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Abstract
We investigate the sets of countable discrete semigroups that force recurrence, that
is, the recurrent properties of a point along a subset of a countable semigroup action.
We show that a subset of a monoid forces recurrence (resp., forces minimality) if and
only if it contains a broken I P-set (resp., broken syndetic set), and forces infinite
recurrence implies it is contains a broken infinite I P-sets. As an example, we show
that every subset with positive upper Banach density of infinite countable amenable
groups forces infinite recurrence.

Keywords Recurrence · Semigroup actions · Minimality · Banach density

1 Introduction

By a topological dynamical system (or dynamical system for short) we mean a pair
(X ,G), where X is a compact metric space with a metric d and G is a topological
group or semigroup acting continuously on X . Throughout the paper, the sets of
integers, non-negative integers and positive integers are denoted by Z, Z+ and N,
respectively. When G = Z (resp. Z+) the action is generated by a homeomorphism
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(resp. a continuous map) T : X → X , and we usually denote the dynamical system
by (X , T ), which is called a cascade.

Recurrence is a basic property of topological dynamical systems. Let (X , T ) be a
cascade. Recall that a point x ∈ X is a recurrent point if there is some sequence of
positive integers ni → ∞ such that T ni x → x . Let Rec(X , T ) denote the set of all
recurrent points of (X , T ). The following result is the famous Birkhoff theorem (see
[10, 19, 34] for example).

Theorem 1.1 (Birkhoff) Rec(X , T ) is non-empty for every cascade (X , T ).

An important problem in topological dynamical systems is to investigate the recur-
rence of a point along some subset of N. A subset A of Z+ is called a topological
recurrence set if for every cascade (X , T ), there is some sequence {ni }∞i=1 in A such
that ni → ∞ and T ni x → x for some x ∈ X . Birkhoff’s Theorem means that
Z+ is a topological recurrence set. Amazingly, the notion of topological recurrence
sets in topological dynamical systems are close related to the coloring problem in
combinatorialmathematics, see e.g. [26, 34]. In [34],Weiss obtained an important char-
acterization of a topological recurrence set, which clarified the relationship between
recurrence sets and difference sets of syndetic sets.

Let (X , T ) be a cascade. It is natural to ask that what conditions are satisfied to
S ⊂ N such that there must be some recurrent point in the closure of {T nx : n ∈ S}
for every point x ∈ X . This topic has been studied by some authors, see, e.g., [11, 17,
21, 29]. Such a set is said to force recurrence in [11]. A well-know result implies that
if a subset ofN has positive upper density, then it forces recurrence (see [11, Theorem
2]), where the upper density of S ⊂ N is defined as

d(S) = lim sup
N→∞

|S ∩ [1, N ]|
N

.

A celebrated theorem of Furstenberg shows that the recurrence of topological dynam-
ical systems is closely related to I P-sets [19, Theorem 2.17]. This terminology was
derived from Furstenberg andWeiss in [20]. Following the idea of Furstenberg, Blokh
and Fieldsteel [11] showed that a subset ofN forces recurrence if and only if it contains
a broken I P-set.

The theory of group or semigroup actions has attracted a lot of attention by many
authors, for example, see works related to size and combinatorial properties [6], recur-
rence [1, 7, 8, 13, 15, 31], Lyapunov stability [9], topological entropy [25], sensitivity
and chaos [28, 30, 33], transitivity and mixing [12, 27, 32, 35, 36], etc. Especially,
Bergelson and McCutcheon [7] extended the notion of topological recurrence sets
from the additive semigroup N to arbitrary countable semigroups, and explored their
relationships with combinatorics.

In this paper, we focus on investigating the sets of countable discrete semigroups
that force recurrence, which following the idea in [11]. We introduce the notion of
force recurrence set for general semigroups. We prove that a subset of a monoid
forces recurrence (resp., forces minimality) if and only if it contains a broken I P-
set (resp., broken syndetic set), and forces infinite recurrence implies it is contains a
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broken infinite I P-sets. As an example, we show that every subset with positive upper
Banach density of infinite countable amenable groups forces infinite recurrence.

2 Force recurrence

Throughout this paper, we let G be an infinite countable discrete semigroup. A semi-
group G is a monoid if it has an identity e, and then we write G+ = G \ {e}. By a
topological dynamical system we mean that a triple (X ,G, π) (simple for (X ,G)),
where X is a compactmetric spacewith themetricd andπ : G×X → X , (g, x) �→ gx
is a continuous mapping satisfying

(1) π(e, x) = x for each x ∈ X if G has an identity e;
(2) π(s, π(t, x)) = π(st, x) for each s, t ∈ G and x ∈ X .

If a non-empty compact subset Y ⊆ X is G-invariant (i.e., gy ∈ Y for any g ∈ G and
y ∈ Y ), then (Y ,G) is called a subsystem of (X ,G).

For two dynamical systems (X ,G) and (Y ,G), their product system (X ×Y ,G) is
defined by the diagonal action: g(x, y) = (gx, gy) for all x ∈ X , y ∈ Y and g ∈ G.

Let (X ,G) be a dynamical system. A point x ∈ X is called a recurrent point if
N+(x,U ) is non-empty for any neighborhood U of x , where

N+(x,U ) = {g ∈ G+ : gx ∈ U }

is called the set of return times of the point x to U . Let Rec(X ,G) denote the set of
recurrent points of (X ,G).

Definition 2.1 We say that a set S ⊆ G forces recurrence if whenever (X ,G) is a
dynamical system and K ⊆ X is compact, and for some x ∈ X and all s ∈ S, sx ∈ K ,
we have K ∩ Rec(X ,G) 	= ∅.

In this section, we mainly provide a characterization of subsets of the semigroup
that force recurrence. Let G be a semigroup. For g ∈ G and S ⊂ G, denote

g−1S = {h ∈ G : gh ∈ S} and Sg−1 = {h ∈ G : hg ∈ S}.

Theorem 2.2 Let P be a non-empty family of infinite subsets of the semigroup G such
that

(1) for all S ∈ P , there is some g ∈ G+ such that g−1S ∩ S ∈ P;
(2) P has the Ramsey property, that is, S1 ∪ S2 ∈ P implies S1 ∈ P or S2 ∈ P .

Then S forces recurrence for all S ∈ P .

Proof We shall follow the idea of the proof of [11, Theorem 3]. Let S ∈ P , (X ,G)

be a dynamical system, K ⊆ X is compact, and x ∈ X satisfies sx ∈ K for all s ∈ S.
We will show that K ∩ Rec(X ,G) 	= ∅.
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Set K1 = K and S1 = S. Then we can find p1 ∈ G+ such that p−1
1 S1 ∩ S1 ∈ P .

This implies sx ∈ K1 ∩ p−1
1 K1 for every s ∈ p−1

1 S1 ∩ S1. It follows that K1 ∩ p−1
1 K1

is a non-empty compact subset of K1. Let

K1 ∩ p−1
1 K1 =

n1⋃

i=1

K1,i ,

where each K1,i is a non-empty compact subset of X with diam(K1,i ) < 1/2. For
i = 1, 2, · · · , n1, let S1,i = {s ∈ p−1

1 S1 ∩ S1 : sx ∈ K1,i }, then we have

p−1
1 S1 ∩ S1 =

n1⋃

i=1

S1,i .

Since P has the Ramsey property, one has S1,i1 ∈ P for some i1. Set

S2 = S1,i1 and K2 = K1,i1 .

Then we have S2 ∈ P , K2 ⊆ K1, diam(K2) < 1/2 and p1(K2) ⊆ K1.
We continue inductively. Assume that Sn , Kn and pn−1 have been found such that

Sn ∈ P , Kn ⊆ Kn−1, diam(Kn) < 1/n, sx ∈ Kn for all s ∈ Sn and pn−1(Kn) ⊆
Kn−1. Then we apply the above argument to Sn and Kn , there is pn ∈ G+ such that
p−1
n Sn ∩ Sn ∈ P . By the construction of Sn and Kn , we know that sx ∈ Kn ∩ p−1

n Kn

for any s ∈ p−1
n Sn ∩ Sn . Let

Kn ∩ p−1
n Kn =

mn⋃

i=1

Kn,i ,

where each Kn,i is a non-empty compact subset of X with diam(Kn,i ) < 1/(n + 1).
Let Sn,i = {s ∈ p−1

n Sn ∩ Sn : sx ∈ Kn,i }. Then

p−1
n Sn ∩ Sn =

mn⋃

i=1

Sn,i ,

which follows that Sn,in ∈ P for some in . Set

Sn+1 = Sn,in and Kn+1 = Kn,in .

This completes the inductive process.
By induction, we obtain a sequence of non-empty compact sets {Kn}∞n=1 and a

sequence {pn}∞n=1 of G
+ such that

• K1 ⊇ K2 ⊇ · · · ⊇ Kn ⊇ · · · ;
• diam(Kn) < 1/n for each n ≥ 2;
• pn(Kn+1) ⊆ Kn for each n ≥ 1.

123



Force recurrence of semigroup... 555

Let y be the single point in
⋂∞

n=1 Kn . Then we have for allm, pm y ∈ Km . This shows
that y ∈ K ∩ Rec(X ,G). ��

Next we give a characterization of the sets of semigroups that force recurrence.
Before that, let us recall some notations. For a set A, denote by P f (A) the set of all
finite non-empty subsets of A.

Definition 2.3 Let G be a semigroup. Given a sequence {pn}∞n=1 in G, the I P-set
generated by the sequence is defined by

FP({pn}∞n=1) =
{

∏

n∈F
pn : F ∈ P f (N)

}
, where

∏

n∈F
pn = pn1 · pn2 · . . . · pnk

for F = {n1, n2, . . . , nk} ∈ P f (N) with n1 < n2 < · · · < nk .
For each L ∈ N, the initial L-segment of FP({pn}∞n=1) is defined as

FP({pn}Ln=1) =
{

∏

n∈F
pn : F ∈ P f ({1, . . . , L})

}
.

A subset S of G contains a broken I P-set if there is a sequence {pn}∞n=1 in G such
that for each L ∈ N, there is sL ∈ G with FP({pn}Ln=1) · sL ⊆ S.

Remark 2.4 The most interesting IP-sets are the infinite ones. However, If u is an
idempotent, then {u} is an I P-set. And even if G is a group, there may be many finite
I P-sets. For example any finite subgroup of G is an I P-set.

Let (X ,G) be a dynamical system. For x ∈ X and U ⊆ X , let N (x,U ) = {g ∈
G : gx ∈ U }. Following the idea of [19, Theorem 2.17], we can obtain

Lemma 2.5 Let (X ,G) be a dynamical system. If x ∈ Rec(X ,G), then N (x,U )

contains an I P-set for every neighborhood U of x.

Proof Suppose x is a recurrence point for (X ,G) and U is a neighborhood of U . Let
p1 ∈ G+ satisfy

p1x ∈ U . (2.1)

Now we find a neighborhood U1 of x such that U1 ⊂ U and

z ∈ U1 ⇒ p1z ∈ U . (2.2)

For such U1 we can find p2 ∈ G+ such that

p2x ∈ U1. (2.3)

Combining (2.1), (2.2) and (2.3), we have

gx ∈ U for g = p1, p2 and p1 · p2. (2.4)
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We continue inductively. Assume that different elements p1, p2, · · · , pn in G+ have
been found such that (2.4) is valid for all g = pn1 · pn2 · . . . · pnk with 1 ≤ n1 < n2 <

· · · < nk ≤ n. Then we find a neighborhood Un+1 of x such that Un+1 ⊂ U and

z ∈ Un+1 ⇒ gz ∈ U (2.5)

for all of the above mentioned g. Thus, if pn+1 ∈ G+ is defined such that

pn+1x ∈ Un+1, (2.6)

then (2.4) will be valid whenever g replaced by g · pn+1 or by pn+1. This completes
the inductive process, and it is easy to check that FP((pn)n∈N) ⊆ N (x,U ). ��

The following theorem is the product version of the Hindman’s theorem [22].

Theorem 2.6 (The finite product theorem, [4, 5, 37]) Let G be a semigroup. If S ⊂ G
is an IP-set, r ∈ N and S = ⋃r

i=1 Ci , then there is i ∈ {1, 2, . . . , r} such that Ci

contains an IP-set.

For a subset A of a topological space X , we denote clX (A) the closure of A in X .

Lemma 2.7 Let G be a monoid, let S ⊆ G, and let �2 = {0, 1}G be the product
space endowed with the product topology. Define the shift action of G on �2 by
hω(g) = ω(gh) for all g, h ∈ G and all ω ∈ �2. Then (�2,G) is a dynamical
system. Define 1S ∈ �2 by 1S(s) = 1 if and only if s ∈ S. Let X = cl�2{g1S : g ∈ G}.
Then X is an invariant closed subset of �2 and (X ,G) is a subsystem of (�2,G). Let
K = {x ∈ X : x(e) = 1}. Then K is a nonempty open and closed subset of X and
s1S ∈ K for all s ∈ S.

Proof Since G is countable, �2 is a compact metric space. Sets of the form {ω ∈ �2 :
ω(g) = i} for g ∈ G and i ∈ {0, 1} form a subbasis for the topology on �2 so K is
open and closed. It is routine to verify the rest of the assertions in the lemma. ��
Theorem 2.8 Suppose that G is a monoid. Then a subset S of G+ forces recurrence if
and only if it contains a broken IP-set.

Proof Let Pbip denote the collection of all subsets of G that contains a broken I P-set.
To prove S forces recurrence all S ∈ Pbip, we only show that the family Pbip satisfies
the conditions of Theorem 2.2.

Let S ∈ Pbip and suppose that S contains a broken FP({pn}∞n=1). Fix M ∈ N.
Then for each L ∈ N with L > M , we can choose sL ∈ G such that

FP({pn}Ln=1) · sL ⊆ S,

which implies

p−1
M S ∩ S ⊇

(
p−1
M · FP({pn}Ln=1) · sL

)
∩

(
FP({pn}Ln=1) · sL

)

⊇
[(

p−1
M · FP({pn}Ln=1)

)
∩

(
FP({pn}Ln=1)

)]
· sL

⊇ FP({pn}Ln=M+1) · sL .
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This shows that p−1
M S ∩ S contains a broken FP({pn}∞n=M+1).

Next, we will show that Pbip has the Ramsey property. Suppose that S ∈ Pbip
contains a broken FP({pn}∞n=1) and S = S1 ∪ S2. Without loss of generality, we may
suppose that S1 ∩ S2 = ∅. Let x be a point in {1, 2}S that defined by

x(s) = i if and only if s ∈ Si . (2.7)

For each N ∈ N, there exists some sN ∈ G such that

FP({pn}Nn=1) · sN ⊂ S. (2.8)

Let xN ∈ {1, 2}FP({pn}∞n=1) be defined by

xN (s) =
⎧
⎨

⎩

x(s · sN ), s ∈ FP({pn}Nn=1),

1, otherwise.

Since {1, 2}FP({pn}∞n=1) is a compact metric space, we can choose a subsequence
{N j }∞j=1 such that xN j converges to some y ∈ {1, 2}FP({pn}∞n=1). Write

Ci = {s ∈ FP({pn}∞n=1) : y(s) = i} for i = 1, 2.

By Theorem 2.6, there exists some i ∈ {1, 2} such that Ci is an I P-set, i.e., it contains
FP({qn}∞n=1) for some sequence {qn}∞n=1 in G. For each L ∈ N, we can find some

sufficiently large j(L) such that FP({qn}Ln=1) ⊆ FP({pn}N j(L)

n=1 ) and xN j(L)
(s) =

y(s) = i for all s ∈ FP({qn}Ln=1). This implies

x(s · sN j(L)
) = i for all s ∈ FP({qn}Ln=1).

Thus we have FP({qn}Ln=1) · sN j(L)
⊆ Si . Therefore, Si contains a broken

FP({qn}∞n=1).
Conversely, suppose that S is a set that forces recurrence. Let �2, X , K and 1S

be as in Lemma 2.7. Then there is some point y ∈ K ∩ Rec(X ,G). By Lemma 2.5,
we know that N (y, K ) is an I P-set. So there is a sequence {pn}∞n=1 of G such that
FP({pn}∞n=1) ⊆ N (y, K ). This implies

y(s) = 1 for all s ∈ FP({pn}∞n=1). (2.9)

For each L ∈ N, there exists sL ∈ G such that sL1S ∈ V , where

V = {x ∈ X : x(s) = y(s) for all s ∈ FP({pn}Ln=1)}.

Thus, for every s ∈ FP({pn}Ln=1), one has

1S(s · sL) = sL1S(s) = y(s) = 1.
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This shows that

FP({pn}Ln=1) · sL ⊆ S. (2.10)

Therefore, S contains a broken FP({pn}∞n=1). ��

3 Force recurrence via Furstenberg family

In this section, we will consider more general forms of recurrence for semigroup
actions via Furstenberg family. Let P be a non-empty collection of subsets of the
semigroup G. We say that P is a Furstenberg family (or family for short) if it is
hereditary upward, i.e., S1 ∈ P and S1 ⊆ S2 implies S2 ∈ P .

For a family P , the block family of P , denote by bP , is the family consisting of
sets S ⊂ G for which there exists some P ∈ P such that for every finite subset F of
P one has F · sF ⊆ S for some sF ∈ G. It is easy to check that

bP = {S ⊆ G : (∃P ∈ P)(∀F ∈ P f (G))(∃sF ∈ G) such that (P ∩ F) · sF ⊆ S}.

3.1 Force family recurrence

Let P be a family of the semigroup G and (X ,G) be a topological dynamical system.
A point x ∈ X is called a P-recurrent point if N (x,U ) ∈ P for any neighborhood U
of x . Denote the set of all P-recurrent points of (X ,G) by RecP (X ,G). We note that
the recurrence in Sect. 2 can be regard as P+-recurrence, where P+ denote the family
of all non-empty subsets of G that have non-identity elements of G.

Definition 3.1 Let P be a non-empty family of the semigroup G. We say that a set
S ⊆ G forces P-recurrence if whenever (X ,G) is a dynamical system and K ⊆ X is
compact, and for some x ∈ X and all s ∈ S, sx ∈ K , we have K ∩ RecP (X ,G) 	= ∅.

Following the idea of Theorem 2.8, we have the following general result.

Theorem 3.2 Let P be a non-empty family of the monoid G. If S is a subset of G that
forces P-recurrence, then S ∈ bP .

Proof Let �2, X , K and 1S be as in Lemma 2.7. Clearly, s1S ∈ K for all s ∈ S. Thus
there exists a P-recurrent point y ∈ K . Notice that K is also a non-empty open subset
of X . Let P = N (y, K ). Then P ∈ P . For each non-empty finite subset F of P , there
exists sF ∈ G such that sF1S ∈ V , where

V = {x ∈ X : x(s) = y(s) for all s ∈ F}.

Thus, for every s ∈ F , one has

1S(s · sL) = sL1S(s) = y(s) = 1.

This shows that F · sL ⊆ S. Therefore, S ∈ bP . ��
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LetP be a family of the semigroup G. Denote byPforce the collection of all subsets
ofG that forceP-recurrence. It is easy to see thatPforce is a family, and it is not empty if
and only if RecP (X ,G) is non-empty for every topological dynamical system (X ,G).
In addition, a subset S of G forces P-recurrence if and only if whenever (X ,G) is a
dynamical system and x ∈ X , clX {gx : g ∈ S} ∩ RecP (X ,G) 	= ∅.
Theorem 3.3 Let P be a family of the monoid G. If Pforce is not empty, then we have

(1) Pforce has the Ramsey property, that is, S1 ∪ S2 ∈ Pforce implies S1 ∈ Pforce or
S2 ∈ Pforce;

(2) Pforce = bPforce.

Proof (1) Let S ∈ Pforce and S = S1 ∪ S2. If neither S1 nor S2 forces P-recurrence,
then there exist topological dynamical systems (X ,G), (Y ,G) and x ∈ X , y ∈ Y such
that neither K1 = clX {gx : g ∈ S1} nor K2 = clY {gy : g ∈ S2} containsP-recurrence
points. Consider the product system (X × Y ,G) and K = clX×Y {(gx, gy) : g ∈ S}.
Since S forces P-recurrence, there is some P-recurrence point (z1, z2) ∈ K . Without
loss of generality, we may assume that (z1, z2) ∈ clX×Y {(gx, gy) : g ∈ S1}. Then
z1 ∈ K1 is a P-recurrence point of (X ,G), which is a contradiction. Thus, Pforce has
the Ramsey property.

(2) It is obvious that Pforce ⊆ bPforce. Let S ∈ bPforce. Then there exists some
S̃ ∈ Pforce such that for every non-empty finite subset F of G, there exists sF ∈ G
such that (S̃ ∩ F) · sF ⊆ S.

Let (X ,G) be a topological dynamical system, K a compact subset of X and
x ∈ X such that sx ∈ K for all s ∈ S. Since G is countable, we can find an increasing
sequence {Fn}∞n=1 of non-empty finite subsets of G such that

F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · and
∞⋃

n=1

Fn = G.

Let zn = sFn x for all n ∈ N. Since X is a compact metric space, we can find z ∈ X and
a subsequence {ni }∞i=1 such that zni convergence to z. Given g ∈ S̃, then gsFni ∈ S,
and thus gzni ∈ K , for all sufficiently large i . By the continuity of g, we have gzni →
gz ∈ K . This shows that gz ∈ K for all g ∈ S̃. Since S̃ forces P-recurrence, there is
some P-recurrence point y ∈ K . Thus, S ∈ Pforce. ��

Denote by Pip the family of all sets that contains some I P-set. It is obvious that
bPip = Pbip. Thus, by Lemma 2.5, Theorems 2.8, 3.2 and 3.3, we have

Corollary 3.4 Suppose that G is a monoid and S is a subset of G+. Then the following
conditions are equivalent:

(1) S forces recurrence;
(2) S forces Pip-recurrence;
(3) S ∈ bPip.

Furthermore, we have

P+,force = Pip,force = bP+,force = bPip,force = bPip.
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3.2 Force infinite recurrence

Let (X ,G) be a dynamical system. A point x ∈ X is called a infinite recurrent point
if N (x,U ) is infinite for any neighborhood U of x . Denote by Pinf the family of
all infinite subsets of G. Then x is an infinite recurrence point if and only if it is a
Pinf -recurrent point.

The following lemma can be found in [35, Lemma 3.18].

Lemma 3.5 Let (X ,G) be a dynamical system. If x is an infinite recurrence point,
then N (x,U ) contains an infinite IP-set for every neighborhood U of x.

Similar to the proof of Theorem 2.2, we have the following result.

Theorem 3.6 Let P be a non-empty family of infinite subsets of the semigroup G such
that

(1) for all S ∈ P , there exist infinitely many g ∈ G such that g−1S ∩ S ∈ P;
(2) P has the Ramsey property, that is, S1 ∪ S2 ∈ P implies S1 ∈ P or S2 ∈ P .

Then S forces Pinf -recurrence for all S ∈ P .

Proof Let S ∈ P , (X ,G) be a dynamical system, K ⊆ X is compact, and x ∈ X
satisfies sx ∈ K for all s ∈ S. We will show that K ∩ RecPinf (X ,G) 	= ∅.

Set K1 = K and S1 = S. Then we can find p1 ∈ G such that p−1
1 S1 ∩ S1 ∈ P .

This implies sx ∈ K1 ∩ p−1
1 K1 for every s ∈ p−1

1 S1 ∩ S1. It follows that K1 ∩ p−1
1 K1

is a non-empty compact subset of K1. Let

K1 ∩ p−1
1 K1 =

n1⋃

i=1

K1,i ,

where each K1,i is a non-empty compact subset of X with diam(K1,i ) < 1/2. For
i = 1, 2, · · · , n1, let S1,i = {s ∈ p−1

1 S1 ∩ S1 : sx ∈ K1,i }, then we have

p−1
1 S1 ∩ S1 =

n1⋃

i=1

S1,i .

Since P has the Ramsey property, one has S1,i1 ∈ P for some i1. Set

S2 = S1,i1 and K2 = K1,i1 .

Then we have S2 ∈ P , K2 ⊆ K1, diam(K2) < 1/2 and p1(K2) ⊆ K1.
We continue inductively. Assume that Sn , Kn and pn−1 have been found such that

Sn ∈ P , Kn ⊆ Kn−1, diam(Kn) < 1/n, sx ∈ Kn for all s ∈ Sn and pn−1(Kn) ⊆
Kn−1. Then we apply the above argument to Sn and Kn , by Condition (1), there is
pn 	= pi for i = 1, 2, · · · , n − 1, such that p−1

n Sn ∩ Sn ∈ P . By the construction of
Sn and Kn , we know that sx ∈ Kn ∩ p−1

n Kn for any s ∈ p−1
n Sn ∩ Sn . Let
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Kn ∩ p−1
n Kn =

mn⋃

i=1

Kn,i ,

where each Kn,i is a non-empty compact subset of X with diam(Kn,i ) < 1/(n + 1).
Let Sn,i = {s ∈ p−1

n Sn ∩ Sn : sx ∈ Kn,i }. Then

p−1
n Sn ∩ Sn =

mn⋃

i=1

Sn,i ,

which follows that Sn,in ∈ P for some in . Set

Sn+1 = Sn,in and Kn+1 = Kn,in .

This completes the inductive process.
By induction, we obtain a sequence of non-empty compact sets {Kn}∞n=1 and a

sequence {pn}∞n=1 of G such that

• K1 ⊇ K2 ⊇ · · · ⊇ Kn ⊇ · · · ;
• diam(Kn) < 1/n for each n ≥ 2;
• pn(Kn+1) ⊆ Kn for each n ≥ 1;
• pi 	= p j for each i 	= j .

Let y be the single point in
⋂∞

n=1 Kn . Then we have for allm, pm y ∈ Km . This shows
that y ∈ K ∩ RecPinf (X ,G). ��

Next, we provide a characterization of subsets of the semigroup that force infinite
recurrence via infinite I P-sets. Let Pinf,ip denote the family of all subsets of the
semigroup G that contains some infinite I P-set. We have the following lemma:

Lemma 3.7 Let G be a semigroup which is either right or left cancellative. Then
bPinf,ip has the Ramsey property.

Proof This is established in Corollary 5.4 in the Appendix. ��
The idea is that the proof involves results about the Stone–Čech compactification

of G which are not needed for the rest of the results of this paper, so we leave it to an
Appendix.

Theorem 3.8 Suppose that G is a monoid and S ⊆ G. Statements (1) and (2) are
equivalent and imply statement (3). If G is either right or left cancellative, then all
three statement are equivalent.

(1) S forces Pinf -recurrence;
(2) S forces Pinf,ip-recurrence;
(3) S ∈ bPinf,ip,

Proof It follows directly from Lemma 3.5 and Theorem 3.2 that (1) ⇔ (2) ⇒ (3).
Now we only show that (3) ⇒ (1) if G is either right or left cancellative.
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By Theorem 3.6 and Lemma 3.7, it suffices to prove for all S ∈ Pinf,ip, there are
infinitely many g ∈ G such that g−1S ∩ S ∈ bPinf,ip. Let S ∈ bPinf,ip and suppose
that S contains a broken infinite I P-set FP({pn}∞n=1). Fix M ∈ N. Then for each
L ∈ N with L > M , we can choose sL ∈ G such that

FP({pn}Ln=1) · sL ⊆ S,

which implies

g−1S ∩ S ⊇
(
g−1 · FP({pn}Ln=1) · sL

)
∩

(
FP({pn}Ln=1) · sL

)

⊇
[(

g−1 · FP({pn}Ln=1)
)

∩
(
FP({pn}Ln=1)

)]
· sL

⊇ FP({pn}Ln=M+1) · sL .

for all g ∈ FP({pn}Mn=1), and thus g−1S ∩ S contains a broken infinite I P-set
FP({pn}∞n=M+1). Therefore, g

−1S ∩ S ∈ bPinf,ip for all g ∈ FP({pn}∞n=1). ��

3.3 Force minimality

Recall that a dynamical system (X ,G) is called minimal if it contains no proper
subsystem, i.e., the orbit orb(x,G) = {gx : g ∈ G} of x is dense in X for all x ∈ X . A
point x is called a minimal point if it belonging to someminimal subsystem of (X ,G).
Note that x is a minimal point of (X ,G) if and only if clX {gx : g ∈ G} is minimal.

Let G be a semigroup. A subset S ⊆ G is called syndetic if there exists a finite
subset F of G such that F−1S = ⋃

g∈F g−1S = G. Denote by Ps the family of all
syndetic sets in G.

It is a routine Zorn’s Lemma argument to show that any dynamical system contains
a minimal dynamical system. The proof of the following lemma can be found in [15,
Proposition 5.21] with the caution that they use the left-right switches of both the
definition of syndetic and the action of G on X .

Lemma 3.9 Let (X ,G) be a dynamical system and x ∈ X. Then x is a minimal point
if and only if it is an Ps -recurrent point.

Definition 3.10 We say that a set S ⊂ G forces minimality if whenever (X ,G) is a
dynamical system and K ⊆ X is compact, and for some x ∈ X and all s ∈ S, sx ∈ K ,
there exists a minimal subset non-disjoint from K .

Now we prove the following theorem.

Theorem 3.11 Let G be a monoid and S a subset of G. Then the following conditions
are equivalent:

(1) S forces Ps -recurrence;
(2) S forces minimality;
(3) S ∈ bPs ;
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Proof (1) ⇒ (2) Let S be a set that forces Ps-recurrence. Suppose that (X ,G) is a
dynamical system, K is a compact subset of X , and x ∈ X is a point such that sx ∈ K
for all s ∈ S. Then there exists a Ps-recurrence point z ∈ K . By Lemma 3.9, one has
z is a minimal point so z ∈ clX {gx : g ∈ G} ∩ K . Therefore, S forces minimality.

(2) ⇒ (3) Let S be a set that forces minimality. Let �2, X , K and 1S be as in
Lemma 2.7. Clearly, s1S ∈ K for all s ∈ S. By the force minimality, there exists
a minimal point y ∈ K . Notice that K is also a non-empty open subset of X . By
Lemma 3.9, one has N (y, K ) ∈ Ps. For each F ∈ P f (G), there exists sF ∈ G such
that sF1S ∈ V , where

V = {x ∈ X : x(s) = y(s) for all s ∈ F}.

Thus, for every s ∈ N (y, K ) ∩ F , one has

1S(s · sL) = sL1S(s) = y(s) = sy(e) = 1.

This shows that

(N (x, K ) ∩ F) · sL ⊆ S. (3.1)

Therefore, S ∈ bPs.
(3) ⇒ (1) Suppose that S ∈ bPs. Then there exists some S̃ ∈ Ps such that for every

F ∈ P f (G), there exists sF ∈ G such that

(S̃ ∩ F) · sF ⊆ S.

Now let (X ,G) be a dynamical system, K a compact subset of X and x ∈ X such
that sx ∈ K for all s ∈ S. Since G is countable, we can find an increasing sequence
{Fn}∞n=1 of finite subsets of G such that

F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · and
∞⋃

n=1

Fn = G.

Without loss of generality, we may assume that F1 ∩ S̃ 	= ∅. Pick some r ∈ F1 ∩ S̃,
and let zn = sFn x ∈ r−1K for all n ∈ N. By the compactness of K and the continuity
of r , we can find a subsequence {ni }∞i=1 such that zni convergence to z ∈ r−1K . Given
g ∈ r−1 S̃. Then we have rg ∈ S̃, which implies for all sufficiently large i ,

rgzni = (rg · sFni )x ∈ K .

By the continuity of rgwehave rgz ∈ K . This shows that gz ∈ r−1K for all g ∈ r−1 S̃.
Let F be a finite subset of G such that F−1 S̃ = G. Choose a finite subset H of G

such that F = r H . Then we can obtain

clX {gz : g ∈ G} ⊆
⋃

h∈H
(rh)−1K . (3.2)
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Indeed, for each g ∈ G, there is h ∈ H such that rhg ∈ S̃, which implies hg ∈ r−1 S̃,
and thus gz ∈ (rh)−1K . For the closed invariant subset clX {gz : g ∈ G} we can find
a non-empty minimal subset Y ⊆ clX {gz : g ∈ G}. Furthermore, we know that every
point in Y is Ps-recurrent by Lemma 3.9. Last, we only show that Y ∩ K 	= ∅. Pick
y ∈ Y , choose a sequence {gn}∞n=1 of G such that gnz → y. By (3.2), we know that
for each n, there exists some hn ∈ H such that rhngnz ∈ K . Since H is finite, we
may assume that hn is constantly equal to h. It follows that

rhgnz → rhy ∈ K .

Thus, rhy ∈ Y ∩ K . This completes the proof. ��

3.4 Force non-wandering

In this subsection, we study the non-wandering for semigroup actions. Let (X ,G) be
a dynamical system. For a non-empty familyP of non-empty sets of the semigroupG,
we say that a point x ∈ X isP-non-wandering if N (U ,U ) ∈ P for every neighborhood
U of x , where

N (U ,U ) = {g ∈ G : U ∩ g−1U 	= ∅}.

Denote the set of all P-non-wandering points of (X ,G) by �P (X ,G).

Definition 3.12 We say that a subset S ⊆ G forces P-non-wandering if whenever
(X ,G) is a dynamical system and K ⊂ X is compact, and for some x ∈ X and all
s ∈ S, sx ∈ K , then we have K ∩ �P (X ,G) 	= ∅.
Theorem 3.13 Let P be a non-empty family of non-empty sets of the semigroup G
such that

(1) right shift invariant: S ∈ P implies Sg−1 ∈ P for all g ∈ G;
(2) P has the Ramsey property.

Then S forces P-non-wandering for all S ∈ P .

Proof Let S ∈ P and K be a compact set in a dynamical system (X ,G) such that
for some point x ∈ X and all s ∈ S, sx ∈ K . Write K = ⋃n1

i=1 K1,i , where each
K1,i is a non-empty compact subset with diam(K1,i ) < 1. For i = 1, 2, . . . , n1, let
S1,i = {s ∈ S : sx ∈ K1,i }. Then we have S = ⋃n1

i=1 S1,i . Since P has the Ramsey
property, one has S1,i1 ∈ P for some i1 ∈ {1, 2, . . . , n1}. Set

S1 = S1,i1 and K1 = K1,i1 .

By induction,weobtain a sequenceof non-empty compact sets {Kn}∞n=1 and a sequence{Sn}∞n=1 ⊂ P such that

• K ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Kn ⊇ · · · ;
• S ⊇ S1 ⊇ S2 ⊇ · · · ⊇ Sn ⊇ · · · ;
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• diam(Kn) < 1/n for each n ≥ 1;
• sx ∈ Kn for all s ∈ Sn .

Let y be the single point in
⋂∞

n=1 Kn . Then for every neighborhood U of y, there
exists some nU such that KnU ⊂ U . Pick some s ∈ SnU , then we have sx ∈ KnU ⊂ U
and h(sx) = (hs)x ∈ KnU ⊆ U for all h ∈ SnU s

−1 ∈ P . This implies SnU s
−1 ⊂

N (U ,U ), and hence N (U ,U ) ∈ P . ��

4 Density of group and force recurrence

The notions of upper Banach density of group have been studied from several points
of view (see, for example, [2, 14]). Let G be a countable discrete infinite semigroup.
For a subset A in G and a finite set F ⊂ G, define

DF (A) = sup
g∈G

|A ∩ Fg|
|F | .

The upper Banach density of A is defined by

BD∗(A) = inf
F∈P f (G)

DF (A) (4.1)

Recall that an infinite countable discrete group G is called amenable if there exists
a sequence of finite subsets Fn ⊂ G such that for every g ∈ G,

lim
n→+∞

|gFn�Fn|
|Fn| = 0, (4.2)

where | · | denotes the cardinality of a set and � stands for the symmetric difference
of sets. A sequence satisfying condition (4.2) is called a Følner sequence (see [18]).
The basic example of an amenable group is the group G = Z

d for some d ∈ N, and
{Fn = [0, n − 1]d : n ∈ N} is a Følner sequence of G.

Lemma 4.1 Let G be a countably infinite discrete amenable group, let A ⊆ G such
that BD∗(A) > 0, and let F be a finite subset of G. There exists g ∈ G \ F such that
BD∗(A ∩ g−1A) > 0.

Proof This follows immediately from Proposition 2.2 (ii) of [3]. ��
The proof of Lemma 4.2 is adapted from the proof of [23, Theorem 11.11].

Lemma 4.2 Let G be a countably infinite discrete amenable group and let S ⊆ G such
that BD∗(S) > 0. Then S ∈ bPinf,ip.

Proof Let e be the identity of G and let D1 = S. By Lemma 4.1, pick g1 ∈ G \ {e}
such that BD∗(D1 ∩ g−1

1 D1) > 0.
Let n ∈ N and assume we have chosen (Dk)

n
k=1 and (gk)nk=1 such that for k ∈

{1, 2, · · · , n},
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(1) gk ∈ G and Dk ⊂ G;
(2) BD∗(Dk ∩ g−1

k Dk) > 0;
(3) if k < n, then Dk+1 = Dk ∩ g−1

k Dk ; and
(4) if k < n, then gk+1 /∈ FP({gt }kt=1).

Let Dn+1 = Dn ∩ g−1
n Dn and let F = FP({gt }nt=1) ∪ {e}. Pick by Lemma 4.1 some

gn+1 ∈ G \ F such that BD∗(Dn+1∩g−1
n+1Dn+1) > 0. One easily shows by induction

that for each n,

Dn+1 = S ∩
⎛

⎝
⋂

g∈FP({gt }nt=1)

g−1S

⎞

⎠ .

Let P = FP({gt }∞t=1). By hypothesis (4), P is an infinite I P-set. Given finite non-
empty F ⊂ P pick n ∈ N such that F ⊆ FP({gt }nt=1) and pick sF ∈ Dn+1. Then
F · sF ⊆ S so S ∈ bFinf,ip. ��
Theorem 4.3 Let G be an infinite countable discrete amenable group. If S ⊆ G has
positive upper Banach density, then S forces Pinf -recurrence.

Proof Since G is a group, this is an immediate consequence of Lemma 4.2 and The-
orem 3.8. ��
Question 4.4 Let G be an arbitrary countable discrete group or semigroup and let S
be a subset of G with positive upper Banach density. Must S force Pinf -recurrence?
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Appendix: When bPinf,ip has the Ramesey property

In this section we utilize the algebraic structure of the Stone–Čech compactification
βG of a discrete semigroup (G, ·). We shall assume that the reader is familiar with
the basic facts about this structure. For an elementary introduction see [24, Part I].

We shall show that if βG \ G is a subsemigroup of βG, in particular if G is either
right or left cancellative, then both Pinf,ip and bPinf,ip have the Ramsey property. An
exact characterization of when βG \ G is a subsemigroup of βG is given in [24,
Theorem 4.28].

Lemma 5.1 Assume that G is a semigroup, p is an idempotent in βG \G, and A ∈ p.
Then A contains an infinite I P-set. In fact there exists an injective sequence (xn)∞n=1
in G such that FP({xn}∞n=1) ⊆ A.
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Proof Let A� = {x ∈ A : x−1A ∈ p}. By [24, Lemma 4.14] if x ∈ A�, then x−1A� ∈
p. Choose x1 ∈ A�. Inductively let n ∈ N and assumewe have chosen injective (xt )nt=1
in G such that E = FP({xt }nt=1) ⊆ A�. Since p ∈ βG \ G, G \ {x1, x2, . . . , xn} ∈ p
so

⎛

⎝A� ∩
⋂

y∈E
y−1A�

⎞

⎠ \ {x1, x2, . . . , xn} ∈ p.

Pick xn+1 ∈
(
A� ∩ ⋂

y∈E y−1A�
)

\ {x1, x2, . . . , xn}. ��
Lemma 5.2 Assume that G is a semigroup, βG \ G is a subsemigroup of βG, and
A ⊆ G. If A contains an infinite IP-set FP({xn}∞n=1), then there is an idempotent
p ∈ βG \ G such that for every m ∈ N, F P({xn}∞n=m) ∈ p.

Proof We claim that for each m ∈ N, FP({xn}∞n=m) is infinite. To see this let m > 1
and let E = FP({xn}m−1

n=1 ). Then

FP({xn}∞n=1) = E ∪ FP({xn}∞n=m) ∪
⋃

y∈E
y · FP({xn}∞n=m)

so one of the listed sets is infinite and thus FP({xn}∞n=m) is infinite.
Let A = {FP({xn}∞n=m) : m ∈ N}. Then A is a nested family of infinite sets

so by [24, Corollary 3.14], there is some q ∈ βG \ G such that A ⊆ q. That is,
(βG\G)∩⋂∞

m=1 FP({xn}∞n=m) 	= ∅. By [24, Lemma 5.11],
⋂∞

m=1 FP({xn}∞n=m) is a
semigroup so (βG\G)∩⋂∞

m=1 FP({xn}∞n=m) is a compact right topological semigroup
so by [16, Lemma 1], there is an idempotent p ∈ (βG \G)∩⋂∞

m=1 FP({xn}∞n=m). ��
Theorem 5.3 Assume that G is a semigroup, βG \ G is a subsemigroup of βG, and
A ⊆ G.

(1) A ∈ Pinf,ip if and only if there is an idempotent p ∈ βG \ G such that A ∈ p;
(2) A ∈ bPinf,ip if and only if there exists an idempotent p ∈ βG \ G and q ∈ βG

such that A ∈ p · q.
Proof (1) The necessity follows from Lemma 5.2 and the sufficiency follows from
Lemma 5.1.

(2) To establish the necessity, pick a sequence (xn)∞n=1 in G such that FP({xn}∞n=1)

is infinite and for eachm ∈ N there exists sm ∈ G such that FP({xn}mn=1)·sm ⊆ A. Pick
by Lemma 5.2 an idempotent p ∈ βG \G such that for everym ∈ N, FP({xn}∞n=m) ∈
p. Pick q ∈ βG such that {{sm : m > n} : n ∈ N} ⊆ q. We claim that A ∈ p · q.
To see this, it suffices to show that FP({xn}∞n=1) ⊆ {y ∈ G : y−1A ∈ q} by [24,
Lemma 4.12] so let z ∈ FP({xn}∞n=1) and pick F ∈ P f (N) such that z = ∏

t∈F xt .
Let n = max F . Then {sm : m > n} ∈ q and {sm : m > n} ⊆ z−1A.

For the sufficiency, pick an idempotent p ∈ βG\G and q ∈ βG such that A ∈ p ·q.
Let B = {y ∈ G : y−1A ∈ q}. Then B ∈ p by [24, Lemma 4.12] so pick by
Lemma 5.1 an injective sequence (xn)∞n=1 in G such that FP({xn}∞n=1) ⊆ B. Now let
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m ∈ N. It suffices to show that there exists sm ∈ G such that FP({xn}mn=1)·sm ⊆ A. Let
E = FP({xn}mn=1). Then E is a finite subset of B so we may pick sm ∈ ⋂

y∈E y−1A.
��

Corollary 5.4 Assume that G is a semigroup and βG \ G is a subsemigroup of βG.
Then Pinf,ip and bPinf,ip have the Ramsey property. In particular if G is infinite and is
either right cancellative or left cancellative, then Pinf,ip and bPinf,ip have the Ramsey
property.

Proof Let S1 and S2 be subsets of G. If S1 ∪ S2 ∈ Pinf,ip, pick an idempotent p ∈
βG \ G such that S1 ∪ S2 ∈ p. Since p is an ultrafilter, either S1 ∈ p or S2 ∈ p.
If S1 ∪ S2 ∈ bPinf,ip, pick an idempotent p ∈ βG \ G and q ∈ βG such that
S1 ∪ S2 ∈ p · q. Since p · q is an ultrafilter, either S1 ∈ p · q or S2 ∈ p · q. The “in
particular" conclusions follow from [24, Corollary 4.29]. ��
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