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Abstract
This survey is intended to provide an overview of one of the oldest andmost celebrated
open problems in combinatorial algebra: the word problem for one-relation monoids.
We provide a history of the problem starting in 1914, and give a detailed overview of
the proofs of central results, especially those due to Adian and his student Oganesian.
After showing how to reduce the problem to the left cancellative case, the second half
of the survey focuses on various methods for solving partial cases in this family. We
finish with some modern and very recent results pertaining to this problem, including
a link to the Collatz conjecture. Along the way, we emphasise and address a number
of incorrect and inaccurate statements that have appeared in the literature over the
years. We also fill a gap in the proof of a theorem linking special inverse monoids to
one-relation monoids, and slightly strengthen the statement of this theorem.
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Introduction

The word problem for one-relation monoids is one of the most fundamental open
problem in combinatorial algebra. The problem itself is deceptively simple to state.

Question Is the word problem decidable for every one-relation monoid?
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The fact that this problem has remained open since its conception more than a
century ago is in stark contrast to the same situation in the theory of one-relator
groups; among the first known results in this latter case was Magnus’ 1932 theorem
proving that the word problem is decidable for all one-relator groups. P. S. Novikov is
quoted as saying that the word problem for one-relation monoids “contains something
transcendental”, and part of the aim of this survey is to illustrate this. Although A.
I. Maltsev [106] wrote in his 1965 monograph on the theory of algorithms that the
problem “has nearly been solved by Adian”, we shall see that the mysterious and
complex world in which the problem lives had only just begun to unfurl at that point.
This survey is intended to provide a history of the above question, and the numerous
attempts to attack, simplify, and solve it. It is intended to be readable by researchers
with a graduate level of experience in combinatorial algebra.

An overview of the structure of the survey is as follows. In §1, we first present a
brief rundown on some elementary concepts necessary to appreciate the statement of
the question and some of terminology of the methods by which it will be attacked.
Then, in §2, an exposition of the early history of the problem and early results of
decidability is presented, in which the special and cancellative cases are treated. In §3,
we then present the two types of compression, which together with a further reduction
theorem can be used to prove a reduction result of the problem to some particular
difficult cases. In §4, we present Adian’s algorithmA, which, if its behaviour could be
properly understood, would solve the word problem for all one-relation monoids. We
also discuss the ramifications of a result of Sarkisian’s whichwas thought to be proved,
but where a gap was later discovered. In §5, we present some sporadic results that have
appeared in various publications and contexts. Finally, in §6, we present some modern
and future directions for the problem, including links with inverse monoids, in which
a gap in a proof of a theorem from 2001 by Ivanov, Margolis and Meakin is fixed, as
well as links with undecidability and the Collatz conjecture.

There have been some other surveys on the word problem for one-relationmonoids,
which we begin by mentioning. The 1984 survey by Adian and Makanin [14] deals
with general algorithmic questions in algebra, and mentions some results on the one-
relation case. There is also a 1988 survey by Lallement [95], which later appeared
with only minor modifications in a conference proceedings [96] and as part of lecture
notes [97]. However, this survey is rather brief, and does not detail much of the history
or ideas behind many of the proofs; furthermore, it includes some results which are
now only considered conjecture (as we shall see in §4.4). Adian’s 1993 brief survey
[9] suffers from this too, giving many statements which are conditional. That survey
additionally focuses primarily on the algorithmA. The only survey the author is aware
ofwhich addresses the now-conjectural results is the 2000 survey byAdian andDurnev
[13]. The scope of this survey is general decision problems, and the word problem
for one-relation monoids only occupies a comparatively small part. Finally, Cain and
Maltcev [35] have produced an extensive and excellent collection on the status of
various miscellaneous decision problems for one-relation monoids, but it gives no
details whatsoever regarding the word problem.

The contributions of authors writing in Russian to the area are numerous. For this
reason,wemake a linguistic remark. For the reader unfamiliarwithRussian-to-English
transliteration conventions, certain nameswhich arewritten in theCyrillic alphabet can
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and have been transliterated to the Roman alphabet in several different ways. This is
generally done phonetically, with many different standard methods of transliteration
existing. As Schein notes, “it is like transliterating the name Poincaré, written in
Russian, as Puankare in the Roman alphabet” [157]. This means that one person can
at times be split into several in the literature; this notoriously happened to the famous
semigroup theorist V. V. Wagner, who himself preferred the German spelling of his
name, although standard transliteration dictates that it ought to be Vagner. Personal
preference of the author is also important; for example, S. I. Adian published under
Adian, Adjan, and Adyan, but seems to have favoured Adian in later years. We give
below, for reference, a fixed set of spellings used in the survey of author names who
are affected by the above issues. The alternative transliterations of the same names
can be used to inform the reader of the correct pronunciation of the names.

Transliteration used Alternative transliteration(s)

Adian Adjan, Adyan
Anisimov Anı̄sı̄mov, Anisimoff
Greendlingera Grindlinger
Maltsev Malcev, Mal’cev, Mal’tsev
Markov Markoff
Matiyasevič Matijasevich, Matijasevic
Novikov Novikoff
Oganesian Hovhannisyan, Oganessjan, Oganesyan
Sarkisian Sarkisjan, Sarkisyan
Sushkevič Sushkevich, Suschkewitsch
Tseitin Ceitin, Tseı̆tin, Tsejtin
Wagner Vagner

aMartin Greendlinger was born in the US, but defected to the USSR in the 1960s, and his name was
transcribed in a non-involutive way between English and Russian

A remark on the sourcematerial that forms the backbone of this survey is necessary.
In general, most articles on the word problem for one-relation monoids are rather
self-contained, and not difficult to read on their own. On the contrary, the English
translations of certain Russian articles are rather poor, and at times completely change
theorems as written. Remarks have been added in this survey to alert the reader of
this. The author wishes to emphasise the contributions of S. I. Adian in this area
of research. His results and general interest in this problem, and related areas, have
been influential beyond measure. Even a cursory glance through the survey or its
bibliography will make this clear. This survey does not aspire to replace its sources;
the original proofs are all perfectly readable, and particular care has been taken to
make precise attributions of theorems and results. However, an overview of the main
ideas behind a given proof has been given at times, to aid in exposition. This has been
done in part for reasons of brevity, and in part because there is little to add to the
original proofs. The author hopes that the interested reader will pursue these articles
and experience these excellent proofs for themselves. After all, as N. H. Abel said,
one should study the masters and not the pupils.
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The author wishes to express his gratitude to R. D. Gray, V. Guba, D. Jackson, J.
Meakin, M. Volkov, and the reviewer for many helpful comments. Finally, a special
thanks is extended to G. Watier for his detailed and careful reading of an early version
of the survey, and comments which significantly improved the exposition in numerous
places.

1 Preliminaries

In this section, we shall give some background information, including defining all
terms used later and some remarks on the notation used.

1.1 Arghmgog

A finite set of symbols A is called an alphabet. Then A∗ denotes the free monoid
on A, which consists of all words of finite length over the alphabet A, together with
the operation of word concatenation. For example, using the charming example given
by A. Turing [173], if u, v ∈ A∗ are two such words (e.g. arghm and gog), then uv

represents the result of writing one after the other (i.e. arghmgog). The empty word in
A∗, being the identity element, is denoted interchangeably either by ε or 1, depending
on the context. For two words u, v ∈ A∗, the expression u ≡ v indicates graphical
equality, i.e. that the words are spelled the same. The length |u| of a word u ∈ A∗ is
defined inductively by setting |ε| = 0, and |u · a| = |u| + 1 for a ∈ A and u ∈ A∗.
For u ∈ A∗ the reversal urev is just u written backwards.

A rewriting system T (also called a semi-Thue system, named after the Norwegian
mathematician A. Thue [171]) on an alphabet A is a subset of A∗ × A∗. All rewriting
systems considered, as well as the presentations associated to them (see below), will be
assumed to be finite unless explicitly stated otherwise. A rewriting system T induces
a relation −→T on A∗ as follows: if u, v ∈ A∗, then u −→T v if and only if there exist
x, y ∈ A∗ and some rule (�, r) ∈ T such that u ≡ x�y and v ≡ xry. The reflexive
and transitive closure of −→T is denoted −→∗

T . The symmetric and transitive closure of
−→∗

T is denoted ←→∗
T . If (�, r) ∈ T , then replacing an occurrence of � by r (or vice

versa) in some word u ∈ A∗ is called an elementary transformation in T .
A rewriting system T on A is called terminating (also sometimes calledNoetherian)

if there exists no infinite chain u1 −→T u2 −→T . . .. The system is called locally
confluent if for all u, v, w ∈ A∗, we have u −→T v and u −→T w together imply
that there exists some z ∈ A∗ such that v −→∗

T z and w −→∗
T z. The system is called

confluent if for all u, v, w ∈ A∗, we have u −→∗
T v and u −→∗

T w together imply that
there exists some z ∈ A∗ such that v −→∗

T z and w −→∗
T z. If a rewriting system T

is terminating and confluent, then we say that T is complete (also sometimes called
convergent). A word is w ∈ A∗ is irreducible (modulo T ) if it does not contain any
subword that is a left-hand side of some rule of T . The set of irreducible elements of T
is denoted Irr(T ). If T is terminating, we can for every word w ∈ A∗ find an element
w′ ∈ Irr(T ) such that w −→∗

T w′ by “rewriting” w, i.e. continuously removing any
left-hand sides of rules we find as subwords of w until this cannot be done any further.
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In a complete rewriting system, there exists a unique such w′. Hence any complete
rewriting system has unique normal forms for all elements. The word problem for a
rewriting system T over A is the decision problem of, given any two words u, v ∈ A∗,
deciding in finite time whether u ←→∗

T v. Naturally, for a finite complete rewriting
system, this problem can be solved by computing the normal forms of the input words,
followed by graphical comparison.1

A monoid presentation Mon〈A | ui = vi (1 ≤ i ≤ p)〉 = Mon〈A | T 〉 is the
ordered pair (A, T ), where T is a rewriting system on A. We will abuse notation
and take such a monoid presentation to denote the monoid A∗/ ←→∗

T . This quotient,
called the monoid defined by the presentation Mon〈A | T 〉 is well-defined, as ←→∗

T is
clearly the smallest congruence containing T . We will abuse notation and substitute
“let M = Mon〈A | ui = vi (1 ≤ i ≤ p)〉” for “let M be the monoid defined by the
presentation Mon〈A | ui = vi (1 ≤ i ≤ p)〉”. We say that M is finitely presented.
If two words u, v ∈ A∗ are equal in A∗/ ←→∗

T , then we say that u = v in M . If
u, v ∈ A∗ are such that u can be obtained from v by an elementary transformation in
T , then we shall say that u can be obtained from v by an elementary transformation
in M = Mon〈A | T 〉.

We shall also speak of a group presentation Gp〈A | T 〉, which is a shorthand for
the monoid presentation Mon〈A ∪ A−1 | T ∪ {ai a

−1
i = 1, a−1

i ai = 1 | ai ∈ A}〉,
where A−1 is a set in bijective correspondence with A such that A ∩ A−1 = ∅, and
T is a subset of (A ∪ A−1)∗ × (A ∪ A−1)∗.

Unless explicitly specified, all (monoid or group) presentations in this survey will
be assumed to be finite.

Let M = Mon〈A | T 〉. We say that a word u ∈ A∗ is right invertible in M if there
exists some v ∈ A∗ such that uv = 1 in M . We define left invertibility analogously.
We say that u ∈ A∗ is invertible in M if it is left and right invertible. We say that u is
right divisible by v if there exists w ∈ A∗ such that u = wv in M , and left divisibility
is defined analogously. We say that M is right cancellative if for all u, v, x ∈ A∗ we
have that ux = vx in M implies u = v in M . We define left cancellative analogously.
We say that M is cancellative if it is left and right cancellative. Note that every group
is cancellative.

1.2 Notational remarks

We make some remarks on the notation used in this survey in contrast to other nota-
tion for the same concepts found elsewhere in the literature. As mentioned, we use
≡, to denote equality of words, i.e. equality in the free monoid. This is sometimes
denoted � in older articles, particularly Soviet ones. We sometimes use := to denote
a “definitional” equality, i.e. that the equality in question is also a definition. This is
sometimes denoted � in older articles, particularly Soviet ones. We use |u| to denote
the length of a word in the free monoid. This is sometimes denoted [u∂ or ∂(u) in
older articles, particularly Soviet ones, where ∂ is used to represent the first letter in the

1 However, the time complexity of the word problem even for finite complete rewriting systems can be
arbitrarily difficult, though decidable; i.e. for everyGrzegorczyk complexity classC there is a finite complete
rewriting system for which the word problem lies in C , cf. [19].
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Russian word dlina, meaning length. We denote the empty word as 1 or ε, depending
on notational convenience. This is sometimes denoted � in older articles, as well as
articles in theoretical computer science and set theory, with� indicating the first letter
of the German leer, meaning empty.

1.3 Decision problems

We give some examples of decision problems which are of central importance to
this survey. Let M = Mon〈A | R〉. Then the word problem for M has as input two
words u, v ∈ A∗, and outputs yes if u = v in M , and otherwise outputs no. The left
divisibility problem for M has as input two words u, v ∈ A∗ and outputs yes if u is left
divisible by v in M , and otherwise outputs no. The right divisibility problem is defined
entirely analogously. In general, these three problems are pairwise independent from
one another; indeed, the divisibility problems are trivially solvable whenever M is a
group. However, if M is given by a presentation in which all defining relations are non-
empty, and such that M is left cancellative, then it is not hard to show that decidability
of the left divisibility problem implies decidability of the word problem, by induction
on word length and noting that no non-empty word is equal to the empty word in such
a monoid. The analogous statement is true substituting right for left.

We note that as, in the context of this survey, a monoid M is always assumed to be
given by a finite presentation, say Mon〈A | R〉, we have that if two words u, v ∈ A∗
are equal in M , then we can find a sequence of single applications of relations from R
which transforms u into v. Thus, if the left (right) divisibility problem is decidable for
M , and one finds that the word u is left divisible by the word v, then one can always
effectively construct a “witness” word w such that u = vw in M (resp. u = wv in
M).

We also introduce the following useful piece of notation. Let M = Mon〈A | R〉. Let
Rrev ⊆ A∗ × A∗ be the rewriting system with rules (urev, vrev) whenever (u, v) ∈ R.
Let

M rev = Mon〈A | Rrev〉.

Then it is easy to see that the word problem for M reduces to the word problem
for M rev, and vice versa; for u = v in M if and only if urev = vrev in M rev. More
importantly, the left divisibility problem for M reduces to the right divisibility problem
for M rev, for given u, v ∈ A∗, there exists a word w ∈ A∗ such that u = wv in M if
and only if urev = vrevwrev in M rev. This trick will often be used.

In 1947, and almost simultaneously, Markov [111,112] and Post [149] proved the
existence of a finitely presented monoid with undecidable word problem. This was
quite a remarkable theorem, and can be, as noted by Crvenkovič [46], considered the
first undecidability result outside the foundations of mathematics. Providing monoids
with an undecidable word problem is also no mere idle pursuit if one is interested
in providing groups with an undecidable word problem, which was at times seen as
a primary motivation. Indeed, A. Turing’s famous proof [173] of the existence of a
finitely presented cancellativemonoidwith undecidable word problem plays a key rôle
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in Novikov’s 1955 detailed proof of the existence of a finitely presented group with
undecidable word problem.2 Turing’s proof is at times rather inaccurate, and should
best be read with the accompanying 1958 analysis of these issues by Boone [27].
We note that because of the large number of alterations required to make Turing’s
proof correct, Adian and Novikov [15] gave an argument in 1958 which modifies
Novikov’s original argument to circumvent any reference to cancellative monoids
with an undecidable word problem.

A contrasting theorem had been known for decades. This was a decidability result
byW.Magnus [99], a student ofM. Dehn’s, who translated Dehn’s geometric intuition
about the structure of one-relator groups into a purely combinatorial result [39].

Theorem 1.1 (Magnus, 1932) The word problem is decidable for every one-relator
group.

Here a one-relator group is one that can be defined by a group presentation with a
single defining relation Gp〈A | w = 1〉. By contrast, the best known undecidability
result for groups is, to this day, a 12-relator group with undecidable word problem due
to Borisov [28], and the word problem for k-relator groups when 2 ≤ k ≤ 11 remains
open in general. On the other hand, a much smaller gap is known for monoids. In the
sequel to his 1947 paper, Markov provided an example of a monoid with 33 defining
relations and undecidable word problem [112]. This was subsequently improved, in
1956 and 1958, respectively, byD. Scott andG. S. Tseitin,whoboth provided examples
of monoids with seven very short defining relations and undecidable word problem
[158,172]. Tseitin’s example remains the shortest, with respect to total length of the
defining relations, known example.

The number of defining relations sufficient for presenting a monoid with unde-
cidable word problem continued to creep down. In 1966, G. S. Makanin provided
an example showing that five (short!) defining relations suffice [102]; Ju. V. Matiya-
sevič [114] provided an example with the same number of relations (one of which
is rather long) in 1967. This record would not last for long; that same year, Matiya-
sevič improved this to give an example of a monoid with only three defining relations
and with undecidable word problem [113].3 The first two relations of this monoid
are very short; the third is very long (several hundred letters in either word). Three
relations remains the smallest number of defining relations known to suffice to present
a monoid with undecidable word problem. In this way, we have at this point arrived
at the question at the heart of this survey.

Question Is the word problem decidable for every one-relation monoid?

The deceptively simple nature of the question is a large part of what makes the word
problem for one-relation monoids such a fascinating problem; the fact that it remains
open even today makes it all the more intriguing.

2 Novikov’s original construction did not use Turing’s construction, but upon writing down the detailed
proof he realised the proof could be simplified in this way [14].
3 Adian [12] recalls that at the end of a 1966 seminar in Moscow given by Makanin regarding his five-
relation example, A. A. Markov conjectured that the number of relations could be reduced to three, and
suggested Makanin write to Matiyasevič. Apparently, Matiyasevič had already found such an example, as
it was published the next year.
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2 Early results (1914–1960)

When one is presented with a one-relation monoid Mon〈A | u = v〉 and faced with
the task of solving its word problem, one of the first questions one ought to ask is:
what are the trivial cases? We shall begin with these, and then present the theory of
cancellative and special one-relation monoids, two classes which were quickly dealt
with. The “father of semigroup theory”, A. K. Sushkevič, considered a problem about
semigroups—or indeed monoids—solved if it could be reduced to a problem about
groups [168, §38] (see also [54]). We shall see that this theme is very much present
in these early results, in which reductions to Magnus’ result on the word problem for
one-relator groups are made.

2.1 Equal length and self-overlap free words

The first observation one might make when presented with a one-relation monoid
Mon〈A | u = v〉 is that if |u| = |v|, then any elementary transformation of any
word will keep its length fixed. In particular, two words are equal only if their lengths
are equal; hence one can effectively enumerate all finitely many words equal to a
given word, giving an immediate solution to the word problem.4 This observation was
already made by Thue in 1914, in the very paragraph following his introduction of the
word problem for monoids [171, Problem I].

In fact, that same paragraph by Thue provides another trivial case. Suppose |u| >

|v|, and that u is self-overlap free, i.e. no non-trivial prefix of u is also a suffix of
u (such a word is often called a hypersimple word in the Soviet literature). Then the
rewriting systemwith the single rule u → v is locally confluent, as there are no critical
pairs; furthermore, it is terminating as |u| > |v|. By Newman’s lemma [122], it is a
finite complete rewriting system for the monoid, thus solving the word problem. This
is essentially the idea behind Thue’s proof, although this obviously has no reference
to the 1942 Newman’s lemma.

We pause at this moment to address a potentially misleading comment which has
appeared in the literature. In 1984, Book and Squier [26] proved that “almost all”
one-relation monoids have decidable word problem. This claim is made specific in
the following sense: for a positive integer k, fix an alphabet A of size k. For a positive
integer n > 1 let uk(n) be the number of self-overlap free words in A∗. Then Book
and Squier proved that the ratio uk(n)/kn tends to 1 as k, n → ∞ (though note that
this result was already observed by Nielsen [123], outside the context of one-relation
monoids).Aquick thought togetherwith this result yields that “almost all” one-relation
monoids have decidable word problem.

This result is less exciting than it first appears, as the following analysiswill indicate.
Indeed, for fixed k, the ratio uk(n)/kn does not tend to 1 as n → ∞. Indeed, for
k = 2, the ratio is approximately 0.2677868 (see OEIS sequence A094536 [1], and
also Nielsen [123] for other values of k). Hence this argument can only be used to
yield that around 27% of two-generated one-relationmonoidsMon〈a, b | u = v〉 have
4 While the obvious algorithm produces an exponential time solution, a detailed analysis due to Métivier
[117] shows that this word problem can in fact be solved in polynomial time.
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decidable word problem, which is not quite as exciting—by comparison, the fraction
of two-generated one-relation monoids Mon〈a, b | u = v〉 satisfying |u| = |v| is
quickly seen, by summing a geometric series, to be 1

3 . The asymptotic argument by
Book and Squier (as beautiful as the statement might be) also ignores the wild and
complex behaviour of one-relation monoids that we shall detail presently. It is hence
not particularly useful as a tool for gaining insight into the word problem for all one-
relation monoids. In spite of this, Book [24] frames the above density result as strong
evidence that the word problem is decidable for all one-relation monoids; we reiterate
that, in view of the above analysis, this framing is not accurate.5

Outside these trivial cases,6 the word problem for one-relation monoids appears to
have laid untouched for some decades, with seemingly little interest in the problem.
However, in the early 1960s, theSovietmathematicianS. I.Adianwould beginworking
on this problem, and would thus begin the development that would transform the area
into its modern form.

2.2 Cancellativity and embeddability

The study of cancellativity of monoids and their embeddability into groups goes back
to the very beginning of semigroup theory. Any submonoid of a group is cancellative,
and in the commutative case it is not hard to see (analogous to constructing a field
of fractions) that a cancellative monoid can be embedded in a group. Furthermore, it
is clear by universal considerations that if M = Mon〈A | R〉 is group-embeddable,
then M can be embedded in Gp〈A | R〉, i.e. the group with the “same presentation”
as M , by the identity map a �→ a. For example, the cancellative commutative monoid
Mon〈a, b | ab = ba〉, isomorphic with N × N, can be embedded by the identity map
in Gp〈a, b | ab = ba〉, isomorphic with Z × Z.

Sushkevič studied the problemof embedding cancellativemonoids in groups, and in
1935, he published a “proof” that being cancellative is also sufficient for embeddability
into a group [169]!7 This “proof”, however, would not be long-lived; in 1937, Maltsev
found a counterexample to Sushkevič’s “theorem”, i.e. an example of a cancellative
monoid which is not group-embeddable [103]. Sushkevič later that same year wrote a
monograph8 on the theory of generalised groups, inwhich he (unsuccessfully) attempts
to fix his erroneous proof, while simultaneously, slightly perplexingly, acknowledging
Maltsev’s counterexample [170]. Maltsev was correct, and would later produce a
countable list of necessary and sufficient conditions for a monoid to embed in a group,
such that no finite sublist is also necessary and sufficient [104,105]. Later, Adianwould
provide a monoid which is finitely presented as a cancellative monoid, but which is
not finitely presented as a monoid [4, Theorem 1]. Hollings has written an excellent

5 Adian [9, p.294] has made a brief remark to the same effect.
6 Thue, with remarkable foresight, also provides some examples (see [171, §VIII]) of other solvable word
problems using what is clearly recognisable as a prototypical form of the Knuth-Bendix completion algo-
rithm, half a century before this would be defined.
7 The author thanks Christopher Hollings for providing him with a copy of this paper.
8 Very fewphysical copies of thismonograph remain,most having been destroyed during themany battles in
the city of Kharkiv, Ukraine, duringWorldWar II (see [67]). The author of the present survey is in possession
of one of these physical copies, and is currently producing an English translation of the monograph [130].
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and thorough overview of the history of embedding monoids into groups, to which we
refer the interested reader [68].

As concluded above, being cancellative is not in general sufficient for a monoid to
embed in a group. One might instead ask what conditions are sufficient. S. I. Adian
seems to be have become interested in this problem—and cancellativity in general—
at an early stage; indeed, in 1955, in one of his first published papers, he proved the
existence of a finitely presented cancellative semigroup with undecidable divisibility
problems [3, Theorem 1]. Five years later, Adian [5] introduced a very simple criterion
which is sufficient for group-embeddability, and which furthermore can easily be read
off a presentation for the monoid. We now present this criterion.

Let M = Mon〈A | R〉. The left graph L(M) of M is defined as the undirected (not
necessarily simple) graph with vertex set A, and an edge (ai , a j ) for ai , a j ∈ A in
L(M) for every occurrence of a relation r = s in R in which ai is the initial letter of
r , and a j is the initial letter of s. We define the right graph R(M) in an analogous
way, substituting terminal letters for initial letters. We emphasise that we permit both
loops and multiple edges; see the examples below. We say that (the presentation for)
M is left cycle-free if L(M) is a forest, i.e. a disjoint union of trees, and otherwise
we say that M has left cycles.9 We define right cycle-free analogously, and we say
that M is cycle-free if it has no left or right cycles. We extend this definition to group
presentations in which the defining relations are all written over a positive alphabet.
Thus we may speak of e.g. the cycle-free group Gp〈a, b | ab = ba〉.
Example 2.1 Let M1 = Mon〈a, b, c | ab = ba2, ac = c2b〉. Then the left and right
graphs of M1 are given below.

c

ba

c

a b

L(M1) R(M1)

Hence M1 is both left and right cycle-free. In particular (see Theorem 2.5 below),
M1 is cancellative and embeds in the cycle-free group G1 = Gp〈a, b, c | ab =
ba2, ac = c2b〉. By a simple Tietze transformation, this latter group is a one-relator
group isomorphic with an HNN-extension of a free group of rank three, and the word
problem is hence straightforward to solve using the Britton-Novikov lemma and the
Nielsen procedure for decidability of the membership problem for subgroups of free
groups; alternatively, one can use Magnus’ breakdown procedure (cf. e.g. [115]). In
either case, having solved the word problem in G1 we hence conclude that M1 has
decidable word problem, as M1 ≤ G1.

9 The property left cycle-free has at times been translated from Russian to English as either left non-
cancellable or irreducible from the left; however, in poor translations, left cancellative has sometimes
become reducible from the left, which would be the opposite meaning, all combining to make for rather
confusing reading. Context, however, always makes such statements discernible and fixable with little
difficulty.
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Example 2.2 Let M2 = Mon〈a, b, c | b2ca = bcab, a2b = ba2c, ac2 = cb2a〉. Then
the left and right graphs of M2 are given below.

c

ba

c

a b

L(M2) R(M2)

Hence M2 has both left and right cycles. We can conclude nothing about the can-
cellativity of M2 based on these graphs, nor anything about its group-embeddability.
Solving the word problem in this monoid is left as a potentially somewhat interesting
challenge.

Example 2.3 Let M3 = Mon〈a, b, c, d | ab = cd, aeb = ced〉. Then the left and
right graphs of M3 are

c d

ba

c d

a b

L(M3) R(M3)

Hence M3 has both left and right cycles. We can conclude nothing about its cancella-
tivity based on these graphs; however, it can be shown that it is simultaneously both
cancellative and not group-embeddable (see below).

Example 2.4 Let � be an (undirected) finite graph with vertex set a1, . . . , ak . Let

A(�) = Gp〈a1, . . . , ak | ai a j = a j ai whenever (ai , a j ) ∈ E(�)〉.

Then A(�) is called a right-angled Artin group (RAAG). Evidently, the left and right
graphs of A(�) are both isomorphic to�, and hence the above presentation for A(�) is
a cycle-free presentation if and only if� is a finite forest. Hence, given any�, as the left
and right divisibility problems are trivially decidable in the monoid presentation with
the same generators and defining relations (often called a trace monoid), it follows
by a result due to Sarkisian [154, Theorem 3] that the word problem is decidable
for the RAAG A(�) whenever � is a finite forest. We remark that this is quite a
contorted method of solving the word problem; in fact the word problem is relatively
straightforward to solve in A(�) for arbitrary finite graphs � (see especially Crisp et
al. [45]). Furthermore, it is a consequence of a more general due to Paris [145] that any
trace monoid embeds in its corresponding right-angled Artin group; this is also easy
to prove using the theory of rewriting systems, cf. Chouraqui [41]. Right-angled Artin
groups play a key rôle in modern geometric group theory due to their rich subgroup
structure, as demonstrated in thework ofWise andHaglund on special cube complexes
(an area far beyond the scope of this survey; the reader is directed toWise’smonograph
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[178]) and the recent interest in solving equations over right-angled Artin groups, cf.
e.g. [38,159,160].

We emphasise that, given a presentation, it is easily decidable whether it has left or
right cycles, or indeed whether it is cycle-free. The key property of cycle-free monoids
is that one can show that any such monoids are in fact group-embeddable.

Theorem 2.5 ([5, Theorem 5]) Let M = Mon〈A | R〉 be a finitely presented monoid.
If M is left (right) cycle-free, then M is left (right) cancellative. If M is cycle-free, then
M is cancellative and can furthermore be embedded in Gp〈A | R〉 via the identity
map.

We make some remarks on this theorem before proceeding, and some develop-
ments following the work byAdian. The theorem has been generalised to all cycle-free
monoids (not just finitely presented), by Remmers [152], who used used the diagram
method of geometric semigroup theory. See Higgins [66, 1.§7 and 5.§3] for an excel-
lent overview of these methods. Recently, these diagram methods have been used to
generalise Adian’s theorem to certain situations in which some relations of the form
w = 1 (see §2.3) are also permitted [83]. Diagram methods have also been used for
studying left or right cycle-free monoids from the point of view of asphericity e.g. in
the work by Kilibarda [87] (see also the monograph by Guba and Sapir [64]). A. I.
Valitskas also strengthened the second half of Theorem 2.5 to prove that if a monoid
M = Mon〈A | R〉 is (1) left (right) cycle-free; and (2) right (left) cancellative; then
M is group-embeddable. This is a non-trivial strengthening, as being right cycle-free
implies being right cancellative, but the converse does not hold. Valitskas’ proof of
the strengthening was never published; a proof was given later by Guba [61, Theo-
rem 4]. Gerasimov [53] has also given some necessary and sufficient conditions for a
monoid to embed in a group. For a broad overview of various embeddability criteria
for monoids and general algebra, we refer the reader to the survey by Bokut’ [22].

Returning to cycle-free presentations and their relation to the word problem, we
note that as it is decidable whether or not a monoid (presentation) is cycle-free, being
cycle-free is not a necessary condition for cancellativity; indeed, it the problem of
deciding whether a given finitely presented monoid is cancellative is undecidable in
general. However, this can also be seen by way of concrete example, as provided by
Adian [5]10 as follows

Mon〈a, b, c, d, e | ab = cd, aeb = ced〉.

As witnessed above in Example 2.3, it has both left and right cycles, but it is not hard
to show that it is cancellative. One can also check that ae2b �= ce2d in this monoid,
and so it cannot possibly embed in the group with the same presentation.

Thus we have three properties for monoids, which in general are not equivalent:

(1) being cancellative;
(2) being group-embeddable;
(3) being cycle-free.

10 In that article, the second relation is misprinted as aed = ced. This is corrected in [7, Theorem II.7].
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Hence, as the examples above show, we only have (3) �⇒ (2) �⇒ (1), and the
reverse implications can fail already in the case of two defining relations. However,
in the case of one-relation monoids, it is not very hard to show that (1) �⇒ (3),
by induction on the number of elementary transitions required. Hence these three
properties are all equivalent in the class of one-relation monoids. Summarising, we
have the following theorem.

Theorem 2.6 ([5, Corollary 4 & 5]) Let M = Mon〈A | u = v〉 be a one-relation
monoid. Then the following are equivalent:

(1) M is cancellative;
(2) M embeds in Gp〈A | u = v〉;
(3) M is cycle-free.

Hence, if M is cycle-free then M has decidable word problem.

As a concrete example, anymonoid of the formMon〈a, b | aub = bva〉 is cancella-
tive, and the word problem is decidable in any such monoid.11 This monoid embeds
in Gp〈a, b | auba−1v−1b−1 = 1〉, to which we can readily apply Magnus’ procedure
for solving the word problem.We hence see that our first example of a non-trivial solv-
able word problem comes about as an example of Sushkevič’s principle of reducing
a semigroup problem to a group problem. With one non-trivial class of one-relation
taken care of, there is one class that stands out among the rest as being particularly
special.

2.3 Special monoids

A monoid is called special if it admits a monoid presentation having the form
Mon〈A | r1 = 1, r2 = 1, . . . , rk = 1〉. Of course, all groups are special monoids;
in fact, given a k-relator group, it always admits a (k + 1)-relation special monoid
presentation by a simple trick introduced already by von Dyck [50]: if G is given
by the presentation Gp〈a1, . . . , an | r1 = 1, . . . , rk = 1〉, where the ri are words
in the a j and their inverses, we can add a single generator x and a defining relation
a1a2 . . . an xan . . . a2a1 = 1. We can now clearly rewrite the wi as words over the
positive alphabet; for example, a−1

1 is equal to a2 . . . an xan . . . a2a1. The resulting
special monoid is isomorphic with G. There are, however, k-relator groups which are
not k-relation special monoids (see §5.2).

Now, not all specialmonoids are groups; the simplest example is the bicyclicmonoid
Mon〈b, c | bc = 1〉. There b is right (but not left) invertible, and c is left (but not
right) invertible. It is, in fact, not too hard to show that M has no non-trivial invertible
elements. Special monoids were first properly12 introduced to the literature and given
their name by G. S. Tseitin in 1958, who named them special associative systems

11 One-relation monoids of this form have been called Adian monoids by various authors (see e.g. [70,71]).
As we shall see, this name could equally be applied to a number of other families of one-relation monoids.
12 However, Thue explicitly solves the word problem for the special monoids Mon〈a, b, c | abbcab = 1〉
and Mon〈a, b | ababa = 1〉 (both of which are easily seen to be isomorphic with free groups). For more
details, see [171, Examples 2 & 3].
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(spetsialnaia assotsiativnaia sistema). However, the first systematic study of special
monoids came 2years later, by Adian [6].

We say that a special monoid Mon〈A | r1 = 1, r2 = 1, . . . , rk = 1〉 is �-
homogeneous if there exists � ∈ N such that |ri | = � for all 1 ≤ i ≤ k. One defines
�-homogeneous groups in precisely the same manner. In his paper, Adian gives a very
thorough overview of the proofs of the following central result regarding homoge-
neous special monoids; the full proofs were provided 2years later in his celebrated
monograph, see [7, III.Theorem 1].

Theorem 2.7 (Adian, 1960) Let M = Mon〈A | r1 = 1, r2 = 1, . . . , rk = 1〉 be
an �-homogeneous special monoid. If the word problem is decidable for all k-relator
�-homogeneous groups, then the word problem and the divisibility problems are decid-
able for M.

Note that for fixed k and �, there are only finitely many k-relator �-homogeneous
groups (up to a free factor of a free group). Furthermore, every one-relation special
monoid is �-homogeneous, yielding the following immediate corollary by applying
Magnus’ result.

Corollary 2.8 (Adian, 1960) Let M = Mon〈A | w = 1〉. Then the word problem and
divisibility problems for M is decidable.

Adian also proves certain undecidability results for �-homogeneous special
monoids. In particular, he proves that for every � > 3, there exists an �-homogeneous
special monoid with undecidable word problem. Note that in the case � = 2, the word
problem is trivially decidable, as every 2-homogeneous group is a free product of
finitely many cyclic groups (cf. [7, III.§5, Theorem 11]). The subgroup U (M) of a
monoid M consisting of all invertible elements of M is called the group of units of M .
When giving the full proofs in his monograph, Adian also proves (see [7, III.§4, The-
orem 8]) that the group of units of an �-homogeneous k-relation special monoid M is
isomorphic with an �-homogeneous k-relator group, and that the word and divisibility
problems for M reduce to the word problem for U (M) (though this latter reduction is
not in general constructive). In particular, this gives the following beautiful result.

Theorem 2.9 (Adian, 1966) Let M = Mon〈A | w = 1〉. Then the group of units U (M)

of M is a one-relator group.

In fact, Adian gives an algorithm for computing a presentation for the group of units
of a one-relation special monoid [7, III.§4, Theorem 7] which Zhang [186] noticed had
unnecessary steps (this is discussed in greater detail below).Wegive a brief overviewof
the simplified algorithm here, following Kobayashi [90]. Let M = Mon〈A | w = 1〉.
Let C0 = {w}, and suppose, for induction, that Ci has been defined for some i ≥ 0.
Let x, y ∈ Ci . If x ≡ vu and y ≡ uw for some words u, v, w ∈ A+ (i.e. if x and y
overlap in the word u) then we set

Ci+1 = (Ci \ {x, y}) ∪ {u, v, w}.

As the lengths of u, v and w are all less than the lengths of x and y, we must have that
this process will stabilise eventually, giving us a finite (but not uniquely determined)
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sequence C0, C1, . . . , Ck . In this case, Ck is a biprefix code (i.e. none of the words
of Ck overlap), and in fact it is not difficult to see that although the sequence is not,
the set Ck is uniquely determined by w. We set C(w) to be this set, and call this the
self-overlap free code generated by w. In an entirely analogous fashion we can define
the self-overlap free code C(W ) generated instead by a set of words W .

Example 2.10 Let w ≡ abbaab. Let C0 = {abbaab}. Then choosing x ≡ abbaab
and y ≡ abbaab, we find that we can take x ≡ (ab)(baab) and y ≡ (abba)(ab), so
we set

C1 = (C0 \ {abbaab}) ∪ {ab, baab, abba} = {ab, baab, abba}.

Now we can pick x ≡ ab and y ≡ baab, and find x ≡ (a)(b) and y ≡ (b)(aab), so
we set

C2 = (C1 \ {ab, baab}) ∪ {a, b, aab} = {a, b, aab, abba}.

Now we can repeatedly pick x ≡ a followed by repeatedly picking x ≡ b to remove
both aab and abba, and we eventually end up with a set

C(w) = {a, b}.

Thus C(w) = {a, b} is the self-overlap free code generated by w ≡ abbaab.

Example 2.11 Let w ≡ abcabdab. Then the self-overlap free code generated by w is

C(w) = {ab, cabd}.

In particular, C(w) is not an infix code in general, i.e. one might find words in C(w)

appearing as subwords of other words in C(w).

Returning to our given one-relation monoid Mon〈A | w = 1〉, if C(w) =
{w1, w2, . . . , wn}, then let X = {x1, . . . , xn} be a set in bijective correspondence
with C(w) via the map ϕ : wi �→ xi . As C(w) is a biprefix code, this can be uniquely
extended to a homomorphism

ϕ : C(w)∗ → X∗.

As w is clearly a word in C(w)∗, we can consider the word ϕ(w), and the monoid

Mon〈X | ϕ(w) = 1〉.

It is not hard to see that this monoid is, in fact, a (one-relator) group. Clearly, every
word in C(w)∗ is invertible, but the key insight by Adian is that every invertible word
is equal in M to some word from C(w)∗. In particular, U (M) is isomorphic with the
group with the above presentation.
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Example 2.12 Let M = Mon〈a, b, c, d | abcabdab = 1〉. Then

C(w) = {ab, cabd} = {w1, w2}.

We factor abcabdab uniquely as (ab)(cabd)(ab), and hence find that

U (M) ∼= Mon〈x1, x2 | x1x2x1 = 1〉 ∼= Gp〈x1, x2 | x1x2x1 = 1〉 ∼= Z.

Thus the group of units of M is infinite cyclic, and the word and divisibility problems
are rather straightforward to solve in M (see below).

This algorithm is very simple to use in practice. We shall present the main idea
of why the word problem can be reduced to the word problem for the group of units
below, in the general setting of k-relation special monoids.

Makanin [101] in his Ph.D. thesis extended Adian’s results from �-homogeneous
special monoids to all special monoids (the results were announced in a bulletin article
[102]). Specifically, he proved that the group of units of a k-relation special monoid
M is a k-relator group, and that the word problem and divisibility problems for a
k-relation special monoid in which all defining relations have length≤ � reduce to the
word problem for all k-relator groups in which all defining relators have length ≤ �.
This solution is constructive, but Makanin also proves that the word and divisibility
problems in M reduce non-constructively to the word problem for U (M). The non-
constructibility comes from the difficulty of actually computing a presentation for
U (M). The author of the survey clarifies this issue in a forthcoming expository article
on the subject [128]. We also remark that the author has recently translated Makanin’s
Ph.D. thesis into English [129]. We summarise the key theorem below.

Theorem 2.13 (Makanin, 1966) Let M = Mon〈A | r1 = 1, r2 = 1, . . . , rk = 1〉 be
a special monoid. If the word problem is decidable for U (M), then the word problem
and the divisibility problems are decidable for M.

The fundamental idea behind the study of special monoids (not just the one-relation
case) can be heuristically explained as follows: suppose that we have a word w con-
taining r1 and r2 as subwords, where r1 = 1 and r2 = 1 are some two defining relations
of a special monoid. Suppose that these two occurrences have a non-trivial overlap.
Then we can write w ≡ w′r ′

1sr ′′
2w′′, where r1 ≡ r ′

1s and r2 ≡ sr ′′
2 . As s is a suffix of

r1, it is left invertible, and as it is a prefix of r2, it is right invertible. Hence any overlap
of defining relations must be invertible: in particular, if we factor r1 and r2 (necessarily
uniquely) into minimal invertible factors as r1 ≡ δ1 . . . δk and r2 ≡ δ′

1 . . . δ′
�, then we

must have

s ≡ δiδi+1 . . . δkδ
′
1δ

′
2 . . . δ′

j

for some i, j ≥ 1. Hence, all resolutions of overlaps in a special monoid are actually
resolutions of equalities of invertible words. Because of this crucial point, the reader
familiar with the importance of resolving overlaps when solving the word problem in
rewriting systems will at this point, perhaps, feel more confident in accepting that the
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word problem of a special monoid could somehow be reduced to the same problem
for its group of units (while noting that the above heuristic is far from a proof!).

A little more rigorously, there is certainly always a way one can factorise any relator
word ri into certain minimal invertible pieces, i.e. words which do not have any left
or right factors which are invertible. To find this set, Adian and Makanin use certain
extension operations to compute this set, starting from C(∪i {ri }) (i.e. the self-overlap
free code generated by the set of left-hand sides of the defining relations). These
operations are based on using equalities in the group with the k-relator presentation
obtained from factorising the pieces into words from C(∪i {ri }), which can produce
new, shorter invertible words, giving a presentation for another group, and the process
repeats. Eventually, one finds that this process terminates (though of course not con-
structively, unless the word problem is decidable in all groups one encounters along
the way). This results in a finite set 	 consisting of all invertible words w with no
non-trivial left or right factors in	with the property thatw is equal to some invertible
factor of some relation word ri , and such that additionally |w| ≤ |ri |.13 One can then
factor the relation words into words from 	 uniquely, and obtain a presentation for a
group. This group turns out to be isomorphic with the group of units of M .

Let us say we now wish to solve the word problem for M . We do this by finding
normal forms of words in the following manner. Let w ∈ A∗ be a word. The key point
in Adian’s andMakanin’s proofs is to find subwords ofw in	∗ and replace them with
equal and shorter words in 	∗, until this cannot be done anymore. They prove that the
resulting form is unique, and hence reduce the word problem for M to the comparison
of words in 	∗. By construction, this is the word problem for comparison of words in
�∗, which is just the word problem for U (M).

At this point, it is important to discuss the contributions to this area byL.Zhang in the
1990s, coming from theoretical computer science and the theory of rewriting systems.
He noticed that the extension operations of Adian and Makanin, used to compute the
set 	, is not necessary in the one-relation case. This observation reduces to the fact
that given a one-relationmonoidMon〈A | w = 1〉, it is not possible to have non-trivial
equalities of distinct pieces with one another, cf. [186, Lemma 1]. This follows from
Magnus’ Freiheitssatz for the one-relator group Gp〈X | ϕ(w) = 1〉. Beyond this, the
proof—which is now phrased in terms of rewriting systems—is identical.

Zhang would thereafter write several other papers on special monoids, rephrasing
many of the old results using rewriting systems. This brought the attention of Adian
[9], who writes:

I was surprised recently seeing several papers of L. Zhang [...] published in
well known mathematical journals. The large part of these papers looks like a
result of rewriting from [Adian’s monograph] in a direct meaning of the word.
Of course, to refresh the ideas and the technique of [the monograph] may be
useful, but it should be done in a more decent way.

The papers referenced by Adian are [182,183,185,186]; also relevant to this dis-
cussion are [144,184,187]. There is merit to Adian’s criticism. For example, none of

13 The reader familiar with Zhang [183] will perhaps wish to substitute |w| ≤ maxi |ri | for this final
inequality, but this “global” bound is superfluous.
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the results appearing in [186] are new. They are all rather straightforward corollaries
of Makanin’s work, whether they appear implicitly or explicitly therein. For example,
Zhang proves that the submonoid of right invertible elements of a special monoid is
isomorphic with a free product of a freemonoid by the group of units; this observation,
though not phrased algebraically, is precisely what is used by Makanin to reduce the
right divisibility problem to the word problem for the group of units [101, I.§3].

One feature common to Zhang’s papers on special monoids (especially [186]) is
that they may appear succinct and elegant when compared to the difficult and lengthy
inductive arguments of Adian and Makanin. This characterisation is also not entirely
accurate; the difficult and lengthy inductive arguments are still included in Zhang’s
approach, but are hidden in the references to various confluence lemmas and results for
general rewriting systems. On the contrary, the work by Adian andMakanin on special
monoids is extensively self-contained. This can, of course, make a cursory reading of
thematerial rather difficult: the chapter of Adian’s monograph [6] which deals with the
word problem for special monoids ends with Lemma 111 (!), and the corresponding
chapter of Makanin’s Ph.D. thesis, which is rather streamlined by comparison, ends
with Lemma 31. Thus the main benefit of reading [186] comes from its expository
nature.

The other papers by Zhang on the topic do, however, contain some new results for
special monoids, including the one-relation case. To this end we only expand on the
conjugacy problem. There are a number of generally inequivalent ways to define this
problem for special monoids; Zhang [183] proved that several natural such definitions
coincide in the special case. The one we shall adopt here is the following: decide
for two given words u, v ∈ A∗ whether ux = xv holds for some x ∈ A∗. Using
rewriting techniques, Zhang reduces the conjugacy problem to the same problem for
the group of units. In particular, this shows that the conjugacy problem is decidable in
Mon〈A | wn = 1〉, when n > 1, as the conjugacy problem is decidable for one-relator
groups with torsion by applying the B. B. Newman Spelling Theorem [121] (cf. also
[127]).

We mention briefly that special monoids have recently been investigated by the
author from the point of view of their geometry and formal language theory, cf. [124,
126].

In summary, we have thus seen two examples (special and cycle-free) of families of
one-relation monoids with decidable word problem, in which the solution to the word
problem reduces fairly directly toMagnus’ result that the word problem is decidable in
one-relator groups. At this point, however, there yet remained many cases and difficult
reductions to make, which began to illustrate the complex nature of the problem.

3 Compression and reductions (1974–1987)

Following the initial success of Adian’s work on cycle-free and special one-relation
monoids, Adian and his doctoral student G. U. Oganesian would provide the next
major step forward in the form of (weak) compression in 1978. However, this method
had in fact been discovered independently several years earlier by G. Lallement, for
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slightly different (but closely related) purposes; the authors seem to have been unaware
of the others’ work. The method allows one to reduce each of the word and divisibility
problems for one-relation monoids with left and right cycles to the same problem for
a one-relation monoid with a shorter defining relation. Lallement focused on the case
when this resulting monoid was special—this case would later be called subspecial
one-relation monoids by Kobayashi. The methods in this section ultimately lead to
the situation of reducing the word and divisibility problems to one-relation monoids
without left cycles or without right cycles.

There are two types of compression. One is “weak”, and is based on finding a
self-overlap free word as a prefix and suffix of both words in the defining relation.
This method has been used and analysed in-depth by Lallement [94], a 1978 paper
by Adian and Oganesian [16], Kobayashi [90], Gray and Steinberg [57], and Nyberg-
Brodda [125]. There is also another, more general, form of compression, which bears
some similarity to the first, and is “stronger” in the sense it only requires that the
two words in the defining relation have some shared prefix and some shared suffix;
this is featured only in a 1987 paper by Adian and Oganesian [17] and the surveys
by Lallement [95–97]. The titles of the two papers [16,17] are very similar, and their
years of publications are, for obvious reasons, rather easy to mistake for one another.
For this reason, it is not uncommon to see references in the literature to the two papers
confused. We remark that the terminology “weak” resp. “strong” compression does
not appear elsewhere in the literature.

3.1 Weak compression

We shall present the theory of weak compression essentially as it appears in the work
of Adian and Oganesian [16], while blending in some notation from Kobayashi [90]
(see §6 for more details on Kobayashi’s work).We remark that compression can easily
be defined for arbitrary monoids, not necessarily one-relation, but for brevity we only
deal with the one-relation case below; see [125] for full details.

Let M = Mon〈A | u = v〉 be a one-relation monoid. Let α ∈ A+ be a self-overlap
free word. If u, v ∈ αA∗∩ A∗α, then we say that M is (weakly) compressible. Suppose
that M is compressible. Consider the language �(α) = α(A∗ \ A∗αA∗). Let

X(α) = {xw1 , xw2 , . . . , xwi , xwi+1 . . . , }

be a set of new symbols in bijective correspondencewith the (infinitelymany) elements
of �(α) via the bijection αwi �→ xwi . It is not hard to show that �(α) is a suffix code
(see Kobayashi [90, Lemma 3.4] and Lallement [94] for details), i.e. no element of
�(α) is a suffix of any other; thus, for any word in αA∗, we can decode it uniquely,
moving from left to right, as a product of elements of�(α). In particular, asu, v ∈ αA∗,
we can uniquely factor the words in the defining relation as

u ≡ w1,1w1,2 . . . w1,nα,

v ≡ w2,1w2,2 . . . w2,mα
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where wi, j ∈ �(α). We define the compressor function ψα on the defining relation
as:

ψα(u) = xw1,1xw1,2 . . . xw1,n ,

ψα(v) = xw2,1xw2,2 . . . xw2,m .

Let X ⊆ X(α) be the (finite) set of all xi, j which appear in one of the above two
factorisations. Then we define the left monoid L(M) associated to M to be

L(M) = Mon〈X | ψα(u) = ψα(v)〉.

This definition looks rather abstract, but in practice it is very simple to find.

Example 3.1 Consider the one-relation monoid

M = Mon〈a, b | abbaabbbabbbab = abbaab〉.

Then the self-overlap free word α = ab is both a prefix and a suffix of each word in
the defining relation, and obviously it is the unique such word. We factor each word
uniquely into elements from �(ab) = ab(A∗ \ A∗abA∗) as:

abbaabbbabbbab ≡ abba · abbb · abbb · ab,

abbaab ≡ abba · ab.

Thus, the compressor ψab as applied to each word gives:

ψab(abbaabbbabbbab) = xba xbbxbb,

ψab(abbaab) = xba .

The left monoid of M thus has the presentation

L(M) = Mon〈xba, xbb | xba xbbxbb = xba〉 ∼= Mon〈c, d | cdd = c〉.

The word problem in L(M) is now easily decidable by using the complete rewriting
system (cdd → c); as we shall see below (Theorem 3.2), this implies that the word
problem for M is decidable.

We note some immediate properties of L(M). The defining relationψα(u) = ψα(v)

is shorter than the defining relation u = v, so there is basis for the name compression.
The relation ψα(u) = ψα(v) could itself, of course, be compressible. There is also a
natural way to extend ψα to other words than just the defining relations; this behaves
similarly to a homomorphism, there is a close connection between words equal in M
and words equal in L(M). We do not give the full details of this here, as it is already
very well written in Adian and Oganesian’s [16] original paper.
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Theorem 3.2 (Lallement 1974, Adian and Oganesian 1978) Let M be a compressible
one-relation monoid. Then each of the word problem and the divisibility problems
reduces to the respective problem in L(M).

The proof of this theorem, while occasionally notationally somewhat technical, is
not conceptually difficult at all, and bears some similarity to the situation of special
monoids (see §2.3). Indeed, a resolution of an overlap of defining relations in M will
clearly be a resolution of an overlap of defining relations in L(M)—asα is self-overlap
free and u, v ∈ αA∗ ∩ A∗α—and the proof heuristic given for special monoids applies
in this case too. We do not give the full details of the proof here, but give an instructive
example.

Example 3.3 Let M = Mon〈a, b | abaabbab = abbabaab〉. Then M is weakly
compressible with respect to α ≡ ab, and we find that

ψα(abaabbab) = xa xb,

ψα(abbabaab) = xbxa .

Hence we expect M to behave as the free commutative monoid

L(M) = Mon〈xa, xb | xa xb = xbxa〉.

Indeed, it is not hard to find a structure coarsely resembling the right Cayley graph
of the free commutative monoid on two generators inside that of M . The geometric
aspects of weak compression are interesting in their own right, but are beyond the
scope of the present survey. Full details will soon appear in work by the author.

We remark that Theorem 3.2 and the general method of weak compression as it
appears in Adian and Oganesian’s article [16, Theorem 3] appears to have been solely
due to Adian; a footnote on the first page of the article specifies precisely which of
the two authors contributed which theorem.

The astute reader will have noticed the partial attribution of Theorem 3.2 to Lalle-
ment. We give a brief overview of weak compression as used by him. Lallement’s
primary interest appears to have been in characterising which one-relation monoids
have non-trivial elements of finite order, similar to Fischer et al.’s 1972 characterisation
in the one-relator group case [51]. Lallement considered monoids of the form

Mon〈A | u = v〉 such that u ∈ vA∗ ∩ A∗v,

and proved that the word problem and divisibility problems in this case reduce to
the word problem for a special monoid. The monoids of the above form are called
subspecial. The special monoid obtained from this reduction is just the left monoid
of the monoid in question, although Lallement’s compression technique, which is in
a “single step”, differs slightly from the method using ψα as detailed above, and is
rather technical in nature. Clearly, a subspecial monoid (with v non-empty) can be
weakly compressed in the earlier sense, by considering the maximal self-overlap free
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word which is a prefix and a suffix of v. By repeatedly compressing in the usual
sense, one eventually obtains the same monoid as described by Lallement; see Gray
and Steinberg’s treatment [57] of compression for this connection. We do not detail
this method here, but mention that Zhang [185] rewrote Lallement’s proof using the
language of rewriting system, and used this to solve the conjugacy problem in many
cases of one-relation monoids with non-trivial elements of finite order.

As mentioned, one of the reasons for Lallement’s interest in subspecial monoids
came from characterising the one-relationmonoids which have non-trivial elements of
finite order. First, the following result (see [94,Corollary 2.5]) completely characterises
the existence of non-trivial (i.e. �= 1) idempotents in one-relation monoids.

Theorem 3.4 (Lallement, 1974) Let M = Mon〈A | u = v〉. Then M has a non-trivial
idempotent if and only if M is subspecial or special, but not a group.

Using this, he is able to completely characterise the one-relation monoids with
elements of finite order as the subspecial monoids of a particular form, see [94, The-
orem 2.7].

Theorem 3.5 (Lallement, 1974) A one-relation monoid has non-trivial elements of
finite order if and only if its presentation is of the form Mon〈A | (uv)mu = (uv)nu〉,
where uv is not a proper power in the free monoid, and m > n ≥ 0.

Lallement’s goal is clearly algebraic in nature, as opposed to Adian and Ogane-
sian, who focused on the decision problems for the monoids involved. He also proves
many statements regarding the residual finiteness of one-relation monoids, which we
shall not expand on here, beyond mentioning that one can derive many more powerful
algebraic statements and properties regarding one-relation monoids using weak com-
pression. This algebraic connection has been exploited by Kobayashi [90] (see §6 and
Gray and Steinberg [57]. The author of the present survey has also investigated the
language-theoretic aspects of compression [125]. For example, it is decidable whether
a one-relation monoid with a non-trivial idempotent has context-free word problem
(see [125] for the relevant definitions).

At this point, we make the crucial point that weak compression is not enough to
reduce the word problem for all one-relation monoids to the left cancellative case.
Indeed, the one-relation monoid

Mon〈a, b | aab = ab〉

is not (weakly) compressible, but it has both left and right cycles. To deal with these
cycles, we therefore need a more powerful tool.

3.2 Strong compression

For strong compression, we shall use an encoding function τk , which is applicable
to any one-relation monoid with left and right cycles, unlike weak compression. This
encoding function already (rather confusingly) appeared in the 1978 paper by Adian
and Oganesian. We follow the definition as given by Adian and Oganesian in their
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1987 article introducing this encoding [17]. Let E1, E2, . . . , En be all words of length
k > 0 in an alphabet A with |A| = m; note that n = mk . Let e1, e2, . . . , en be letters
in some new alphabet. We shall define τk(w) for words w ∈ A∗. If |w| < k, then we
set τk(w) = 1. If w ≡ Ei for some 1 ≤ i ≤ n, then we set τk(w) = ei . If w begins
with Ei , and w ≡ aw′ for some letter a ∈ A, then we set τk(w) ≡ eiτk(w

′).

Example 3.6 Let A = {a, b} and k = 2. Let E1 ≡ aa, E2 ≡ ab, E3 ≡ ba, E4 ≡ bb.
Then we consider the encoding function τ2, which operates as follows:

τ2(aababab) ≡ e1τ2(ababab)

≡ e1e2τ2(babab)

≡ e1e2e3τ2(abab)

≡ e1e2e3e2τ2(bab)

≡ e1e2e3e2e3τ2(ab)

≡ e1e2e3e2e3e2.

Obviously, the particular ordering chosen on {aa, ab, ab, bb} is of no significance.

Now the encoding function τk is not, in general, a homomorphism, but it has many
similar properties: let u, v ∈ A∗ be arbitrary words such that |v| ≥ k − 1. Write
v ≡ v′v′′ such that |v′| = k − 1. Then we clearly have

τk(uv) ≡ τk(uv′)τk(v
′′),

and a similar statement is easy to make regarding τk(uv) when |u| ≥ k −1. Using this
property of τk , one finds the following quite striking lemma, which is almost (see the
remark following the lemma) the statement of [17, Lemma 1].

Lemma 3.7 Suppose M = Mon〈A | u = v〉 has both left and right cycles. Let C be
the maximal common prefix of u and v, and let D be the maximal common suffix of u
and v. Let k = 1+min(|C |, |D|). Then the word problem and the divisibility problems
for M can be reduced to the corresponding problems for the monoid

Mτ := Mon〈e1, e2, . . . , en | τk(u) = τk(v)〉,

The relation τk(u) = τk(v) has no left cycles if |C | ≤ |D|, and no right cycles if
|C | ≥ |D|. If |C | = |D|, then the word problem for M is decidable.

Remark 3.8 The statement of [17, Lemma 1] concludes that in the case |C | = |D|
the divisibility problems for M are decidable, as in this case Mτ is cycle-free. It was,
at the time, believed that there was a proof that any cycle-free monoid has decidable
divisibility problems; as we shall expand on in §4.4, this belief should be regarded as
conjecture.

The monoid Mτ in the statement of Lemma 3.7 is said to be obtained from M by
strong compression; this terminology is justified by the fact that any weakly compress-
ible monoid is also strongly compressible. The proof of the lemma is not particularly
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difficult or long, and is self-contained enough that there is little value in reproducing
it here. The interested reader may find the original proof repeated word for word in
Adian and Durnev’s survey [13, Lemma 4.5]. We remark that (just as in the case of
weak compression) there is an interesting language-theoretic interpretation of strong
compression. This will appear in future work by the author.

Example 3.9 Let M = Mon〈a, b | abaababb = abbaabb〉. Then M has left and
right cycles. The maximal common prefix of abaababb and abbaabb is ab, and the
maximal common suffix is abb. Thuswewill consider the encoding function τk , where
k = 1 + min(|ab|, |abb|) = 3. Suppose we enumerate the 23 words of length 3 as

(E1, E2, E3, E4, E5, E6, E7, E8) = (aaa, aab, aba, abb, baa, bab, bba, bbb).

Using this, we apply the encoding function ψk to the defining relation to find

ψ3(abaababb) = e3ψ3(baababb)

= e3e5ψ3(aababb)

= e3e5e2ψ3(ababb)

= e3e5e2e3ψ3(babb)

= e3e5e2e3e6ψ3(abb)

= e3e5e2e3e6e4,

and, with the details assigned to the diligent reader, also

ψ3(abbaabb) = e4e7e5e2e4.

Thus the weakly compressed monoid Mτ has the presentation

Mτ = Mon〈e1, . . . , e7 | e3e5e2e3e6e4 = e4e7e5e2e4〉,

which obviously has no left cycles. The word problem and the divisibility problems
for M reduce to the same problems for Mτ . Note that the word problem is trivially
solvable in Mτ , as the left-hand side of the relation is self-overlap free. Hence the
word problem is decidable in M . In fact, the left divisibility problem is also decidable
in Mτ , by a result of Oganesian (see §4.3).

By using Lemma 3.7 one easily sees that the word problem for any one-relation
monoid can be reduced to the word problem for a one-relation monoid with no left
cycles or to one with no right cycles. By using the standard symmetry argument, we
hence have the following theorem.

Theorem 3.10 (Adian and Oganesian 1978) The word problem resp. the left divisibility
problem for an arbitrary one-relation monoid reduces to the same problem for a one-
relation monoid of the form

Mon〈A | bua = ava〉
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or of the form

Mon〈A | bua = a〉,

where a, b ∈ A are distinct letters and u and v are arbitrary words.

We remark that the statement of this theorem already appears as [16, Theorem 5],
and is proved by a method devised by Oganesian.14 As the above formulation using
Lemma 3.7 becomes significantly cleaner and quicker, we use this instead. Theo-
rem 3.10 is also (essentially) presented by Howie and Pride [69, Corollary 4], though
without a detailed proof and with some non-essential cases included. The paper of
Howie and Pride uses geometric techniques of diagrams, and their results were arrived
at independently of the work by Adian and Oganesian.

3.3 Two generators

We now have two types of compression, with strong compression being the more
general, and allowing us to reduce the word problem for all one-relation monoids to
the same problem for left-cycle free one-relation monoids. However, there is a further
significant reduction that can be made, which is to reduce to the two-generator case.

Now, a priori it is not difficult to reduce the word problem for a finitely presented
k-generator monoid to the word problem for a two-generator monoid; indeed, if one
has a finitely presented monoid on the generators a1, . . . , ak , then the mapping

ai �→ abai+1bi+1

will define an injective homomorphism into a finitely presented monoid given by the
generators a, b. Thus the word problem for a k-generator monoid reduces to the word
problem for a two-generator monoid, as decidability of the word problem is inherited
by submonoids. However, even if one starts with a left cycle-free one-relation monoid,
the embedding is not necessarily into a left cycle-free monoid, the defining relations of
the resulting monoid might be significantly longer, and decidability of the divisibility
problems is not inherited by taking submonoids. Thus we will require a more careful
reduction if we are to reduce the word and divisibility problems to two-generated
one-relation monoids without left cycles. This is precisely what is provided in the first
part of Adian and Oganesian’s article [17].

Theorem 3.11 (Adian and Oganesian, 1987) Suppose that

M = Mon〈A | u1 = v1, . . . , un = vn〉

is a left cycle-free monoid. Then one can find a monoid

M = Mon〈a1, . . . , an+1 | u1 = v1, . . . , un = vn〉
14 The aforementioned footnote in that article specifies that this method is due solely to Oganesian.
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such that |ui | = |ui | and |vi | = |vi | for all 1 ≤ i ≤ n, and each of the equality and
left divisibility problems for M reduces to the same problem for M.

We shall not give a proof of this theorem, as it uses the algorithm A (see §4.1)
and is in any case already very clearly written in Adian and Oganesian’s article [17].
However, we will give the method by which one finds the words ui and vi .

Let M be as given in the statement of Theorem 3.11. Consider the left graph L(M)

of M (see §2.2). By assumption L(M) has no cycles. If the letter a appears at the
beginning of some ui or vi , then we say that the letter a is leftist. Of course, any non-
leftist letter is isolated. Denote the connected components of L(M) as L1, . . . , Lk .
For every L j we will choose one letter c j appearing in this component. Then, for
every word w ∈ A∗, we let w be the result of replacing in w every occurrence of the
letter c j by c1. Then obviously |w| = |w|, and as L(M) has no cycles, the monoid
M with presentation as in the statement of Theorem 3.11 will clearly have that L(M)

is cycle-free. In fact L(M) consists of a single component, and so clearly has n + 1
letters.

Example 3.12 We continue our example given in Example 3.9. Recall that

Mτ = Mon〈e1, . . . , e7 | e3e5e2e3e6e4 = e4e7e5e2e4〉.

Now L(M) has a single edge between the two leftist vertices e3 and e4. We choose
c3 ≡ e3 (though of course the choice c3 ≡ e4 works the same), and all other choices
of c j are forced, as all other vertices are isolated. Thus replacing the letters c j by c1,
we find

Mτ = Mon〈c1, e4 | c1c1c1c1c1e4 = e4c1c1c1e4〉 ∼= Mon〈a, b | bbbbba = abbba〉.

Each of the word problem and left divisibility problems for Mτ reduces to the same
problem for Mτ (and both problems are easily decidable).

In summary, by combining the two techniques of strong compression and Theo-
rem 3.11 to pass to the 2-generated case, we find the following theorem.

Theorem 3.13 (Adian and Oganesian, 1987) The word problem resp. the left divisi-
bility problem for an arbitrary one-relation monoid reduces to the same problem for
a one-relation monoid of the form

Mon〈a, b | bua = ava〉

or of the form

Mon〈a, b | bua = a〉,

where u and v are arbitrary words.

123



The word problem for one-relation monoids: a survey 323

We remark that Adian and Durnev [13, p. 242] incorrectly claim that Theorem 3.13
was first proved in 1978, referencing Adian and Oganesian’s 1978 article [16]. How-
ever, the only theorem of the sort proved in this article is Theorem 3.10, as discussed
above, which does not reduce to the 2-generated case. Instead, Theorem 3.13 first
occurs in the literature as precisely the statement of [17, Theorem 2], if one accounts
for the fact that the monadic case Mon〈a, b | bua = a〉 was at that point believed to
have been solved (see §4.4 for further discussion).

Example 3.14 We give a full example of combining several reduction techniques for
a rather difficult-looking one-relation monoid. Consider the one-relation monoid

M4 = Mon〈a, b, c, d | abdadadacbaca = abdadabdaca〉.

Then M4 is both weakly and strongly compressible; as weak compression reduces
relation length significantly quicker, and is a bit more fun to use, we first use this. The
(unique) self-overlap free word α such that both words in the relation begin and end
with α is α ≡ a. We find

abdadadacbaca ≡ abd · ad · ad · acb · ac · a,

abdadabdaca ≡ abd · ad · abd · ac · a,

and hence, when applying the compressor function ψa we have

ψa(abdadadacbaca) = xbd xd xd xcbxc

ψa(abdadabdaca) = xbd xd xbd xc.

Hence the divisibility problems andword problem for M4 reduce to the same problems
for

M ′
4 = Mon〈xbd , xd , xcb, xc | xbd xd xd xcbxc = xbd xd xbd xc〉

∼= Mon〈a, b, c, d | abbcd = abad〉.

This one-relation monoid still has left and right cycles. It is strongly (but not weakly)
compressible with respect to the maximal common prefix ab and suffix d. Hence we
find k = 1 + min(2, 1) = 2, and we are using the function τ2. There are 42 = 16
words of length 2 in the alphabet {a, b, c, d}, which we order as

(aa, ab, ac, ad, ba, bb, bc, bd, ca, cb, cc, cd, da, db, dc, dd)

where the index 1 ≤ i ≤ 16 of each word in this sequence indicates that it is word Ei .
Thus

ψ2(abbcd) = e2ψ2(bbcd) = e2e6ψ2(bcd) = e2e6e7ψ2(cd) = e2e6e7e12,

ψ2(abad) = e2ψ2(bad) = e2e5ψ2(ad) = e2e5e4.
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Hence the word problem and divisibility problems for M ′
4 (and hence also for M4)

reduce to the same problems for

M ′′
4 = Mon〈e2, e4, e5, e6, e7, e12 | e2e6e7e12 = e2e5e4〉

∼= Mon〈a, b, c, d, e, f | ade f = acb〉,

where the redundant generators have not been included, as these split off in a free
factor. This is now a right cycle-free one-relation monoid, but it has left cycles. Of
course, the word problem and the left/right divisibility problem for M ′′

4 reduces to the
word problem and the right/left divisibility problem for

M ′′′
4 = Mon〈a, b, c, d, e, f | f eda = bca〉,

by reading thewords backwards. This is now a one-relationmonoidwithout left cycles.
We now apply Theorem 3.11 to reduce the word and divisibility problems to a two-
generated one-relation monoid without left cycles. The only leftist letters are f and
b. We choose b to represent this component in L(M ′′′

4 ). This finally reduces the word
and divisibility problems for M4 to the same problems for

M ′′′′
4 = Mon〈c1, f | f c1c1c1 = c1c1c1〉 ∼= Mon〈a, b | baaa = aaa〉.

In this monoid, solving these aforementioned problems is not hard, and so we have a
solution to the same problems for our original (rather complicated-looking) monoid
M4.

We have thus found our desired reduction theorem. The above Theorem 3.13 is
still, at the time of the writing of this survey, the strongest general reduction theorem
for one-relation monoids. There are a number of important cases of left cycle-free
one-relation monoids for which the word and left divisibility problems are known to
be decidable. One of the major sources of such results is Adian’s algorithm A, which
we shall now present.

4 Adian’s algorithmA (1976–2001)

From the reductions we have seen, the word problem for all one-relation monoids
has been reduced to the left divisibility problem for one-relation monoids without left
cycles. The algorithm A was devised by Adian15 in 1976 as an attempt to solve this
latter problem.

15 The choice by Adian of the letter A to denote this algorithm is much more likely to have been chosen for
pragmatic reasons (being the first letter of the alphabet) rather than as an act of perceived self-importance.
Nevertheless, it provides a clear precedent for pronouncing A as Adian’s algorithm.

123



The word problem for one-relation monoids: a survey 325

4.1 Two generators, one relation

The algorithm A is very general, and will be defined for all left cycle-free monoids;
to get a feel for how the algorithm operates, we shall begin by considering how the
algorithm operates on left cycle-free two-generated one-relation monoids. In view of
Theorem 3.13, this is no (direct) restriction if one wishes to solve the word problem in
one-relation monoids using the algorithmA. We borrow some aspects of the excellent
exposition of the algorithm A by Lallement [96]. Let

M = Mon〈a, b | u = v〉

be a left cycle-free one-relation monoid. Let w ∈ {a, b}+. As M has no left cycles,
we can uniquely factor w from the left into a product of maximal prefixes of u and
v. Using this, we describe the prefix decomposition of w. We factor w from the left
into maximal prefixes of u and v. If at some point during this factorisation a prefix
happens to be u or v, then the decomposition stops, and we call this prefix the head of
the prefix decomposition. A prefix decomposition without a head is called a headless
prefix decomposition.

We illustrate this by an example. Let M = Mon〈a, b | babba = aba〉, and consider
the word w1 ≡ abbababab. Then w1 has ab as a prefix, which is the maximal prefix
that is also a prefix of either babba or aba. Thus the decomposition begins with
this prefix, which we denote as ab | bababab. The decomposition now continues on
the word bababab. There, the next prefix is bab, so the decomposition continues as
ab | bab | abab. Finally, the next prefix is aba, which is one of the words in the
defining relation. This ends the decomposition. Thus aba is the head, and we denote
the prefix decomposition of w1 as

ab | bab | aba b.

Similarly, we can find the prefix decomposition of w2 ≡ abbabbba to be

ab | babb | ba

which is hence a headless prefix decomposition. Using the prefix decomposition, we
can describe the algorithm A. Let x ∈ {a, b} be a letter. The algorithm A attempts to
decide whether w is left divisible by x as follows.

(1) If w begins with x , then stop.
(2) Otherwise, compute the prefix decomposition of w.

(a) If this prefix decomposition is headless, then stop.
(b) Otherwise, replace the head by the other side of the defining relation, obtaining

a new word w′, and goto (1) with the new word w′ and the letter x .

It is not a priori clear that this algorithm should do any better than the naïve
procedure for checking if two words are equal in a monoid by successively attempting
all possible elementary transformations. However, there is muchmore power inA than
it first appears. We first give a straightforward example of using this algorithm below.
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Example 4.1 ( [96, Example 2.1]) Let M = Mon〈a, b | baababa = aba〉. We may
ask the question: is w ≡ abbaaababab left divisible by b? The prefix decomposition
of w is:

ab | baa | aba bab

As the defining relation is aba = baababa, we replace the head aba by baababa,
and repeat. This gives the sequence:

ab | baa | aba bab −→ abbaabaabababab

ab | baaba | aba babab −→ abbaababaababababab

ab | baababa ababababab −→ ababaababababab

ab | aba ababababab −→ abbaababaababababab

ab | baababa ababababab −→ ababaababababab

aba baababababab −→ baabababaababababab.

Thus the algorithm has terminated with a witness for the fact that z is left divisible by
b, i.e. in M we have w = b · aabababaababababab.

It is not always the case that A terminates. For this reason, it is perhaps slightly
abusive to use the term “algorithm” for A. We give an easy example of this non-
terminating behaviour happening below.

Example 4.2 ( [97, Example 29]) Let M = Mon〈a, b | baabbaa = a〉, and consider
the word w ≡ bbaaa. Applying A, we find:

b | baa | a −→ bbaabaabbaa

b | baab | a abbaa −→ bbaabbaabbaaabbaa

b | baabbaa bbaaabbaa −→ babbaaabbaa

ba | b | baa | a bbaa −→ . . .

Thus we have entered a loop, for we have found an occurrence of the first prefix
decomposition b | baa | a inside the decomposition ba | b | baa | a bbaa.

It seems as if this looping behaviour would be difficult to deal with, as one might
not know whether falling into an infinite loop would imply divisibility by a letter or
not. However, the remarkable result obtained by Adian regarding A is the following
theorem, which is a combination of the arguments given in [8, §6].

Theorem 4.3 (Adian, 1976) The result of applying the algorithm A to a word w and
a letter x will be exactly one of the following three cases:

(1) A transforms w into a word xw′ after finitely many steps.
(2) A ends in a headless prefix decomposition after finitely many steps.
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(3) A loops indefinitely.

The word w is left divisible by x if and only if we are in case (1).
Furthermore, in this case A produces the shortest proof of this.

As an example of how this theorem deals with loops, we see that as A loops in
Example 4.2 on input w and a, we can conclude that w is not left divisible by a.

Now a solution to the left divisibility problem by a letter is easily equivalent to a
solution to the left divisibility problem in left cancellative monoids, by induction on
the length of the word by which one divides. Thus we almost have a solution to the
left divisibility problem for all two-generated left cycle-free one-relation monoids,
and hence almost have a solution to the word problem for all one-relation monoids by
Theorem 3.13! Of course, the difficulty comes from the fact that there is at present no
known general algorithm which detects when case (3) of Theorem 4.3 occurs. Adian,
however, conjectured that such an algorithm (which he calls B) exists, and therefore
indirectly conjectures that the word problem is decidable for all one-relation monoids.
This conjecture appears throughout his published works, and was repeated by Adian
as late as 2018 at a conference at the Euler International Mathematical Institute in
Saint Petersburg.

There have been some attempts to derive general methods for detecting loops in A
(i.e. attempts at producing B). For example, Lallement [97, pp. 38–39] provides an
algorithm which can always detect whether or not A loops on an input word in the
monoid given in Example 4.2, thus solving the word (and left divisibility) problem for
this monoid. This detection is via regular languages and finite state automata. These
methods of detecting loops have been expanded by Lallement’s student J. Bouwsma
in her Ph.D. thesis [29], solving a number of more cases of the form Mon〈a, b |
bua = a〉. In fact, Lallement [96] conjectures that their methods (using finite state
automata) might be sufficient to detect all loops that can appear when applying A to
Mon〈a, b | bua = a〉. If this is true, then this would imply decidability of the word
problem for such monoids, which remains open (see §4.4).

4.2 The general case

We now describe the algorithm A in the general case, as it is presented by Adian [8].
Let M = Mon〈A | T 〉 be a finitely presentedmonoid without left cycles. For all triples
(a, b, aW ), where a, b ∈ A are distinct letters and W ∈ A∗ is an arbitrary word, we
will define the prefix decomposition R�(aW , b) of aW with respect to b inductively on
the length of aW . This prefix decomposition will not always exist. We will first reduce
the definition of R�(aW , b) to when a and b are adjacent in L(M), and then present
a definition similar to the two-generator one-relation case. For expositional reasons,
we will simultaneously with the general case present the material in the special case
of the left cycle-free monoid

� = Mon〈α, β, γ, δ | αγ = γ δα, γ γβ = βαβδγ 〉,
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which has left graph L(�) as below.

γ

βα δ

First of all, if the left graph L(M) contains no path from the vertex a to b, then
we say that the prefix decomposition R�(aW , b) does not exist. Thus, for example,
R�(αβγ δ, δ) is not defined (for � as above). On the other hand, if there is such a
path, then there is a unique shortest such path, as M is left cycle-free. Let c be the
letter adjacent to a on the shortest path joining a to b in L(M). Let aE = cD be the
defining relation corresponding to the edge between a and c on the specified path,
accommodating an interchange of the left- and right-hand sides of the relation. We
define

R�(aW , b) := R�(aW , c).

For example, we have R�(αγ 3δ2, β) := R�(αγ 3δ2, γ ), as the unique shortest path
joining α and β in L(�) has α adjacent to γ .

Wemust now define R�(aW , c), which will eventually be a definition quite familiar
to the reader who is accustomed to the two-generator one-relation case. Let aF be the
maximal common prefix of the words aE and aW . Write

aE ≡ (aF)E1

aW ≡ (aF)W1.

We will now define R�(aW , c) based on the properties of the words E1, W1.

(1) If E1 ≡ ε, i.e. if aE ≡ aF , we then define

R�(aW , c) := aE W1,

and we say that aE is the head of the prefix decomposition, which is indicated
by the box. Note that a head is always one side of a defining relation! We say that
this head aE is associated to the relation aE = cD. For example,

R�(αγ γ γβ, γ ) = αγ γ γβ

R�(γ δαββ, α) = γ δα ββ,

and the heads are associated to the relations αγ = γ δα resp. γ δα = αγ .
(2) If E1 �≡ ε but W1 ≡ ε, we then define

R�(aW , c) := aE |
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where | indicates that aE is the first prefix in the prefix decomposition. This
decomposition is headless, i.e. it has no head. For example,

R�(βαβ, γ ) = βαβ |
R�(γ δ, α) = γ δ |

as βαβ and γ δ are proper prefixes of their corresponding relation words (i.e.
βαβδγ resp. γ δα).

(3) If16 E1 �≡ ε and W1 �≡ ε, then we can write

E1 ≡ q E2

W1 ≡ dW2,

for some letters q, d ∈ A and words E2, W2 ∈ A∗. Then d and q are distinct.
As |dW2| < |aW |, we can by the inductive hypothesis determine whether or not
R�(dW2, q) exists.

(i) If R�(dW2, q) does not exist, then we say that R�(aW , c), and consequently
also R�(aW , b), does not exist.

(ii) If R�(dW2, q) exists, and is of the form

H1 | H2 | · · · | Hk R W ′

where the Hi are the prefix components of the decomposition, and the head
R is associated to the relation R = S, then we define

R�(aW , c) := aF | H1 | H2 | · · · | Hk R W ′.

This completes the description of the prefixdecomposition R�(aW , b). It is not difficult
to check that this is uniquely defined. Note that the prefix decomposition R�(aW , b)

can always be algorithmically computed for any pair of letters a, b and any word
W ∈ A∗, regardless of whether we have e.g. a solution to the word problem or not.

Example 4.4 Continuing our example with � as above, which for ease of access was
defined by

� = Mon〈α, β, γ, δ | αγ = γ δα, γ γβ = βαβδγ 〉

16 In both the Russian original and the English translation of Adian [8], this case has a typo; it reads “if the
words E1 and F1 are non-empty”, but should read “if the words E1 and Z1 are non-empty” (p. 616 resp.
p. 382).
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wegive a complete computation of a prefix decomposition below. The reader is encour-
aged to follow along (perhaps with their own example).

R�(αβαγ γβαδδ, β) = R�(αβαγ γβαδδ, γ )

= α | R�(βαγ γβαδδ, γ )

= α | βα | R�(γ γβαδδ, β)

= α | βα | γ γβ αδδ.

We can also compute

R�(γβγ δγ δ, β) = γ | R�(βγ δγ δ, γ )

= γ | β | R�(γ δγ δ, α)

= γ | β | γ δ | R�(γ δ, α)

= γ | β | γ δ | γ δ |

which is a headless decomposition. On the other hand,

R�(βαβα, γ ) = βαβ | R�(α, δ)

and as R�(α, δ) is not defined, it follows that R�(βαβα, γ ) is not defined.

We emphasise that it is not hard to check that the prefix decomposition R� as defined
here coincides with the earlier defined prefix decomposition for two generators and
one relation. We may now state Adian’s algorithm A in full generality for a left cycle-
free monoid M = Mon〈A | R〉. Let w ∈ A+ be an arbitrary word, and let b ∈ A be
any letter. The algorithm A will attempt to decide if w is left divisible by b in M .

(1) If w begins with b, then stop.
(2) Otherwise, determine if the prefix decomposition R�(w, x) exists.

(a) If R�(w, x) does not exist, then stop.
(b) If R�(w, x) exists, but is headless, then stop.
(c) If R�(w, x) exists and has a head, let R = S be the relation associated to its

head R. Replace the head R by the word S in w, obtaining a new word w′,
and goto (1) with the new word w′ and the letter x .

This is very similar to the algorithm A presented earlier in the two-generated
one-relation case; the only difference is the added step of ensuring that the prefix
decomposition exists. Note that—obviously!—for every transformation w −→ w′
done by a step of A, we have w = w′ in M . We can now state Adian’s Theorem 4.3
in full generality.

Theorem 4.5 (Adian, 1976) The result of applying the algorithm A to a word w and
a letter x will be exactly one of the following four cases:

(1) A transforms w into a word xw′ (after finitely many steps).
(2) A transforms w into a word w′ for which R�(w

′, x) does not exist.
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(3) A transforms w into a word w′ for which R�(w
′, x) is headless.

(4) A does not terminate.

The word w is left divisible by x if and only if we are in case (1).
Furthermore, in this case A produces the shortest proof of this.

The proof is rather short, and does not depend on any significant results not con-
tained in the paper itself. We direct the reader to the paper for the proof (and pleasant
reading).

Example 4.6 We again consider

� = Mon〈α, β, γ, δ | αγ = γ δα, γ γβ = βαβδγ 〉.

We provide a few fully worked examples of applying the algorithm A. We begin with
w ≡ αβαγ γβαδδ and the letter β. That is, we will try and decide whether or not w

is left divisible in � by β. Now as computed in Example 4.4, we have

R�(αβαγ γβαδδ, β) = α | βα | γ γβ αδδ −→ αβαβαβδγαδδ,

as the head γ γβ corresponds to the relation γ γβ = βαβδγ . We now apply A to the
word αββαβδγαδδ and the (same as before!) letter β.

We compute

R�(αβαβαβδγαδδ, β) = α | βαβ | R�(αβδγ αδδ, δ)

and since R�(αβδγ αδδ, δ) is not defined—as α and δ are in distinct connected compo-
nents ofL(�)—it follows that R�(αβαβαβδγαδδ, β) is not defined. By Theorem 4.5
we conclude that in � the word w ≡ αβαγ γβαδδ is not left divisible by β.

The other two examples in Example 4.4 are quicker to find conclusions about.
As R�(γβγ δγ δ, β) is headless, it follows that γβγ δγ δ is not left divisible by β.
Similarly, as R�(βαβα, γ ) does not exist, it follows that βαβα is not left divisible by
γ .

Now, if wewish to decidewhether γ γβδα is left divisible by β, we simply compute

R�(γ γβδα, β) = γ γβ δα,

and thus applying a stepofA,we transformγ γβδα intoβαβδγ δα.Hence,weconclude
that γ γβδα is left divisible by β in �.

We leave as an exercise to the reader a proof that the algorithmA always terminates
for �, solving the left divisibility problem for this monoid.

Example 4.7 We can adapt the one-relation monoid Mon〈a, b | baabbaa = a〉 from
Example 4.2 to give the left cycle-free monoid

�′ = Mon〈α, β, γ | βαγαγββαγαγ = αγ, γ = αγ 〉.
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We leave the reader to check that A will loop when checking whether ββαγαγαγ

is left divisible by α, just as A loops in the monoid of Example 4.2 when checking
whether bbaaa is left divisible by a.

What is remarkable is that this algorithm A has the potential to solve the left
divisibility problem and the word problem in any finitely presented monoid without
left cycles—not just the one-relation case. If this potential turns out to be fulfillable,
this would indicate that the class of left cycle-free monoids is significantly more well-
behaved than simply being left cancellative (as left cancellative monoids can have
undecidable word problem). However, no criterion is yet known for deciding when A
loops; the general case is thus, in a sense, at present understood to approximately the
same degree as the one-relation case.

4.3 Applications ofA

There have been a number of appearances of the algorithm A in the literature, and it
has spurred a good deal of research, having appeared in a large number of publications
[10,16,17,29,89,131–135,153–155,176,177]. It is also present in the brief articles by
Adian [9,11], but no new results are presented therein. In this section, we shall mention
some major classical results, the proofs of which depend critically on the algorithm
A. The first concerns “monadic one-relation monoids with torsion”, and was proved
(see [131]) only two years after the introduction of A.

Theorem 4.8 (Oganesian, 1978) Let M = Mon〈a, b | (bu)na = a〉 for some n > 1
and u arbitrary. Then the left divisibility (and hence the word) problem for M is
decidable.

A result in the non-monadic case was proved by the same author in the same year
(see [132, Theorem 1]), but does not appear to have received much attention in the
literature. Let σa be the function which counts the number of occurrences of the letter
a in a word.

Theorem 4.9 (Oganesian, 1978) Let M = Mon〈a, b | bua = ava〉. If either

σa(bua) = σa(ava), or if

σb(bua) = σb(ava)

then the left divisibility problem (and hence also the word problem) is decidable for
M.

As an example, this shows that the word problem is decidable for the one-relation
monoid Mon〈a, b | ababa = baba〉, as both sides have equally many occurrences of
the letter b. The above theorem is one of the most general results in the non-monadic
case.

There are two further important contributions in the non-monadic case, both due to
G. Watier. Consider Mon〈a, b | bua = ava〉. The case when bua is self-overlap free
received some attention byAdian andOganesian [17]. In fact, a proof was claimed that
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whenever bua is a factor of ava, the word problem is decidable; this result, however,
should be regarded as conditional (see §4.4). Nevertheless, Watier [176] studies this
case in his first of two articles on the subject, and is able to prove the following
remarkable theorem.

Theorem 4.10 (Watier, 1996) Let M = Mon〈a, b | bua = ava〉. If the leftmost
sequence of b’s in bua is strictly longer than the others, then the word problem is
decidable for M.

This is a very general theorem. As noted byWatier, this solves the word problem in
Mon〈a, b | bman = ava〉 for m, n > 0, with no conditions on the word ava. Note that
bua is always self-overlap free in the cases that the above theorem applies. The second
article17 by Watier on the subject again concerns the case when bua is self-overlap
free. As mentioned, the case when bua is a factor of ava has been studied to some
extent; Watier’s article studies the case when bua is not a factor of ava. He is then
able to show the following very general result.

Theorem 4.11 (Watier, 1997) Let M = Mon〈a, b | bua = ava〉. Suppose that bua is
self-overlap free and not a subword of ava. If |ava| ≥ |bua|2, then the word problem
for M is decidable.

The article itselfmakes for very pleasant reading, andmanyof the results are phrased
in terms of formal language theory and the theory of codes,while still being centered on
the algorithm A. Watier’s two results, along with the results by Oganesian mentioned
above, represent the bulk of the progress hitherto made on the case Mon〈a, b | bua =
ava〉. We mention in passing that Kashintsev [86] proved that if u is self-overlap
free, and |u| > |v|, then the conjugacy problem is decidable in Mon〈A | u = v〉.
Unlike for groups, however, decidability of the conjugacy problem is not sufficient for
decidability of the word problem.

4.4 An incorrect proof

Up to this point, all results mentioned have been unconditional. However, around the
early 1990s a gapwas discovered in the proof of a theorem that had up to that point been
generally accepted. The “theorem” was a result by O. A. Sarkisian, another doctoral
student of Adian’s, and is simple to state.

Claim (Sarkisian, 1981) The divisibility problems are decidable for all cycle-free
monoids.

This is a rather remarkable result; indeed, outside of the above claim, even the
word problem is not known to be decidable for cycle-free monoids. There are many
remarkable consequences of the result, which we shall list below. However, Oganesian
discovered a gap in Sarkisian’s proof [63]. The presence of this gap is first mentioned
in 1994 by Adian [10], but by then the result had already been used in the proofs of

17 At this point, Watier had been made aware of the significant gap in a result by Sarkisian, see §4.4. The
article itself is communicated by Adian, and Watier graciously thanks him at the end.
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a number of further results. As we shall see, this has led to a number of results in
the literature either being entirely conditional, or else needing a repair (see e.g. §6.2
where such a repair is done in connection with one-relation special inverse monoids).

The author has collected all results known to him to be conditional on this result.
We define the Sarkisian hypothesis sh to be the above claim, i.e. that the divisibility
problems are decidable for all cycle-free monoids.

Theorem 4.12 Suppose sh holds. Then:

(1) The word problem is decidable for every cycle-free semigroup.
(2) The word problem is decidable for every cycle-free group [155].18

(3) The isomorphism problem for one-relation monoids is decidable [135].
(4) The word problem for Mon〈a, b | bua = a〉 is decidable [134].
(5) Suppose M is a strongly compressible one-relation monoid. If |C | = |D|, then the

divisibility problems are decidable for M (see §3.2) [17].
(6) If u, v are such that v is self-overlap free and v is a factor of u, then the word and

at least one of the divisibility problems are decidable for Mon〈A | u = v〉 [17].

Without sh, all of the above results should only be regarded as conditional, as no
other proof of them is known. Note also that (6) in the above theorem generalises
(4) in virtue of the fact that the word and divisibility problems are easily decidable
for Mon〈a, b | bn = a〉. We remark that there are other statements which are highly
specialised (see e.g. [9, Theorem 7]) and rather involved to state, which are also
conditional on sh. We instead refer the reader to Adian and Durnev [13], in which
slightly detailed corrections that can be made to such statements.19

V. S. Guba [62, p. 1142] has stated that, in his opinion, decidability of the divisibility
problems for cycle-free monoids “is likely to be still more complicated than the word
problem for one-relator semigroups”.We shall see some results by Guba in §6.3 which
illustrates the potential difficulty in solving theword problem formonadic one-relation
monoids (and thereby also indirectly the difficulty in proving that sh holds).

5 Sporadic results

In this section, we shall present some approaches to the word problem for one-relation
monoid which are “sporadic” in nature, in that they are not necessarily founded in an
attempt to solve the word problem for all one-relation monoids, but have nevertheless
been fruitfully applied to many classes. One quick example is that Magnus’ Frei-
heitssatz20, which was integral in solving the word problem for one-relator groups,
can with little difficulty be generalised to one-relation monoids; an elementary proof
is given by Squier andWrathall [164]. However, this does not yet appear to have led to
any direct new insights regarding the word problem. We mention one related insight.

18 In the English translation of the article in which this result appears ( [155, Theorem 2]), the word “group”
has been mistranslated as “semigroup” (!). The Russian original is correct.
19 In that survey, the crucial condition of left cycle-freeness is sometimesmistakenly omitted from theorems.
20 If G = Gp〈A | w = 1〉 with w cyclically reduced and Y ⊆ A ∪ A−1 excludes some letter appearing in
w, then the subgroup of G generated by Y is freely generated by Y .
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Magnus classified all one-relator groups satisfying some non-trivial identity [100],
and Adian classified all special one-relation monoids satisfying some non-trivial iden-
tity [7].21 Using the Freiheitssatz and the work by Adian and Magnus, L. Shneerson
[162,163] was able to completely classify the one-relation monoids which satisfy
some non-trivial identity.22 Using this classification, Vazhenin [174] proved that a
non-special one-relation monoid has decidable first-order theory if and only if it is
monogenic, or else generated by a, b and with defining relation one of

ab = ba | ab = bk (k ≥ 1) | ba = aba | ab = bab2 | a = bab | a2 = b2,

or the right cycle-free equivalent of one of the above defining relations. This coincides
with the class of non-special one-relation monoids satisfying some non-trivial iden-
tity. Cain et al [36, Proposition 9.1] showed that the above cases are also precisely the
cases in which a one-relation monoid admits an automatic presentation. This gives
an efficient solution to the word problem in all the above cases, and is of indepen-
dent interest (though note that directly solving the word problem in any of the above
specified one-relation monoids requires very little effort).

We shall now present some families of one-relation monoids which have been
studied in a rather detailed manner using normal forms in a more or less “sporadic”
fashion.

5.1 Normal forms

One example of using normal forms to solve the word problem comes from Jackson
[72] who, seemingly inspired by the example Mon〈a, b | baaba = a〉 which escaped
the methods of Howie and Pride [69], proved that the one-relation monoids

Mon〈a, b | banba = a〉 (n ≥ 0)

admit a particular nice solution to their word problem via normal forms; the article is
only two pages long, and consists of a quick proof via van der Waerden’s trick that
the normal forms as specified are correct. We remark that although Jackson modestly
notes that “the result here should be regarded as a special case of a more general result
of Oganesian”, thismodesty is unfounded, in view of the gapmentioned in §4.4. Zhang
[183, §6] later remarked that the one can solve the word problem in any monoid as
above by considering its right cancellative analogue Mon〈a, b | abanb = a〉 and
noting that this admits a finite complete rewriting system with the two rules

{(abanb → a), (an+1b → aban)}.
21 A monoid M is said to satisfy the identity U (x1, x2, . . . , xn) = V (x1, x2, . . . , xn) if all equalities of
the form U (A1, . . . , An) = V (A1, . . . , An), obtained from replacing the variables x1, . . . , xn by arbitrary
elements A1, . . . , An from M , are true in M . An identity is said to be non-trivial if it does not hold in the
free semigroup on two generators. We refer the reader to e.g. the survey by Shevrin and Volkov [161] or
[32, Chapter II] for more information on identities.
22 The author thanks Mikhail Volkov for bringing these papers to his attention and sending him copies,
and Lev Shneerson for his interest in the author’s forthcoming translation of the two papers.
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A similar result regarding certain infinite families comes from Lallement and Rosaz
[98], who prove that the monoids

Mon〈a, b | ba = a(ba)na〉 (n ≥ 0)

have decidable word problem, again using normal forms. The special case with n = 1,
i.e. Mon〈a, b | ba = abaa〉 was then studied by Jackson [73], who proved that such
monoids even have decidable submonoid membership problem. Jackson [74] also
studied the submonoid membership problem for the Baumslag-Solitar semigroups

Mon〈a, b | abk = b�a〉 (k, � > 0)

and proved that this problem is decidable. Note, however, that the word problem is
easily solvable in such monoids as they are all cycle-free.

Finally, Yasuhara [181] proved that the word problem for one-relation monoids

Mon〈A ∪ {t} | u = vtw〉

where t does not appear in u, v, or w, and |u| > max(|v|, |w|). This result was
strengthened by Oganesian [133] to solve the word problem in the above situation,
with no condition on the lengths |u|, |v| and |w|. However, Yasuhara’s proof shows
that the equivalence class of any word is finite when the length condition holds, which
can be used to solve a number of other decision problems in this case (such as the
membership problem). We note that in the two-generator case, the above monoids are
all of the form

Mon〈a, b | an = a pbaq〉, n > p + q.

Normal form results are closely connected to rewriting systems by a result of Squier
[165], see also Brown [30]. Thus, we shall give some brief remarks regarding the
interface between the theory of rewriting systems and the word problem for one-
relation monoids.

5.2 Rewriting systems

While the theory of rewriting systems has often been limited to solving the word prob-
lem for very particular examples of one-relation monoids, there are some important
points to be made on their general applicability. We begin by noting that occasionally,
the algebraic structure of the rewriting systems in question seems to be somewhat
unduly ignored. For example, the Jantzen monoid Mon〈a, b | abbaab = 1〉 has been
the subject of a number of investigations after its 1981 introduction by Jantzen [75].
An explicit linear representation for it is found, and it is proved that no congruence
class of words is a context-free language. However, it is not hard to see that thismonoid
is a group: ab is a prefix and a suffix of abbaab, and hence ab and ba are invertible.
Furthermore, this group is easily seen to be the Baumslag-Solitar group BS(1,−2), by

123



The word problem for one-relation monoids: a survey 337

using the free group automorphism induced by a �→ ab−1 and b �→ b. Seeing that no
congruence class of words is a context-free language in BS(1,−2) is very straightfor-
ward. The “Jantzen monoid” has, however, been studied to good effect from the point
of view of admitting a finite complete rewriting system, where the situation has been
seen to be similar to the same for the Greendlinger group Gp〈a, b, c | abc = cba〉,
see [59,60,140].

Similarly, using rewriting techniques, Otto [141] proves in 1988 that there exists a
one-relator group that is not a one-relationmonoid. This group is justZ×Z, butMagnus
[100]—in the very first paper on one-relator group theory—uses the Hauptform des
Freiheitssatzes to prove that the only one-relator group presentation for this group
is Gp〈a, b | [a, b] = 1〉. Hence it is already clear that there can be no one-relation
monoid presentation for Z × Z, for such a presentation would also be a one-relator
group presentation for the group, but the defining relation would be a positive word.

However, one of the major benefits of rewriting is that their techniques can often
provide a strong link between formal language theory and monoids. A full description
of this is certainly beyond the scope of this survey, but we point the reader to some
articles which the author found to be of particular relevance to the word problem for
one-relation monoids, viz. [23,31,40,77,91,116,117,120,139,142,143,150,179,180].
We also refer to the excellent survey by Book, Jantzen and Wrathall [25] and to the
monograph by Jantzen [77] for a general introduction to the interface between these
areas. We remark that the author of the present survey has also studied the language-
theoretic properties of special monoids (see §2.3), and proved that a special monoid
has context-free word problem if and only if its group of units is virtually free [126],
generalising the Muller-Schupp theorem from groups to all special monoids.

Regarding obtaining finite complete rewriting systems for one-relation monoids,
Pedersen [146,147] introduced morphocompletion. This is a method that automati-
cally introduces new generators, and can be regarded as a rather powerful completion
procedure. The idea is to attempt standard completion (e.g. Knuth-Bendix completion)
and, if a confluent system is not thereby attained, it backtracks, and adds new gen-
erators to stop the non-confluent branching from appearing. His morphocompletion
solves the word problem in a number of one-relation monoids. For example, he solves
the word problem in the cases

Mon〈a, b | bubam = an〉 (n ≥ m + 3)

when the word bubam is self-overlap free. Pedersen’s morphocompletion seems to
be one of few methods that also applies to the case Mon〈a, b | bua = ava〉 when
bua is not self-overlap free. Even for small examples, it generally produces finite
complete rewriting systems with around 30–50 rules. It also seems rather unlikely
that his methods will generalise to all one-relation monoids. For a thorough survey on
other forms of completion, see Dershowitz [49].

5.3 Small overlap conditions

We shall briefly mention a particularly general method for solving many decision
problems, which has some use also in the one-relation case. Consider a monoid pre-
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sentationwith alphabet A andwith defining relations (ui , vi ), where the relationwords
ui , vi ∈ A+ are assumed non-empty. A non-empty subword p of a relation word is
called a piece if it appears in at least two distinct ways as a subword of relation words.
For n ≥ 1, we say that the presentation satisfies the small overlap hypothesis C(n) if
no relation word can be written as a product of fewer than n pieces. Remmers [152]
proved that the word problem is decidable in anymonoid presentation satisfyingC(3).
In fact, this has been greatly extended; C(3) is sufficient to imply decidability of the
conjugacy problem [47], and Kambites [79] has shown that C(4) is sufficient to solve
even the rational subset membership problem, which greatly generalises the divisi-
bility problems, submonoid membership problem, and the word problem. In fact, in
C(4) monoids, the word problem can be solved in linear time by a result of Kambites
[78], cf. also the recent normal form algorithm for C(4)-monoids devised by Mitchell
and Tsalakou [118]. Kashintsev [84] has explored connections between small overlap
conditions and embeddability of monoids into groups, as well as using small overlap
techniques for solving the word problem in some classes of special monoids [82,85].

It follows fromKambites’ work on genericity in small overlap monoids (see [80]23)
work that for any n ≥ 1, the probability that a two-generated one-relation monoid sat-
isfies the small overlap conditionC(n) tends to 1 as the length of the relation increases.
Hence all of the problems mentioned above are decidable for almost all one-relation
monoids. It follows that the small overlap argument provides a reasonable argument
for conjecturing that the word problem (even the rational subset membership problem)
is decidable for all one-relation monoids. We remark that a parallel definition of small
overlap monoids was given by V. A. Osipova. She proved that in certain monoids
(so-called ≥ 1

2 -monoids) satisfying a type of overlap condition the word problem
is decidable [136]. These methods were also applied by her to partially understand
the solvability of equations (the Diophantine problem) in ≥ 1

3 -monoids [137,138].
This latter problem is beyond the scope of this survey, but has very recently been
investigated in the special one-relation case by Garreta and Gray [52].

6 Modern and future results (1997–present)

This section will give a high-level overview of somemodern results related to the word
problem for one-relation monoids. For obvious reasons of space, we will not be giving
detailed proofs (or sometimes definitions) of the results and concepts mentioned here,
but pointers to further reading will be amply provided.

6.1 Finite complete rewriting systems

It is an open problem whether every one-relation monoid admits a finite complete
rewriting system, i.e. whether for every one-relation monoid M = Mon〈A | u = v〉
there exists an alphabet24 B and a finite complete rewriting system T ⊆ B∗ × B∗

23 The author thanks Mark Kambites for bringing his paper to his attention.
24 The surface group Mon〈a, b | abba = 1〉 does not admit a finite complete rewriting system over {a, b},
but does admit one over an alphabet with three letters [76].
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such that M is isomorphic with B∗/ ←→∗
T . In general, this property is stronger than

having decidable word problem. In this section, we will briefly present two finiteness
properties which are closely connected to finite complete rewriting systems, and what
is known about these in the one-relation case.

Kobayashi [89] investigated homotopy finiteness properties for one-relation
monoids. One central such property is finite derivation type (FDT), which was intro-
duced in 1987 by Squier [165] (and, independently, Pride [151]), though Kobayashi
notes that the idea appears implicitly in work by Adian [7,8]. The central idea behind
FDT is as a homotopy finiteness property for equivalence classes of derivations in
monoids, and is independent of the particular finite presentation chosen for a monoid.
While the full details of FDT are beyond the scope of the current article, our main
interest comes from the following result due to Squier: if a monoid admits a finite
complete rewriting system, then it has FDT. This gives a potential venue for proving
that a monoid does not admits a finite complete rewriting system (which otherwise is
a very difficult task), or indeed for providing supporting evidence that, say, a given
one-relation monoid admits a finite complete rewriting system.

Kobayashi [89] first used the algorithm A in 1998 to prove that every one-relation
monoid presented by a non-subspecial relation has FDT. In a subsequent paper, he then
proves that subspecial one-relation monoids have FDT, by using weak compression to
reduce it to the special one-relation case, which can then be reduced to FDT for one-
relator groups [90]. As one-relator groups have FDT by a 1994 result of Cremanns
[43], it then follows that all one-relation monoids have FDT. Further to this, if a
monoid admits a finite complete rewriting system, it also satisfies a certain homological
finiteness property FP∞ (by Kobayashi [88] and Squier [165]). It is known that any
monoid with FDT also has FP3 by Cremanns and Otto [44], and for some time it was
an open problem whether every one-relation monoid has FP∞. This was very recently
answered affirmatively by Gray and Steinberg [57] in 2019. This can be regarded
as supporting the conjecture that every one-relation monoid admits a finite complete
rewriting system. The proofs leading up to these results are also notable in their usage
of (weak) compression and the algorithm A not to solve the word problem, but to
derive strong structural results.

We end this section by noting that some partial progress has also recently been
made in constructing explicit finite complete rewriting systems for certain one-relation
monoids. To this end, the results by Cain andMaltcev [33,34] bear mentioning, as they
show that all one-relation monoids of the formMon〈a, b | bαaβbγ aδbεaϕ = a〉 admit
finite complete rewriting systems, where α, β, γ, δ, ε, ϕ ≥ 0, i.e. where the “relative
length” of the left-hand side is at most 6. This result provides quite explicit solutions
to the word problem for such monoids, but their methods do not seem to be easily
generalisable to allmonoidsMon〈a, b | bua = a〉.We note in passing that the smallest
monadic one-relationmonoid towhich no result in the literature appears to be available
to solve the word problem for is Mon〈a, b | bababbbabba = a〉. The author has not
found a finite complete rewriting system for this monoid, but has solved the word
problem for this monoid by other means.
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6.2 Special inverse monoids

In 2001, a landmark paper by Ivanov,Margolis andMeakin appeared; this discovered a
strong link between theword problem for one-relationmonoids and special one-relator
inverse monoids. We give a brief summary of this link here.

A monoid M is said to be inverse if for every x ∈ M there exists a unique y ∈ M
such that xyx = x and yxy = y. This “inverse” (which need not be a group inverse) is
usually denoted x−1. The existence of free inverse monoids was first proved in 1961
by V. V. Wagner [175], although the word problem for free inverse monoids was not
proved to be decidable until the 1974 groundbreaking paper by D. Munn [119]. It
bears remarking that free inverse monoids on a non-empty finite set of generators are
not finitely presented25 as ordinary monoids [156], even though they are (of course!)
finitely presented as inverse monoids. Every inverse monoid admits an inverse monoid
presentation. Such presentations are commonly written as Inv〈A | R〉, where, as
for group presentations, one considers words over A ∪ A−1. Of course, one defines
special inverse monoids as is done for ordinary monoids (see §2.3). Arguably the most
useful tool for studying inversemonoid presentations comes fromStephen’s procedure,
defined in J. B. Stephen’s Ph.D. thesis [166].26 This is a graphical procedure defined
entirely analogously to M. Dehn’s Gruppenbild (see Dehn [48] and Chandler and
Magnus [39, pp. 24–25]). We refer the reader to subsequent publications by Stephen
[167] for more details.

Stephen’s procedure is often useful for solving the word problem in finitely pre-
sented inverse monoids, and has been used to solve the word problem in a number
of cases (see e.g. [21,65,109]). In the case of special monoids, the main interest in
solving this problem comes from the following fascinating link proved by Ivanov et
al. [71]. A word is reduced if it does not contain a subword of the form aa−1 or a−1a,
where a is some letter.

Theorem 6.1 (Ivanov et al. 2001) If the word problem is decidable for all inverse
monoids of the form Inv〈A | w = 1〉 where w is some reduced word, then the word
problem is also decidable for every one-relation monoid.

Wemake an important remark that the proof of this theorem as given by Ivanov et al.
is incomplete. This fact does not appear to have been observed in the literature before.
Their proof begins by reducing the word problem for M to the word problem for the
right cancellative case Mon〈a, b | aub = ava〉, before embedding this monoid in the
special one-relator inverse monoid Inv〈a, b | aub(ava)−1 = 1〉, fromwhich the result
follows. However, this does not account for the fact that the word problem remains
open for the monadic case Mon〈a, b | aub = a〉 (as seen in §4.4). Fortunately, the
only property ofMon〈a, b | aub = ava〉 used to produce such an embedding as above
is that it is right cancellative; in particular, by adding the case Mon〈a, b | aub = a〉
and embedding this into Mon〈a, b | auba−1 = 1〉, one finds that the proof of the
above theorem is fixed.

25 In fact, as was recently discovered, they are not even of homological finiteness type FP2, see [58].
26 Stephen also defined an “ordinary” monoid analogue of his procedure in his survey, which is often
overlooked. The author of the present survey, however, has made use of this procedure to characterise the
geometry of special monoids [124].
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As the word problem is decidable for all one-relator groups Gp〈A | w = 1〉 and
all special one-relation monoids Mon〈A | w = 1〉 (see §2.3), one might view the
above result with optimism by conjecturing that the word problem is decidable for all
one-relator special inverse monoids Inv〈A | w = 1〉. However, the following recent
and astounding result by Gray [55] demonstrates that this optimism is unfounded.

Theorem 6.2 (Gray, 2020) There exists a special one-relator inverse monoid

IB = Inv〈A | wB = 1〉

such that the word problem for IB is undecidable.

However, the word wB constructed by Gray is not reduced, so the implication
in Theorem 6.1 remains a valid path to solving the word problem for all one-relation
monoids. Of course, the word problem for special one-relator inverse monoids defined
by a reduced word could potentially be significantly harder than that for one-relation
monoids. However, the author of the present survey has reasons to suspect that the
word problem for all one-relation monoids is equivalent to the word problem for all
types of special one-relator inverse monoids occurring in the proof of Theorem 6.1.

The author notes that it is very straightforward to show that any special one-relator
inverse monoid occurring in the proof of Theorem 6.1 will have trivial group of units.
If special inverse monoids behaved anything like ordinary special monoids (see § 2.3),
we might expect this to be strong evidence in favour of decidability. However, very
recently, Gray and Ruškuc [56] have demonstrated that the group of units of even one-
relator special inverse monoids can exhibit rather exotic behaviour when compared to
the monoid itself; it need not, for example, be a one-relator group. There is, at present,
not even an algorithm known for decomposing the relator word w in Inv〈A | w = 1〉
intominimal invertible pieces. Adian’s overlap algorithm for ordinary special monoids
(see §2.3) fails spectacularly here, as is demonstrated by the O’Hare monoid with
presentation

Inv〈a, b, c, d | (abcd)(acd)(ad)(abbcd)(acd) = 1〉,

where the defining relationwordhas no self-overlaps, but the factorisation intominimal
invertible pieces is indicated by the parentheses [110]. The author of the present survey
has recently found a smaller counterexample, namely

Inv〈a, b | aabbaabab = 1〉,

which is a group (the trefoil knot group), despite the fact that the defining relation
word has no self-overlaps. Gray and Ruškuc [56] propose an improved algorithm (the
“Benois algorithm”) for computing the minimal invertible pieces of a special one-
relator inverse monoid, and which correctly computes the pieces of the above two
examples. However, the author of the present survey has recently found an example
showing that this algorithm does not always produce the minimal invertible pieces.
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This will appear in future work by the author. Thus, until the word problem for one-
relator special inverse monoids is better understood, this seems a difficult avenue for
tackling the word problem for one-relation monoids.

6.3 Themonadic case

As mentioned, cf. §4.4, the word problem for monadic one-relation monoids
Mon〈a, b | bua = a〉 remains an open problem, conditional on the decidability
of the divisibility problems for cycle-free monoids. However, two major results have
since appeared for the monadic case, and both were proved in 1997 by Guba.

The first concerns the equivalence of decision problems for such monoids. While
it is clear that decidability of the left divisibility problem (even by a single letter)
implies decidability of the word problem, it is not a priori true that the converse
holds. Furthermore, the rôle of the right divisibility problems seems unclear at first.
However—surprisingly—Guba showed that these problems are all, in fact, equivalent
in the monadic case. The corresponding statement for general left cycle-free one-
relation monoids is not known to hold or not.

Theorem 6.3 (Guba, 1997) Let M = Mon〈a, b | bua = a〉. The following are equiv-
alent:

(1) The word problem for M is decidable;
(2) The left divisibility problem for M is decidable;
(3) The right divisibility problem for M is decidable.

Furthermore, each of these problems is equivalent to its restricted variant of consid-
ering equality with (resp. left/right divisibility by) the single letter a.

The proof uses diagrammatic methods, and are rather involved; we refer the reader
to [62, Theorem 4.1] to begin navigating the proof, and do not expound on it any
further.

We now present Guba’s second major result. Consider a monadic one-relation
monoid Mon〈a, b | bua = a〉. Oganesian considered the submonoid SM generated
by all suffixes of the word bua in Mon〈a, b | bua = a〉. He then reduces, by a very
general result, the left divisibility problem for M to the left divisibility problem for
SM ( [134, Theorem 1]). He then proves the quite remarkable (and non-trivial!) fact
that SM can be defined by a cycle-free presentation ( [134, Theorem 2]). This makes
the implication regarding sh and the word problem for monadic one-relation monoids
clear (see §4.4).

Guba, however, studied SM in more depth. In general, SM can be shown to not
always be a one-relation monoid. However, as it is cycle-free, it is of course group-
embeddable (see §2.2), and so one might reasonably ask questions about the group
G M with the same defining relations. Guba, remarkably, shows that G M is always
isomorphic with a one-relator group (which he denotes G(�)). Furthermore, this one-
relator group is a positive one-relator group; recall that a one-relator group Gp〈A |
w = 1〉 is positive if no inverse symbols appear in the word w (these have been
studied by Baumslag [20]). He then shows that the left divisibility problem reduces
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to deciding membership in SM inside G M . This provides the following astounding
statement, which is [62, Corollary 2.1].

Theorem 6.4 (Guba, 1997) The word problem for Mon〈a, b | bua = a〉 reduces to
the membership problem for a certain submonoid of a positive one-relator group.

Perrin and Schupp [148] have proved that a one-relator group is a special one-
relator monoid if and only if it admits a presentation Gp〈A | w = 1〉 where
w is a positive word. Hence, we have the following remarkable statement: if the
submonoid membership problem is decidable for all special one-relator monoids
Mon〈A | w = 1〉, then the word problem is decidable for all one-relation monoids of
the form Mon〈a, b | bua = a〉. We do not know of a special one-relator monoid with
undecidable submonoid membership problem. However, there is some indication that
it might be undecidable, which we discuss below.

Theorem 6.5 ( [55, Theorem B]) The cycle-free one-relator group

B = Gp〈a, b | abba = baab〉

has undecidable submonoid membership problem.

The proof is almost immediate, and so we reproduce it here: consider the right-
angled Artin group A(P4) with defining graph the path on 4 vertices. Then A(P4) has
generators a1, . . . , a4 and defining relations [ai , a j ] = 1 whenever j = i + 1. It is
well-known, and follows quickly from results of Aalbersberg andHoogeboom [2], that
the submonoid membership problem for A(P4) is undecidable. Consider the HNN-
extension B of A(P4) with stable letter t and associated subgroups 〈a1, a2, a3〉 ∼=
〈a2, a3, a4〉. Then by a few quick Tietze transformations, one finds

B ∼= Gp〈a, b | [a, bab−1] = 1〉 ∼= Gp〈a, b | abba = baab〉.

Hence A(P4) embeds in B, and the result follows.27 However, we note that by [108,
Corollary 2.6] the membership problem for all positively generated submonoids of B
(with respect to the latter of the two presentations) is decidable. Here a submonoid is
positively generated if it admits a generating setwith only positivewords. Furthermore,
the subgroup membership problem is decidable, as B can easily be shown to be an
HNN-extension of Z

2 conjugating one generator to the other; thus this problem is
decidable by using the results in e.g. Kapovich et al [81]. We also note that the monoid
Mon〈a, b | abba = baab〉 trivially has solvable submonoid membership problem.

6.4 The Collatz conjecture

In recent years, an interesting connection due to Guba between the word problem for
monadic one-relation monoids Mon〈a, b | bua = a〉 and the Collatz conjecture has

27 The fact that the one-relator group B is cycle-free is not observed directly in Gray [55], where only
the former of the two above presentations for B is presented, but the latter presentation was shown to the
author via private communication with Gray; in fact one quickly obtains the latter from the former by the
free group automorphism induced by a �→ ab and b �→ b.

123



344 C.-F. Nyberg-Brodda

appeared. The author is not aware of any place in the literature where this connection
has been written down, and so it is fully expanded on here.

The Collatz conjecture (or the 3x + 1 problem) is a famous problem concerning
the function f : N → N defined as

f (x) =
{

x
2 if x ≡ 0 mod 2

3x + 1 if x ≡ 1 mod 2.

Let f (i)(x) denote the result of applying f i times to x . The conjecture states that
the sequence (x, f (x), f (2)(x), . . .) eventually reaches 1, at which point it cycles as
(1, 4, 2, 1, . . .). The conjecture has been verified for very large x . Occasionally, the
time taken to reach 1 is very long, and has a large degree of unpredictability; for
example, even starting with something as small as x = 27, one has the sequence

(27, 82, 41, . . . , 3077, 9232, 4616, . . . , 5, 16, 8, 4, 2, 1)

taking 111 steps to reach 1. We refer to the survey by Lagarias [93] for an excellent
overview.

The connection between the Collatz conjecture (and its generalisations) and deci-
sion problems has been studied in the past. J. H. Conway [42] proved that certain
generalisations of the Collatz conjecture are undecidable (this has subsequently been
strengthened by Kurtz and Simon [92]). We say that a function g : N → N is a Collatz
function if there is some integer m together with some non-negative rational numbers
ai , bi (i < m) such that

g(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0x + b0 if x ≡ 0 mod m,

a1x + b1 if x ≡ 1 mod m,

...

am−1x + bm−1 if x ≡ −1 mod m.

The usual Collatz function is of the above form for m = 2, a0 = 1
2 , b0 = 0, a1 =

3, b1 = 1.

Theorem 6.6 (Conway, 1972) There exists a fixed Collatz function ge : N → N such
that it is undecidable (with input x ∈ N) whether g(i)

e (x) = 1 for some i ≥ 1.

Thus the iterative behaviour of Collatz functions is enough to encode undecidability
statements. SeeMargenstern’s survey [107] for further details on connections between
computability and the Collatz conjecture.

Guba realised that there is a connection betweenCollatz-like functions and theword
problem for monadic one-relation monoids. We shall consider the right cancellative
case Mon〈a, b | aub = a〉, rather than the usual left cancellative case, as this makes
the formulation of the problem easier. We shall not detail how (the non-general form
of) A works in this case; it is entirely analogous to the left cancellative case, where
prefix is replaced by suffix, etc.
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Let M = Mon〈a, b | aub = a〉. Let us say we have a pair of words (X , Y ), and we
wish to decide whether X = Y in M . We shall describe an iterative procedure on such
pairs using the way Adian’s algorithm A operates. We shall indicate this action by
−→A. We first describe the base cases. If one of X and Y is empty, then we terminate,
and conclude that X = Y in M if and only if X ≡ Y ≡ ε. If both X and Y are
non-empty, then we terminate if X ≡ Y , and conclude X = Y in M . Otherwise, if
X �≡ Y , and if X (resp. Y ) is a single letter which is a suffix of Y (resp. X ), then we
terminate and conclude that X �= Y in M .

Now, if X ≡ X ′a and Y ≡ Y ′a, or X ≡ X ′b and Y ≡ Y ′b, then we cancel these
letters. This defines transformations

(X ′a, Y ′a) −→A (X ′, Y ′)
(X ′b, Y ′b) −→A (X ′, Y ′)

If instead X and Y end in different letters, then we flip the pair (X , Y ), if necessary,
such that it is a pair of the form (X ′b, Y ′a). We then (as A tells us to) replace the
rightmost a by aub, and cancel the right-most b, resulting in a transformation

(X ′b, Y ′a) −→A (X ′, Y ′au).

We now iterate this process, which completes the description.We conclude by Adian’s
theorem regarding A (cf. Theorem 4.3) that X = Y in M if and only if the process
terminates successfully; hence, to solve the word problem is equivalent to be able
to decide if the above procedure terminates on a given input (X , Y ). Of course, this
can also be used to study the right divisibility problem, but these two problems are
equivalent for M by Guba’s earlier result.

The insight by Guba is that one can consider the binary representation of words via
a �→ 1 and b �→ 0, and that the above procedure thus produces a Collatz-like function
N × N → N.

Example 6.7 Let M = Mon〈a, b | abaab = a〉. Let X ≡ aabaab and Y ≡ a. This
gives the sequence

(aabaab, a) →A (aabaa, abaa) →A (aaba, aba) →A (aab, ab) →A (aa, a).

We terminate unsuccessfully, and conclude that X �= Y in M . Using the dyadic
representation a �→ 1 and b �→ 0, we have that the above sequence is a sequence of
transformations

(1101102, 12) →A (110112, 10112) →A (11012, 1012) →A (1102, 102) →A (112, 12)

Considered as a sequence of natural numbers, the above sequence is

(54, 1) →A (27, 11) →A (13, 5) →A (6, 2) →A (3, 1).

In fact, it can be shown that no input word will give an infinite loop.
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The process induced by →A is not hard to see to be Collatz-like. Note that the
cancelling of final letters corresponds to removing the final bit of a binary digit, which
is the same as division by 2 and rounding down, which we hence carry out if the two
words map to binary digits that are congruent mod 2. Similarly, the transformation

(X ′b, Y ′a) −→A (X ′, Y ′au)

is carried out when the last bits differ, and when considered in its dyadic representation
the transformation corresponds to removing the final bit of the dyadic representation
of X ′b resp. multiplying the dyadic representation of Y ′a by 2|u| and adding the binary
number corresponding to u. Finally, we map (X , Y ) →A (Y , X) when the last bits
differ and the last bit of the word corresponding to X is 0.

Hence, given a one-relation monoid Mon〈a, b | aub = a〉, let K be the natural
number corresponding to the dyadic representation of u. Then the word problem for
M is decidable if and only if the termination problem is decidable for G : N×N → N

defined by

G(x, y) =

⎧⎪⎨
⎪⎩

(� x
2 �, � y

2 �) if x ≡ y mod 2,( x
2 , 2|u|y + K

)
if x �≡ y and x ≡ 0 mod 2,

(y, x) if x �≡ y and x ≡ 1 mod 2.

That is, we can solve the word problem for M if and only if we can decide, for arbitrary
input (x, y), whether or not the sequence ((x, y), G(x, y), G(2)(x, y), . . .) eventually
terminates.

Example 6.8 Continuing the example M1 = Mon〈a, b | abaab = a〉 from earlier, we
find that as baa �→ 0112, we have K = 3, so

G1(x, y) =

⎧⎪⎨
⎪⎩

(� x
2 �, � y

2 �) if x ≡ y mod 2,( x
2 , 8y + 3

)
if x �≡ y and x ≡ 0 mod 2,

(y, x) if x �≡ y and x ≡ 1 mod 2.

Similarly, in the (right cancellative analogue of the) monoid from Example 4.2, which
is given by M2 = Mon〈a, b | aabbaab = a〉, we find that u ≡ abbaa �→ 100112, so
K = 19. Thus we can solve the word problem in this monoid if and only if we can
decide when the function

G2(x, y) =

⎧⎪⎨
⎪⎩

(� x
2 �, � y

2 �) if x ≡ y mod 2,( x
2 , 32y + 19

)
if x �≡ y and x ≡ 0 mod 2,

(y, x) if x �≡ y and x ≡ 1 mod 2

terminates. Note that this function loops on input (aaabb, a), as indicated by the
(reversal) of the transitions given in this example; this corresponds to the infinite loop
starting in (28, 1), given by

(28, 1) →A (14, 51) →A (7, 1651) →A (3, 825) →A (1, 412) →A (412, 1).
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Nownote that 412 ≡ 28 mod 25, i.e. 1100111002 = 111002 mod 25, so this process
will now loop indefinitely to produce the binary numbers (1100)n111002 for n ≥ 0,
which gives the non-terminating sequence

(28, 1) →A · · · →A (412, 1) →A · · · →A (6556, 1) →A · · · →A (104860, 1) →A · · ·

Hencewe conclude that aaabb �= a in M (we can also conclude that aaabb is not right
divisible by a). To be clear, if we could detect this looping behaviour for G2(x, y),
we could conclude aaabb �= a in M simply by checking if G2(x, y) loops on input
(28, 1).

Guba suspects that Conway’s undecidability result indicates that it is probable that
the word problem or one of its generalisations for monadic one-relation monoids
is undecidable. The problem comes down to understanding poor behaviour of the
algorithm A. Of particular interest is the following question.28

Question (Guba, 1997) Is there some M = Mon〈a, b | bua = a〉 and a word w such
that w is left29 divisible by ak in M for every k ≥ 0?

If this question has an affirmative answer, then this indicates that the algorithm
A has quite complicated behaviour. Of course, the right cancellative analogue of the
question above, i.e. does there exist some M = Mon〈a, b | aub = a〉 and a word w

such that w is right divisible by ak in M for every k ≥ 0, can be directly translated to
a statement about the above functions by asking for the existence of m ∈ N such that
the monadic Collatz-like function of M when applied to the initial word (m, 2k − 1)
always terminates successfully for k ≥ 1. Demonstrating the existence of such an M
and m would indicate that A (and by extension, the Collatz-like function) can behave
rather poorly, and, although there is no direct implication of any kind, this would be
an important first step if one intends to construct an undecidable Collatz-like function
as above.

Concluding remarks

This survey has hopefully given the reader a good feel for the many intricacies, con-
nections to other areas, and beautiful results that combine to make the word problem
for one-relation monoids the fascinating problem that it continues to be. Although
the many positive decidability results proved over the years seems to indicate that
the problem will one day be proved to be decidable, the newly discovered links to
undecidable problems by e.g. Gray and Guba might one day come to prove just the
opposite. In any case, it seems fair to say that the problem has turned out to be signifi-
cantly more difficult than the early positive results in the 1960s might have suggested.
The question of decidability of the word problem for one-relation monoids might be

28 The author thanks Victor Guba for explaining the link between this question and Collatz-like functions.
29 In the English translation, left has here been incorrectly (!) translated as right; right is wrong, left is
right.
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compared to the question of whether or not Thompson’s group F is amenable. At the
door to the office of my M.Sc. advisor C. Bleak there was printed an introduction
to F by Cannon and Floyd (see [37]), which I occasionally would glance at while
waiting to be let in. One line stood out: “at a recent conference devoted to the group a
poll was taken. Is F amenable? Twelve participants voted yes and twelve voted no.”
Perhaps the situation would be similar at a conference devoted to the word problem
for one-relation monoids?

Given the overwhelming extent of the contributions by S. I. Adian to this area,
it would not be appropriate to end this survey with such an anecdote of my own.
Instead, I will mention that at a conference long ago, following a talk on the word
problem for one-relation monoids, it is reported that Adian was asked: if a Western
mathematicianwere to solve the problem,would Soviet journals publish the solution in
English? Adian’s response was: “before the problem is solved, everybody will publish
in English in the Soviet Union”. As Almeida and Perrin remark, he seems to have been
right [18]. There is likely no more fitting final sentence for this survey than that given
by Adian in 2018 at a conference at the Euler International Mathematical Institute in
Saint Petersburg, regarding the word problem for one-relation monoids: its solution
is a task for the future generations of mathematicians.
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