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Abstract
We study the relationship between the graph inverse semigroups of two graphs when 
there is a directed immersion between the graphs and we provide structural infor-
mation about graph inverse semigroups of finite graphs that admit a directed cover 
onto a bouquet of circles. We provide a topological characterization of the universal 
groups of the local submonoids of a graph inverse semigroup. We also find neces-
sary and sufficient conditions for a homomorphic image of a graph inverse semi-
group to be another graph inverse semigroup.
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1 Introduction

All graphs under consideration in this paper will be directed graphs with either 
finitely many or countably infinitely many vertices and edges. We denote the 
set of vertices of a graph �  by � 0 and the set of edges of �  by � 1 . If e ∈ � 1 
then e is a directed edge from a vertex that we will denote by s(e) to a vertex 
that we will denote by r(e). In fact, s and r can be considered as mappings of 
� 1 into � 0 , respectively called the source mapping and the range mapping for 
�  . Thus for each vertex v ∈ � 0, s−1(v) = {e ∈ � 1 ∶ s(e) = v} and the out-degree 
of a vertex v is |s−1(v)| , the number of directed edges with source v. (This is 
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referred to as the index of v by some authors). We allow for the possibility that 
s(e) = r(e) = v ∈ � 0 , in which case e is a loop at v. A directed path in �  is a finite 
sequence p = e1e2 … en of edges ei ∈ � 1 with r(ei) = s(ei+1) for i = 1,… , n − 1 . 
We define s(p) = s(e1) and r(p) = r(en) and refer to p as a directed path from s(p) 
to r(p). We also consider a vertex v as being an empty (directed) path (i.e. a path 
with no edges) based at v and with s(v) = r(v) = v.

It is convenient to extend the notation so as to allow paths in which edges are 
read in either the positive or negative direction. To do this, we associate with each 
edge e an “inverse edge” e∗ (sometimes called a “ghost edge” by some authors) 
with s(e∗) = r(e) and r(e∗) = s(e) . Also define (e∗)∗ = e . We denote by (� 1)∗ the 
set {e∗ ∶ e ∈ � 1} and assume that � 1 ∩ (� 1)∗ = � and that the map e → e∗ is a 
bijection from � 1 to (� 1)∗ . With this convention, we can define a path in �  as a 
sequence p = e1e2 … en with ei ∈ � 1 ∪ (� 1)∗ and r(ei) = s(ei+1) for i = 1,… , n − 1 
and for each path p = e1e2 … en we define the inverse path to be p∗ = e∗

n
… e∗

2
e∗
1
 . 

As usual, s(p) = s(e1) and r(p) = r(pn) . The graph �  is said to be connected if for 
all v,w ∈ � 0 there is at least one path p with s(p) = v and r(p) = w while �  is said 
to be strongly connected if for all v,w ∈ � 0 there is at least one directed path p with 
s(p) = v and r(p) = w . A path p is a circuit at v if s(p) = r(p) = v . Thus, for exam-
ple, a path of the form ee∗ where e is an edge with s(e) = v is a circuit at v. A path 
p = e1e2 … en is called reduced if ei ≠ e∗

i+1
 for each i. A reduced circuit is a cir-

cuit p = e1e2 … en that is a reduced path and such that e1 ≠ e∗
n
 . A directed circuit 

is a directed path that is a circuit. A cycle is a directed circuit e1e2 … en such that 
s(ei) ≠ s(ej) if i, j ∈ {1, 2,… , n} and i ≠ j . Two cycles C1 and C2 are said to be con-
jugate if C1 = e1e2 … en and C2 = eiei+1 … ene1 … ei−1 for some i. The graph �  is 
acyclic if it has no non-trivial cycles. �  is called a tree if it is connected and has no 
non-trivial reduced circuits. Equivalently (see for example Hatcher’s book [5]), �  
is a tree if it is connected and its fundamental group �1(� ) is trivial. Thus trees are 
connected acyclic graphs but connected acyclic graphs are not necessarily trees.

Graph inverse semigroups are semigroups naturally built from directed graphs. 
We recall that an inverse semigroup is a semigroup S such that for every a ∈ S there 
exists a unique element a−1 ∈ S such that a = aa−1a and a−1 = a−1aa−1 . The book 
by Lawson [8] is a standard reference for the theory of inverse semigroups and their 
connections to other fields: any undefined notation and concepts about inverse semi-
groups that are used in this paper may be found in [8]. In particular, we shall make 
use (often without comment) of the elementary fact that idempotents of an inverse 
semigroup commute. We shall also make use of the natural partial order on an 
inverse semigroup S (defined by a ≤ b if a = eb for some idempotent e of S).

All of the inverse semigroups that arise in this paper (except non-trivial groups) 
have a zero, which we denote by 0 (or 0S if we need to specify the inverse semigroup 
S under consideration) and all homomorphisms under consideration will map 0 to 
0. Thus, (unless it is a non-trivial group), an inverse semigroup S will be assumed 
to have a zero, and a homomorphism f ∶ S → T  between inverse semigroups S and 
T will be assumed to map  0S onto 0T.

Graph inverse semigroups were first introduced by Ash and Hall [2] (for a 
restricted class of directed graphs) in connection with their study of the partially 
ordered set of J -classes of a semigroup. Graph inverse semigroups generalize the 
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polycyclic monoids introduced by Nivat and Perrot [13] and arise very naturally 
in the extensive theories of graph C∗-algebras and Leavitt path algebras. Graph 
inverse semigroups have been studied in their own right by several authors, for 
example Costa and Steinberg [3], Jones and Lawson [6], Lawson [9], Krieger [7], 
Mesyan and Mitchell [12] and Wang [16].

Define the graph inverse semigroup I(� ) of a directed graph �  as the semi-
group generated by � 0 ∪ � 1 ∪ (� 1)∗ together with a zero 0 subject to the relations 

(1) s(e)e = er(e) = e for all e ∈ � 0 ∪ � 1 ∪ (� 1)∗;
(2) uv = 0 if u, v ∈ � 0 and u ≠ v;
(3) e∗f = 0 if e, f ∈ � 1 and e ≠ f ;
(4) e∗e = r(e) if e ∈ � 1.

We emphasize that condition (1) of the definition above implies that v2 = v for 
all v ∈ � 0 ; that is, the vertices of �  are idempotents in I(� ) . Condition (1) also 
implies that e∗s(e) = r(e)e∗ = e∗ for all e ∈ � 1.

It is not difficult to see that I(� ) is in fact an inverse semigroup. A straightfor-
ward argument shows that every non-zero element of a graph inverse semigroup 
I(� ) may be uniquely written in the form pq∗ where p and q are directed (possibly 
empty) paths with r(p) = r(q) . We refer to this as the canonical form of a non-
zero element of I(� ) . The inverse of an element pq∗ is of course qp∗ . If pq∗ and 
rs∗ are non-zero elements of I(� ) , then the product pq∗rs∗ is non-zero if and only 
if either q is a prefix of r (i.e. r = qt for some directed (possibly empty) path t, in 
which case pq∗rs∗ = pts∗ ), or else r is a prefix of q (i.e. q = rt for some directed 
(possibly empty) path t, in which case pq∗rs∗ = p(st)∗ ). The non-zero idempotents 
are of the form pp∗ for some (possibly empty) directed path p, and pp∗ ≥ qq∗ in 
the natural partial order on I(� ) if and only if q = pt for some directed (possibly 
empty) path t. Thus the vertices of �  are the maximal idempotents in the natural 
partial order on I(� ).

If � = R1 is the graph with one vertex and one directed edge, then I(� ) is the 
bicyclic monoid with a (removable) zero. We refer to this graph R1 as a circle. If 
� = Rn is the bouquet (or rose) of n > 1 circles (i.e. the graph with one vertex and 
n directed edges), then I(� ) is isomorphic to the polycyclic monoid Pn . This is the 
inverse monoid generated (as an inverse monoid) by a set A with |A| = n subject 
to the defining relations a−1a = 1 and a−1b = 0 for all a, b ∈ A with b ≠ a . (Here 
we regard A as the set of directed edges of Rn . In fact it is sometimes convenient 
to denote Rn by RA where A is a set with |A| = n if we need to identify the edges 
of Rn ). The monoid Pn was introduced by Nivat and Perrot [13] as the syntactic 
monoid of the “correct parenthesis” language with n sets of parentheses. It was 
rediscovered in the operator algebra literature where it is referred to as the Cuntz 
monoid, used in the construction of the Cuntz algebra On (see Paterson’s book 
[14] for details). The algebra L(1, n) constructed from the graph Rn in the original 
paper by Leavitt [10] is what is now referred to as the Leavitt path algebra of this 
graph (see [1] for details about Leavitt path algebras).
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In Sect. 2 we study the relationship between the graph inverse semigroups I(𝛤 ) 
and I(� ) when there is a directed cover or directed immersion f ∶ 𝛤 → 𝛤  . In this 
case the map f induces homomorphisms between corresponding local submonoids of 
the graph inverse semigroups (Theorem 3). We prove a structural property of finite 
directed covers of a bouquet of circles (Theorem  5). Section  3 is concerned with 
groups naturally associated with graph inverse semigroups. We examine the univer-
sal group of a graph inverse semigroup and provide a topological description of the 
universal groups of its local submonoids (Theorems 10 and 14). In Sect. 4 we deter-
mine necessary and sufficient conditions for a quotient of a graph inverse semigroup 
I(� ) to be another graph inverse semigroup (Theorem 17) and as a consequence we 
show that the quotient graph inverse semigroup is a retract of I(� ) (Corollary 19).

2  Directed covers and directed immersions

A morphism from the (directed) graph 𝛤  to the (directed) graph �  is a function 
f ∶ 𝛤 → 𝛤  that takes vertices to vertices and edges to edges, and preserves inci-
dence and orientation of edges; that is, f (s(ẽ)) = s(f (ẽ)) and f (r(ẽ)) = r(f (ẽ)) for 
all ẽ ∈ 𝛤 1 . (Here we abuse notation slightly by using the same symbol f to denote 
the corresponding function that takes vertices to vertices and the function that takes 
edges to edges.) We extend the notation by defining f (ẽ∗) = f (ẽ)∗ for all ẽ ∈ 𝛤 1 and 
f (ẽ1ẽ2 … ẽn) = f (ẽ1)f (ẽ2)… f (ẽn) for each path p̃ = ẽ1ẽ2 … ẽn . In fact we will often 
use the notation f (p̃) = p to denote the image of a path p̃ = ẽ1ẽ2 … ẽn in 𝛤  , where it 
is understood that p is the path p = e1e2 … en in �  and ei = f (ẽi).

A morphism f ∶ 𝛤 → 𝛤  between directed graphs induces maps 
fṽ ∶ s−1(ṽ) → s−1(f (ṽ)) in the obvious way. We say that f is a directed cover if the 
induced maps fṽ are bijections for each ṽ ∈ 𝛤 0 and that f is a directed immersion if 
the induced maps fṽ are injections for each ṽ ∈ 𝛤 0.

This is closely related to the classical notion of covers and immersions of graphs 
in Stallings’ paper [15], the distinction being that Stallings defines f to be a cover if 
the induced maps fṽ ∶ s−1(ṽ) ∪ r−1(ṽ) → s−1(f (ṽ)) ∪ r−1(f (ṽ)) are bijections for each 
ṽ ∈ 𝛤 0 and f is an immersion if these induced maps fṽ are injections for each ṽ ∈ 𝛤 0.

There is a significant difference between directed immersions (or directed covers) 
of graphs and immersions (or covers) of graphs in the classical sense. Connected 
covers of a connected graph �  are classified via conjugacy classes of subgroups of 
the fundamental group �1(� ) of the graph (see [5] or [15]). For example, connected 
covers of the circle R1 are classified via subgroups of ℤ . This yields the circuits 
Cn with n edges (the finite covers of R1 ) and the universal cover of R1 (the Cayley 
graph of ℤ relative to the usual presentation ℤ = Gp⟨a ∶ �⟩ ). The only connected 
immersions into R1 are the connected covers and the connected subgraphs of the 
universal cover. However, the description of directed covers and directed immer-
sions into R1 is somewhat more complicated. It is obvious that a graph �  admits a 
directed immersion to R1 if and only if every vertex of �  has out-degree at most 1. It 
is routine to show that connected components of such a graph have at most one sink 
and at most one non-trivial cycle (up to cyclic conjugates). We omit the relatively 
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straightforward description of these graphs since we will not need this description in 
the present paper. A detailed description of such graphs may be found in our forth-
coming paper [11].

If f is a graph morphism from 𝛤  to �  with f (ṽ) = s(p) for some path p in �  
and some vertex ṽ in 𝛤  , then we say that p lifts to ṽ if there is a path p̃ in 𝛤  with 
f (p̃) = p and s(p̃) = ṽ . Note that directed paths must lift to directed paths if they 
lift, by the definition of a graph morphism. It is well-known and easy to prove that 
if f ∶ 𝛤 → 𝛤  is a covering map between graphs, then every path in �  starting at a 
vertex v lifts to a path at ṽ for every vertex ṽ ∈ f −1(v) . This is a very special case of 
the path lifting theorem in topology. See Hatcher’s book [5] for details. The follow-
ing easy lemma is the analogous version of this for directed paths in directed graphs.

Lemma 1 (Path lifting lemma for directed covers) A graph morphism f ∶ 𝛤 → 𝛤  is 
a directed cover if and only if, for every vertex v ∈ � 0 and every vertex ṽ ∈ f −1(v) , 
every directed path p in �  with s(p) = v lifts to a unique path p̃ with s(p̃) = ṽ.

Proof If f is a directed cover and e is an edge in �  with s(e) = v then by the defini-
tion of a directed cover, there is a unique edge ẽ in 𝛤  with f (ẽ) = e and s(ẽ) = ṽ . 
This is the basis for an easy inductive proof that directed paths starting at v lift 
uniquely to directed paths starting at ṽ . The proof of the converse statement is 
equally straightforward.

The directed path lifting lemma above does not hold for directed immersions that 
are not directed covers in general, but it is easy to see that maximum initial segments 
of directed paths in �  lift uniquely to directed paths in 𝛤  , as described in the follow-
ing lemma, the proof of which is a simple adaptation of the proof of Lemma 1. The 
analogous observation for immersions between graphs may be found in [4].

Lemma 2 (Path lifting lemma for directed immersions) Let f ∶ 𝛤 → 𝛤  be a 
directed immersion between graphs, let v be a vertex of f (𝛤 ) and let p be a directed 
path in �  with s(p) = v . Then for every vertex ṽ ∈ f −1(v) there is a unique (possibly 
empty) maximum initial segment p1 of p that lifts to a directed path at ṽ . Further-
more, the lift of p1 at ṽ is unique.

For each vertex v of a graph �  , let vI(� )v be the local submonoid of I(� ) with 
identity v. Since vpq∗v = 0 if pq∗ is not a circuit at v it follows that the non-zero ele-
ments of vI(� )v are the circuits of the form pq∗ where p and q are directed (possibly 
empty) paths with r(p) = r(q) and s(p) = s(q) = v . Clearly vI(� )v is non-trivial (i.e. 
does not consist of just v and 0) if and only if v is not a sink in the graph �  since if e 
is an edge of �  with s(e) = v , then ee∗ ∈ vI(� )v and ee∗ ≠ v.

Recall our convention that if f ∶ S → T  is a homomorphism between inverse 
semigroups then f (0S) = 0T . The homomorphism f is called a 0-restricted homo-
morphism from S to T if in addition f −1(0T ) = {0S} . We call a function f ∶ S → T  
a 0-morphism if f (0S) = 0T and f (st) = f (s)f (t) if st ≠ 0 and we say that it is a 
0-restricted morphism if in addition f −1(0T ) = {0S} . Note that a homomorphism 
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from S to T is a 0-morphism, but not every 0-morphism is a homomorphism since 
we may have non-zero elements s, t ∈ S with st = 0 but f (s)f (t) ≠ 0 . For example, 
let S be the three-element semilattice S = {e1, e2, 0} where e1 and e2 are idempo-
tents with e1e2 = 0 and let T be the two-element semilattice T = {1, 0} . The function 
f ∶ S → T  that takes e1 and e2 to 1 and 0 to 0 is a 0-morphism that is not a homo-
morphism. In general, it is clear that a function f ∶ S → T  is a homomorphism if 
and only if it is a 0-morphism with the property that f (s)f (t) = 0 if st = 0.

A graph morphism f ∶ 𝛤 → 𝛤  induces a natural function (which we denote by 
f∗ ) from I(𝛤 ) to I(� ) in the obvious way. This induced function f∗ maps 0 to 0 and 
maps a nonzero element p̃q̃∗ of I(𝛤 ) to pq∗ (where f (p̃) = p and f (q̃) = q ). By the 
definition of a graph morphism it is clear that pq∗ is a non-zero element of I(� ) if 
and only if p̃q̃∗ is a non-zero element of 𝛤  since r(p) = r(q) if and only if r(p̃) = r(q̃) . 
The induced function f∗ is well-defined by the uniqueness of canonical forms for 
elements of I(𝛤 ) but it is not in general a homomorphism: in fact by Theorem 20 of 
[12] it is a homomorphism if and only if the graph morphism f ∶ 𝛤 → 𝛤  is injec-
tive. However, we have the following fact.

Theorem 3 Let f ∶ 𝛤 → 𝛤  be a morphism of graphs with f (ṽ) = v for vertices ṽ ∈ 𝛤  
and v ∈ �  . Then the following hold.

(a) f∗ is a 0-restricted morphism from I(𝛤 ) to I(� ).
(b) f∗ induces a 0-restricted morphism of ṽI(𝛤 )ṽ into vI(� )v for all vertices ṽ of 𝛤 .
(c) f is a directed immersion if and only if the 0-morphisms from ṽI(𝛤 )ṽ into vI(� )v 

induced by f∗ are all injective homomorphisms (i.e. embeddings).
(d) f is a directed cover if and only if the induced embeddings from ṽI(𝛤 )ṽ to vI(� )v 

are all full embeddings: that is, the image of ṽI(𝛤 )ṽ is a full inverse submonoid 
of vI(� )v for all vertices ṽ of 𝛤 .

Proof (a) Suppose that p̃q̃∗ and p̃�q̃�∗ are non-zero elements of I(𝛤 ) and denote their 
images under f∗ by pq∗ and p�q�∗ respectively. If p̃q̃∗p̃�(q̃�)∗ is non-zero in I(𝛤 ) , then 
from the multiplication of canonical forms in graph inverse semigroups we either 
have q̃ is a prefix of p̃′ or p̃′ is a prefix of q̃ . This easily implies that either q is a 
prefix of p′ or p′ is a prefix of q. From this and the definition of the multiplication of 
canonical forms it is easy to see that the induced map f∗ is a 0-morphism. It is in fact 
a 0-restricted morphism since f∗(p̃q̃∗) ≠ 0 if p̃q̃∗ ≠ 0.

(b) If p̃q̃∗ is a non-zero element of ṽI(𝛤 )ṽ then clearly pq∗ is a non-zero element 
of vI(� )v . It follows from part (a) that the restriction of f∗ to ṽI(𝛤 )ṽ is a 0-restricted 
morphism to vI(� )v.

(c) Now suppose that f is a directed immersion from 𝛤  to �  and let f (ṽ) = v . Let 
p̃q̃∗ and p̃�q̃�∗ be non-zero elements of ṽI(𝛤 )ṽ and denote their images under f∗ by 
pq∗ and p�q�∗ respectively. Suppose that p̃q̃∗p̃�(q̃�)∗ = 0 in I(𝛤 ) . Then q̃ is not a pre-
fix of p̃′ and p̃′ is not a prefix of q̃ . Hence we may write q̃ = ẽ1 … ẽkẽk+1 … ẽn and 
p̃� = ẽ1 … ẽkẽ

�
k+1

… ẽ�
m
 for some edges ẽi and ẽ′

j
 in 𝛤  with s(ẽ1) = ṽ and ẽk+1 ≠ ẽ�

k+1
 . 
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(We allow for the possibility that the common prefix ẽ1 … ẽk of q̃ and p̃′ might be 
empty.) It follows that f∗(q̃) = e1 … ekek+1 … en and f∗(p̃

�) = e1 … eke
�
k+1

… e�
m
 

(where f (ẽi) = ei and f (ẽ�
j
) = e�

j
 ). Then since f is a directed immersion and 

ẽk+1 ≠ ẽ�
k+1

 it follows that ek+1 ≠ e�
k+1

 , whence q is not a prefix of p′ and p′ is not a 
prefix of q. Hence pq∗p�q�∗ = 0 . This implies that the restriction of f∗ to ṽI(𝛤 )ṽ is a 
0-restricted homomorphism since it is a 0-restricted morphism by part (b).

Conversely, suppose that the restriction of f∗ to ṽI(𝛤 )ṽ is a homo-
morphism for all ṽ . Suppose that there are two edges ẽ1 and ẽ2 in 𝛤  with 
s(ẽ1) = s(ẽ2) = ṽ and f (ẽ1) = f (ẽ2) = e ∈ 𝛤 1 . Then ẽ1ẽ

∗
1
, ẽ2ẽ

∗
2
∈ ṽI(𝛤 )ṽ and 

f∗(ẽ1ẽ
∗
1
) = f∗(ẽ2ẽ

∗
2
) = ee∗ ∈ vI(𝛤 )v . If ẽ1 ≠ ẽ2 then ẽ∗

1
ẽ2 = 0 and so ẽ1ẽ∗1ẽ2ẽ

∗
2
= 0 . 

But f∗(ẽ1ẽ∗1ẽ2ẽ
∗
2
) = (ee∗)(ee∗) = ee∗ ≠ 0 . This violates the assumption that f∗ is a 

homomorphism, and so we must have ẽ1 = ẽ2 . Hence f is a directed immersion.
Now suppose that f is a directed immersion and f∗(p̃q̃∗) = f∗(r̃s̃

∗) = pq∗ for some 
non-zero elements p̃q̃∗ and r̃s̃∗ of ṽI(𝛤 )ṽ . Since f maps directed edges to directed 
edges, f (p̃) = p = f (r̃) . That is, p̃ and r̃ are lifts of p at ṽ . By the “uniqueness” part 
of Lemma 2, this forces p̃ = r̃ . Similarly we have f∗(q̃∗) = f∗(s̃

∗) so f (q̃) = f (s̃) and 
since q̃ and s̃ both start at ṽ and are both lifts of q this forces q̃ = s̃ , so p̃q̃∗ = r̃s̃∗ . 
Hence f∗ is an injective map from ṽI(𝛤 )ṽ to vI(� )v.

(d) Suppose now that f is a directed covering map from 𝛤  to �  , let ṽ be a vertex 
in 𝛤  and f (ṽ) = v . By part (c), f∗ is an injective map from ṽI(𝛤 )ṽ to vI(� )v . From 
the multiplication in I(� ) it follows that the non-zero idempotents of I(� ) are of the 
form pp∗ for some directed path p starting at v. By Lemma 1, the path p lifts to a 
unique path p̃ at ṽ and so pp∗ lifts to p̃p̃∗ , an idempotent of I(𝛤 ) , so f induces a full 
embedding of ṽI(𝛤 )ṽ into vI(� )v . Conversely, suppose that f∗ induces a full embed-
ding of ṽI(𝛤 )ṽ into vI(� )v . Then if p is a directed path in �  starting at v, the circuit 
pp∗ is an idempotent in vI(� )v , so it is the image under f∗ of some idempotent in 
ṽI(𝛤 )ṽ , which must be of the form p̃p̃∗ for some lift p̃ of p at ṽ . Hence all directed 
paths in �  starting at all vertices v ∈ � 1 lift to all preimages ṽ ∈ f −1(v) , whence f is 
a directed covering map by Lemma 1.

We remark that the induced maps from ṽI(𝛤 )ṽ to vI(� )v are in general not sur-
jective since directed circuits in �  do not necessarily lift to directed circuits in 
𝛤  , even when f is a cover. However powers of directed circuits do lift to directed 
circuits via finite directed covers of � .

Lemma 4 Let f ∶ 𝛤 → 𝛤  be a directed cover of finite graphs, let v be a vertex in 
f (𝛤 ) and let p be a directed circuit at v. Then there is a vertex ṽ� ∈ f −1(v) and a 
positive integer n such that pn lifts to a directed circuit at ṽ′.

Proof Let ṽ be any vertex in f −1(v) . By the directed path lifting lemma (Lemma 1), 
p lifts to a directed path p̃1 from ṽ to some vertex ṽ1 . Then f (ṽ1) = v so again p 
lifts to a directed path p̃2 from ṽ1 to some vertex ṽ2 . Continue like this to obtain a 
sequence of lifted paths p̃i from ṽi−1 to ṽi . By finiteness of 𝛤  we must have ṽi = ṽi+n 
for some n > 0 and i ≥ 1 . Then pn lifts to the directed circuit p̃i+1 … p̃i+n at ṽ� = ṽi.
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Theorem 5 Let f ∶ 𝛤 → RA be a finite directed cover of the bouquet of |A| = n cir-
cles, where A = {a1, a2,… , an} denotes the set of loops in RA . Then for every ver-
tex ṽ in 𝛤  , ṽI(𝛤 )ṽ contains a submonoid isomorphic to the polycyclic monoid PA 
if |A| > 1 , and ṽI(𝛤 )ṽ contains a submonoid isomorphic to the bicyclic monoid if 
|A| = 1.

Proof For each ai ∈ A let Vai
 be the set of vertices w̃ in 𝛤  that lie on a non-triv-

ial cycle ẽ1 … ẽs such that s(ẽ1) = w̃ and f (ẽ1) = ai . Let Vm =
⋂

i=1,…,m Vai
 for 

m ≤ n . We claim that Vm ≠ ∅ and that if ṽ is any vertex in 𝛤  and ẽ′ is any edge with 
s(ẽ�) = ṽ , then there is a directed path p̃ = ẽ�ẽ�

2
… ẽ�

t
 from ṽ to some vertex ṽ�

1
∈ Vm . 

By the proof of Lemma 4, some power of the loop a1 lifts to a directed path p̃′ start-
ing at r(ẽ�) and ending at a vertex in V1 , so the directed path ẽ′p̃′ leads from ṽ to a 
vertex in V1 , and hence the claim is true if m = 1 . Assume inductively that it is true 
if m = k . Let ṽ be any vertex in 𝛤  , ẽ′ an edge starting at ṽ , and let ẽ′

1
 be the (unique) 

edge in 𝛤  with s(ẽ�
1
) = r(ẽ�) and f (ẽ�

1
) = ak+1 . By the induction assumption, ẽ′

1
 can 

be extended to some directed path p̃0 from ṽ0 = r(ẽ�
1
) to a vertex ṽ1 ∈ Vk . But then 

again by the induction hypothesis there is a directed path p̃1 from ṽ1 to some vertex 
ṽ2 ∈ Vk whose first edge projects by f to ak+1 . Continue in this fashion to obtain a 
sequence of directed paths p̃1, p̃2,… , p̃i,… whose first edge projects onto ak+1 and 
with ṽi = s(p̃i) ∈ Vk for all i ≥ 1 . By finiteness of 𝛤  there must be a directed circuit 
p̃ip̃i+1 … p̃j based at ṽi for some i < j . If the first edge of p̃i is a loop at ṽi (that pro-
jects onto ak+1 ) then ṽi ∈ Vk+1 . So assume this is not the case. Choosing i and j mini-
mal, we may assume that this circuit p̃ip̃i+1 … p̃j is a cycle. But then since the first 
edge of p̃i projects onto ak+1 we see that in fact ṽi ∈ Vk+1 . The claim then follows by 
induction on k.

Thus for every vertex ṽ in 𝛤  there is a directed path p̃ from ṽ to some vertex 
w̃ ∈ Vn . For each a ∈ A , denote by q̃a a cycle at w̃ whose first edge projects onto the 
edge a in RA . Then we see that the paths r̃a = p̃q̃ap̃

∗ are in ṽI(𝛤 )ṽ for all a ∈ A . From 
the relations in I(� ) it easily follows that r̃∗

a
r̃a = p̃p̃∗ and r̃∗

a
r̃b = 0 if a ≠ b , so the 

inverse subsemigroup of ṽI(𝛤 )ṽ generated by the elements r̃a (for a ∈ A) is a homo-
morphic image of the copy of the polycyclic monoid PA with identity p̃p̃∗ (provided 
|A| > 1 ). Since the polycyclic monoid is congruence free (see [8]) it follows that 
this monoid is isomorphic to PA . A similar argument yields a copy of the bicyclic 
monoid if |A| = 1.

Remarks 

(a) The conclusion of Theorem 5 is in general false if 𝛤  is an infinite directed cover 
of RA . For example, if 𝛤  is the universal cover of the circle R1 and ṽ is any ver-
tex of 𝛤  , then no power of the loop in R1 lifts to a circuit at ṽ and I(𝛤 ) does not 
contain a copy of the bicyclic monoid.

(b) The conclusion of Theorem 5 also fails if f is a directed immersion that is not 
a directed cover. For example, if 𝛤  is the graph with two vertices ṽ1 and ṽ2 and 
one directed edge ẽ from ṽ1 to ṽ2 , then there is a directed immersion of 𝛤  into the 
circle R1 , but I(𝛤 ) is finite and so does not contain a copy of the bicyclic monoid.



225

1 3

On graph inverse semigroups  

(c) It is not true in general that if 𝛤  is a finite directed cover of �  , then I(� ) embeds 
in I(𝛤 ) . For example, let �  be the graph with two vertices v and w and two edges 
a and b from v to w, and let 𝛤  be graph with three vertices, v1,w1 and w2 and two 
edges, namely a1 from v1 to w1 and b1 from v1 to w2 . Then the map that sends v1 
to v, wi to w, a1 to a and b1 to b is a directed cover but I(� ) does not embed in 
I(𝛤 ) . Thus Theorem 5 is specific to finite directed covers of a graph RA.

3  Universal groups

Recall that if S and T are inverse semigroups with 0, then a function � ∶ S → T  is 
called a 0-morphism if �(0) = 0 and �(st) = �(s)�(t) if st ≠ 0 . We define the univer-
sal group U(S) of an inverse semigroup S with 0 to be the group generated by the 
set S∗ = S ⧵ {0} of non-zero elements of S subject to the relations s ⋅ t = st if st ≠ 0 . 
Equivalently ([9]), U(S) may be defined (up to isomorphism) by the following univer-
sal property. Namely, U(S) is the group with the property that there is a 0-morphism 
�S ∶ S → U(S)0 such that if � ∶ S → H0 is a 0-morphism from S to a group H with 
0 adjoined, then there exists a unique 0-restricted homomorphism � ∶ U(S)0 → H0 
such that �◦�S = � . We say that S is strongly E∗-unitary if the 0-morphism �S is 
idempotent-pure, that is �−1

S
(1U(S)) is the set of non-zero idempotents of S. Lawson 

shows in [9] that graph inverse semigroups are strongly E∗-unitary.
A homomorphism � ∶ S → T  between inverse semigroups is called idempotent-

pure if, for every idempotent a in T, �−1(a) is a semilattice (i.e. every preimage of an 
idempotent of T is an idempotent of S). An inverse monoid S is called factorizable if 
for all a ∈ S there is an element b in the group of units of S such that a ≤ b.

Proposition 6 Let S and T be inverse semigroups with zero and � a 0-restricted 
homomorphism from S to T. Then

(a) � induces a homomorphism �U from U(S) to U(T) such that the following diagram 
commutes;

(b) �U is surjective if � is surjective;
(c) If �U is injective and S is strongly E∗-unitary, then � is idempotent-pure;
(d) If S is factorizable and T is strongly E∗-unitary, then �U is injective if � is 

idempotent-pure.
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Proof Since � is 0-restricted it follows that �T◦� is a 0-morphism from S to U(T) . 
Hence by the universal property of U(S) , there is a unique homomorphism �U from 
U(S) to U(T) such that �U(�S(a)) = �T (�(a)) for all a ∈ S∗ . Since �S maps S∗ onto the 
generators of U(S) and �T maps T∗ onto the generators of U(T) , it follows that �U is 
surjective if � is surjective.

Suppose that �U is injective and S is strongly E∗-unitary. If �(a) is an idempotent 
of T then �T (�(a)) = �U(�S(a)) is the identity of U(T) . Hence a is an idempotent of 
S, and so � is idempotent-pure.

Now suppose that S is factorizable and T is strongly E∗-unitary and that 
� is idempotent-pure. Note that if S is factorizable, then for every element 
a ∈ S∗ , there exists an element a′ in the group of units of S such that a = ea� for 
some idempotent e. Hence, �S(a) = �S(a

�) . It follows that, if a, b ∈ S∗ , then 
�S(a)�S(b) = �S(a

�)�S(b
�) = �S(a

�b�) . So every element of U(S) is of the form �S(a) 
for some element a in the group of units of S. If �U(�S(a)) = �(�T (a)) is the identity 
of U(T) then since � and �T are both idempotent-pure it follows that a is the identity 
of S, and so �S(a) is the identity of U(S) , whence �U is injective.

Remarks 

(1) The converse of part (b) of Proposition 6 is false in general. For example, let S be 
the two element semilattice S = {e, 0} and let T be the three element semilattice 
T = {e, f , 0} with ef = 0 . Then U(S) ≅ U(T) is the trivial group but the obvious 
embedding of S into T is a homomorphism that is not surjective.

(2) The converse of part (c) of Proposition 6 is also false in general. For exam-
ple, let S = SIM(a, b) , the symmetric inverse monoid on two letters, and let 
T = SIM(a, b, c) , the symmetric inverse monoid on three letters. The identity 
map on S extends in the obvious way to an idempotent-pure homomorphism 
� ∶ S → T  . By Example 2.1 in [9], S is strongly E∗-unitary with maximal group 
image U(S) ≅ ℤ2 , the cyclic group of order 2, while U(T) is the trivial group. 
The homomorphism �U is not injective.

The following fact is implicit in Lawson’s paper [9]. We provide a proof for 
completeness.
Theorem 7 For any graph � , the universal group U(I(� )) is isomorphic to FG(� 1) , 
the free group on � 1.

Proof First recall that the non-zero elements of �  consists of all elements of form 
pq∗ where p, q are directed paths satisfying r(p) = r(q) . For each edge e ∈ � 1 define 
�(e) = e , regarded as a generator for FG(� 1) and define �(e∗) = e−1 ∈ FG(� 1) . 
By the uniqueness of the canonical form for non-zero elements of I(� ) , this 
extends in the obvious way to a well-defined function � ∶ I(� ) → FG(� 1)0 with 
�(0) = 0 and �(pq∗) = red (pq−1) , the reduced form of pq−1 , if r(p) = r(q) . 
For any p1q

∗
1
, p2q

∗
2
∈ I(� )∗ , (p1q∗1)(p2q

∗
2
) ∈ I(� )∗ if and only if either q1 is 

a prefix of p2 or p2 is a prefix of q1 . In either case, it is routine to see that 
�((p1q

∗
1
)(p2q

∗
2
)) = �(p1q

∗
1
)�(p2q

∗
2
) . That is to say, � is a 0-morphism. Now for any 
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group H and any 0-morphism � ∶ I(� ) → H0 , we easily see that �(e∗) = �(e)−1 for 
every e ∈ � 1 . Since FG(� 1) is freely generated by the elements e ∈ � 1 , the map 
e ↦ �(e) for e ∈ � 1 extends to a unique homomorphism � ∶ FG(� 1) → H and 
clearly � = �◦� . Hence FG(� 1) ≅ U(I(� )).

Corollary 8 If � is a subgraph of �  then U(I(�)) is a free factor of U(I(� )).

Proof Clearly the set of edges of � is a subset of the set of edges of �  , so the result 
is immediate from Theorem 7.

We turn to a description of the universal groups of the local submonoids in I(� ) . 
The non-zero idempotents of I(� ) are of the form pp∗ where p is a directed path in 
�  . We denote by U(� , pp∗) the universal group of the local submonoid pp∗I(� )pp∗ . 
In particular, when p is the trivial path at the vertex v, U(� , v) denotes the universal 
group of the local submonoid vI(� )v . Recall that the non-zero elements of the local 
submonoid vI(� )v are of the form pq∗ where p and q are directed (or empty) paths 
with s(p) = s(q) = v and r(p) = r(q).

Let Vv = {w ∈ � 0 ∶ there is a (possibly empty) directed path p in �  from v to w} 
and let �v denote the subgraph of �  induced by the vertices in Vv . A subtree T of �v 
is called a directed tree at v if T contains the vertex v and every geodesic path in T 
from v to some other vertex w in T is directed. T is called a directed spanning tree of 
�v at v if T is a directed tree at v that contains all of the vertices of �v.

Lemma 9 Let v be a vertex of a graph �  and let T be a directed subtree of �v con-
taining the vertex v. Then T extends to a directed spanning tree Tv of �v.

Proof The proof of this is a straightforward application of Zorn’s Lemma. Let T  be 
the set of all subtrees T ′ of �v such that T ′ contains the tree T and T ′ is directed at v. 
Then T  is a partially ordered set with respect to inclusion (i.e. T1 ≤ T2 if and only if 
T1 is a subtree of T2 ). It is easy to see that the union of a chain of trees in T  is another 
tree in T  , so by Zorn’s Lemma T  has a maximal element Tv . If Tv is not a spanning 
tree of �v , then there is some vertex w of �v that is not in Tv . Since there is a directed 
path in �v from v to w, there is some directed path p that starts at a vertex w′ in Tv 
and ends at w and has no edge or vertex other than w′ in Tv . Then Tv ∪ {p} is a tree 
strictly containing Tv as a subtree. If p′ is the geodesic path in Tv from v to w′ , then 
p′p is the geodesic path in Tv ∪ {p} from v to w and p′p is directed, so Tv ∪ {p} ∈ T  . 
This contradicts the maximality of Tv , so Tv is a directed spanning tree at v.

Theorem 10 If v is a vertex of a graph �  then U(� , v) ≅ �1(�v, v).

Proof It follows from Lemma 9 (with T = {v} ) that �v has a directed spanning tree 
Tv at v. Denote the geodesic path in Tv from v to a vertex w in �v by pw . Thus each 
path pw is a directed path from v to w. The group �1(�v, v) is generated by the 
homotopy classes [c(e)] of circuits of the form c(e) = ps(e)ep

∗
r(e)

 for each edge e of �v 
that is not in Tv (see [15] or [5] for basic information about homotopy of graphs). We 
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claim that the set Sv consisting of these circuits, together with {0} and the circuits of 
the form pp∗ , for p a directed path in Tv starting at v, generates the local submonoid 
vI(� )v as an inverse submonoid of I(� ).

To see this, suppose first that w is a vertex in �v , q� = e�
1
e�
2
… e�

m
 is the geo-

desic path in Tv from v to w and p = e1e2 … en is any other directed path from v 
to w. We prove by induction on n that pq�∗ can be expressed as a product of ele-
ments in Sv and their inverses. The result is clearly true if p = q� or if n = 0 
so assume p ≠ q′ and n ≥ 1 . If n = 1 then e1 ≠ q′ and so e1 is not an edge in Tv . 
So in this case pq�∗ = c(e1) ∈ Sv . So assume that n > 1 and that the result is true 
for all directed paths p of length less than n from v to some vertex w in �v . Since 
p ≠ q′ we may write p = e1e2 … eje

�
i
e�
i+1

… e�
m
 for some j ≤ n and ej ≠ e�

i−1
 . (We 

allow for the case that e�
i
… e�

m
 is empty). Let p1 be the geodesic in Tv from v to 

s(ej) . By the induction assumption, the circuit e1e2 … ej−1p
∗
1
 can be written as a 

product of elements of Sv and their inverses. Also p1ej(e�1 … e�
i−1

)∗ = c(ej) , so 
e1 … ej−1ej(e

�
1
… e�

i−1
)∗ = e1 … ej−1p

∗
1
p1ej(e

�
1
… e�

i−1
)∗ is a product of elements in Sv 

and their inverses. But then pq�∗ = (e1 … ej(e
�
1
… e�

i−1
)∗)(q�q�∗) is a product of ele-

ments of Sv and their inverses. Now let w be any vertex in �v and p, q any directed 
paths from v to w in �v . Let q′ be the geodesic in Tv from v to w. Then by the argu-
ment above, the circuits pq�∗ and qq�∗ can be written as products of elements in Sv 
and their inverses. It follows that the circuit pq∗ = (pq�∗)(q�q∗) is in the inverse sub-
monoid of I(� ) generated by Sv . So vI(� )v is generated as an inverse monoid by the 
elements of Sv.

We now claim that every non-zero element of vI(� )v can be written uniquely in 
the form c(e1)… c(ek)pp

∗c(ek+1)
∗ … c(ek+s)

∗ for some edges ei in �v that are not in 
Tv and some directed path p in Tv starting at v such that both pr(ek) and pr(ek+1) are pre-
fixes of p. (We allow for the possibility that either k or s (or both) might be zero). To 
prove this, we first make three observations.

Observation 1 If p is a directed path in Tv starting at v, e is an edge of �v that is not 
in Tv and pp∗c(e) ≠ 0 , then pp∗c(e) = c(e) . To see this, note that if 
pp∗c(e) = pp∗ps(e)ep

∗
r(e)

≠ 0 , then p is a prefix of ps(e)e since e is not an edge in Tv . 
Hence p is a prefix of ps(e) (again since e is not an edge in Tv ). Observation 1 follows 
easily from this.

Observation 2 If e and f are edges of �v that are not in Tv and c(e)∗c(f ) ≠ 0 , then 
c(e)∗c(f ) = pr(e)p

∗
r(e)

 . To see this, note that if c(e)∗c(f ) ≠ 0 then

Since neither e nor f is an edge in Tv it follows that ps(e)e = ps(f )f  and so e = f  . This 
implies that c(e)∗c(f ) = c(e)∗c(e) , which easily yields Observation 2.

Observation 3 The set of elements pp∗ where p is a directed path in Tv starting at v 
is a submonoid of vI(� )v . This follows easily since if p1p∗1p2p

∗
2
≠ 0 then either p1 is 

a prefix of p2 or p2 is a prefix of p1.

pr(e)e
∗p∗

s(e)
ps(f )fp

∗
r(f )

≠ 0.
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It follows from these three observations and the fact that vI(� )v is generated as an 
inverse monoid by Sv that every element of vI(� )v can be written as a product of the 
form c(e1)… c(ek)pp

∗c(ek+1)
∗ … c(ek+s)

∗ for some edges ei in �v that are not in Tv 
and some directed path p in Tv starting at v. If p is a prefix of pr(ek) then 
pr(ek)pp

∗ = pr(ek) = pr(ek)p
∗
r(ek)

pr(ek) and similarly if p is a prefix of pr(ek+1) then 
pp∗pr(ek+1) = pr(ek+1)p

∗
r(ek+1)

pr(ek+1) . So we may assume without loss of generality that 
both pr(ek) and pr(ek+1) are prefixes of p, verifying the claim.

Note that if c(e1)c(e2) ≠ 0 , then either ps(e2)e2 is a prefix of pr(e1) or pr(e1) is a pre-
fix of ps(e2)e2 . Since e2 is not an edge in Tv , we must have pr(e1) is a prefix of ps(e2)e2 . 
Applying this to all products c(ei)c(ei+1) we see that if c(e1)c(e2)… c(ek) ≠ 0 then 
we must have

for some directed paths pi,i+1 in Tv from r(ei) to s(ei+1) . A similar argument applies to 
c(ek+1)

∗ … c(ek+s)
∗ . Hence we have

where the pi,i+1 are paths in Tv . The uniqueness of canonical forms in I(� ) and the 
fact that each ei is not in Tv implies that if

then k = m, s = n, p = p� and ei = e�
i
 for all i.

For e an edge of �v not in Tv define �(c(e)) = [c(e)] ∈ �1(�v, v) and also define 
�(pp∗) = 1 (the identity of �1(�v, v) ) for p a geodesic path in Tv from v to some ver-
tex w = r(p) . By the uniqueness of the expression for non-zero elements of vI(� )v 
established above, it follows that � extends to a well-defined function (again denoted 
by � ) from vI(� )v to �1(�v, v)

0 . A routine argument, using Observations 1, 2 and 
3 above, shows that � defines a 0-morphism from vI(� )v to �1(�v, v)

0 . If � is any 
other 0-morphism from vI(� )v to G0 , for some group G with 0, then since �1(�v, v) 
is freely generated by the �(c(e)) ’s we see, as in the proof of Theorem  7, that 
there is a unique homomorphism � ∶ �1(�v, v) → G that satisfies � = �◦� . Hence 
U(� , v) ≅ �1(�v, v).

Corollary 11 If v is a vertex in a graph �  then U(� , v) is a free group. If u and v are 
vertices in the same strongly connected component of �  , then U(� , v) ≅ U(� , u) . In 
particular, if �  is a strongly connected graph, then U(� , v) ≅ �1(� , v) is a free group 
with rank independent of the choice of v.

Proof Clearly U(� , v) is a free group since it is the fundamental group of a graph 
by Theorem  10. If u and v are in the same strongly connected component of �  
then there is a directed path p from u to v and a directed path q from v to u. If 
w is any vertex in �v , there is a directed path p′ from v to w and hence there is 

c(e1)c(e2)… c(ek) = ps(e1)e1p1,2e2p2,3e3 … ekp
∗
r(ek)

c(e1)… c(ek)pp
∗c(ek+1)

∗ … c(ek+s)
∗

=ps(e1)e1p1,2e2p2,3e3 … ekp
∗
r(ek)

pp∗pr(ek+1)e
∗
k+1

p∗
k+1,k+2

e∗
k+2

… e∗
k+s

p∗
s(ek+s)

c(e1)… c(ek)pp
∗c(ek+1)

∗ … c(ek+s)
∗ = c(e�

1
)… c(e�

m
)p�p�∗c(e�

m+1
)∗ … c(e�

m+n
)∗
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a directed path pp′ from u to w, whence w is a vertex in �u . Hence �v is a sub-
graph of �u . Similarly �u is a subgraph of �v , so �u = �v . Hence by Theorem 10, 
U(� , v) ≅ �1(�v, v) ≅ �1(�u, u) ≅ U(� , u) . The result about strongly connected 
graphs follows immediately since if �  is strongly connected then �v = � .

Corollary 12 If � is a subgraph of a graph �  and v is a vertex of � , then U(�, v) is a 
free factor of U(� , v).

Proof If there is a directed path in � from v to some vertex w in � , then the same 
path lies in �  , so �v is a subgraph of �v . Let Tv be a directed spanning tree for �v at 
v. By Lemma 9, Tv can be extended to a directed spanning tree T ′

v
 for �v at v. Notice 

that if e is an edge of �v that is not in Tv then it is not in T ′
v
 either. Hence the set of 

free generators for U(�, v) obtained from Tv is contained in the set of free generators 
for U(� , v) obtained from T ′

v
 . It follows from Theorem 10 that U(�, v) is a free factor 

of U(� , v).

Remarks We remark that in general if � is a subgraph of the graph �  , then there 
may be vertices of � that are in �v but not in �v since there may be directed paths 
in �  from v to a vertex in � but no such directed path in � . Also, while the proof of 
Corollary 12 shows that every directed spanning tree of �v at v may be extended to 
a directed spanning tree of �v at v, it is not necessarily true that every directed span-
ning tree of �v restricts to a directed spanning tree of �v . This is because in general 
a geodesic path from v to some other vertex w in � in a directed spanning tree for �v 
may pass through vertices and edges of � ⧵ �.

Lemma 13 If a and b are D-related idempotents in an inverse semigroup S with 0, 
then U(aSa) ≅ U(bSb).

Proof There exists an element x ∈ S such that xx−1 = a and x−1x = b . So u is a non-
zero element of aSa if and only if x−1ux is a non-zero element of bSb. It follows that 
the map defined by u ↦ x−1ux induces an isomorphism from U(aSa) onto U(bSb).

Theorem 14 Let p be a directed path from a vertex v to a vertex w in a graph �  . 
Then

(a) U(� , pp∗) ≅ U(� ,w).
(b) U(� ,w) is isomorphic to a free factor of U(� , v).

Proof (a) Note that pp∗ D r(p) = w in I(� ) since p∗p = r(p) , so the result of part (a) 
follows immediately from Lemma 13.

(b) If v and w are in the same strongly connected component then the result fol-
lows from Corollary 11. So we may assume that there is a directed path from v to 
w but no directed path from w to v. Let p = e1e2 … en be a directed path from v to 
w and suppose that k is the largest index such that s(ek) ∉ �w . That is, there is a 
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directed path from w to r(ek) but no directed path from w to s(ei) for i = 1,… , k . 
Clearly every vertex s(ei) for i = k + 1,… , n is in the same strongly connected com-
ponent as w, so �w = �s(ei)

 for all of these vertices. By Lemma 9, we may choose a 
directed spanning tree Tr(ek) for �w at r(ek) = s(ek+1).

If in the directed path e1e2 … ek from v to r(ek) we have s(ei) = s(ej) for some 
i ≠ j , then we may omit the subpath ei … ej−i to obtain a shorter directed path 
e1 … ei−1ej … ek from v to r(ek) . By omitting all such circuits in the path e1 … ek we 
obtain a directed geodesic path p′ from v to r(ek) consisting of some of the vertices 
and edges of the path e1 … ek . Let T ′ be the subgraph of �  consisting of all of the 
vertices and edges of �  contained in the paths p′q , for q a geodesic path in Tr(ek) 
starting at r(ek) . Since no vertex in p′ other than r(ek) lies in �w = �r(ek)

 , it follows 
that T ′ is a tree with the property that every geodesic path in T ′ from v to some ver-
tex in T ′ is directed. Clearly, T ′ contains all of the vertices in �w = �r(ek)

 . By Lemma 
9 we may extend T ′ to a directed spanning tree Tv for �v at v. If e is an edge in �w that 
is not in Tr(ek) , then e is not in Tv either, so the free generators for U(� , r(ek)) obtained 
from the spanning tree Tr(ek) are among the free generators for U(� , v) obtained from 
the spanning tree Tv . It follows that U(� , r(ek)) is a free factor of U(� , v) . The result 
then follows since U(� , r(ek)) ≅ U(� ,w) by Corollary 11.

4  Quotients which are also graph inverse semigroups

Recall that if J is an ideal of an inverse semigroup S, then S/J denotes the Rees quo-
tient of S by the corresponding Rees congruence �J , where a�Jb if a = b or a, b ∈ J . 
Rees quotients of graph inverse semigroups are again graph inverse semigroups as 
described in the following theorem [12, Theorem 7].

Theorem  15 Let J be an ideal of I(� ) . Then I(� )∕J ≅ I(�) , where 
�0 = � 0 ⧵ (J ∩ � 0) , �1 = {e ∈ � 1 ∶ r(e) ∉ J} , and the source mapping and range 
mapping of � are restrictions of those for � .

Recall that a congruence � on an inverse semigroup S with 0 is called 0-restricted 
if 0� = {0} . Notice that if � is an arbitrary congruence on a graph inverse semi-
group I(� ) and J = 0� , then J is an ideal of I(� ) and � induces in the obvious way 
a 0-restricted congruence on the Rees quotient I(� )∕J ≅ I(�) where � is the graph 
constructed in Theorem  15. Thus the discussion of general congruences (other 
than Rees congruences) on graph inverse semigroups may be reduced to that of 
0-restricted congruences on graph inverse semigroups.

For any v ∈ � 0 , with out-degree 1 we denote the unique edge in s−1(v) by ev . Let 
W be a set of vertices with out-degree 1, let ℤ+ be the set of all positive integers and 
let C(W) be the set of all cycles whose vertices lie in W. Since all vertices in W have 
out-degree one, any two cycles in C(W) are either disjoint or cyclic conjugates of 
each other. A cycle function f ∶ C(W) → ℤ

+ ∪ {∞} is a function that is invariant 
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under cyclic conjugation. A congruence pair  (W, f) of  �  consists of a subset W of 
vertices of out-degree 1 and a cycle function f.

Let � be a 0-restricted congruence on I(� ) and W = {v ∈ � 0 ∶ ee∗ � v = s(e)} . 
Then all vertices of W have out-degree 1. For c ∈ C(W) , let f(c) be the smallest posi-
tive integer m such that cm � s(c) . If no power of c is equivalent to s(c), then we 
define f (c) = ∞ . Then T(�) = (W, f ) is a congruence pair. Conversely, let (W, f) be 
a congruence pair of �  and let ℘(W, f ) denote the congruence generated by the rela-
tion � consisting of all pairs (eve∗v , v) for v ∈ W and (cf (c), s(c)) for c ∈ C(W) with 
f (c) ∈ ℤ

+ . Then the following theorem is proved in  [16, Theorem 1.3].

Theorem 16 The mapping T from the set of all 0-restricted congruences on I(� ) to 
the set of all congruence pairs of �  and the mapping ℘ from the set of all congru-
ence pairs of �  to the set of all 0-restricted congruences on I(� ) are inverses. In 
particular, there exists a one-to-one correspondence between 0-restricted congru-
ences on I(� ) and congruence pairs of � .

Theorem 16 enables us to describe all 0-restricted congruences on a graph inverse 
semigroup for which the quotient is another graph inverse semigroup.

Theorem 17 Let � be a 0-restricted congruence on I(� ) determined by the congru-
ence pair (W,  f). Then I(� )∕� is isomorphic to a graph inverse semigroup if and 
only if

(1) W ⊆ {v ∈ 𝛤 0 ∶ v has out-degree 1, ev is a loop at v} ; and
(2) for any v ∈ W  , f (ev) = 1.

Proof Sufficiency. Suppose that conditions (1) and (2) are satisfied. We proceed to 
prove that I(� )∕� is isomorphic to the graph inverse semigroup I(�) , where � is the 
graph with �0 = � 0 , �1 = � 1 ⧵ {ev ∶ v ∈ W} , and the source mapping for � is the 
restriction of the source mapping for �  and the range mapping for � is the restric-
tion of the range mapping for �  . By conditions (1), (2) and Theorem 16, � is gener-
ated by all pairs (eve∗v , v) and (ev, v) where v ∈ W . However, in the inverse semigroup 
I(� ) , the relation (ev, v) ∈ � implies the relation (eve∗v , v) ∈ � . Hence � is generated 
by all pairs (ev, v) where v ∈ W . Let � be the function that maps a loop ev of �  at 
a vertex v in W to the vertex v and fixes all other vertices and edges of �  . Then � 
is a function that maps the generators of I(� ) to the generators of I(�) . This func-
tion � extends to a homomorphism which we again denote by � from I(� ) onto 
I(�) . To see this, note that if pq∗ is a non-zero element of I(� ) then �(pq∗) = pq∗ if 
neither p nor q contains an edge ev that is a loop at some vertex v ∈ W . If pq∗ does 
contain such a loop ev then we must have p = e1e2 … ene

k
v
 and q = f1f2 … fme

t
v
 for 

some k, t ≥ 0 (with at least one of k or t greater than 0). Then we see that �(pq∗) is 
obtained from pq∗ by removing the path ek

v
(e∗

v
)t at the vertex r(p) = r(q) = v . Then 

from the definition of the multiplication of canonical forms in I(� ) it is easy to see 
that � is a homomorphism from I(� ) onto I(�) . But then since � is generated by the 
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pairs (ev, v) where ev is a loop at some vertex v ∈ W , it follows that the kernel of � is 
� and so the inverse semigroups I(� )∕� and I(�) are isomorphic.

Necessity. We may assume that W is nonempty or else the congruence � deter-
mined by the pair (W, f) is the identity congruence. Suppose that I(� )∕� ≅ I(�) for 
some graph �.

Recall first that the idempotents of a graph inverse semigroup I(� ) are of the 
form pp∗ for some directed (or possibly empty) path p and that the maximal idem-
potents in the partial order correspond to the vertices of �  by [12, Lemma 15(3)]. 
Recall also that in any homomorphism between inverse semigroups, idempotents 
lift, and so the idempotents of the inverse semigroup I(� )∕� are of the form (pp∗)� 
for some directed (or possibly empty) path p in �  . Suppose that (pp∗)� ≥ v� for 
some vertex v and directed path p in �  . Then (pp∗v)� = (vpp∗)� = v� . Since � is 
0-restricted, v� ≠ 0� and so we must have s(p) = v , in which case it follows that 
(pp∗)� = v� . Hence v� is maximal in the partial order in the graph inverse semi-
group I(�) ≅ I(� )∕� , and so we may view v� as a vertex of � for each vertex v of � .

Now suppose that condition (1) fails. Then there exists a vertex v in W such that 
s(ev) = v and r(ev)v = 0 . We have e∗

v
ev = r(ev) and (eve∗v , v) ∈ � , and so v�D r(ev)� 

in I(� )∕� . But since � is 0-restricted, we cannot have v� = r(ev)� since r(ev)v = 0 
in I(� ) . Hence v� and r(ev)� are distinct vertices of � that are D-related in 
I(�) ≅ I(� )∕� . This, together with condition (1) of the theorem and Theorem 16, 
contradicts [12, Corollary 2], and so condition (1) must hold. Then for any vertex 
v ∈ W the edge ev is a loop at v. This implies that (eve∗v )� = (e∗

v
ev)� = v� , and so ev� 

is in the H-class of the idempotent v� in the graph inverse semigroup I(�) . But it is 
routine to see that if pq∗qp∗ = qp∗pq∗ in a graph inverse semigroup, then p = q and 
so pq∗ = pp∗ , and so graph inverse semigroups are combinatorial. From this it fol-
lows that ev� = v� , that is f (ev) = 1 . Hence condition (2) must also hold.

Corollary 18 Let � be a congruence on I(� ) such that I(� )∕� is isomorphic to a 
graph inverse semigroup I(��) and let J = 0� . Then �′ is a subgraph of �  with set 
� 0 ⧵ (� 0 ∩ J) of vertices. If v is a vertex of �′ , then the universal group U(��, v) is a 
free factor of U(� , v).

Proof J is an ideal of I(� ) and I(� )∕J is a graph inverse semigroup I(�) as described 
in Theorem 15. Since � is obtained from �  by omitting some of the vertices and 
edges of �  , we see that � is a subgraph of �  with �0 = � 0 ⧵ (� 0 ∩ J) . Furthermore, 
if pq∗ and p�q�∗ are non-zero elements of I(� ) that are �-related, either pq∗, p�q�∗ ∈ J 
or (pq∗, p�q�∗) ∈ �� where �′ is the 0-restricted congruence on I(�) that is the restric-
tion of � to I(�) . The quotient I(�)∕�� is the graph inverse semigroup I(��) isomor-
phic to I(� )∕� as described in Theorem 17. By the proof of Theorem 17, the graph 
�′ is obtained from � by removing the loops at some of the vertices of � , so �′ is a 
subgraph of � with the same set of vertices as � . Hence �′ is a subgraph of �  with 
set � 0 ⧵ (� 0 ∩ J) of vertices. The description of the universal groups then follows 
from Corollary 12.
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Corollary 19 Let � be a congruence on I(� ) such that I(� )∕� is isomorphic to a 
graph inverse semigroup I(��) . Then I(��) is a retract of I(� ) and U(I(��)) is a free 
factor of U(I(� )).

Proof From the proof of Corollary 18 we see that �′ is a subgraph of �  so I(��) is an 
inverse subsemigroup of I(� ) . Again using the notation of Theorem 17 and Corol-
lary 18, let � be the map from I(� ) to I(��) defined by �(pq∗) = 0 if r(p) ∈ J and 
�(pek

v
(e∗

v
)tq∗) = pq∗ if r(p) ∉ J, v ∈ W , ev is a loop at v and f (ev) = 1 . It is routine 

to check that � is a semigroup homomorphism from I(� ) onto I(��) . Clearly the 
restriction of � to the inverse subsemigroup I(��) of I(� ) is the identity map, so � is 
a retraction map and I(��) is a retract of I(� ) . The fact that U(I(��)) is a free factor of 
U(I(� )) follows from Corollary 8.
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