(2) The unique maximal ideal MS of S is a nilpotent semigroup, and the orbits of MS

under the action by the unit group S× of S form a cyclic nilsemigroup.
(3) The factor semigroup S/J is a cyclic nilsemigroup with an identity adjoined.

Proof (1) implies (2): Assume that S is an elemental annihilator semigroup. By Propo-
sition 22, S/αorb is an elemental annihilator monoid. By Theorem 18, the unique
maximal ideal MS of S is a nilpotent semigroup. Then the semigroup MS/αorb is a
commutative nilsemigroup. Since S/αorb = (MS/αorb)

1,MS/αorb is a cyclic nilsemi-
group by Proposition 20.

(2) implies (3): Assume that the unique maximal ideal MS of S is a nilpotent
semigroup and the orbits of MS under the action by the unit group S× of S form a
cyclic nilsemigroup. Then S is an elementary semigroup [3], and hence αorb = H in
S by [3, Proposition 5.1]. Since S is commutative, H = J . Thus S/J = S/αorb =
(MS/αorb)

1 is a cyclic nilsemigroup with an identity adjoined.
(3) implies (1): Assume that the factor semigroup S/J is a cyclic nilsemigroup

with an identity adjoined. Then, by Proposition 20, S/J is an elemental annihilator
semigroup. As every ideal of S is the union of J -classes of S, Theorem 13 implies
that S is an elemental annihilator semigroup. ��
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Next, we give a construction that can be used to obtain a nontrivial commutative
elemental annihilator monoid whose factor semigroup modulo αorb is isomorphic to
a given cyclic nilsemigroup with an identity adjoined.

If I is an ideal of a semigroup S, then the relation �I on S defined by (a, b) ∈ �I

if and only if a = b or a, b ∈ I is a congruence on S which is called the Rees
congruence on S determined by I . The equivalence classes of S mod �I are I itself
and every one-element set {a} with a ∈ S \ I . The factor semigroup S/�I is called
the Rees factor semigroup of S modulo I . We shall write S/I instead of S/�I . We
may describe S/I as the result of collapsing I into a single (zero) element, while the
elements of S outside of I retain their identity.

Let G be a group and H be a semigroup with a zero element 0. Then the direct
product G × {0} is an ideal of the direct product G × H . Let G
H denote the Rees
factor semigroup (G × H)/(G × {0}).
Theorem 24 Let G be a commutative group and N 1 be a cyclic nilsemigroup with
an identity adjoined. Then G
N 1 is a nontrivial commutative elemental annihilator
monoid such that the factor semigroup (G
N 1)/αorb is isomorphic to N 1.

Proof Let J be an ideal of the direct product G × N 1. Let I be the set of all elements
x ∈ N 1 with the property that (g, x) ∈ J for some g ∈ G. Then J ⊆ G × I . Let e
denote the identity element of G. If x ∈ I , that is, (g, x) ∈ J for some g ∈ G, then
(g, xy) = (g, x)(e, y) ∈ J for all y ∈ N 1, which implies that I is an ideal of N 1. It is
clear thatG× I is an ideal ofG×N 1.We show that J = G× I . By the above inclusion,
it is sufficient to show thatG× I ⊆ J . Let (g, x) ∈ G× I be an arbitrary element. Since
x ∈ I , there is an element h ∈ G such that (h, x) ∈ J . Since G is a group, there is an
element ξ ∈ G such that g = hξ . Thus (g, x) = (hξ, x) = (h, x)(ξ, 1) ∈ J , where 1
is the identity element of N 1. Consequently G × I ⊆ J , and hence J = G × I . Thus,
for every ideal J ofG×N 1, there is an ideal I of N 1 such that J = G× I . It is clear that
G
N 1 = (G × N 1)/(G × {0}) is a commutative monoid containing a zero element.
Let 0
 denote the zero of G
N 1. Recall that G
N 1 can be considered as the result
of collapsing G × {0} into the element 0
, while the elements of G × N 1 outside
of G × {0} retain their identity. We show that G
N 1 is an elemental annihilator
semigroup. Let J be an arbitrary ideal of G
N 1. Since A(0
) = G
N 1, we can
suppose that J 	= G
N 1. By the above, there is an ideal I of N 1 with I 	= N 1 such
that J = ((G× I )\(G×{0})∪{0
}. Since N 1 is an elemental annihilator semigroup,
there is an element x ∈ N 1 such that A(x) = I in N 1. Because of I 	= N 1, we get
x 	= 0. We show that A((g, x)) = J for an arbitrary g ∈ G. Since x 	= 0, we have
(g, x) 	= 0
. Let (a, h) be an arbitrary nonzero element of G
N 1. If (a, h) ∈ J , then
0 	= h ∈ I , and hence (g, x)(a, h) = (ga, xh) = 0
, because xh = 0 by h ∈ A(x).
If (a, h) /∈ J , then h /∈ I . Thus (g, x)(a, h) = (ga, xh) 	= 0
, because xh 	= 0 by
h /∈ A(x). Consequently A((g, x)) = J . Thus G
N 1 is a commutative elemental
annihilator monoid. The unit group of G
N 1 is G × {1}. The orbits of G
N 1 under
the action by its unit group are {0
} and the subsets G × {h} where h is an arbitray
nonzero element of N 1. Let φ denote the mapping of N 1 onto (G
N 1)/αorb defined
in the following way: ϕ(h) = G × {h} if h ∈ N 1 \ {0}; ϕ(h) = 0
 if h = 0. It is clear
that φ is bijective. Let x, y ∈ N 1 be arbitrary elements. If one of them is 0, then one
of φ(x) and φ(y) is 0
, and hence φ(xy) = φ(0) = 0
 = φ(x)φ(y). If xy = 0 and
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0 /∈ {x, y}, then φ(xy) = φ(0) = 0
 = (G × {x})(G × {y}) = φ(x)φ(y). If xy 	= 0,
then φ(xy) = G × {xy} = (G × {x})(G × {y}) = φ(x)φ(y). Consequently φ is a
homomorphism. Hence φ is an isomorphism of N 1 onto (G
N 1)/αorb. ��
Example 1 Let S be a semigroup, where S = {1, a, b, c, 0}, and the operation on S is
defined by the following Cayley table:

1 a b c 0
1 1 a b c 0
a a 1 c b 0
b b c 0 0 0
c c b 0 0 0
0 0 0 0 0 0

It is a matter of checking to see that S is isomorphic to the semigroup G
N 1, where
G is a two-element group and N is a two-element cyclic nilsemigroup. Then, by
Theorem 24, S is a commutative elemental annihilator monoid. The unit group of S
is {1, a}, and the αorb-classes of S are {0}, {b, c} and {1, a}. Thus S/αorb ∼= N 1, as
Theorem 24 states.

6 Appendix

If S is a commutative elemental annihilator semigroup, then every principal ideal of S
is the annihilator of an element of S. The next example shows that the converse is not
true, in general. We show an example of a commutative monoid S with a zero element
in which every principal ideal is the annihilator of an element of S, but S is not an
elemental annihilator semigroup.

Example 2 Let A = {1, a1, a2, . . . } and B = {0, b−1, b−2, . . . } be sets such that
A ∩ B = ∅. We define an operation on S = A ∪ B as follows:

1s = s1 = s and 0s = s0 = 0 for every s ∈ S,

aia j = ai+ j and b−i b− j = 0 for every positive integers i and j,

aib− j = b− j ai =
{
0, if i − j ≥ 0,
bi− j , if i − j < 0.

It is a matter of checking to see that this operation is associative. We present a case
as an example. If i − j + k ≥ 0, then

aib− j =
{
0, if i − j ≥ 0,
bi− j , if i − j < 0

and b− j ak =
{
0, if − j + k ≥ 0,
b− j+k, if − j + k < 0.

Thus

(aib− j )ak = 0 = ai (b− j ak).
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If i − j + k < 0, then i − j < 0 and − j + k < 0 from which we get

(aib− j )ak = bi− j ak = bi− j+k = ai (b− j+k) = ai (b− j ak).

The operation is also commutative. 1 is the identity element and 0 is the zero element
of S. Thus S is a commutative monoid with a zero element. It is easy to see that

1S = S = A(0), 0S = {0} = A(1)

and, for every positive integer i ,

ai S = {ai , ai+1, . . . , ; 0; b−1, b−2, . . . } = A(b−i ),

b−i S = {b−i , b−(i−1), . . . b−1, 0} = A(ai ).

Thus every principal ideal of S is the annihilator of an element of S. The ideal B of
S is not the annihilator of an element of S. Hence S is not an elemental annihilator
semigroup.
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