

RESEARCH ARTICLE

Endomorphisms of semigroups of order-preserving partial transformations

Vítor H. Fernandes¹ · Paulo G. Santos²

Received: 29 January 2018 / Accepted: 15 May 2018 / Published online: 14 June 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract We characterize the monoids of endomorphisms of the semigroup of all order-preserving partial transformations and of the semigroup of all order-preserving partial permutations of a finite chain.

Keywords Order-preserving · Transformations · Endomorphisms

1 Introduction

Let *n* be a natural number. Let Ω_n be a finite set with *n* elements, say Ω_n = $\{1, 2, \ldots, n\}$. We denote by \mathfrak{PT}_n the monoid (under composition) of all partial transformations of Ω_n . The submonoids of \mathfrak{PT}_n of all full transformations and of all partial permutations are denoted by \mathcal{T}_n and \mathcal{T}_n , respectively. Also, denote by \mathcal{S}_n the symmetric group on Ω_n , i.e., the subgroup of \mathcal{PT}_n of all permutations of Ω_n . For $s \in \mathcal{PT}_n$, we

Communicated by Mikhail Volkov.

This work was developed within the FCT Project UID/MAT/00297/2013 of CMA and of Departamento de Matemática da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa.

 \boxtimes Vítor H. Fernandes vhf@fct.unl.pt Paulo G. Santos pgd.santos@campus.fct.unl.pt

¹ CMA, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Monte da Caparica, 2829-516 Caparica, Portugal

² Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Monte da Caparica, 2829-516 Caparica, Portugal

denote the domain of *s* by Dom(*s*), the image of *s* by Im(*s*), the kernel of *s* by ker(*s*), and the set of fix points of *s* by Fix(*s*), i.e., Fix(*s*) = { $x \in Dom(s) | xs = x$ }.

Let us consider Ω_n endowed with the usual (linear) order. An element $s \in \mathcal{PT}_n$ is said to be *order-preserving* if $x \le y$ implies $xs \le y$ s, for all $x, y \in Dom(s)$. Denote by PO_n the submonoid of PT_n of all order-preserving partial transformations. As usual, we denote by \mathcal{O}_n the monoid $\mathcal{PO}_n \cap \mathcal{T}_n$ of all full transformations that preserve the order and by POJ_n its injective counterpart, i.e., the inverse monoid $PO_n \cap J_n$ of all order-preserving partial permutations of Ω_n .

Semigroups of order-preserving transformations have been considered in the literature for over than fifty years. Starting in 1962, Aizenštat $[1,2]$ $[1,2]$ gave a presentation for \mathcal{O}_n , from which it can be deduced that, for $n > 1$, \mathcal{O}_n only has one non-trivial automorphism, and characterized the congruences of \mathcal{O}_n . Also in 1962, Popova [\[26\]](#page-11-0) exhibited a presentation for $\mathcal{P}O_n$. In 1971, Howie [\[20\]](#page-11-1) calculated the cardinal and the number of idempotents of \mathcal{O}_n and later (1992), jointly with Gomes [\[18\]](#page-11-2), determined the ranks and the idempotent ranks of \mathcal{O}_n and \mathcal{PO}_n . More recently, Laradji and Umar [\[22](#page-11-3)[,23](#page-11-4)] presented more combinatorial properties of these two monoids. Certain classes of divisors of the monoid \mathcal{O}_n were determined by Higgins [\[19](#page-11-5)] and by Vernitskii and Volkov [\[30](#page-11-6)] in 1995, by Fernandes [\[8\]](#page-11-7) in 1997 and by Fernandes and Volkov [\[15](#page-11-8)] in 2010. On the other hand, the monoid $PO1_n$ has been object of study by the first author in several papers [\[8](#page-11-7)[–12\]](#page-11-9), by Derech [\[6](#page-10-2)], by Garba [\[17\]](#page-11-10), by Cowan and Reilly [\[4\]](#page-10-3), by Delgado and Fernandes [\[5\]](#page-10-4), by Ganyushkin and Mazorchuk [\[16](#page-11-11)], by Dimitrova and Koppitz [\[7](#page-11-12)], among other authors and papers.

For general background on semigroups, we refer the reader to Howie's book [\[21\]](#page-11-13). Let $n \geq 2$.

Let $S \in \{0_n, \mathcal{P} \cup \mathcal{I}_n, \mathcal{P} \cup \mathcal{I}_n\}$. We have the following descriptions of the Green relations in the semigroups *S*:

 $s \mathcal{L}t$ if and only if $\text{Im}(s) = \text{Im}(t)$, $s\mathcal{R}t$ if and only if ker(*s*) = ker(*t*), $s \mathcal{J} t$ if and only if $|\text{Im}(s)|=|\text{Im}(t)|$, and s *Ht* if and only if $s = t$,

for all $s, t \in S$. If $S = \mathcal{P} \mathcal{O} \mathcal{I}_n$, for the Green relation \mathcal{R} , we have, even more simply,

 $s\mathcal{R}t$ if and only if $Dom(s) = Dom(t)$,

for all $s, t \in S$. Let

$$
J_k = J_k^S = \{ s \in S \mid |\operatorname{Im}(s)| = k \} \quad \text{and} \quad I_k = I_k^S = \{ s \in S \mid |\operatorname{Im}(s)| \le k \},
$$

for $0 \le k \le n$. If $S \in \{PO\mathcal{I}_n, PO_n\}$ then

$$
S/\mathcal{J} = \{J_0 <_{\mathcal{J}} J_1 <_{\mathcal{J}} \cdots <_{\mathcal{J}} J_n\}
$$

and $\{\emptyset\} = I_0 \subset I_2 \subset \cdots \subset I_n = S$ are all the ideals of *S*. On the other hand, if $S = \mathcal{O}_n$ then

$$
S/\mathcal{J} = \{J_1 <_{\mathcal{J}} J_2 <_{\mathcal{J}} \cdots <_{\mathcal{J}} J_n\}
$$

and $I_1 \subset I_2 \subset \cdots \subset I_n = S$ are all the ideals of *S*. See [\[10](#page-11-14)[,18](#page-11-2)].

Recall that a *Rees congruence* ρ of a semigroup *S* is a congruence associated to an ideal *I* of *S*: *spt* if and only if $s = t$ or $s, t \in I$, for all $s, t \in S$.

Observe that Aĭzenštat [\[2](#page-10-1)] proved the congruences of \mathcal{O}_n are exactly the identity and its *n* Rees congruences. See [\[24\]](#page-11-15) for another proof. Analogously, the congruences of POJ_n and PO_n are exactly their $n + 1$ Rees congruences. This has been shown, for POJ_n , by Derech [\[6](#page-10-2)] and, independently, by Fernandes [\[10\]](#page-11-14) and, for PO_n , by Fernandes et al. [\[13](#page-11-16)].

Let *S* be a monoid such that $S\setminus\{1\}$ is an ideal of *S*. Let *e* and *f* be two idempotents of *S* such that $ef = fe = f$. Then, clearly, the mapping $\phi : S \longrightarrow S$ defined by $1\phi = e$ and $s\phi = f$, for all $s \in S\setminus\{1\}$, is an endomorphism (of semigroups) of *S*. This applies to any $S \in \{0_n, \mathcal{POJ}_n, \mathcal{PO}_n\}.$

Let *M* be a monoid, let *S* be a subsemigroup of *M* and let *g* be a unit of *M* such that $g^{-1}Sg = S$. Then, it is easy to check that the mapping $\phi^g : S \longrightarrow S$ defined by $s\phi^{g} = g^{-1}sg$, for all $s \in S$, is an automorphism of *S*.

Consider the following permutation of Ω_n :

$$
\sigma = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix}.
$$

Let $S \in \{0_n, \text{POJ}_n, \text{POD}_n\}$. It is easy to verify that $\sigma^{-1}S\sigma = S$. Therefore, the permutation σ induces a non-trivial automorphism ϕ^{σ} of *S*. In fact, this is the unique non-trivial automorphism of *S*. See [\[3,](#page-10-5) Corollary 5.2].

Finding the automorphisms and endomorphisms of transformation semigroups is a classical problem. They have been determined for several transformation semigroups, for instance, \mathcal{T}_n [\[28\]](#page-11-17), \mathcal{I}_n [\[27](#page-11-18)], and the Brauer-type semigroups [\[25](#page-11-19)]. Furthermore, regarding semigroups of order-preserving transformations, Fernandes et al. [\[14\]](#page-11-20) proved the following description of the endomorphisms of \mathcal{O}_n :

Theorem 1.1 [\[14](#page-11-20), Theorem 1.1] *Let* ϕ : $\mathcal{O}_n \to \mathcal{O}_n$ *be any mapping. Then* ϕ *is an endomorphism of the semigroup* \mathcal{O}_n *if and only if one of the following holds:*

- (a) ϕ *is an automorphism and so* ϕ *is the identity or* $\phi = \phi^{\sigma}$;
- (b) *there exist idempotents e,* $f \in \mathcal{O}_n$ *with e* \neq *f and ef* = *f e* = *f such that* $1\phi = e$ and $(0_n \setminus \{1\})\phi = \{f\}$;
- (c) φ *is a constant mapping with idempotent value.*

And, as a corollary:

Theorem 1.2 [\[14](#page-11-20), Theorem 1.2] *The semigroup* \mathcal{O}_n *has* $2 + \sum_{i=0}^{n-1} {n+i \choose 2i+1} F_{2i+2}$ *endomorphisms, where* F_{2i+2} *denotes the* $(2i + 2)$ *th Fibonacci number.*

In this paper we describe the monoids of the endomorphisms of the semigroups POJ_n and PO_n . As an application of these descriptions, we compute the number of such endomorphisms. This paper is organized as follows. After the current section, we give a miscellaneous of auxiliary results in Sect. [2.](#page-3-0) Finally, in Sect. [3](#page-6-0) we present and prove our main results.

2 Preliminary results

In this section we present a series of auxiliary results. We also construct a certain type of endomorphisms of POI*ⁿ* and PO*n*.

Our first two lemmas have some general nature.

Lemma 2.1 *Let S be a regular semigroup. Let I be an ideal of S and* ϕ *be an endomorphism of S such that the kernel of* φ *is the Rees congruence associated to I . Let* $s, t \in S \backslash I$ *. Then:*

1. *sLt if and only if s*φ*Lt*φ*;*

2. *sRt if and only if s*φ*Rt*φ*.*

Proof We prove the lemma for the Green relation *L*. The proof for *R* is similar.

First, notice that $I\phi\phi^{-1} = I$ and the restriction of ϕ to $S\ Y$ is injective.

Let $s, t \in S \setminus I$. If $s \mathcal{L}t$, then $s \phi \mathcal{L}t \phi$, since any homomorphism of semigroups preserve Green relations (i.e., images of related elements are related). Conversely, suppose that $s\phi\mathcal{L}t\phi$. As *S* is regular, then *S* ϕ is also regular, whence $s\phi$ and $t\phi$ are also *L*-related in *S* ϕ and so, for some $u, v \in S$, we have $s\phi = (u\phi)(t\phi)$ and $t\phi = (v\phi)(s\phi)$. Thus, $s\phi = (ut)\phi$ and so $ut \in S\backslash I$, since $s \in S\backslash I$ and $I\phi\phi^{-1} = I$. Moreover, as ϕ is injective in *S**I*, it follows that $s = ut$. Analogously, $t = vs$ and so *sLt*, as required. \Box

Lemma 2.2 Let S be any subsemigroup of \mathfrak{PT}_n which contains transformations with *arbitrary images of size less than n. Let* $s \in S$ *and* $k \in \mathbb{N}$ *be such that* $1 \leq \text{rank}(s) \leq$ $k \leq n-2$. Then, there exists $t \in S$ such that $rank(t) = k+1$ and $st \neq s$.

Proof Let *A* be any subset of Ω_n such that Im(*s*) ⊂ *A* and $|A| = k + 2$. Let *t* be any element of *S* such that $Im(t) = A \{min(Im(s))\}$ (notice that $Im(s) \neq \emptyset$). Then, rank(*t*) = $k + 1$ and Im(st) \subseteq Im(*t*). Since min(Im(s)) \notin Im(*t*), then also $\min(\text{Im}(s)) \notin \text{Im}(st)$, whence $\text{Im}(s) \neq \text{Im}(st)$, and so $s \neq st$, as required. \Box

Observe that the previous lemma applies to any $S \in \{0_n, \mathcal{PO}(\mathcal{I}_n, \mathcal{PO}_n)\}$. Next, we give two particular properties of our semigroups.

Lemma 2.3 *Let* $k \in \{0, 1, \ldots, n-2\}$ *. Then, there exist idempotents* $h_1, \ldots, h_n \in$ $J_{k+1}^{\mathcal{P} \odot \mathcal{I}_n}$ such that $h_i h_j \in I_k^{\mathcal{P} \odot \mathcal{I}_n}$, for all $1 \leq i < j \leq n$.

Proof We have $\binom{n}{k+1}$ distinct subsets of Ω_n with $k + 1$ elements. As $0 \le k \le n - 2$, then $1 \leq k + 1 \leq n - 1$, and so $\binom{n}{k+1} \geq n$. Therefore, we may take (at least) *n* distinct subsets Y_1, \ldots, Y_n of Ω_n with $k + 1$ elements. Let h_i be the partial identity on *Y_i*, for $1 \le i \le n$. Then, for $1 \le i \le j \le n$, the transformation $h_i h_j$ is the partial identity on *Y_i* ∩ *Y_j* and, since *Y_i* \neq *Y_j*, we obtain $|Y_i \cap Y_j|$ < $|Y_j| = k + 1$, whence $h_i h_j \in I_k^{\mathcal{P} \mathcal{O} \mathcal{I}_n}$, as required. \Box

For $k \in \{2, 3, ..., n\}$, consider the following two transformations of \mathcal{O}_n with rank *n* − 1:

$$
f_k = \begin{pmatrix} 1 & \cdots & k-1 & k & k+1 & \cdots & n \\ 1 & \cdots & k-1 & k-1 & k+1 & \cdots & n \end{pmatrix} \quad \text{and}
$$
\n
$$
g_k = \begin{pmatrix} 1 & \cdots & k-2 & k-1 & k & \cdots & n \\ 1 & \cdots & k-2 & k & k & \cdots & n \end{pmatrix}.
$$

We have:

Lemma 2.4 *Each of the n* − 1 *R*-classes of transformations of rank n − 1 *of* \mathcal{O}_n *has exactly two idempotents, namely* f_k *and* g_k *, for some* $k \in \{2, 3, \ldots, n\}$ *.*

Proof Let *R* be an *R*-class of O_n contained in $J_{n-1}^{O_n}$. Then all elements of *R* have the same kernel, which is associated to a partition of Ω_n of the form $\{i\}$ | *i* ∈ {1, 2,..., *k* − 2, *k* + 1,..., *n*}} ∪ {{*k* − 1, *k*}}, for some *k* ∈ {2, 3,..., *n*}. Clearly, *fk* and *gk* are two distinct idempotents of *R*. Moreover, let

$$
e = \begin{pmatrix} 1 & \cdots & k-1 & k & k+1 & \cdots & n \\ i_1 & \cdots & i_{k-1} & i_{k-1} & i_k & \cdots & i_{n-1} \end{pmatrix},
$$

with $1 \leq i_1 < \cdots < i_{n-1} \leq n$, be an (arbitrary) idempotent of *R*. Then Fix(*e*) = Im(*e*) and so $|\text{Fix}(e)| = n - 1$, whence there exists a unique $i \in \Omega_n$ such that $(i)e \neq i$. Since $((i)e)e = (i)e$, we have $((i)e, i) \in \text{ker}(e)$, and so $\{(i)e, i\} = \{k-1, k\}$. If $i = k$ then, clearly, $e = f_k$. Otherwise, $i = k - 1$ and then, clearly, $e = g_k$. This proves the lemma. lemma. \Box

For $i \in \{1, 2, ..., n\}$, let

$$
e_i = \begin{pmatrix} 1 & \cdots & i-1 & i+1 & \cdots & n \\ 1 & \cdots & i-1 & i+1 & \cdots & n \end{pmatrix}.
$$

It is clear that each of the *n* \mathcal{R} -classes of transformations of rank *n* − 1 of \mathcal{POI}_n has exactly one idempotent (notice that POJ_n is an inverse semigroup), namely e_i , for some $i \in \{1, 2, ..., n\}.$

Notice that $J_{n-1}^{\mathcal{P} \mathcal{O}_n} = J_{n-1}^{\mathcal{O}_n} \cup J_{n-1}^{\mathcal{P} \mathcal{O} \mathcal{J}_n}$ (a disjoint union). Hence, by the above observations, $J_{n-1}^{\mathcal{P} \mathcal{O}_n}$ contains *n R*-classes exactly with one idempotent and *n* − 1 *R*-classes exactly with two idempotents. Moreover, each *R*-class contained in $J_{n-1}^{\mathcal{P} \mathcal{O}_n}$ has precisely *n* transformations (one for each possible image with *n* − 1 elements). Additionally, it is clear that each *R*-class contained in $J_1^{\mathcal{P} \mathcal{O}_n}$ is determined by the domain of the transformations (as it happens in general in POJ_n), and so we have $2^n - 1$ *R*-classes of transformations of rank 1 of $\mathcal{P}O_n$, each with exactly as many idempotents as elements in the corresponding domain. Such as for $J_{n-1}^{\mathcal{P} \mathcal{O}_n}$, each \mathcal{R} class contained in $J_1^{\mathcal{P} \mathcal{O}_n}$ has precisely *n* transformations (one for each possible image with 1 element).

Next, we aim to construct an endomorphism of PO_n .

Let us define a mapping $\phi_1 : \mathcal{P} \mathcal{O}_n \longrightarrow \mathcal{P} \mathcal{O}_n$ by:

- 1. $1\phi_1 = 1;$
- 2. For $s \in J_{n-1}^{\mathcal{P} \mathcal{O} \mathcal{I}_n}$, let $s\phi_1 = \binom{i}{j}$, where $i, j \in \{1, 2, ..., n\}$ are the unique indices such that e_i *RsL* e_j ;
- 3. For $s \in J_{n-1}^{0_n}$, let $s\phi_1 = \begin{pmatrix} k-1 & k \\ k_s & k \end{pmatrix}$ *ks ks* $\left\{\n\right\},\n\text{ where } \{k_s\} = \Omega_n \setminus \text{Im}(s) \text{ and } k \in \mathbb{R}$ $\{2, 3, \ldots, n\}$ is the unique index such that $s \mathcal{R} f_k$ (and $s \mathcal{R} g_k$);

4. $I_{n-2}^{\mathcal{P} \mathcal{O}_n} \phi_1 = {\emptyset}.$

Clearly, ϕ_1 is well defined mapping. Moreover, since $\mathcal{P} \mathcal{O}_n$ (such as $\mathcal{P} \mathcal{O} \mathcal{I}_n$) is an *H*-trivial semigroup (and so each element of PO_n is perfectly defined by its *L*-class and *R*-class, i.e., its image and kernel), the restriction of ϕ_1 to $\mathcal{P}\mathcal{O}_n\setminus I_{n-2}^{\mathcal{P}\mathcal{O}_n}$ is injective. Furthermore, it is a routine matter to prove the following lemma.

Lemma 2.5 *The mapping* ϕ_1 *is an endomorphism of* $\mathcal{P} \mathcal{O}_n$ *such that* $\mathcal{P} \mathcal{O} \mathcal{I}_n \phi_1 \subset \mathcal{P} \mathcal{O} \mathcal{I}_n$. *Consequently, the restriction of* ϕ_1 *to* POJ_n *may also be seen as an endomorphism of* POJ_n .

All endomorphisms similar to ϕ_1 have the following property.

Lemma 2.6 *Let* $S \in \{PQI_n, PQ_n\}$ *. Let* ϕ *be an endomorphism of S such that* $1\phi =$ 1*,* $J_{n-1}\phi$ ⊆ J_1 *and* $I_{n-2}\phi$ = { \emptyset }*. Then* ϕ *is perfectly defined by the images of the idempotents e*₁,..., *e_n*. *Moreover*, $|\text{Dom}(s\phi)| = 1$, *for all s* $\in J_{n-1}^{\text{POJ}_n}$ *, and* $|{\rm Dom}(s\phi)| = 2, for all s \in J_{n-1}^{\mathcal{O}_n}$.

Proof We begin by observing that the kernel of ϕ must be the Rees congruence associated to I_{n-2} and so ϕ is injective in *S*\ I_{n-2} . Next, as ϕ applies *R*-related transformations of J_{n-1} in *R*-related transformations of J_1 , ϕ injective in J_{n-1} and the *R*-classes contained in J_{n-1} and in J_1 have the same number of elements, namely *n*, the endomorphism ϕ applies each *R*-class of *J_{n−1}* bijectively in a *R*-class of *J*₁. It follows that, for each $\mathcal R$ -class R of J_{n-1} , the number of idempotents of R and of the *R*-class $R\phi$ of J_1 must be the same. Thus, in particular, $J_{n-1}^{\mathcal{P} \odot \mathcal{I}_n} \phi = J_1^{\mathcal{P} \odot \mathcal{I}_n}$.

For each $i \in \{1, 2, ..., n\}$, let $k_i \in \Omega_n$ be such that $e_i \phi = \binom{k_i}{k_i}$. Notice that $\begin{pmatrix} 1 & 2 & \cdots & n \\ n & 1 & n \end{pmatrix}$ k_1 k_2 \cdots k_n) is a permutation of Ω_n .

Let $s \in J_{n-1}^{\mathcal{P} \cup \mathcal{I}_n}$. Then, there exists a unique pair $(i, j) \in \{1, 2, ..., n\} \times \{1, 2, ..., n\}$ such that $s\mathcal{R}e_i$ and $s\mathcal{L}e_j$. Then, $s\phi\mathcal{R}e_i\phi$ and $s\phi\mathcal{L}e_j\phi$, and so $s\phi = \binom{k_i}{k_j}$.

If $S = \text{POJ}_n$ then the proof is completed. Thus, from now on, we suppose that $S = \mathcal{P} \mathcal{O}_n$.

Let $i \in \{2, 3, \ldots, n\}$. Then $f_i \mathcal{L} e_i$ and $g_i \mathcal{L} e_{i-1}$, whence $f_i \phi \mathcal{L} e_i \phi$ and $g_i \phi \mathcal{L} e_{i-1} \phi$, and so $\text{Im}(f_i\phi) = \{k_i\}$ and $\text{Im}(g_i\phi) = \{k_{i-1}\}\$. Hence, $k_i \in \text{Im}(f_i\phi) = \text{Fix}(f_i\phi) \subseteq$ Dom(f_i ϕ) and k_{i-1} ∈ Im(g_i ϕ) = Fix(g_i ϕ) ⊆ Dom(g_i ϕ). Besides, as f_i *R* g_i , we have $f_i \phi \mathcal{R} g_i \phi$ and so $Dom(f_i \phi) = Dom(g_i \phi)$. Since $|Dom(f_i \phi)| = 2$ and $k_{i-1} \neq k_i$, it follows that $Dom(f_i \phi) = \{k_{i-1}, k_i\}.$

Now, let $s \in J_{n-1}^{\mathbb{O}_n}$. Then, there exists a unique pair $(i, j) \in \{2, 3, ..., n\} \times$ $\{1, 2, \ldots, n\}$ such that $s \mathcal{R} f_i$ and $s \mathcal{L} e_j$. Thus, $s \phi \mathcal{R} f_i \phi$ and $s \phi \mathcal{L} e_j \phi$, and so $s \phi = \begin{pmatrix} k_{i-1} & k_i \end{pmatrix}$ which finishes the great of this larger *ki*−¹ *ki* k_j k_j), which finishes the proof of this lemma. \square \Box

Observe that we may also conclude that, within the conditions of the previous lemma, we have at most *n*! endomorphisms.

Now, we recall that a subsemigroup *T* of \mathfrak{PT}_n is said to be \mathcal{S}_n -*normal* if $g^{-1}Tg \subseteq T$, for all $g \in S_n$. In 1975, Sullivan [\[29,](#page-11-21) Theorem 2] proved that $Aut(T) \simeq S_n$, for any S_n -normal subsemigroup *T* of \mathfrak{PT}_n containing a constant mapping. Moreover, we obtain an isomorphism $\Theta : \mathcal{S}_n \longrightarrow \text{Aut}(T)$ by defining $g\Theta = \theta_g$, where θ_g denotes the inner automorphism of *T* associated to *g* (i.e., $t\theta_g = g^{-1}tg$, for all $t \in T$), for all $g \in \mathcal{S}_n$.

Let $S \in \{PO\mathcal{I}_n, PO_n\}$. Let $I_1^1 = I_1 \cup \{1\}$. It is clear that I_1^1 is an S_n -normal subsemigroup of \mathfrak{PT}_n containing a constant mapping. Therefore, by Sullivan's Theorem, we have

$$
Aut(I_1^1) = \{ \theta_g \mid g \in \mathcal{S}_n \} \simeq \mathcal{S}_n,
$$

where θ_g denotes the inner automorphism of I_1^1 associated to *g*, for all $g \in \mathcal{S}_n$.

Let $\phi_g = \phi_1|_{S} \theta_g$ (where $\phi_1|_{S}$ denotes the restriction of ϕ_1 to *S*), considered as a mapping from *S* to *S*, for all $g \in S_n$. Clearly, $\{\phi_g \mid g \in S_n\}$ is a set of *n*! distinct endomorphisms of *S*. Moreover, it is easy to conclude the following result, with which we finish this section.

Lemma 2.7 *Let* $S \in \{PO\mathcal{I}_n, PO_n\}$ *. Let* ϕ *be an endomorphism of* S *such that* $1\phi = 1$ *,* $J_{n-1}\phi \subseteq J_1$ *and* $I_{n-2}\phi = {\emptyset}$ *. Then,* $\phi = \phi_g$ *, for some* $g \in S_n$ *.*

3 Main results

Let $S \in \{POJ_n, PO_n\}$. Let ϕ be an endomorphism of the semigroup *S*. Then, ker(ϕ) is the Rees congruence of *S* associated to I_k , for some $k \in \{0, 1, \ldots, n\}$. Observe that the restriction of ϕ to $S\backslash I_k$ is an injective mapping and $|I_k\phi|=1$. Let $f \in S$ be such that $I_k\phi = \{f\}$. Clearly, *f* is an idempotent of *S*. Notice also that $\{f\}\phi^{-1} = I_k$.

Suppose that ϕ is neither a constant mapping nor an automorphism. Then, since $\ker(\phi)$ is not trivial and not universal, we have $1 \leq k \leq n-1$.

Let us admit that $k = n - 1$ and take $e = 1\phi$. Then *e* is also an idempotent, $e \neq f$ and, for $s \in I_{n-1}$, we have $ef = (1\phi)(s\phi) = (1 \cdot s)\phi = s\phi = f = s\phi = (s \cdot 1)\phi =$ $(s\phi)(1\phi) = fe.$

From now on, suppose that $1 \leq k \leq n-2$. Since any homomorphism of semigroups preserve Green relations, there exists $\ell \in \{0, 1, \ldots, n\}$ such that $J_{k+1}\phi \subseteq J_{\ell}$. Under these conditions, we prove two lemmas.

Lemma 3.1 *Under the above conditions, one has* rank(f) < ℓ .

Proof First, notice that $(\bigcup_{i=k+1}^{n} J_i) \phi \subseteq \bigcup_{i=\ell}^{n} J_i$, since $J_{k+1} \phi \subseteq J_{\ell}$ and any homomorphism preserves the quasi-order \leq *J*.

Next, we show that rank $(f) \leq \ell$. Take $s \in J_k$ and $t \in J_{k+1}$. Then, $s \leq \ell$ *t*, and so $s\phi \leq f$ *t* ϕ . Since $J_k\phi = \{f\}$ and $J_{k+1}\phi \subseteq J_\ell$, we have $s\phi = f$ and $t\phi \in J_\ell$, whence rank $(f) \leq \ell$.

Now, we prove that rank(f) $\leq k$. By contradiction, suppose that rank(f) $\geq k+1$. Then, $I_k \subseteq I_{\text{rank}(f)-1}$, and so

$$
(S \setminus I_k)\phi = (\bigcup_{i=k+1}^n J_i)\phi \subseteq \bigcup_{i=\ell}^n J_i \subseteq \bigcup_{i=\text{rank}(f)}^n J_i = S \setminus I_{\text{rank}(f)-1} \subseteq S \setminus I_k.
$$

It follows that $(S\backslash I_k)\phi = S\backslash I_k$, since the restriction of ϕ to $S\backslash I_k$ is injective. As rank(f) $\geq k + 1$ also implies that $f \in S\backslash I_k$, we deduce that $I_k \cap S\backslash I_k = \{f\}\phi^{-1} \cap I_k$ $S\setminus I_k \neq \emptyset$, which is a contradiction. Thus, we must have rank(f) $\leq k$.

Finally, we prove that rank(f) < ℓ . Suppose, by contradiction, that rank(f) = ℓ . Take $s \in J_{k+1}$. Since $J_{k+1}\phi \subseteq J_{\ell}$, we have $s\phi \mathcal{J} f$. Moreover, as $f \in I_k$, we also have *sf*, $fs \in I_k$, whence $(sf)\phi = (fs)\phi = f\phi = f$. From $f = (fs)\phi =$ $f \phi s \phi = f(s \phi)$, it follows that $\text{Im}(f) = \text{Im}(f(s \phi)) \subseteq \text{Im}(s \phi)$. From $f = (sf) \phi =$ $s\phi f\phi = (s\phi)f$, it follows that ker(f) = ker($(s\phi)f$) \supseteq ker($s\phi$). Since $s\phi\mathcal{J}f$, we have $|\ker(f)|=|\operatorname{Im}(f)|=|\operatorname{Im}(s\phi)|=|\ker(s\phi)|$, and so $\operatorname{Im}(f)=\operatorname{Im}(s\phi)$ and $ker(f) = ker(s\phi)$, whence $f\mathcal{L}s\phi$ and $f\mathcal{R}s\phi$, i.e., $f\mathcal{H}s\phi$. Thus, $f = s\phi$, which is a contradiction (being the case that $s \in J_{k+1}$ and $\{f\}\phi^{-1} = I_k$). Therefore, rank(f) < ℓ , as required. \Box

Lemma 3.2 *Under the above conditions,* $1\phi = 1$ *,* $J_{n-1}\phi \subseteq J_1$ *, and* $I_{n-2}\phi = \{\emptyset\}$ *.*

Proof Since $k \in \{1, 2, ..., n - 2\}$, by Lemma [2.3,](#page-3-1) we may take idempotents $h_1, \ldots, h_n \in J_{k+1}^{\mathcal{P} \cup \mathcal{I}_n}$ such that $h_i h_j \in I_k^{\mathcal{P} \cup \mathcal{I}_n}$, for all $1 \le i < j \le n$.

Recall that $f \in I_k$, and so $f\phi = f$. Let $i \in \{1, 2, ..., n\}$. Then, $f(h_i\phi) =$ $f \phi h_i \phi = (f h_i) \phi = f$, since $f h_i \in I_k$. Hence, Im(f) \subseteq Im($h_i \phi$).

Next, let $1 \le i < j \le n$. By the previous paragraph, we have $\text{Im}(f) \subseteq \text{Im}(h_i \phi) \cap$ Im(*h ^j*φ). Conversely, let *a* ∈ Im(*hi*φ)∩Im(*h ^j*φ). Since *hi*φ and *h ^j*φ are idempotents and $h_i h_j \in I_k$, we have $\text{Im}(h_i \phi) = \text{Fix}(h_i \phi)$, $\text{Im}(h_j \phi) = \text{Fix}(h_j \phi)$ and $(h_i h_j) \phi = f$, whence $af = a(h_i h_j)\phi = (a(h_i \phi))(h_j \phi) = a(h_j \phi) = a$, and so $a \in \text{Im}(f)$. Then, Im(*h_iϕ*) ∩ Im(*h_jϕ*) ⊆ Im(*f*), and thus Im(*h_iϕ*) ∩ Im(*h_j* ϕ) = Im(*f*).

Let $E_i = \text{Im}(h_i \phi) \setminus \text{Im}(f)$, for $1 \le i \le n$. Clearly, $\text{Im}(f) \cap (\bigcup_{i=1}^n E_i) = \emptyset$ and, for 1 ≤ *i* < *j* ≤ *n*, the equality Im(*h_iϕ*) ∩ Im(*h_jϕ*) = Im(*f*) implies that E_i ∩ E_j = Ø. Moreover, since $h_i \in J_{k+1}$, then rank $(h_i \phi) = \ell > \text{rank}(f)$, by Lemma [3.1,](#page-6-1) and so $|E_i| \ge 1$, for $1 \le i \le n$. Thus $|E_1| = |E_2| = \cdots = |E_n| = 1$ and $\bigcup_{i=1}^n E_i = \Omega_n$, from which follows that $\text{Im}(f) = \emptyset$.

Now, observe that $\ell = \text{rank}(h_1 \phi) = |\text{Im}(h_1 \phi)| = |E_1 \cup \text{Im}(f)| = |E_1| = 1$. Then, $J_{k+1}\phi \subseteq J_1$, and so we cannot have more than *n* elements of $J_{k+1}\phi$ in distinct *L*-classes. Thus, by Lemma [2.1,](#page-3-2) we cannot have more than *n* elements of J_{k+1} in distinct *L*-classes, i.e. $\binom{n}{k+1} \le n$, and so $k+1 \in \{0, 1, n-1, n\}$. Since $1 \le k \le n-2$, it follows that $k = n - 2$.

It remains to show that $e = 1$. Since $J_{n-1}\phi \subseteq J_1$ and $I_{n-2}\phi = {\emptyset}$, the reasoning of the first paragraph of the proof of Lemma [2.6](#page-5-0) applies here and we can conclude that $J_{n-1}^{\mathcal{P} \mathcal{O} \mathcal{I}_n} \phi = J_1^{\mathcal{P} \mathcal{O} \mathcal{I}_n}$.

Suppose, by contradiction, that $e \neq 1$. Then, $|\text{Im}(e)| < n$ and so we may take $i \in \Omega_n \setminus \text{Im}(e)$. Let $h \in J_{n-1}^{\mathcal{P} \cup \mathcal{I}_n}$ be such that $h\phi = \binom{i}{i}$. Hence, $\emptyset = e\binom{i}{i} = (1\phi)(h\phi)$ $(1 \cdot h)\phi = h\phi = {i \choose i}$, a contradiction. Thus, $1\phi = 1$, as required. \Box

Now, by Lemmas [3.2](#page-7-0) and [2.7,](#page-6-2) we can deduce that, if $1 \le k \le n-2$, then $(k = n-2)$ and) $\phi = \phi_g$, for some $g \in S_n$. This concludes the proof of the following description of the monoid of endomorphisms of *S*.

Theorem 3.3 Let $S \in \{PO0n, POn\}$ *. Let* $\phi : S \longrightarrow S$ *be any mapping. Then,* ϕ *is an endomorphism of the semigroup S if and only if one of the following holds:*

- (a) ϕ *is an automorphism and so* ϕ *is the identity or* $\phi = \phi^{\sigma}$;
- (b) *there exist idempotents e,* $f \in S$ *with* $e \neq f$ *and* $ef = fe = f$ *such that* $1\phi = e$ *and* $(S \setminus \{1\})\phi = \{f\}$ *;*
- (c) $\phi = \phi_g$, for some $g \in \mathcal{S}_n$;
- (d) φ *is a constant mapping with idempotent value.*

As a corollary of the this theorem, we finish this paper by counting the number of endomorphisms of POJ_n and of PO_n .

For $S \in \{P \odot I_n, P \odot n\}$ and for each idempotent $e \in S$, let

$$
E_S(e) = \{ f \in S \mid f^2 = f \text{ and } fe = ef = f \}.
$$

Then, according to Theorem [3.3,](#page-8-0) we have $\sum_{e^2=e\in S} |E_S(e)|$ endomorphisms of *S* of type (b) and (d).

We start by considering POJ_n .

Theorem 3.4 *The semigroup* POJ_n *has* $2 + n! + 3^n$ *endomorphisms.*

Proof First, recall that the idempotents of POJ_n are all the partial identities of Ω_n , and so we precisely have $\binom{n}{k}$ idempotents of POJ_n with rank *k*, for all $0 \le k \le n$.

Let *e* be an idempotent of POJ_n . Then, it is easy to show that $f \in E_{POJ_n}(e)$ if and only if $\text{Im}(f) \subseteq \text{Im}(e)$, for any idempotent f of POJ_n . Hence, $|E_{\text{POJ}_n}(e)| = 2^{\left|\text{Im}(e)\right|}$.

It follows that the number of endomorphisms of POJ_n of type (b) and (d) is equal to

$$
\sum_{e^2=e\in \mathcal{P} \odot \mathcal{I}_n} |E_{\mathcal{P} \odot \mathcal{I}_n}(e)| = \sum_{e^2=e\in \mathcal{P} \odot \mathcal{I}_n} 2^{\lfloor \operatorname{Im}(e) \rfloor} = \sum_{k=0}^n {n \choose k} 2^k = 3^n,
$$

and so, since we have *n*! endomorphisms of type (c), as observed at the end of Sect. [2,](#page-3-0) and two automorphisms, we obtain a total of $2 + n! + 3^n$ endomorphisms of $PO\mathcal{I}_n$, as required. \Box

Counting the number of endomorphisms of PO_n is more elaborated than for POJ_n . First, we prove two lemmas.

Lemma 3.5 Let $1 \leq k \leq n$ and let e be an idempotent of $\mathcal{P} \mathcal{O}_n$ with rank k. Then, *the set* $E_{\text{PO}_n}(e)$ *has as many elements as the number of idempotents of* $\mathcal{P}O_k$, *i.e.*, $E_{\mathcal{P} \mathcal{O}_n}(e)$ *has* $1 + (\sqrt{5})^{k-1}((\frac{\sqrt{5}+1}{2})^k - (\frac{\sqrt{5}-1}{2})^k)$ *elements.*

Proof Let *X* be any finite chain and denote by $\mathcal{P}O(X)$ the monoid of all orderpreserving partial transformations on *X*. Observe that $\mathcal{P}\mathcal{O}(X)$ and $\mathcal{P}\mathcal{O}_{|X|}$ are isomorphic monoids.

Let $1 \leq k \leq n$ and let *e* be an idempotent of \mathcal{PO}_n with rank *k*. Given an idempotent $g \in \mathcal{P}O(\text{Im}(e))$, it is a routine matter to check that $eg \in E_{\mathcal{P}O_n}(e)$ and, moreover, that the map $\{f \in \mathcal{P}(\text{Im}(e)) \mid f^2 = f\} \longrightarrow E_{\mathcal{P}(\text{Im})}(e), g \longmapsto eg$, is a bijection. Therefore, $|E_{\mathcal{P} \mathcal{O}_n}(e)| = |\{ f \in \mathcal{P} \mathcal{O}_k \mid f^2 = f \}|.$

Now, it remains to recall that Laradji and Umar proved that the number of idempotents of PO_k is equal to $1 + (\sqrt{5})^{k-1} ((\frac{\sqrt{5}+1}{2})^k - (\frac{\sqrt{5}-1}{2})^k)$ (see [\[22,](#page-11-3) Theorem 3.8]). Ч Ч

Lemma 3.6 *The number of idempotents of* $\mathcal{P}\mathcal{O}_n$ *with rank k is* $\sum_{i=k}^{n} {n \choose i} (\frac{i+k-1}{2k-1})$ *, for* $1 \leq k \leq n$.

Proof Let *X* be any finite chain and denote by $O(X)$ the monoid of all order-preserving full transformations on *X*. As for order-preserving partial transformations, we have that $O(X)$ and $O_{|X|}$ are isomorphic monoids.

Let $1 \leq k \leq n$. Since an idempotent fixes its image, given an idempotent *e* of $\mathcal{P} \mathcal{O}_n$, it is clear that $\text{Im}(e) \subseteq \text{Dom}(e)$, and so $e \in \mathcal{O}(\text{Dom}(e))$. Hence, an element *e* of $\mathcal{P}O_n$ is an idempotent with rank k if and only if e is an idempotent of $O(X)$ with rank k , for some subset *X* of Ω_n such that $|X| \geq k$. Therefore, the number of idempotents of PO_n with rank *k* is

$$
\sum_{i=k}^{n} {n \choose i} |\{e \in J_k^{\mathcal{O}_i} \mid e^2 = e\}|,
$$

and so, since $|\{e \in J_k^{(0)} \mid e^2 = e\}| = \binom{i+k-1}{2k-1}$, by [\[23,](#page-11-4) Corollary 4.4], for $i \ge k$, the lemma is proved. Ч

Observe that, by the previous lemma and [\[22,](#page-11-3) Theorem 3.8], we obtain the following equality:

$$
\sum_{k=1}^{n} \sum_{i=k}^{n} {n \choose i} {i+k-1 \choose 2k-1} = (\sqrt{5})^{n-1} \left(\left(\frac{\sqrt{5}+1}{2}\right)^{n} - \left(\frac{\sqrt{5}-1}{2}\right)^{n} \right). \tag{1}
$$

Now, we can calculate the number of endomorphisms of PO_n .

Theorem 3.7 *The semigroup* PO*ⁿ has*

$$
3 + n! + (\sqrt{5})^{n-1} \left(\left(\frac{\sqrt{5} + 1}{2} \right)^n - \left(\frac{\sqrt{5} - 1}{2} \right)^n \right) + \sum_{k=1}^n (\sqrt{5})^{k-1} \left(\left(\frac{\sqrt{5} + 1}{2} \right)^k - \left(\frac{\sqrt{5} - 1}{2} \right)^k \right) \sum_{i=k}^n {n \choose i} {i + k - 1 \choose 2k - 1}
$$

endomorphisms.

 $\circled{2}$ Springer

Proof The number of endomorphisms of PO_n of type (b) and (d) is equal to

$$
\sum_{e^{2}=e\in\mathcal{P}\mathcal{O}_{n}}|E_{\mathcal{P}\mathcal{O}_{n}}(e)| = 1 + \sum_{e^{2}=e\in\mathcal{P}\mathcal{O}_{n}\setminus\{\emptyset\}}|{\{f \in \mathcal{P}\mathcal{O}_{|\text{Im}(e)|} \mid f^{2} = f\}}|
$$

\n
$$
= 1 + \sum_{k=1}^{n} |{\{f \in \mathcal{P}\mathcal{O}_{k} \mid f^{2} = f\}}|{\{e \in J_{k}^{\mathcal{P}\mathcal{O}_{n}} \mid e^{2} = e\}}|
$$

\n
$$
= 1 + \sum_{k=1}^{n} \left(1 + (\sqrt{5})^{k-1} \left(\frac{\sqrt{5}+1}{2}\right)^{k}\right)
$$

\n
$$
- \left(\frac{\sqrt{5}-1}{2}\right)^{k} \left(\frac{\pi}{2}\right) \sum_{i=k}^{n} {n \choose i} {i+k-1 \choose 2k-1}
$$

\n
$$
= 1 + \sum_{k=1}^{n} \sum_{i=k}^{n} {n \choose i} {i+k-1 \choose 2k-1} + \sum_{k=1}^{n} (\sqrt{5})^{k-1} \left(\frac{\sqrt{5}+1}{2}\right)^{k}
$$

\n
$$
- \left(\frac{\sqrt{5}-1}{2}\right)^{k} \sum_{i=k}^{n} {n \choose i} {i+k-1 \choose 2k-1},
$$

by Lemmas [3.5](#page-8-1) and [3.6,](#page-9-0) i.e. equal to

$$
1 + (\sqrt{5})^{n-1} \left(\left(\frac{\sqrt{5} + 1}{2} \right)^n - \left(\frac{\sqrt{5} - 1}{2} \right)^n \right) + \sum_{k=1}^n (\sqrt{5})^{k-1} \left(\left(\frac{\sqrt{5} + 1}{2} \right)^k - \left(\frac{\sqrt{5} - 1}{2} \right)^k \right) \sum_{i=k}^n {n \choose i} {i + k - 1 \choose 2k - 1},
$$

by the equality [\(1\)](#page-9-1). Once again we have *n*! endomorphisms of type (c) and two automorphisms, so the result follows. \Box

References

- 1. Aĭzenštat, A.Y.: The defining relations of the endomorphism semigroup of a finite linearly ordered set. Sibirsk. Mat. **3**, 161–169 (1962). **(in Russian)**
- 2. Aĭzenštat, A.Y.: Homomorphisms of semigroups of endomorphisms of ordered sets. Uch. Zap. Leningr. Gos. Pedagog. Inst. **238**, 38–48 (1962). **(in Russian)**
- 3. Araújo, J., Fernandes, V.H., Jesus, M.M., Maltcev, V., Mitchell, J.D.: Automorphisms of partial endomorphism semigroups. Publ. Math. Debr. **79**, 23–39 (2011)
- 4. Cowan, D.F., Reilly, N.R.: Partial cross-sections of symmetric inverse semigroups. Internat. J. Algebra Comput. **5**, 259–287 (1995)
- 5. Delgado, M., Fernandes, V.H.: Abelian kernels of some monoids of injective partial transformations and an application. Semigroup Forum **61**, 435–452 (2000)
- 6. Derech, V.D.: On quasi-orders over certain inverse semigroups, Sov.Math. **35** (1991), 74–76; translation from. Izv. Vyssh. Uchebn. Zaved. Mat. **3**(346), 76–78 (1991). **(in Russian)**
- 7. Dimitrova, I., Koppitz, J.: The maximal subsemigroups of the ideals of some semigroups of partial injections. Discuss. Math. Gen. Algebra Appl. **29**, 153–167 (2009)
- 8. Fernandes, V.H.: Semigroups of order-preserving mappings on a finite chain: a new class of divisors. Semigroup Forum **54**, 230–236 (1997)
- 9. Fernandes, V.H.: Normally ordered inverse semigroups. Semigroup Forum **56**, 418–433 (1998)
- 10. Fernandes, V.H.: The monoid of all injective order-preserving partial transformations on a finite chain. Semigroup Forum **62**, 178–204 (2001)
- 11. Fernandes, V.H.: Semigroups of order-preserving mappings on a finite chain: another class of divisors. Izv. Vyssh. Uchebn. Zaved. Mat. **3**(478), 51–59 (2002). **(in Russian)**
- 12. Fernandes, V.H.: Normally ordered semigroups. Glasg. Math. J. **50**, 325–333 (2008)
- 13. Fernandes, V.H., Gomes, G.M.S., Jesus, M.M.: Congruences on monoids of order-preserving or orderreversing transformations on a finite chain. Glasg. Math. J. **47**, 413–424 (2005)
- 14. Fernandes, V.H., Jesus, M.M., Maltcev, V., Mitchell, J.D.: Endomorphisms of the semigroup of orderpreserving mappings. Semigroup Forum **81**, 277–285 (2010)
- 15. Fernandes, V.H., Volkov, M.V.: On divisors of semigroups of order-preserving mappings of a finite chain. Semigroup Forum **81**, 551–554 (2010)
- 16. Ganyushkin, O., Mazorchuk, V.: On the structure of *I On*. Semigroup Forum **66**, 455–483 (2003)
- 17. Garba, G.U.: Nilpotents in semigroups of partial one-to-one order-preserving mappings. Semigroup Forum **48**, 37–49 (1994)
- 18. Gomes, G.M.S., Howie, J.M.: On the ranks of certain semigroups of order-preserving transformations. Semigroup Forum **45**, 272–282 (1992)
- 19. Higgins, P.M.: Divisors of semigroups of order-preserving mappings on a finite chain. Int. J. Algebra Comput. **5**, 725–742 (1995)
- 20. Howie, J.M.: Product of idempotents in certain semigroups of transformations. Proc. Edinb. Math. Soc. **17**, 223–236 (1971)
- 21. Howie, J.M.: Fundamentals of Semigroup Theory. Oxford University Press, Oxford (1995)
- 22. Laradji, A., Umar, A.: Combinatorial results for semigroups of order-preserving partial transformations. J. Algebra **278**, 342–359 (2004)
- 23. Laradji, A., Umar, A.: Combinatorial results for semigroups of order-preserving full transformations. Semigroup Forum **72**, 51–62 (2006)
- 24. Lavers, T., Solomon, A.: The endomorphisms of a finite chain form a Rees congruence semigroup. Semigroup Forum **59**, 167–170 (1999)
- 25. Mazorchuk, V.: Endomorphisms of B*n*, PB*n*, and C*n*. Commun. Algebra **30**, 3489–3513 (2002)
- 26. Popova, L.M.: Defining relations of a semigroup of partial endomorphisms of a finite linearly ordered set. Leningrad. Gos. Ped. Inst. Uˇcen. Zap. **238**, 78–88 (1962). **(in Russian)**
- 27. Schein, B.M., Teclezghi, B.: Endomorphisms of finite symmetric inverse semigroups. J. Algebra **198**, 300–310 (1997)
- 28. Schein, B.M., Teclezghi, B.: Endomorphisms of finite full transformation semigroups. Proc. Am. Math. Soc. **126**, 2579–2587 (1998)
- 29. Sullivan, R.P.: Automorphisms of transformation semigroups. J. Aust. Math. Soc. **20**(Series A), 77–84 (1975)
- 30. Vernitskii, A.S., Volkov,M.V.: A proof and a generalisation of Higgins' division theorem for semigroups of order preserving mappings. Izv. Vyssh. Uchebn. Zaved. Mat **1**, 38–44 (1995)