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Abstract
In this paper, we study a class of second-order abstract linear hyperbolic equations
with infinite memory that involve time-dependent unbounded linear operators. We
obtain the well-posedness and stability of solutions to those nonautonomous second-
order evolution equations under some appropriate assumptions. Our results generalize
a number of previously known results in the autonomous case. Some specific examples
are given to illustrate our abstract results, such as the nonautonomous Petrovsky type
and wave equations.
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1 Introduction

Fix a Hilbert space H once and for all, where 〈·, ·〉, and ‖ · ‖ are the inner product
and norm associated with it, respectively. We consider the following families of time-
dependent linear operators, A(t) : D(A(t)) ⊂ H → H and B(t) : D(B(t)) ⊂ H →
H , where D(A(t)) and D(B(t)) are the domains of the linear operators A(t) and B(t)
and let g : R+ → R+ be a given function.

Consider the following class of nonautonomous second-order hyperbolic equations
with infinite memory:

utt (t) + A(t)u(t) −
∫ ∞

0
g(s)B(t)u(t − s)ds = 0, ∀t ∈ R

∗+ := (0,∞), (1.1)

equipped with the following initial conditions

{
u(−t) = u0(t), ∀t ∈ R+,

ut (0) = u1, ∀t ∈ R+,
(1.2)

where utt and ut denote the second and first derivatives of u with respect to time t ,
the pair (u0, u1) is the initial data belonging to a suitable space, and u : R+ → H is
the unknown of the system (1.1)–(1.2).

The main goal of this paper is to investigate the well-posedness and asymptotic
stability of the solutions to the system (1.1)–(1.2) as time t approaches infinity, under
some appropriate assumptions on the family of time-dependent linear operators A(t)
and B(t), as well as the relaxation (kernel) function g.

In recent years, many mathematicians have been drawn to the problem of the well-
posedness and stability (respectively, instability) of solutions for evolution equations
with delay (respectively, memory), see, for example, [25–28]. Let us recall some
works that are relevant to the issue under consideration in this paper. Indeed, a large
literature exists in the case where the operators A(t) and B(t) are not time-dependent
(autonomous case), addressing the issues of existence, uniqueness, and asymptotic
behavior in time; see, for example, [1, 2], [9–15, 21, 24, 33, 34]. Depending on the
growth of g at infinity, different decay estimates (exponential, polynomial, or others)
have been obtained. Furthermore, in the case where the infinite memory is replaced
with a finite one and A(t) and B(t) are not time-dependent, numerous papers on this
topic are available in the literature, see, for example, [5, 6, 8, 18–20, 29–32, 36, 38–
46], and the references therein. See, for example, [3, 4, 16, 17, 22, 23, 37], and the
references therein in the autonomous case where a discrete or distributed time delay
is added to (1.1).

In this paper, it goes back to investigating the nonautonomous case, that is, the
case which involves time-dependent linear operators, A(t) and B(t). For more on
time-dependent linear operators, evolution families, and evolution equations and their
applications, we refer the reader to for instance [11, 25].

The following is the structure of the paper: in Sect. 2, we present our assumptions
on A(t), B(t), and g, as well as state and prove the well-posedness of (1.1)–(1.2)
(Theorem 2.1). Section 3 contains a statement and proof of the asymptotic stability
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of solutions to (1.1)–(1.2) under some additional assumptions on A(t), B(t), and g
(Theorem 3.1). Finally, in Sects. 4 and 5, we present some examples as well as discuss
some general remarks and open problems.

2 Well-posedness

In this section, we state our assumptions on A(t), B(t), and g, as well as establish
the well-posedness of the system (1.1)–(1.2). In the sequel, this setting requires the
following assumptions:

(A0) A(t) and B(t) are time-dependent positive definite self-adjoint linear operators
that satisfy,

D(A(t)) = D(A(0)), D(B(t)) = D(B(0)) for all t ∈ R+, (2.1)

and the embeddings

D(A(0)) ↪→ D(B(0)) ↪→ H

are dense and compact.
(A1) There exist two functions a1, b1 : R+ → R

∗+ of class C1 and another contin-
uous function b2 : R+ × R+ → R

∗+ such that

b1(t)‖w‖2 ≤ ‖B 1
2 (t)w‖2, ∀w ∈ D(B

1
2 (0)), ∀t ∈ R+, (2.2)

‖B 1
2 (t)w‖2 ≤ a1(t)‖A 1

2 (t)w‖2, ∀w ∈ D(A
1
2 (0)), ∀t ∈ R+ (2.3)

and

‖B 1
2 (t1)w‖2 ≤ b2(t1, t2)‖B 1

2 (t2)w‖2, ∀w ∈ D(B
1
2 (0)), ∀t1, t2 ∈ R+. (2.4)

(A2) For any t ∈ R+, there exist two time-dependent linear operators on H

Ã(t) : D(A(0)) → H and B̃(t) : D(B(0)) → H (2.5)

satisfying

lim
τ→t

[∥∥∥∥
(
A(τ ) − A(t)

τ − t
− Ã(t)

)
w1

∥∥∥∥+
∥∥∥∥
(
B(τ ) − B(t)

τ − t
− B̃(t)

)
w2

∥∥∥∥
]

= 0

(2.6)
for all (w1, w2) ∈ D(A(0)) × D(B(0)).

(A3) The non-increasing class C1 relaxation (kernel) function g : R+ → R+ satis-
fies

g0 :=
∫ ∞

0
g(s)ds <

1

a1(t)
, ∀t ∈ R+, (2.7)

123



354 W. Al-Khulaifi et al.

and there exists a positive constant θ1 such that

− g′(s) ≤ θ1g(s), ∀s ∈ R+. (2.8)

Remark 1 Let us recall that the assumptions (A0)–(A3) hold for a wide range of linear
operators A(t) and B(t), aswell as the relaxation function g. Indeed, consider� ⊂ R

N

to be an open bounded domain with smooth boundary � = ∂� where N ∈ N
∗, and

consider H = L2(�) to be endowed with its standard inner product:

〈 f , h〉 =
∫

�

f (x)h(x)dx

for all f , h ∈ L2(�).
Consider the case when A(t) and B(t) and g are given by

A(t) = −a(t)�, B(t) = −b(t)�, D(A(t)) = D(B(t))

= H2(�) ∩ H1
0 (�) and g(s) = θ0e

−θ1s,

where a, b : R+ → R
∗+ are of class C1 and θ0, θ1 ∈ R

∗+ such that

θ0

θ1
<

a(t)

b(t)
, ∀t ∈ R

∗+. (2.9)

To make this work, we carefully choose Ã(t) and B̃(t) as follows:

Ã(t) = −a′(t)� and B̃(t) = −b′(t)�,

where a1(t) = b(t)
a(t) , b1(t) = c0b(t), b2(t1, t2) = b(t1)

b(t2)
, and c0 is the Poincaré constant.

Under the previous assumptions and following a method derived from [10], we
consider a new auxiliary variable η with its initial data η0 defined by

{
η(t, s) = u(t) − u(t − s), ∀t, s ∈ R+,

η0(s) = η(0, s) = u0(0) − u0(s), ∀s ∈ R+,
(2.10)

and formulate (1.1)–(1.2) as a first-order nonautonomous evolution equation given by

{Ut (t) = A(t)U(t), ∀t ∈ R
∗+,

U(0) = U0,
(2.11)

where U = (u, ut , η)T , U0 = (u0(0), u1(0), η0)T ∈ H(t),

H(t) = D(A
1
2 (t)) × H × Lg(t),

Lg(t) =
{
w : R+ → D(B

1
2 (t)),

∫ ∞

0
g(s)‖B 1

2 (t)w(s)‖2ds < ∞
}

,
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and the time-dependent linear operators A(t) are given by

A(t)

⎛
⎝w1

w2
w3

⎞
⎠ =

⎛
⎜⎜⎜⎝

w2

(−A(t) + g0B(t)) w1 −
∫ ∞

0
g(s)B(t)w3(s)ds

−∂w3

∂s
+ w2

⎞
⎟⎟⎟⎠ (2.12)

for all

⎛
⎝w1

w2
w3

⎞
⎠ ∈ D(A(t)) where,

D(A(t)) =
{

(w1, w2, w3)
T ∈ D(A(t)) × D(A

1
2 (t)) × Lg(t),

∂w3
∂s ∈ Lg(t), w3(0) = 0, w3(s) ∈ D(B(t)), ∀s ∈ R+

}
. (2.13)

Based upon (2.1) and (2.4), the spaces H(t) and Lg(t) do not depend on t , that is,

H(t) = H(0) and Lg(t) = Lg(0), ∀t ∈ R+. (2.14)

The space Lg(t) is endowed with the classical inner product

〈w1, w2〉Lg(t) =
∫ ∞

0
g(s)

〈
B

1
2 (t)w1(s), B

1
2 (t)w2(s)

〉
ds.

Based upon (2.1) and (2.14), we have

D(A(t)) = D(A(0)), ∀t ∈ R+. (2.15)

On the other hand, keeping in mind the definition of η in (2.10), we have

⎧⎪⎪⎨
⎪⎪⎩

ηt (t, s) + ηs(t, s) = ut (t), ∀t, s ∈ R+,

ηs(t, s) = ut (t − s), ∀t, s ∈ R+,

η(t, 0) = 0, ∀t ∈ R+.

(2.16)

Therefore, we conclude from (2.12) and (2.16) that the systems (1.1)–(1.2) and (2.11)
are equivalent.

Using (2.3) and (2.7), we conclude that H(t) endowed with the inner product

〈
(w1, w2, w3)

T , (w̃1, w̃2, w̃3)
T
〉
H(t)

=
〈
A

1
2 (t)w1, A

1
2 (t)w̃1

〉
− g0

〈
B

1
2 (t)w1, B

1
2 (t)w̃1

〉

+ 〈w2, w̃2〉 + 〈w3, w̃3〉Lg(t)

is a Hilbert space with the following embedding D(A(t)) ↪→ H(t) being dense (see,
for example, [33]).

The following theorem ensures the well-posedness of (2.11):
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Theorem 2.1 Under assumptions (A0)-(A3), for any U0 ∈ H(0), the system (2.11)
has a unique (weak) solution

U ∈ C(R+,H(0)). (2.17)

Moreover, if U0 ∈ D(A(0)), then the solution to (2.11) is a classical solution, that is,

U ∈ C1(R+,H(0)) ∩ C(R+,D(A(0))). (2.18)

Proof To prove Theorem 2.1, we make use of the semigroup theory approach. The
proof is divided into three main steps.

Step 1. The first step consists of showing that the linear operators A(t) are dissi-
pative for all t ∈ R+. Indeed, as in [22], letting W = (w1, w2, w3)

T ∈ D(A(t)), we
obtain,

〈A(t)W ,W 〉H(t) =
〈
A

1
2 (t)w2, A

1
2 (t)w1

〉
− g0

〈
B

1
2 (t)w2, B

1
2 (t)w1

〉
−
〈
∂w3

∂s
, w3

〉
Lg(t)

+ 〈w2, w3〉Lg(t)

+
〈
(−A(t) + g0B(t))w1 −

∫ ∞

0
g(s)B(t)w3(s)ds, w2

〉
. (2.19)

It is clear from the definitions of A
1
2 (t) and B

1
2 (t), and the fact that H is a real Hilbert

space, that

〈(−A(t) + g0B(t)) w1, w2〉 = −
〈
A

1
2 (t)w2, A

1
2 (t)w1

〉
+ g0

〈
B

1
2 (t)w2, B

1
2 (t)w1

〉

and
〈
−
∫ ∞

0
g(s)B(t)w3(s)ds, w2

〉
= −

∫ ∞

0
g(s)

〈
B

1
2 (t)w3(s), B

1
2 (t)w2

〉
ds

= −〈w2, w3〉Lg(t) .

On the other hand, using (A3), we see that

lim
s→∞ g(s)B

1
2 (t)w3(s) = 0.

Next, integrating by partswith respect to s and using the propertyw3(0) = 0 (definition
of D(A(t))), we deduce that

−
〈
∂w3

∂s
, w3

〉
Lg(t)

= 1

2

∫ ∞

0
g′(s)‖B 1

2 (t)w3(s)‖2ds.

Consequently, inserting these three formulas in the previous identity (2.19), we get

〈A(t)W ,W 〉H(t) = 1

2

∫ ∞

0
g′(s)‖B 1

2 (t)w3(s)‖2ds ≤ 0, (2.20)
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as g is non increasing, which yields A(t) is dissipative.
Using (2.8) and the fact that g is non-increasing and w3 ∈ Lg(t), we have

∣∣∣∣
∫ ∞

0
g′(s)‖B 1

2 (t)w3(s)‖2ds
∣∣∣∣ = −

∫ ∞

0
g′(s)‖B 1

2 (t)w3(s)‖2ds

≤ θ1

∫ ∞

0
g(s)‖B 1

2 (t)w3(s)‖2ds
< ∞

and so the integral in the right hand side of (2.20) is well defined.
Step 2. In this step, we prove that I − A(t) is surjective for all t ∈ R+, where I

stands for the identity operator. Indeed, let F = ( f1, f2, f3)T ∈ H(t), we show that
there exists

W = (w1, w2, w3)
T ∈ D(A(t))

satisfying
(I − A(t))W = F, (2.21)

which is equivalent to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w2 = w1 − f1,

(A(t) − g0B(t) + I ) w1 +
∫ ∞

0
g(s)B(t)w3(s)ds = f1 + f2,

w3 + ∂w3

∂s
= w1 + f3 − f1.

(2.22)

We note that the third Eq. in (2.22) with w3(0) = 0 has the unique solution

w3(s) = (1 − e−s)w1 + e−s
∫ s

0
ey( f3(y) − f1)dy. (2.23)

Next, plugging (2.23) into the second Eq. in (2.22), we get

(A(t) − g1B(t) + I ) w1 = f̃ (t), (2.24)

where

g1 =
∫ ∞

0
g(s)e−sds

and

f̃ (t) = f1 + f2 −
∫ ∞

0
g(s)e−s

(∫ s

0
ey B(t)( f3(y) − f1)dy

)
ds.

To complete this step, we need to prove that (2.24) has a solution w1 ∈ D(A
1
2 (t)).

Then, substituting w1 in (2.23) and the first Eq. in (2.22), we obtain W ∈ D(A(t))
satisfying (2.21). Since g1 < g0, then A(t) − g1B(t) is a positive definite operator
thanks to (2.3) and (2.7). Therefore, A(t) − g1B(t) + I is a self-adjoint linear pos-
itive definite operator. Applying the Lax-Milgram Theorem and classical regularity
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arguments, we conclude that (2.24) has a unique solution w1 ∈ D(A
1
2 (t)) satisfying,

using (2.23),

(A(t) − g0B(t))w1 +
∫ ∞

0
g(s)B(t)w3(s)ds ∈ H .

This proves that I − A(t) is surjective. We note that (2.20) and (2.21) mean that,
for any t ∈ R+, −A(t) is a maximal monotone operator. Hence, using Lummer-
Phillips Theorem (see [35]), we deduce that A(t) is an infinitesimal generator of a
C0-semigroup of contraction on H(t).

Step 3. Condition (2.6) yields the applications h1, h2 : R+ → H given by

h1(t) = A(t)w1 and h2(t) = B(t)w2

are differentiable and their derivatives are, respectively,

h̃1(t) = Ã(t)w1 and h̃2(t) = B̃(t)w2.

Now, let
W = (w1, w2, w3)

T ∈ D (A(0))

and h : R+ → H(0) defined by h(t) = A(t)W .
We prove in this step that h is differentiable and that its derivative is the function

h̃(t) =

⎛
⎜⎜⎝

0(
− Ã(t) + g0 B̃(t)

)
w1 −

∫ ∞

0
g(s)B̃(t)w3(s)ds

0

⎞
⎟⎟⎠ .

Notice that, given (2.1), (2.5) and (2.13), we have h̃(t) ∈ H(0), for any t ∈ R+.
On the other hand, we have, for any τ, t ∈ R+ with τ �= t ,

h(τ ) − h(t)

τ − t
= 1

τ − t

⎛
⎝ 0

w

0

⎞
⎠ ,

where

w = −(A(τ ) − A(t))w1 + g0(B(τ ) − B(t))w1 −
∫ ∞

0
g(s)(B(τ ) − B(t))w3(s)ds.

Then

h(τ ) − h(t)

τ − t
− h̃(t) =

⎛
⎝ 0

w̃

0

⎞
⎠ ,
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where

w̃ = −
(
A(τ ) − A(t)

τ − t
− Ã(t)

)
w1 + g0

(
B(τ ) − B(t)

τ − t
− B̃(t)

)
w1

−
∫ ∞

0
g(s)

(
B(τ ) − B(t)

τ − t
− B̃(t)

)
w3(s)ds,

which yields

∥∥∥∥h(τ ) − h(t)

τ − t
− h̃(t)

∥∥∥∥H(t)
= ‖w̃‖

≤
∥∥∥∥
(
A(τ ) − A(t)

τ − t
− Ã(t)

)
w1

∥∥∥∥
+g0

∥∥∥∥
(
B(τ ) − B(t)

τ − t
− B̃(t)

)
w1

∥∥∥∥
+
∫ ∞

0
g(s)

∥∥∥∥
(
B(τ ) − B(t)

τ − t
− B̃(t)

)
w3(s)

∥∥∥∥ ds,

so we get from (2.6) that

lim
τ→t

∥∥∥∥h(τ ) − h(t)

τ − t
− h̃(t)

∥∥∥∥H(t)
= 0.

Based upon the properties shown in the previous steps, we conclude that A(·)
generates a unique evolution family onH(0) (see [35]). Consequently, (2.11) is well-
posed in the sense of Theorem 2.1. ��

3 Asymptotic stability

In this section, we look at the asymptotic behavior of solutions to (2.11). For that, we
assume the following additional conditions are met:

(A4) There exist three continuous functions, a2, ã, b̃ : R+ → R+ that satisfy the
following conditions,

‖A 1
2 (t)w‖2 ≤ a2(t)‖B 1

2 (t)w‖2, ∀w ∈ D(A
1
2 (0)), ∀t ∈ R+, (3.1)

‖ Ã 1
2 (t)w‖2 ≤ ã(t)‖A 1

2 (t)w‖2, ∀w ∈ D(A
1
2 (0)), ∀t ∈ R+, (3.2)

and
‖B̃ 1

2 (t)w‖2 ≤ b̃(t)‖B 1
2 (t)w‖2, ∀w ∈ D(B

1
2 (0)), ∀t ∈ R+. (3.3)
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(A5) The kernel g satisfies g0 > 0 and there exists a positive constant θ2 such that

g′(s) ≤ −θ2g(s), ∀s ∈ R+, (3.4)√
b̃(t) <

θ2

2
and

∥∥∥g0a1
√
b̃ + √

ã
∥∥∥
L∞(R+)

is small enough. (3.5)

Remark 2 Consider the example given in Remark 1. Observe that, for

a2(t) = a(t)

b(t)
, ã(t) = |a′(t)|

a(t)
and b̃(t) = |b′(t)|

b(t)
, ∀t ∈ R

∗+, (3.6)

such that (3.5) holds, the assumptions (A4) and (A5) are also fulfilled with θ2 = θ1.
In the autonomous case, we have ã = b̃ = 0, and then (3.5) is trivial.

Remark 3 In the sequel, we will make extensive use of Young’s inequality, which is
stated as follows: let ε : R+ → R

∗+ and 1 < p, q < ∞ be such that 1
p + 1

q = 1, then

αβ ≤ ε(t)α p + (pε(t))−
p
q q−1 βq , ∀t, α, β ∈ R+. (3.7)

When p = q = 2, we get the special case

αβ ≤ ε(t)α2 + 1

4ε(t)
β2, ∀t, α, β ∈ R+. (3.8)

Theorem 3.1 Assume that (A0)-(A5) hold. Then, for any U0 ∈ H(0), there exists a
positive constant λ such that the solution to (2.11) satisfies

‖U(t)‖2H(0) ≤ λeξ̃ (t)

M(t) − M2(t)
, ∀t ∈ R+, (3.9)

where the functions M(·), M2(·) and ξ̃ (·) are defined in the proof (see (3.43), (3.44),
(3.45), (3.48) and (3.50) below).

Proof Let us assume that (A0)-(A5) hold and let U0 ∈ H(0). The energy functional
E associated with the solution of (2.11) corresponding to U0 is given by

E(t) = 1

2
‖U(t)‖2H(0)

= 1

2

(∥∥∥A 1
2 (t)u(t)

∥∥∥2 + ‖ut (t)‖2 − g0
∥∥∥B 1

2 (t)u(t)
∥∥∥2

+
∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds
)

. (3.10)

In order to complete the proof of Theorem 3.1, we need the next lemmas, where
throughout the proofs, c, c1, c2, · · · , stand for some positive generic constants which
do not depend upon t , and c can be different from a given line to another.
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Lemma 3.2 The energy functional E(·) satisfies the estimate

E ′(t) = 1

2

∫ ∞

0
g′(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds − g0
〈
B̃

1
2 (t)u(t), B

1
2 (t)u(t)

〉

+
〈
Ã

1
2 (t)u(t), A

1
2 (t)u(t)

〉
+
∫ ∞

0
g(s)

〈
B̃

1
2 (t)η(t, s), B

1
2 (t)η(t, s)

〉
ds.

(3.11)

Proof Multiplying (1.1) by ut and integrating by parts, one gets,

1

2

d

dt
‖ut‖2+

〈
A

1
2 (t)u(t), A

1
2 (t)ut (t)

〉
−
〈∫ ∞

0
g(s)B

1
2 (t)u(t − s)ds, B

1
2 (t)ut (t)

〉
= 0.

(3.12)
Now

1

2

d

dt

∥∥∥A 1
2 (t)u(t)

∥∥∥2 =
〈
Ã

1
2 (t)u(t), A

1
2 (t)u(t)

〉
+
〈
A

1
2 (t)u(t), A

1
2 (t)ut (t)

〉
. (3.13)

A similar result can be obtained for B(·), that is, using the first Eq. in (2.10), one
obtains,

〈∫ ∞

0
g(s)B

1
2 (t)u(t − s)ds, B

1
2 (t)ut (t)

〉

=
〈∫ ∞

0
g(s)B

1
2 (t) [u(t) − η(t, s)] ds, B

1
2 (t)ut (t)

〉

= −
〈∫ ∞

0
g(s)B

1
2 (t)η(t, s)ds, B

1
2 (t)ut (t)

〉
+ g0

〈
B

1
2 (t)u(t), B

1
2 (t)ut (t)

〉

= −
〈∫ ∞

0
g(s)B

1
2 (t)η(t, s)ds, B

1
2 (t)ut (t)

〉
+ g0

2

d

dt

∥∥∥B 1
2 (t)u(t)

∥∥∥2

−g0
〈
B̃

1
2 (t)u(t), B

1
2 (t)u(t)

〉
. (3.14)

Using the first Eq. in (2.16), we obtain

1

2

∫ ∞

0
g(s)

∂

∂s

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds + 1

2

∫ ∞

0
g(s)

∂

∂t

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds
=
∫ ∞

0
g(s)

〈
B

1
2 (t)

∂

∂s
η(t, s), B

1
2 (t)η(t, s)

〉
ds

+
∫ ∞

0
g(s)

〈[
B̃

1
2 (t)η(t, s) + B

1
2 (t)

∂

∂t
η(t, s)

]
, B

1
2 (t)η(t, s)

〉
ds

=
∫ ∞

0
g(s)

〈
B

1
2 (t)ut (t), B

1
2 (t)η(t, s)

〉
ds

+
∫ ∞

0
g(s)

〈
B̃

1
2 (t)η(t, s), B

1
2 (t)η(t, s)

〉
ds. (3.15)
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Substituting (3.13)-(3.15) into (3.12) yields

1

2

d

dt
‖ut‖2 + 1

2

d

dt

∥∥∥A 1
2 (t)u(t)

∥∥∥2 −
〈
Ã

1
2 (t)u(t), A

1
2 (t)u(t)

〉
− g0

2

d

dt

∥∥∥B 1
2 (t)u(t)

∥∥∥2

+1

2

∫ ∞

0
g(s)

∂

∂s

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds + 1

2

∫ ∞

0
g(s)

∂

∂t

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds
−
∫ ∞

0
g(s)

〈
B̃

1
2 (t)η(t, s), B

1
2 (t)η(t, s)

〉
ds + g0

〈
B̃

1
2 (t)u(t), B

1
2 (t)u(t)

〉
= 0.

(3.16)

Integrating by parts with respect to s and using the properties

η(t, 0) = 0 and lim
s→∞ g(s) = 0,

the formula in (3.16) becomes,

1

2

d

dt

[
‖ut‖2 +

∥∥∥A 1
2 (t)u(t)

∥∥∥2 +
∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds − g0
∥∥∥B 1

2 (t)u(t)
∥∥∥2
]

−1

2

∫ ∞

0
g′(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds −
∫ ∞

0
g(s)

〈
B̃

1
2 (t)η(t, s), B

1
2 (t)η(t, s)

〉
ds

+g0
〈
B̃

1
2 (t)u(t), B

1
2 (t)u(t)

〉
−
〈
Ã

1
2 (t)u(t), A

1
2 (t)u(t)

〉
= 0, (3.17)

and the result follows. ��
Lemma 3.3 There exists a positive constant c1 such that the functional

I1(t) = 〈u(t), ut (t)〉 (3.18)

satisfies, for any continuous function ε1 : R+ → R
∗+,

I ′
1(t) ≤ ‖ut (t)‖2 − (1 − g0a1(t) − ε1(t)a1(t))

∥∥∥A 1
2 (t)u(t)

∥∥∥2

+ c1
ε1(t)

∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds. (3.19)

Proof Differentiating I1 with respect to t and using (1.1), we get

I ′
1(t) = ‖ut (t)‖2 −

∥∥∥A 1
2 (t)u(t)

∥∥∥2 +
〈∫ ∞

0
g(s)B

1
2 (t)u(t − s)ds, B

1
2 (t)u(t)

〉
.

(3.20)
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Using the same computations as those in (3.14) and then (2.3), one gets,

I ′
1(t) = ‖ut (t)‖2 −

∥∥∥A 1
2 (t)u(t)

∥∥∥2 + g0
∥∥∥B 1

2 (t)u(t)
∥∥∥2

−
〈∫ ∞

0
g(s)B

1
2 (t)η(t, s)ds, B

1
2 (t)u(t)

〉

≤ ‖ut (t)‖2 − (1 − g0a1(t))
∥∥∥A 1

2 (t)u(t)
∥∥∥2

−
〈∫ ∞

0
g(s)B

1
2 (t)η(t, s)ds, B

1
2 (t)u(t)

〉
. (3.21)

Applying the Cauchy–Schwarz inequality, Young’s inequality on the last term of this
inequality and (2.3) yields (3.19). ��
Lemma 3.4 There exists a positive constant c2 such that the functional

I2(t) =
〈
−ut (t),

∫ ∞

0
g(s)η(t, s)ds

〉
(3.22)

satisfies, for any continuous functions ε2, ε3 : R+ → R
∗+,

I ′
2(t) ≤ −(g0 − ε2(t)) ‖ut (t)‖2 + ε3(t)(1 + a1(t))

∥∥∥A 1
2 (t)u(t)

∥∥∥2

+
[
g0 + c2

(
1 + a2(t)

ε3(t)
+ 1

ε2(t)b1(t)

)]∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds.
(3.23)

Proof Differentiating with respect to t and exploiting Eq. (1.1) gives

I ′
2(t) =

〈
A

1
2 (t)u(t),

∫ ∞

0
g(s)A

1
2 (t)η(t, s)ds

〉
−
〈
ut (t),

∫ ∞

0
g(s)ηt (t, s)ds

〉

−
〈∫ ∞

0
g(s)B

1
2 (t)u(t − s)ds,

∫ +∞

0
g(s)B

1
2 (t)η(t, s)ds

〉
. (3.24)

Again from the first Eq. in (2.10) and in (2.16) we have, as for in (3.17),

−
〈
ut (t),

∫ ∞

0
g(s)ηt (t, s)ds

〉
= −

〈
ut (t),

∫ ∞

0
g′(s)η(t, s)ds

〉
− g0‖ut (t)‖2

(3.25)
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and

−
〈∫ ∞

0
g(s)B

1
2 (t)u(t − s)ds,

∫ ∞

0
g(s)B

1
2 (t)η(t, s)ds

〉

=
〈∫ ∞

0
g(s)B

1
2 (t)η(t, s)ds,

∫ ∞

0
g(s)B

1
2 (t)η(t, s)ds

〉

−g0

〈
B

1
2 (t)u(t),

∫ ∞

0
g(s)B

1
2 (t)η(t, s)ds

〉
. (3.26)

Now, from (3.25) and (3.26), Eq. (3.24) becomes,

I ′
2(t) = −g0‖ut (t)‖2 −

〈
ut (t),

∫ ∞

0
g′(s)η(t, s) ds

〉

+
〈
A

1
2 (t)u(t),

∫ ∞

0
g(s)A

1
2 (t)η(t, s) ds

〉

−g0

〈
B

1
2 (t)u(t),

∫ ∞

0
g(s)B

1
2 (t)η(t, s) ds

〉
(3.27)

+
∥∥∥∥
∫ ∞

0
g(s)B

1
2 (t)η(t, s) ds

∥∥∥∥
2

.

Using Cauchy–Schwarz inequality, Young’s inequality, (A1), (A3) and (A4) on the
last four terms yields, for the second term,

−
〈
ut (t),

∫ ∞

0
g′(s)η(t, s) ds

〉

≤ ε2(t)‖ut (t)‖2 + c

ε2(t)b1(t)

∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds, (3.28)

the third term

〈
A

1
2 (t)u(t),

∫ ∞

0
g(s)A

1
2 (t)η(t, s) ds

〉
≤ ε3(t)‖A 1

2 (t)u(t)‖2

+ca2(t)

ε3(t)

∫ ∞

0
g(s)‖B 1

2 (t)η(t, s)‖2 ds,
(3.29)

the fourth term

− g0

〈
B

1
2 (t)u(t),

∫ ∞

0
g(s)B

1
2 (t)η(t, s) ds

〉
≤ ε3(t)a1(t)‖A 1

2 (t)u(t)‖2

+ c

ε3(t)

∫ ∞

0
g(s)‖B 1

2 (t)η(t, s)‖2 ds,
(3.30)
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and the fifth term

∥∥∥∥
∫ ∞

0
g(s)B

1
2 (t)η(t, s) ds

∥∥∥∥
2

≤
(∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥ ds
)2

≤
(∫ ∞

0

√
g(s)

√
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥ ds
)2

≤
(∫ ∞

0
g(s) ds

)(∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds
)

≤ g0

∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds. (3.31)

Combining all the above estimates yields (3.23). ��
Lemma 3.5 Let M1 ∈ R

∗+, M : R+ → R
∗+ be a differentiable function and let

ε1, ε2 : R+ → R
∗+ be given continuous functions. Then the functional

F(t) = M1 I1(t) + I2(t) + M(t)E(t), (3.32)

satisfies

F ′(t) ≤ M ′(t)E(t)

−min{A1(t), A2(t), A3(t)}
(

‖ut (t)‖2 +
∥∥∥A 1

2 (t)u(t)
∥∥∥2

+
∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds
)

, (3.33)

where

A1(t) = g0 − ε2(t) − M1,

A2(t) = (1 − g0a1(t) − ε1(t)a1(t)) M1 − ε3(t)(1 + a1(t))

−
(
g0

√
b̃(t)a1(t) +

√
ã(t)

)
M(t)

and

A3(t) =
(

θ2

2
−
√
b̃(t)

)
M(t) − c1M1

ε1(t)
−
[
g0 + c2

(
1 + a2(t)

ε3(t)
+ 1

ε2(t)b1(t)

)]
.

Proof Direct differentiation gives

F ′(t) = M1 I
′
1(t) + I ′

2(t) + M ′(t)E(t) + M(t)E ′(t). (3.34)

We can also estimate every term of E ′(t) given in (3.11), using Cauchy–Schwarz
inequality and Young’s inequality with the help of (2.3) and (3.2)-(3.4) to get, for the
first term of E ′(t),
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1

2

∫ ∞

0
g′(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds ≤ −θ2

2

∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds,

the second term of E ′(t)

∣∣∣g0
〈
B̃

1
2 (t)u(t), B

1
2 (t)u(t)

〉∣∣∣ ≤ g0

√
b̃(t)

∥∥∥B 1
2 (t)u(t)

∥∥∥2 ≤ g0

√
b̃(t)a1(t)

∥∥∥A 1
2 (t)u(t)

∥∥∥2 ,

the third term of E ′(t)

〈
Ã

1
2 (t)u(t), A

1
2 (t)u(t)

〉
≤
√
ã(t)

∥∥∥A 1
2 (t)u(t)

∥∥∥2 ,

and the fourth term of E ′(t)
〈∫ ∞

0
g(s)B̃

1
2 (t)η(t, s)ds, B

1
2 (t)η(t, s)

〉
≤
√
b̃(t)

∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds.

Now, E ′(t) can be estimated as follows:

E ′(t) ≤ −θ2

2

∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds (3.35)

+
(
g0

√
b̃(t)a1(t) +

√
ã(t)

)∥∥∥A 1
2 (t)u(t)

∥∥∥2

+
√
b̃(t)

∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds (3.36)

Combining (3.11), (3.19), (3.23) and (3.35) leads to

F ′(t) ≤ −A1(t)‖ut (t)‖2 − A2(t)
∥∥∥A 1

2 (t)u(t)
∥∥∥2

−A3(t)
∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds + M ′(t)E(t), (3.37)

so, (3.33) follows. ��
Lemma 3.6 Let ε4, ε5 : R+ → R

∗+ be continuous functions. Then there exists a
positive constant c3 such that the functional F satisfies

(M(t) − M2(t))E(t) ≤ F(t) ≤ (M(t) + M2(t))E(t), (3.38)

where

M2(t) = c3
1 − g0a1(t)

max

{
ε5(t)M1 + ε4(t),

a1(t)M1

ε5(t)b1(t)
,

1

ε4(t)b1(t)

}
.
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Proof We see that

E(t) ≤ 1

2

[
‖ut (t)‖2 +

∥∥∥A 1
2 (t)u(t)

∥∥∥2 +
∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds
]

(3.39)

and, using (2.3),

E(t) ≥ 1 − g0a1(t)

2

[
‖ut (t)‖2 +

∥∥∥A 1
2 (t)u(t)

∥∥∥2 +
∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds
]

.

(3.40)
On the other hand, using Young’s inequality and assumption (A1), we have, for any
continuous functions ε4, ε5 : R+ → R

∗+,

|I1(t)| ≤ ε5(t)‖ut (t)‖2 + ca1(t)

ε5(t)b1(t)

∥∥∥A 1
2 (t)u(t)

∥∥∥2 (3.41)

and

|I2(t)| ≤ ε4(t)‖ut (t)‖2 + c

ε4(t)b1(t)

∫ ∞

0
g(s)

∥∥∥B 1
2 (t)η(t, s)

∥∥∥2 ds. (3.42)

Therefore, by combining (3.40)-(3.42), we get

|F(t) − M(t)E(t)| ≤ M2(t)E(t),

which gives (3.38). ��
We choose the functionsMj and ε j carefully. Thanks to the properties of g0, a1, b1, ã
and b̃ assumed in (A0)-(A5), one can choose

M1 = g0
2

, ε1(t) = 1 − g0a1(t)

2a1(t)
, ε2(t) = g20

2
a1(t), ε3(t) = g0(1 − g0a1(t))

8(1 + a1(t))
,

ε4(t) = 2√
b1(t)

(
4 + g20a1(t)

) , ε5(t) = g0a1(t)√
b1(t)

(
4 + g20a1(t)

)
and

M(t) > max

⎧⎨
⎩

c3
2(1 − g0a1(t))

√
4 + g20a1(t)

b1(t)
,

M3(t)

θ2
2 −

√
b̃(t)

⎫⎬
⎭ , (3.43)

where

M3(t) = g0 + g0
8

(1 − g0a1(t)) + c1g0a1(t)

1 − g0a1(t)

+c2

(
8(1 + a1(t))(1 + a2(t))

g0(1 − g0a1(t))
+ 2

g20a1(t)b1(t)

)
. (3.44)
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Then

A1(t) = g0
2

(1 − g0a1(t)),

A2(t) = g0
4

(1 − g0a1(t)) −
(
g0a1(t)

√
b̃(t) +

√
ã(t)

)
M(t),

A3(t) ≥ g0
8

(1 − g0a1(t)), M(t) > max

⎧⎨
⎩M2(t),

M3(t)

θ2
2 −

√
b̃(t)

⎫⎬
⎭

and

M2(t) = c3
2(1 − g0a1(t))

√
4 + g20a1(t)

b1(t)
. (3.45)

On the other hand, we assume that the second assumption in (3.5) holds such that

(
g0a1(t)

√
b̃(t) +

√
ã(t)

)
M(t) ≤ g0

8
(1 − g0a1(t)) (3.46)

(notice that (3.46) is possible as M2(t) and M3(t) depend neither on ã nor on b̃), so
we get

A2(t) ≥ g0
8

(1 − g0a1(t)),

and then, combining (3.33) and (3.39), we find

F ′(t) ≤
[
M ′(t) − g0

4
(1 − g0a1(t))

]
E(t),

therefore, according to (3.38),

F ′(t) ≤ ξ(t)F(t), (3.47)

where

ξ(t) = max

{
M ′(t) − g0

4 (1 − g0a1(t))

M(t) − M2(t)
,
M ′(t) − g0

4 (1 − g0a1(t))

M(t) + M2(t)

}
. (3.48)

By integrating (3.47), we arrive to

F(t) ≤ F(0)eξ̃ (t), (3.49)

where

ξ̃ (t) =
∫ t

0
ξ(s)ds. (3.50)

Consequently, exploiting again (3.38), we conclude (3.9). ��
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Remark 4 If M3
θ2
2 −

√
b̃
and M2 are bounded, then one can choose M as a constant satis-

fying

M > max

⎧⎨
⎩‖M2‖L∞(R+),

∥∥∥∥∥
M3

θ2
2 −

√
b̃

∥∥∥∥∥
L∞(R+)

⎫⎬
⎭ ,

therefore

ξ(t) = − g0
4 (1 − g0a1(t))

M + M2(t)
≤ − g0

4 (1 − g0a1(t))

M + ‖M2‖L∞(R+)

and
1

M − M2(t)
≤ 1

M − ‖M2‖L∞(R+)

,

hence (3.9) implies that there exist positive constants λ0 and λ1 such that

‖U(t)‖2H(0) ≤ λ0e
−λ1

∫ t
0 (1−g0a1(s))ds . (3.51)

From (3.44) and (3.45), we observe that M3
θ2
2 −

√
b̃
and M2 are bounded if and only if

⎧⎨
⎩

‖a1‖L∞(R+) < ∞, g0 < 1
‖a1‖L∞(R+)

, inf t∈R+ a1(t) > 0, inf t∈R+ b1(t) > 0,

‖a2‖L∞(R+) < ∞ and ‖b̃‖L∞(R+) <
θ22
4 ,

(3.52)
so (3.51) is reduced to the exponential stability estimate, for λ̃1 = λ1(1 −
g0‖a1‖L∞(R+)),

‖U(t)‖2H(0) ≤ λ0e
−λ̃1t . (3.53)

Remark 5 Let us construct a solution to (2.11)which converges to 0 as t → ∞. For that,
it is enough to construct aC0-semigroup (U(t))t≥0 that is exponentially stable. Indeed,
let� ⊂ R

N , for N ∈ N
∗, be an open bounded domain with smooth boundary � = ∂�

and let H = L2(�) equipped with its standard L2-topology. Consider, for m ∈ N
∗,

L = �m with D(L) = H2m(�) ∩ Hm
0 (�). Obviously, −L is a positive selfadjoint

linear operator on L2(�) with compact resolvent. Further, D((−L)
1
2 ) = Hm

0 (�).
Consider the case when A(t) = −a(t)�m , B(t) = −b(t)�m , D(A(t)) =

D(B(t)) = H2m(�) ∩ Hm
0 (�) with

a(t) = α + r(t), b(t) = β + k(t) for all t ∈ R+,

where α ≥ β > 0, θ1 = θ2 = 1 (yielding g0 = 1), r , k : R+ → R
∗+ are class C1

bounded functions such that ‖r ′‖L∞(R+) < ∞ and ‖k′‖L∞(R+) < ∞ and that,

i) inf
t∈R+

r(t) > β + ‖k‖L∞(R+);

ii)

√
‖k′‖L∞(R+)

β
<

1

2
; and

iii)
β + ‖k‖L∞(R+)

2α
+
√

‖r ′‖L∞(R+)

β
is small enough (to guarantee (3.46)).
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In view of the above, it is not hard to see that (3.52) holds. Therefore, the solution to
(2.11) converges to 0 as t → ∞.

4 Applications

In this section, we present two examples that fit into our abstract model, namely (1.1)–
(1.2). Let � ⊂ R

N be an open bounded domain with smooth boundary �, where
N ∈ N

∗. In both cases, we will assume that H = L2(�) is equipped its standard
L2-topology.

4.1 Wave equations

The abstract model (1.1)–(1.2) includes the following nonautonomous wave equation,

⎧⎪⎪⎨
⎪⎪⎩
utt (x, t) − a(t)�u(x, t) + b(t)

∫ ∞

0
g(s)�u(x, t − s)ds = 0, ∀(x, t) ∈ � × R

∗+,

u(x, t) = 0, ∀(x, t) ∈ � × R
∗+,

u(x,−t) = u0(x, t), ut (x, 0) = u1(x), ∀(x, t) ∈ � × R+,

(4.1)
where A(t) = −a(t)�, B(t) = −b(t)�, D(A(t)) = D(B(t)) = H2(�) ∩ H1

0 (�).
Theorems 2.1 and 3.1 hold true under the assumptions given in Remarks 1 and 2.

4.2 Petrovsky type systems

The following nonautonomous Petrovsky type system fits into our abstract model
(1.1)–(1.2),

⎧⎪⎪⎨
⎪⎪⎩
utt (x, t) + a(t)�2u(x, t) − b(t)

∫ ∞

0
g(s)�2u(x, t − s)ds = 0, ∀(x, t) ∈ � × R

∗+,

u(x, t) = ∂u
∂ν

(x, t) = 0, ∀(x, t) ∈ � × R
∗+,

u(x,−t) = u0(x, t), ut (x, 0) = u1(x), ∀(x, t) ∈ � × R+.

(4.2)
where A(t) = a(t)�2, B(t) = b(t)�2, D(A(t)) = D(B(t)) = H4(�)∩ H2

0 (�), and
assumptions of Remarks 1 and 2 yield both Theorems 2.1 and 3.1.

5 General comments and issues

Under some appropriate assumptions on the time-dependent operators A(t) and B(t),
as well as the relaxation (kernel) function g, we established the well-posedness and
asymptotic stability of the solutions to the system (1.1)–(1.2) as time t goes to infinity.
In light of our findings, we would like to propose the following questions, which, to
the best of our knowledge, remain unanswered:
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(1) Will we be in the presence of a discrete or distributed delay by adding

∫ ∞

0
f (s)C(t)ut (t − s)ds or f (t)C(t)ut (t − τ),

to (1.1), where C(t) is an operator, f : R+ → R is a function, and τ is a fixed
positive real number?

(2) Can we apply the previous theory to a larger class of relaxation functions g, that
is,

g′(s) ≤ −θ2(s)g(s), ∀s ∈ R+

instead of (3.4), where θ2 : R+ → R+ is a function?
(3) Canwe establish similar results when D(A(t)) and D(B(t)) are no longer constant

in time t?
(4) What about the damping case?

Acknowledgements This work began and was completed while the second and third authors were visiting
King Fahd University of Petroleum&Minerals, and the third author was visiting the University of Alabama
in Huntsville. The authors would like to express their gratitude to both institutions for their assistance and
hospitality.

References

1. Aassila, M., Cavalcanti, M.M., Domingos Cavalcanti, V.N.: Existence and uniform decay of the wave
equation with nonlinear boundary damping and boundary memory source term. Calc. Var. Partial Diff.
Equ. 15(2), 155–180 (2002)

2. Aassila, M., Cavalcanti, M.M., Soriano, J.A.: Asymptotic stability and energy decay rates for solutions
of the wave equation with memory in a star-shaped domain. SIAM J. Control Optim. 38(5), 1581–1602
(2000)

3. Apalara, T.A., Messaoudi, S.A., Mustafa, M.I.: Energy decay in thermoelasticity type III with vis-
coelastic damping and delay term. Electron. J. Diff. Equ. 115, 1–15 (2012)

4. Benaissa, A., Benaissa, A.K., Messaoudi, S.A.: Global existence and energy decay of solutions for
the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks. J. Math.
Phys. 53(12), 1–19 (2012)

5. Berrimi, S., Messaoudi, S.A.: Existence and decay of solutions of a viscoelastic equation with a
nonlinear source. Nonlinear Anal. 64(10), 2314–2331 (2006)

6. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Martinez, P.: General decay rate estimates for vis-
coelastic dissipative systems. Nonlinear Anal. 68(1), 177–193 (2008)

7. Cavalcanti, M.M., Domingos, V.N., Soriano, J.A.: Exponential decay for the solution of semilinear
viscoelastic wave equations with localized damping. Electron. J. Diff. Equ. 44, 14 (2002)

8. Cavalcanti,M.M.,Oquendo,H.P.: Frictional versus viscoelastic damping in a semilinearwave equation.
SIAM J. Control Optim. 42(4), 1310–1324 (2003)

9. Chepyzhov, V.V., Pata, V.: Some remarks on stability of semigroups arising from linear viscoelasticity.
Asymptot. Anal. 46(3–4), 251–273 (2006)

10. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Rational Mech. Anal. 37, 297–308
(1970)

11. Diagana, T.: Semilinear Evolution Equations and their Applications. Springer, Cham (2018)
12. Diagana, T., Hassan, J.H., Messaoudi, S.A.: Existence of asymptotically almost periodic solutions

for some second-order hyperbolic integrodifferential equations. Semigroup Forum 102(1), 104–119
(2021)

13. Fabrizio, M., Lazzari, B.: On the existence and asymptotic stability of solutions for linear viscoelastic
solids. Arch. Rational Mech. Anal. 116, 139–152 (1991)

123



372 W. Al-Khulaifi et al.

14. Giorgi, C., Muñoz Rivera, J.E., Pata, V.: Global attractors for a semilinear hyperbolic equation in
viscoelasticity. J. Math. Anal. Appl. 260, 83–99 (2001)

15. Guesmia, A.: Asymptotic stability of abstract dissipative systems with infinite memory. J. Math. Anal.
Appl. 382, 748–760 (2011)

16. Guesmia, A.: Well-posedness and exponential stability of an abstract evolution equation with infinite
memory and time delay. IMA J. Math. Control Inform. 30(4), 507–526 (2013)

17. Guesmia, A.: Some well-posedness and general stability results in Timoshenko systems with infinite
memory and distributed time delay. J. Math. Phys. 55, 1–40 (2014)

18. Guesmia, A., Messaoudi, S.: General energy decay estimates of Timoshenko systems with frictional
versus viscoelastic damping. Math. Meth. Appl. Sci. 32(16), 2102–2122 (2009)

19. Guesmia, A., Messaoudi, S.: A general decay result for a viscoelastic equation in the presence of past
and finite history memories. Nonlinear Anal. Real World Appl. 13(1), 476–485 (2012)

20. Guesmia, A., Messaoudi, S., Said-Houari, B.: General decay of solutions of a nonlinear system of
viscoelastic wave equations. NoDEA Nonlinear Diff. Equ. Appl. 18(6), 659–684 (2011)

21. Guesmia, A., Messaoudi, S., Soufyane, A.: On the stabilization for a linear Timoshenko system with
infinite history and applications to the coupled Timoshenko-heat systems. Electron. J. Diff. Equ. 193,
1–45 (2012)

22. Guesmia, A., Tatar, N.: Some well-posedness and stability results for abstract hyperbolic equations
with infinite memory and distributed time delay. Commun. Pure Appl. Anal. 14(2), 457–491 (2015)

23. Kirane, M., Said-Houari, B.: Existence and asymptotic stability of a viscoelastic wave equation with
a delay. Z. Angew. Math. Phys. 62(6), 1065–1082 (2011)

24. Liu, Z., Zheng, S.: On the exponential stability of linear viscoelasticity and thermoviscoelasticity.
Quart. Appl. Math. 54(1), 21–31 (1996)

25. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. PNLDE Vol. 16,
Birkhäuser Verlag, Basel, (1995)

26. Lunardi, A.: Regular solutions for time dependent abstract integro-differential equations with singular
kernel. J. Math. Anal. Appl. 130(1), 1–21 (1988)

27. Lunardi, A., Sinestrari, E.: Cα-regularity for nonautonomous linear integro-differential equations of
parabolic type. J. Diff. Equ. 63(1), 88–116 (1986)

28. Prüss, J.: Evolutionary Integral Equations and Applications. Monographs in Mathematics, Vol. 87,
Birkhäuser Verlag, Basel, (1993)

29. Messaoudi, S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341,
1457–1467 (2008)

30. Messaoudi, S.A.: General decay of the solution energy in a viscoelastic equation with a nonlinear
source. Nonlinear Anal. 69(8), 2589–2598 (2008)

31. Messaoudi, S.A., Tatar, N.E.: Global existence and asymptotic behavior for a nonlinear viscoelastic
problem. Math. Sci. Res. J. 7(4), 136–149 (2003)

32. Messaoudi, S.A., Tatar, N.E.: Global existence and uniform stability of solutions for a quasilinear
viscoelastic problem. Math. Meth. Appl. Sci. 30(6), 665–680 (2007)

33. Muñoz Rivera, J.E., Naso, M.G.: Asymptotic stability of semigroups associated with linear weak
dissipative systems with memory. J. Math. Anal. Appl. 326, 691–707 (2007)

34. Pata, V.: Exponential stability in linear viscoelasticity with almost flat memory kernels. Commun. Pure
Appl. Anal. 9(3), 721–730 (2010)

35. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-
Verlag, New York (1983)

36. Said-Houari, B., Falcão Nascimento, F.: Global existence and nonexistence for the viscoelastic wave
equation with nonlinear boundary damping-source interaction. Commun. Pure Appl. Anal. 12(1),
375–403 (2013)

37. Said-Houari, B., Rahali, R.: A stability result for a Timoshenko system with past history and a delay
term in the internal feedback. Dynam. Syst. Appl. 20(2–3), 327–353 (2011)

38. Tatar, N.E.: Exponential decay for a viscoelastic problem with a singular kernel. Z. Angew. Math.
Phys. 60, 640–650 (2009)

39. Tatar, N.E.: On a large class of kernels yielding exponential stability in viscoelasticity. Appl. Math.
Comput. 215(6), 2298–2306 (2009)

40. Tatar, N.E.: How far can relaxation functions be increasing in viscoelastic problems? Appl. Math. Lett.
22(3), 336–340 (2009)

123



Well-posedness and stability results... 373

41. Tatar, N.E.: A new class of kernels leading to an arbitrary decay in viscoelasticity. Mediterr. J. Math.
10(1), 213–226 (2013)

42. Tatar, N.E.: On a perturbed kernel in viscoelasticity. Appl. Math. Lett. 24, 766–770 (2011)
43. Tatar, N.E.: Arbitrary decays in linear viscoelasticity. J. Math. Phys. 52, 1–12 (2011)
44. Tatar, N.E.: Uniform decay in viscoelasticity for kernels with small non-decreasingness zones. Appl.

Math. Comput. 218, 7939–7946 (2012)
45. Tatar, N.E.: Oscillating kernels and arbitrary decays in viscoelasticity. Math. Nachr. 285, 1130–1143

(2012)
46. Vicente, A.: Wave equation with acoustic/memory boundary conditions. Bol. Soc. Parana. Mat. 27(1),

29–39 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Well-posedness and stability results for some nonautonomous abstract linear hyperbolic equations with memory
	Abstract
	1 Introduction
	2 Well-posedness
	3 Asymptotic stability
	4 Applications
	4.1 Wave equations
	4.2 Petrovsky type systems

	5 General comments and issues
	Acknowledgements
	References




