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Abstract
A quantitative estimate for the Trotter’s approximation theorem for the limiting sem-
igroup of operators generated by the multidimensional Bernstein operators on a sim-
plex is obtained. For this, an essential step consists in an explicit representation of 
the derivatives of higher order of multidimensional Bernstein operators.
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1 Introduction

Let X be a Banach space, endowed with norm ‖ ⋅ ‖ . Denote by L(X) 
the space of bounded linear operators T ∶ X → X , endowed with norm 
‖L‖ = sup{‖Lx‖, x ∈ X, ‖x‖ = 1}. A C0 semigroup of operators on the space X is a 
family of operators {T(t)}t≥0 , T(t) ∈ L(X) , with the properties 

a) T(t + s) = T(t)T(s) , for t, s ≥ 0;
b) limt→0+ T(t)x = x , for any x ∈ X , in the sense of norm of X.

As a general bibliography of the subject we mention [1–3, 5, 10, 17, 18]. A basic 
result concerning C0 semigroups of operators is given by Trotter’s approximation 
theorem.
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Theorem A [21] Let (Ln)n∈ℕ be a sequence of bounded linear operators on a 
Banach space X and let (�n)n∈ℕ be a decreasing sequence of positive real numbers 
tending to 0. Suppose that there exist M ≥ 0 and � ∈ ℝ such that

Moreover, assume that D is a dense subspace of X and for every f ∈ D the following 
Voronovskaja-type formula holds

If (�I − A)(D) is dense in X for some 𝜆 > 𝜔 , then there exists a C0-semigroup 
(T(t))t≥0 such that for every f ∈ X and every sequence (k(n))n ∈ ℕ of positive inte-
gers satisfying limn→+∞ k(n) ⋅ �n = t , we have

A version of Trotter’s approximation theorem is the following

Theorem B ([3], a part of Corollary 2.2.11) Let (Ln)n≥1 be a sequence of linear 
operators on the Banach space E, with ‖Ln‖ ≤ 1 and let (�n)n≥1 be a sequence of 
positive real numbers such that limn→∞ �(n) = 0 . Let A0 ∶ D0 → E be a linear oper-
ator defined on a subspace D0 of E and assume that (i) there is a family (Ei)i∈I of 
finite dimensional subspaces of D0 which are invariant under each Ln and whose 
union 

⋃
i∈I Ei is dense in E; (ii) lim

n→∞

Ln(u)−u

�(n)
= A(u) for every u ∈ D0.

Then A0 is closable and its closure A ∶ D(A) → E is the generator of a contrac-
tion C0-semigroup (T(t))t≥0 on E satisfying the following condition: if (k(n))n≥1 is a 
sequence of positive integers with lim

n→∞
k(n)∕�(n) = t , then, for every f ∈ E,

The iterates and the limiting semigroup generated by Bernstein operators were 
studied in [6–9, 12, 14, 16] among others. The semigroup generated by multidimen-
sional Bernstein operators was considered in [6, 7, 15]. For the limiting groups gen-
erated by other positive linear operators we cite [4, 11, 13, 15, 19, 20].

2  Additional results for multidimensional Bernstein operators

We fix the following notation. Let ℕ = {1, 2,…} and ℕ0 = ℕ ∪ {0} . Let d ∈ ℕ be 
fixed. For a multi-index k ∈ ℕ

d
0
 , k = (k1,… , kd) , denote |k| = k1 +…+ kd and 

k! = k1!… kd! . For n ∈ ℕ , if k ∈ ℕ
d
0
 , |k| ≤ n , define 

(
n

k

)
=

n!

k!(n−|k|)!
.

‖Lk
n
‖ ≤ Me��nk, (k, n ∈ ℕ).

Af ∶= lim
n→∞

Ln(f ) − f

�n

T(t)f = lim
n→∞

Lk(n)
n

(f ).

(1)T(t)(f ) = lim
n→∞

Lk(n)
n

(f ).
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Define the d-simplex

Vectors ei = (0,… , 0, 1, 0,… , 0) , 1 ≤ i ≤ d , form the standard base of the space ℝd . 
If x = (x1,… , xd) ∈ �d put |x| = x1 +…+ xd . Hence |x| ≤ 1 . If, in addition we take 
k = (k1,… , kd) ∈ �n

d
 , then define xk = x

k1
1
… x

kd
d

 . With this notation we define now

We extend the definition of p
n,k
(x) , for k ∈ ℤ

d , putting

In the case d = 1 and k = k , x = x we write simply pn,k(x) instead of p
n,k
(x).

With these preparations we can define the Bernstein operator on the simplex �d:

where k
n
=
(

k1

n
,…

kd

n

)
 , n ∈ ℕ , f ∶ �d → ℝ , x ∈ �d.

Let � = (�1,… , �d) ∈ ℕ
d
0
 . Suppose |�| ≥ 1 , where |�| = �1 +…+ �d . If 

f ∈ C|�|(�d) define

If |�| = 0 , define �
� f

�x
� ∶= f .

For � ∈ ℕ
d
0
 denote by C�(�d) the space of functions f ∶ �d → ℝ which admits 

the partial derivative �� f

�x
�  continuous on �d . For 1 ≤ i ≤ d consider functions 

�i ∶ �d → ℝ , �i(x) = xi.
The next lemma is easy to obtain and in great part well known, see for instance 

[2, Section 6.2].

Lemma 1 For x = (x1,… , xd) ∈ �d we have

i) Bn(�i − xi, x) = 0 , (1 ≤ i ≤ d);
ii) Bn((�i − xi)(�j − xj), x) = −

xixj

n
 , (1 ≤ i, j ≤ d, i ≠ j);

iii) Bn((�i − xi)
2, x) =

xi(1−xi)

n
 , (1 ≤ i ≤ d);

iv) Bn((�i − xi)
3, x) =

xi(1−xi)(1−2xi)

n2
, (1 ≤ i ≤ d);

v) Bn((�i − xi)
2(�j − xj), x) =

xixj(2xi−1)

n2
; (1 ≤ i, j ≤ d, i ≠ j);

(2)�d ∶= {x = (x1,… , xd) ∣ xi ≥ 0, (1 ≤ i ≤ d), x1 +…+ xd ≤ 1}.

(3)p
n,k
(x) ∶=

(
n

k

)
x
k
(1 − |x|)n−|k|.

(4)p
n,k
(x) ∶= 0 if ∃i such that ki < 0 or |k| > n.

(5)Bn(f , x) ∶=
∑

|k|∈�n
d

p
n,k
(x)f

(
k

n

)
,

(6)
��f

�x
� ∶=

�|�|f

�x
�1
1
… �x

�d
d

.
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vi) Bn((𝜋i − xi)(𝜋j − xj)(𝜋m − xm), x) =
2xixjxm

n2
, (1 ≤ i < j < m ≤ d);

vii) Bn((�i − xi)
4, x) =

1

n2

(
3 −

6

n

)
x2
i
(1 − xi)

2 +
xi(1−xi)

n3
, (1 ≤ i ≤ d);

viii) 
Bn((�i − xi)

2(�j − xj)
2, x) =

1

n2

(
3 −

6

n

)
x2
i
x3
j
+
(
−

1

n2
+

2

n3

)
(x2

i
xj + xix

2
j
) +

n−1

n3
xixj, 

(1 ≤ i, j ≤ d, i ≠ j).

Theorem  1 Let � ∈ ℕ
d
0
 , |�| ≥ 1 . Then for any f ∈ C|�|(�d) , n ∈ ℕ , n ≥ |�| and 

x ∈ �d we have

where I� = {i ∈ {1,… , d} ∣ �i ≥ 1} and

In the case |�| = 0 , the term ∫∫ … ∫�
0,

1

n

���� ��

�t
� f
�

k

n
+
∑

i∈I�

�∑�i
j=1

ti,j

�
ei

�
dt� is 

reduced to f
(

k

n

)
.

Proof We consider only the case d ≥ 2 , since the proof the case d = 1 can be easily 
deduced from the case d ≥ 2.

The following formula is well-known.

We induct on r ∶= |�| . For r = 0 relation (7) is obvious. Suppose that relation (7) 
holds for any d ≥ 1 and any � with |�| = r and let show that it is a true for a multi-
index � = (�1,… , �d) with |�| = r + 1 . Then there are a multi-index � = (�1,… , �d) 
with |�| = r and an index 1 ≤ i ≤ d such that �i = �i + 1 and �j = �j , for 1 ≤ j ≤ d , 
j ≠ i . To simplify the notation, we can suppose that i = d . In other cases we make a 
renumbering of the variables.

Let x ∈ �d , x = (x1,… , xd) . Denote |x| = x1 +…+ xd . Suppose xd > 0 . Define 
z = (x1,… , xd−1) and |z| = x1 +… xd−1 . Then |z| < 1 . Denote also y ∶= xd

1−|z| ∈ [0, 1] 
and m ∶= n − |�| = n − r.

Let k ∈ ℕ
d
0
 , with |k| = m . Denote � ∶= (k1,… kd−1) . Then |k| = |�| + kd . We can 

write

(7)

��

�x
� Bn(f , x) =

n!

(n − |�|)!
∑

|k|≤n−|�|
p
n−|�|,k(x)×

× � � …�[
0,

1

n

]|�|
��

�t
� f
(
k

n
+
∑

i∈I�

( �i∑

j=1

ti,j

)
ei

)
dt� ,

dt� =
∏

i∈I�

�i∏

j=1

dti,j.

(8)(ps,k(x))
� = s(ps−1,k−1(x) − ps−1,k(x)), s ∈ ℕ, k ∈ ℤ, x ∈ [0, 1].
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For k ∈ ℕ
d
0
 , |k| ≤ m , denote

By the hypothesis of induction we have

Using relation (9) and the decomposition of the sum

we can write

By relation (11) it follows

where the first d − 1 components of k are fixed and form vector � . Then

(9)

p
m,k

(x) =
m!

k1!… kd!(m − |k|)!
x
k1
1
… x

kd
d
(1 − |x|)m−|k|

=
m!

k1!… kd−1!(m − |𝓁|)!
x
k1
1
… x

kd−1
d−1

(1 − |z|)m−|𝓁|

×
(m − |𝓁|)!

kd!(m − |k|)!

x
kd
d
(1 − |x|)m−|k|

(1 − |z|)m−|𝓁|

= p
m,𝓁

(z) ⋅ p
m−|𝓁|,kd

(y).

T
k
= ∫ ∫ …∫[

0,
1

n

]|�|
��

�t
� f
(
k

n
+
∑

i∈I�

( �i∑

j=1

ti,j

)
ei

)
dt� .

��

�x
� Bn(f , x) =

n!

m!

∑

|k|≤m
p
m,k

(x)T
k
.

(10)
∑

|k|≤m
=

∑

|�|≤m

m−|�|∑

kd=0

,

(11)
��

�x
� Bn(f , x) =

n!

m!

∑

|�|≤m
p
m,�

(z)

m−|�|∑

kd=0

p
m−|�|,kd

(y)T
k
.

��

�x
�
Bn(f , x) =

�

�xd

��

�x
� Bn(f , x)

=
n!

m!

∑

|�|≤m
p
m,�

(z)

m−|�|∑

kd=0

�

�xd
p
m−|�|,kd

(y)T
k
,
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Now, using similar relations to (9) and (10), but with m − 1 instead of m we obtain

Finally, we have

Because �d = �d + 1 ≥ 1 it follows that d ∈ I� . Then we can denote s by td,�d . Let us 
use the notation dt� =

∏
i∈I�

∏�i
j=1

dti,j . Then

��

�x
�
Bn(f , x)

=
n!

m!

∑

|𝓁|≤m
p
m,𝓁

(z)

m−|𝓁|∑

kd=0

d

dy
p
m−|𝓁|,kd

(y)
1

1 − |z|
⋅ T

k

=
n!

m!

∑

|𝓁|≤m
p
m,𝓁

(z)

m−|𝓁|∑

kd=0

m − |𝓁|
1 − |z|

(
p
m−|𝓁|−1,kd−1

(y) − p
m−|𝓁|−1,kd

(y)
)
⋅ T

k

=
n!

m!

∑

|𝓁|≤m−1
m − |𝓁|
1 − |z|

p
m,𝓁

(z)

m−|𝓁|∑

kd=0

(
p
m−|𝓁|−1,kd−1

(y) − p
m−|𝓁|−1,kd

(y)
)
⋅ T

k

=
n!

(m − 1)!

∑

|𝓁|≤m−1
p
m−1,𝓁

(z)

m−|𝓁|∑

kd=0

(
p
m−|𝓁|−1,kd−1

(y) − p
m−|𝓁|−1,kd

(y)
)
⋅ T

k

=
n!

(m − 1)!

∑

|𝓁|≤m−1
p
m−1,𝓁

(z)

m−|𝓁|−1∑

kd=0

p
m−|𝓁|−1,kd

(y)
[
T
k+ed

− T
k

]
.

(12)
��

�x
�
Bn(f , x) =

n!

(m − 1)!

∑

|k|≤m−1
p
m−1,k

(x)
[
T
k+ed

− T
k

]
.

T
k+ed

− T
k
= ∫ ∫ …∫[

0,
1

n

]|�|

{
��

�t
� f
(
k

n
+

1

n
ed +

∑

i∈I�

( �i∑

j=1

ti,j

)
ei

)

−
��

�t
� f
(
k

n
+
∑

i∈I�

( �i∑

j=1

ti,j

)
ei

)}
dt�

= ∫ ∫ …∫[
0,

1

n

]|�|

[
∫

1

n

0

�

�xd

��

�t
� f
(
k

n
+ sed +

∑

i∈I�

( �i∑

j=1

ti,j

)
ei

)
ds
]
dt� .

sed +
∑

i∈I�

( �i∑

j=1

ti,j

)
ei =

∑

i∈I�

( �i∑

j=1

ti,j

)
ei.
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Also, 
[
0,

1

n

]|�|
×
[
0,

1

n

]
=
[
0,

1

n

]|�|
 , dtd,�d dt� = dt� and �

�xd

��

�t
� =

��

�t
�  . Thus,

From relations (12) and (13) and since m − 1 = n − |�| one obtains

The relation above can be also extended by continuity at a point x with xd = 0 . The 
induction step is proved.   ◻

Let � ∈ ℕ
d
0
 . Denote

The following corollaries are immediate.

Corollary 1 For any n ∈ ℕ we have

Let � ∈ ℕ
d
0
 . If f ∈ C�(�d) denote ‖‖‖

�� f

�x
�

‖‖‖ = maxx∈�d

|||
�� f

�x
� (x)

|||.

Corollary 2 For any n ∈ ℕ , any � ∈ ℕ
d
0
 and any f ∈ C�(�d) we have

By induction one obtains

Corollary 3 For any n ∈ ℕ , any � ∈ ℕ
d
0
 , any j ∈ ℕ0 and any f ∈ C�(�d) we have

(13)T
k+ed

− T
k
= ∫ ∫ …∫[

0,
1

n

]|�|
��

�t
�
f
(
k

n
+
∑

i∈I�

( �i∑

j=1

ti,j

)
ei

)
dt� .

(14)

��

�x
�
Bn(f , x) =

n!

(n − |�|)!
∑

|k|≤m−1
p
n−|�|,k(x)

× � � …�[
0,

1

n

]|�|
��

�t
�
f
(
k

n
+
∑

i∈I�

( �i∑

j=1

ti,j

)
ei

)
dt� .

(15)K�(�d) =

{
f ∈ C�(�d) ∣

��f

�x
� (x) ≥ 0, (x ∈ �d)

}
.

(16)Bn(K
𝛼(𝛥)) ⊂ K𝛼(𝛥d).

(17)
‖‖‖‖
��

�x
� Bn(f )

‖‖‖‖
≤ n!

(n − |�|)! n|�|
‖‖‖‖
��f

�x
�

‖‖‖‖
.

(18)
‖‖‖‖
��

�x
� (Bn)

j(f )
‖‖‖‖
≤
(

n!

(n − |�|)! n|�|

)j‖‖‖‖
��f

�x
�

‖‖‖‖
.
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Remark 1 For |�| ≥ 2 it follows

For k ∈ ℕ , f ∈ Ck(�d) define

Corollary 4 For any n ∈ ℕ , any j ∈ ℕ0 , any k ∈ ℕ , k ≥ 2 , and any f ∈ Ck(�) we 
have

Proof Let j ≥ 0 . There exists �0 ∈ ℕ
d
0
 with |�0| = k such that �k((Bn)

j+1(f )) 
=
‖‖‖

��0

�x
�0
(Bn)

j+1(f )
‖‖‖ . Then using relation (17) and Remark 1 we obtain

So that we can apply the induction.   ◻

Corollary 5 We have Bn(𝛱m) ⊂ 𝛱m , m ≥ 0 , where �m is the set of polynomials with 
d variables with total degree at most m.

Proof Take a monomial function f (x) = x
� , � = (�1,… , �d) , with |�| ≤ m . Then 

�
�j+1

�x
�j+1

j

f = 0 on ℝd , for 1 ≤ j ≤ d . From Theorem 1 we deduce that �
�j+1

�x
�j+1

j

Bn(f ) = 0 on 

�d , for every 1 ≤ j ≤ d . It is easy to see that Bn(f ) is a polynomial of the form ∑
s∈I asx

�s , where I is finite, �s = (�s,1,… , �s,d) ∈ ℕ
d , �s,j ≤ �j , for 1 ≤ j ≤ d , s ∈ I 

and as ∈ ℝ , for s ∈ I . Therefore Bn(f ) ∈ �m . It follows Bn(𝛱m) ⊂ 𝛱m .   ◻

3  A quantitative estimate for Trotter’s theorem

Consider operator

n!

(n − |�|)! n|�|
≤ n!

(n − 2)! n2
=

n − 1

n
.

(19)�k(f ) ∶= sup
�∈ℕd

0
, |�|=k

‖‖‖
��f

�x
�

‖‖‖.

(20)�k((Bn)
j(f )) ≤ (

n − 1

n

)j

�k(f ).

�k((Bn)
j+1(f )) =

‖‖‖
��0

�x
�0
Bn((Bn)

j+1(f ))
‖‖‖ ≤ n − 1

n

‖‖‖
��0

�x
�0
(Bn)

j(f )
‖‖‖

≤ n − 1

n
�k((Bn)

j(f )).

(21)Af (x) =
1

2

d∑

i=1

𝜕2f (x)

𝜕x2
i

xi(1 − xi) −
∑

1≤i<j≤d
𝜕2f (x)

𝜕xi𝜕xj
xixj, f ∈ C2(𝛥d).
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In the following lemma we give a Voronovskaja type theorem for operators Bn.

Lemma 2 

Remark 2 There exists a semigroup of bounded linear operators {T(t)}t≥0 , 
T(t) ∶ C(�d) → C(�d) , such that

for any sequences of integers (mn)n such that mn

n
= t . This fact follows, for instance, 

from Theorem B, with the choices: Ln = Bn , E = C(�d) , D0 = C2(�d) , A0 = A 
and Ei = �i , i ≥ 0 , where �i is the space of polynomials with total degree i, see 
Corollary 5.

Lemma 3 For g ∈ C4(�d) we have

where

and �3(g) is defined in (19).

Proof For g ∈ C4(�d) , x, t ∈ �d we get

where � belongs to the interval [x, t] ⊂ 𝛥d . Then, using relation (21) and Lemma 1 
we obtain Bn(g, x) = g(x) +

1

n
A(g, x) + R3(x) , and

lim
n→∞

n(Bn(f , x) − f (x)) = Af (x), f ∈ C2(�d).

lim
n→∞

Bmn

n
(f ) = T(t), t ≥ 0,

(22)‖‖‖Bn(g) − g −
1

n
Ag

‖‖‖ ≤ C1
d

n2
�3(g),

(23)C1
d
=

1

3
d3 −

1

2
d2 +

1

3
d.

g(t) = g(x) +

d∑

i=1

𝜕gi(x)

𝜕xi
(ti − xi)

+
1

2

[ d∑

i=1

𝜕2gi(x)

𝜕x2
i

(ti − xi)
2 + 2

∑

1≤i<j≤d
𝜕2gi(x)

𝜕xi𝜕xj
(ti − xi)(tj − xj)

]

+
1

6

[ d∑

i=1

𝜕3gi(𝜉)

𝜕x3
i

(ti − xi)
3 + 3

∑

1≤i,j≤d, i≠j
𝜕3gi(𝜉)

𝜕x2
i
𝜕xj

(ti − xi)
2(tj − xj)

+ 6
∑

1≤i<j<k≤d
𝜕3gi(𝜉)

𝜕xi𝜕xj𝜕xk
(ti − xi)(tj − xj)(tk − xk)

]
,



244 R. Păltănea, M. Smuc 

1 3

  

◻

Lemma 4 For any g ∈ C4(�d) and t ≥ 0 we have

where

and �k(g) , k = 2, 3, 4 are defined in (19).

Proof First we use the known inequality

In the sequel we use abbreviated notations for sums of the form 
∑

i ai , 
∑

i,j ai,j , ∑
i,j,k ai,j,k , 

∑
i,j,k,� ai,j,k,� . We suppose that all the indices are in the set {1, 2,… , d} 

and are different from each other in the case of these sums. The terms are unique 
taken as indicated in the generic form described by the sum. For instance, 

∑
i,j xixj is 

the abbreviation of 
∑

1≤i<j≤d xixj and 
∑

i,j x
2
i
xj is the abbreviation of 

∑
1≤i,j≤d, i≠j x2i xj . 

We also use the convention that if the number of indices is strictly greater than d, 
then the corresponding sum is null.

From (21) one obtains, after certain calculations, for g ∈ C4(�d) and x ∈ �d:

|R3(x)| ≤ 𝜇3(g)

6

|||

d∑

i=1

xi(1 − xi)(1 − 2xi)

n2
+ 3

∑

1≤i,j≤d, i≠j
xixj(2xi − 1)

n2

+ 6
∑

1≤i<j<k≤d
2xixjxk

n2
|||

=
𝜇3(g)

6n2
[d + 3d(d − 1) + 2d(d − 1)(d − 2)]

=
𝜇3(g)

n2

[
1

3
d3 −

1

2
d2 +

1

3
d
]
.

‖T(t)g − g − tAg‖ ≤ t2

2

4�

k=2

Ck
d
�k(g),

(24)C2
d
=

1

2
d2, C3

d
= d3 − d2 +

1

2
d, C4

d
=

1

4
d4

‖T(t)g − g − tAg‖ ≤ t2

2
‖A2g‖.
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Therefore

  

◻

A2(g, x) =
1

4

∑

i

�4g(x)

�x4
i

x2
i
(1 − xi)

2

+
1

2

∑

i

�3g(x)

�x3
i

xi(1 − xi)(1 − 2xi)

−
1

2

∑

i

�2g(x)

�x2
i

xi(1 − xi)

+
1

2

∑

i,j

�4g(x)

�x2
i
�x2

j

xi(1 − xi)xj(1 − xj)

−
1

2

∑

i,j

�4g(x)

�x3
i
�xj

x2
i
(1 − xi)xj

−
1

2

∑

i,j,k

�4g(x)

�xi�xj�x
2

k

xixjxk(1 − xk)

−
1

2

∑

i,j,k

�4g(x)

�x2
i
�xj�xk

xi(1 − xi)xjxk −
1

2

∑

i,j

�3g(x)

�x2
i
�xj

xi(1 − xi)xj

−
1

2

∑

i,j

�4g(x)

�x3
i
�xj

x2
i
(1 − xi)xj −

1

2

∑

i,j

�3g(x)

�x2
i
�xj

xi(1 − 2xi)xj

+
∑

i,j

�4g(x)

�x2
i
�x2

j

x2
i
x2
j
+
∑

i,j

�3g(x)

�x2
i
�xj

x2
i
xj

+
∑

i,j

�2g(x)

�xi�xj
xixj + 6

∑

i,j,k,�

�4g(x)

�xi�xj�xk�x�
xixjxkx�

+ 2

∑

i,j,k

�4g(x)

�x2
i
�xj�xk

x2
i
xjxk + 6

∑

i,j,k

�3g(x)

�xi�xj�xk
xixjxk .

‖A2g‖ ≤ 1

4
d�

4
(g) +

1

2
d�

3
(g)

+
1

2
d�

2
(g) +

1

2
⋅
d(d − 1)

2
�
4
(g) +

1

2
d(d − 1)�

4
(g)

+
1

2
d(d − 1)�

3
(g) +

1

2

d(d − 1)(d − 2)

2
�
4
(g)

+
1

2

d(d − 1)(d − 2)

2
�
4
(g)

+
1

2
d(d − 1)�

4
(g) +

1

2
d(d − 1)�

3
(g)

+
d(d − 1)

2
�
4
(g) + d(d − 1)�

3
(g)

+
d(d − 1)

2
�
2
(g)

+ 6
d(d − 1)(d − 2)(d − 3)

24
�
4
(d)

+ 2
d(d − 1)(d − 2)

2
�
4
(g)

+ 6
d(d − 1)(d − 2)

6
�
3
(g)

=
1

4
d4�

4
(g) +

�
d3 − d2 +

1

2
d
�
�
3
(g)

+
1

2
d2�

2
(g).



246 R. Păltănea, M. Smuc 

1 3

The main result is the following.

Theorem 2 For f ∈ C4(�d) , m ∈ ℕ , n ∈ ℕ , t ≥ 0 we have

where Ck
d
 , k = 1, 2, 3, 4 are given in (23) and (24).

Proof The method of proof is a modification of the method used in [12] and consists 
in a modification of a telescopic sum argument.

Since ‖(Bn)
m‖ = 1 , for m ≥ 1 it follows ‖T(t)‖ = 1 , t > 0.

Consider the decomposition

From relation (21) we deduce ‖Af‖ ≤ �
1

2
d +

d(d−1)

2

�
�2(f ) =

d2

2
�2(f ) . We obtain 

successively:

For the second term one can use a telescopic sum:

We can write

(25)

‖(Bn)
mf − T(t)f‖ ≤����

m

n
− t

����
d2

2
�2(f ) +

1

n

�
C1
d
�3(f ) +

1

2

4�

k=2

Ck
d
�k(f )

�

(26)‖(Bn)
mf − T(t)f‖ ≤ ���T

�
m

n

�
f − T(t)f

��� +
���(Bn)

mf − T
�
m

n

�
f
���.

(27)

���T
�
m

n

�
f − T(t)f

��� =
������

m

n

t

T(u)Afdu
�����

≤ ����
m

n
− t

����
sup

u∈
�
m

n
,t
� ‖T(u)Af‖

≤ ����
m

n
− t

����
⋅ ‖Af‖

≤ ����
m

n
− t

����
⋅
d2

2
�2(f ).

(28)

‖‖‖(Bn)
mf − T

(
m

n

)
f
‖‖‖ =

‖‖‖

m−1∑

j=0

T
(m − 1 − j

n

)(
Bn − T

(
1

n

))
(Bn)

jf
‖‖‖

≤
m−1∑

j=0

‖‖‖
(
Bn − T

(
1

n

))
(Bn)

jf
‖‖‖.

(29)

‖‖‖
(
Bn − T

(
1

n

))
(Bn)

jf
‖‖‖

≤ ‖‖‖
(
Bn − I −

1

n
A
)
(Bn)

jf
‖‖‖ +

‖‖‖
(
T
(
1

n

)
− I −

1

n
A
)
(Bn)

jf
‖‖‖
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From Lemmas 3 and 4 it results for any j

But using Corollary 4 we have �k((Bn)
jf ) ≤ (

n−1

n

)j

�k(f ) , for j ≥ 0 , k = 2, 3, 4 . Then 
by using (28), (29), (30) and (31) one obtains

From (27) and (32) it results (25).   ◻

Finally, we compare our result with others, obtained previously.

Remark 3 A quantitative version of Trotter’s theorem for the semigroup generated 
by Bernstein operators defined on the simplex �d was obtained by Campiti and 
Tacelli [6, 7] for functions belonging to the space C2,�(�d) , with 0 < 𝛼 < 1 . The 
space C2,�(�d) consists of real functions f defined on �d , which admit second deriva-
tives on �d and for which the following condition

is satisfied. In [6, Theorem 2.3], completed in [7], the following estimate is obtained:

for every t ≥ 0 , f ∈ C2,�(�d) and sequence (k(n))n≥1 of positive integers, where �(f ) 
depends only on f. On other hand, relation (25) with m replaced by k(n) is of the form

(30)‖‖‖
(
Bn − I −

1

n
A
)
(Bn)

jf
‖‖‖ ≤C1

d

n2
�3((Bn)

jf )

(31)‖‖‖
(
T
(
1

n

)
− I −

1

n
A
)
(Bn)

jf
‖‖‖ ≤ 1

2n2

4∑

k=2

Ck
d
�k((Bn)

jf ).

(32)

‖‖‖(Bn)
mf − T

(
m

n

)
f
‖‖‖ ≤

m−1∑

j=0

(
n − 1

n

)j 1

n2

[
C1
d
�3(f ) +

1

2

4∑

k=2

Ck
d
�k(f )

]

=
1

n

[
C1
d
�3(f ) +

1

2

4∑

k=2

Ck
d
�k(f )

]
.

sup
x,y∈𝛥d
x≠y

1

‖x − y‖𝛼
d�

i,j=1

�����

𝜕2f

𝜕xi𝜕xj
(x) −

𝜕2f

𝜕xi𝜕xj
(y)

�����
< ∞

(33)

‖T(t)f − (Bn)
k(n)f‖ ≤ t�(f )

n�∕(4+�)
+

�����
k(n)

n
− t

����

+

√
k(n)

n

��
‖Af‖ + �(f )

n�∕(4+�)

�
,

(34)
‖T(t)f − (Bn)

k(n)f‖ ≤ C1(f )
����
k(n)

n
− t

����
+ C2(f )

1

n
, t ≥ 0, f ∈ C4(�d).
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The first remark is that in the hypothesis k(n)∕n → t , (n → ∞) , relation (33) is gen-
erally stronger, because it is valid for the greater space C2,�(�d) , instead of space 
C4(�d).

In the case when f ∈ C4(�d) , in order to make an asymptotic comparison, let fix f 
and t and denote � =

�

4(�+1)
∈ (0, 1∕8) . We can make this comparison in two cases.

If lim infn→∞
|||
k(n)

n
− t

|||n
� ∈ (0,∞) ∪ {∞} , then the two estimates have the same 

order of convergence to 0, namely O
(|||

k(n)

n
− t

|||
)
,

In the case when |||
k(n)

n
− t

||| = o
(
n−�

)
(n → ∞) relation (34), i.e., (25) is stronger 

than relation (33).

Remark 4 Another estimate for approximation of the semigroup generated by the 
Bernstein operators on a simplex was given by Mangino and Raşa [15] in the form:

where Cn =
1

n
+

1

6
d3
√
n supx∈�d

√
Bn(‖x − ∙‖4, x) , f ∈ C3(�d) , ‖f‖3 =

∑
���≤3

‖D�f‖ . 

This estimate has also a larger domain of applicability: C3(�) . It remains to compare 
(35) with (25) for f ∈ C4(�) . Fix d and t > 0 . Consider a sequence (k(n))n , such that 
limn→∞

k(n)

n
= t . We can make the comparison in two cases.

If lim infn→∞
���
k(n)

n
− t

���
√
n ∈ (0,∞) ∪ {∞} , then, by taking into account that 

Cn = O
�

1√
n

�
 , it follows that the two estimates have the same order, namely 

O
(|||

k(n)

n
− t

|||
)
.

In the case when |||
kn

n
− t

||| = o
(
n
−

1

2

)
 , estimate (25) is stronger than relation (35).
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