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Abstract We characterize the monoids of endomorphisms of the semigroup of all
order-preserving partial transformations and of the semigroup of all order-preserving
partial permutations of a finite chain.
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1 Introduction

Let n be a natural number. Let 2, be a finite set with n elements, say 2, =
{1,2,...,n}. We denote by PT,, the monoid (under composition) of all partial trans-
formations of €2,,. The submonoids of PT,, of all full transformations and of all partial
permutations are denoted by T, and J,,, respectively. Also, denote by S,, the symmetric
group on €2, i.e., the subgroup of PT;, of all permutations of 2,. For s € PT,, we
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denote the domain of s by Dom(s), the image of s by Im(s), the kernel of s by ker(s),
and the set of fix points of s by Fix(s), i.e., Fix(s) = {x € Dom(s) | xs = x}.

Let us consider €2,, endowed with the usual (linear) order. An element s € PT, is
said to be order-preserving if x < y implies xs < ys, for all x, y € Dom(s). Denote
by PO, the submonoid of PT,, of all order-preserving partial transformations. As
usual, we denote by O,, the monoid PO, N T, of all full transformations that preserve
the order and by POJ,, its injective counterpart, i.e., the inverse monoid PO, N J, of
all order-preserving partial permutations of €2;,.

Semigroups of order-preserving transformations have been considered in the liter-
ature for over than fifty years. Starting in 1962, AizensStat [1,2] gave a presentation
for O, from which it can be deduced that, for n > 1, O, only has one non-trivial
automorphism, and characterized the congruences of O,. Also in 1962, Popova [26]
exhibited a presentation for PO,,. In 1971, Howie [20] calculated the cardinal and the
number of idempotents of O, and later (1992), jointly with Gomes [18], determined
the ranks and the idempotent ranks of O, and PO,,. More recently, Laradji and Umar
[22,23] presented more combinatorial properties of these two monoids. Certain classes
of divisors of the monoid O,, were determined by Higgins [19] and by Vernitskii and
Volkov [30] in 1995, by Fernandes [8] in 1997 and by Fernandes and Volkov [15] in
2010. On the other hand, the monoid POJ,, has been object of study by the first author
in several papers [8—12], by Derech [6], by Garba [17], by Cowan and Reilly [4], by
Delgado and Fernandes [5], by Ganyushkin and Mazorchuk [16], by Dimitrova and
Koppitz [7], among other authors and papers.

For general background on semigroups, we refer the reader to Howie’s book [21].

Letn > 2.

Let S € {O,, POJ,, PO,}. We have the following descriptions of the Green rela-
tions in the semigroups S:

s Lt if and only if Im(s) = Im(z),

sRt if and only if ker(s) = ker(¢),

sJt if and only if | Im(s)| = | Im(#)|, and
s’Ht if and only if s = 1,

forall s, t € S. If § = POJ,,, for the Green relation R, we have, even more simply,
sRt if and only if Dom(s) = Dom(z),

forall s, € S. Let
Je=J={seS||Im(s)| =k} and I =I5 ={seS||Im(s)| <k},
for0 <k <n.If § € {POJ,, PO,} then
S/T ={lo<g i <g - <g Jn}

and (#} = Iy c I, C --- C I, = S are all the ideals of S. On the other hand, if
S = O, then

SIT ={h <5 <75 <75}
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and I} C I, C --- C I, = § are all the ideals of S. See [10,18].

Recall that a Rees congruence p of a semigroup S is a congruence associated to an
ideal I of S: spt ifandonly if s =t ors,z € [, forall s,z € S.

Observe that Aizenstat [2] proved the congruences of O, are exactly the identity
and its n Rees congruences. See [24] for another proof. Analogously, the congruences
of POJ, and PO, are exactly their n + 1 Rees congruences. This has been shown,
for POJ,, by Derech [6] and, independently, by Fernandes [10] and, for PO,, by
Fernandes et al. [13].

Let S be a monoid such that S\{1} is an ideal of S. Let ¢ and f be two idempotents
of S such that ef = fe = f. Then, clearly, the mapping ¢ : S —> S defined by
1¢p = eand s¢ = f, forall s € S\{1}, is an endomorphism (of semigroups) of S.
This applies to any S € {O,, POJ,, PO, }.

Let M be a monoid, let S be a subsemigroup of M and let g be a unit of M such
that g~!Sg = S. Then, it is easy to check that the mapping ¢¢ : § —> S defined by
s¢8 = g lsg, forall s € S, is an automorphism of S.

Consider the following permutation of €2,,:

0—(1 2 coon—1 n)

“\n n—1 ... 2 1)

Let S € {O,, POJ,, PO,}. It is easy to verify that o~ 1So = S. Therefore, the per-
mutation o induces a non-trivial automorphism ¢° of S. In fact, this is the unique
non-trivial automorphism of S. See [3, Corollary 5.2].

Finding the automorphisms and endomorphisms of transformation semigroups is a
classical problem. They have been determined for several transformation semigroups,
for instance, T, [28], J, [27], and the Brauer-type semigroups [25]. Furthermore,
regarding semigroups of order-preserving transformations, Fernandes et al. [14]
proved the following description of the endomorphisms of O,,:

Theorem 1.1 [14, Theorem 1.1] Let ¢ : O, — O, be any mapping. Then ¢ is an
endomorphism of the semigroup O,, if and only if one of the following holds:

(a) ¢ is an automorphism and so ¢ is the identity or ¢ = ¢°;
(b) there exist idempotents e, f € O, withe # f and ef = fe = [ such that
1¢ = e and (0,\{1)¢ = {f};

(c) @ is a constant mapping with idempotent value.
And, as a corollary:

Theorem 1.2 [14, Theorem 1.2] The semigroup O, has 2+ Z?;o] (Z"ifl)ngJrz endo-

morphisms, where F; 7 denotes the (2i + 2)th Fibonacci number.

In this paper we describe the monoids of the endomorphisms of the semigroups
P0OIJ, and PO,. As an application of these descriptions, we compute the number of
such endomorphisms. This paper is organized as follows. After the current section,
we give a miscellaneous of auxiliary results in Sect. 2. Finally, in Sect. 3 we present
and prove our main results.
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2 Preliminary results

In this section we present a series of auxiliary results. We also construct a certain type
of endomorphisms of POJ, and PO,,.
Our first two lemmas have some general nature.

Lemma 2.1 Let S be a regular semigroup. Let I be an ideal of S and ¢ be an endo-
morphism of S such that the kernel of ¢ is the Rees congruence associated to I. Let
s,t € S\I. Then:

1. sLt if and only if sp Lt p;
2. sRt if and only if s¢ Rt .

Proof We prove the lemma for the Green relation £. The proof for R is similar.

First, notice that /¢¢~' = I and the restriction of ¢ to S\ 7 is injective.

Let s,r € S\I. If sLt, then s¢Lt¢, since any homomorphism of semigroups
preserve Green relations (i.e., images of related elements are related). Conversely,
suppose that s¢pLt¢. As S is regular, then S¢ is also regular, whence s¢ and ¢
are also L-related in S¢ and so, for some u, v € S, we have s¢ = (u¢)(t¢) and
t¢ = (vp)(sp). Thus, s¢ = (ut)¢ and so ut € S\I, since s € S\I and Ipp~! = 1I.
Moreover, as ¢ is injective in S\ /, it follows that s = uz. Analogously, r = vs and so
sLt, as required. O

Lemma 2.2 Let S be any subsemigroup of PT,, which contains transformations with
arbitrary images of size less than n. Let s € S and k € N be such that 1 < rank(s) <
k < n — 2. Then, there exists t € S such that rank(t) = k + 1 and st # s.

Proof Let A be any subset of €2, such that Im(s) C A and |A| = k + 2. Let ¢
be any element of S such that Im(z) = A\{min(Im(s))} (notice that Im(s) # ).
Then, rank(¢) = k + 1 and Im(st) € Im(¢). Since min(Im(s)) ¢ Im(¢), then also
min(Im(s)) ¢ Im(sz), whence Im(s) # Im(st), and so s # st, as required. O

Observe that the previous lemma applies to any S € {O,, PO7J,, PO,}.
Next, we give two particular properties of our semigroups.

Lemma 2.3 Let k € {0, 1,...,n — 2}. Then, there exist idempotents hy, ..., h, €
Jkgj_(?j” such that hihj € kapoj",foralll <i<j<n

Proof We have (! |) distinct subsets of Q,, with k + 1 elements. AsO <k <n —2,

k+1
thenl < k+1 <n—1,and so (k_';l) > n. Therefore, we may take (at least) n
distinct subsets Y7, ..., Y, of Q, with k + 1 elements. Let /; be the partial identity

onY;, for1 <i <n.Then, for1 <i < j < n, the transformation h;h is the partial
identity on ¥; NY; and, since ¥; # Y;, we obtain |Y; N Y| < |Y;| = k + 1, whence
hih; € Ik?oj”, as required. O
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For k € {2, 3, ..., n}, consider the following two transformations of O, with rank
n—1:
1 - k=1 &k k+1 - n
-ﬁ—(l o k=1 k=1 k+1 -- n> and
(1 - k=2 k—=1 k -+ n
SE=\1 o k=2 & kK - n
We have:

Lemma 2.4 Each of the n — 1 R-classes of transformations of rank n — 1 of O,, has
exactly two idempotents, namely fi and gi, for some k € {2,3,...,n}.

Proof Let R be an R-class of O, contained in ijl. Then all elements of R have
the same kernel, which is associated to a partition of €2, of the form {{i} | i €
{1,2, ..., k—=2,k+1,...,n}}U{{k— 1, k}}, forsome k € {2,3, ..., n}. Clearly, fx
and g are two distinct idempotents of R. Moreover, let

SRR S Y S S N
S\dr e et dk—1 Ik T

with 1 <i; < --- < iy,_1 < n, be an (arbitrary) idempotent of R. Then Fix(e) =
Im(e) and so | Fix(e)| = n— 1, whence there exists aunique i € €2, such that (i)e # i.
Since ((i)e)e = (i)e, we have ((i)e, i) € ker(e),andso {(i)e,i} ={k—1,k}.Ifi =k
then, clearly, e = fi. Otherwise, i = k — 1 and then, clearly, e = gi. This proves the
lemma. O

Fori € {1,2,...,n},let
(1 - i=1 i+l - n
“=\1 . i—1 i1l o)
It is clear that each of the n R-classes of transformations of rank n — 1 of POJ,, has
exactly one idempotent (notice that POJ, is an inverse semigroup), namely e;, for
somei € {1,2,...,n}.

Notice that Jnjj_?" =
PO,

Op
n—1

U JiPOJ,l

1" (a disjoint union). Hence, by the above

observations, J;

contains n R-classes exactly with one idempotent and n — 1
R-classes exactly with two idempotents. Moreover, each R-class contained in Jnip_(?"
has precisely n transformations (one for each possible image with n — 1 elements).
Additionally, it is clear that each R-class contained in JIT On s determined by the
domain of the transformations (as it happens in general in P0J,), and so we have
2" — 1 R-classes of transformations of rank 1 of PO,, each with exactly as many

idempotents as elements in the corresponding domain. Such as for JnT_?”, each R-
class contained in J {‘P O has precisely n transformations (one for each possible image
with 1 element).

Next, we aim to construct an endomorphism of PO,,.

Let us define a mapping ¢; : PO, — PO, by:

@ Springer



338 V. H. Fernandes, P. G. Santos

1. 11 = 1;
2. Fors € Jnj)_?j”, let sp; = (;), where i, j € {1, 2, ..., n} are the unique indices
such that e; RsLe;;
3. For s € an’l, let s¢p1 = ]]z -1 ]]z , where {k;} = Q,\Im(s) and k €
S S
{2, 3, ..., n}1is the unique index such that sR f; (and s Rgx);
PO,
4. 179 ¢ = (0).

Clearly, ¢; is well defined mapping. Moreover, since PO, (such as P0OJ,) is an
‘H-trivial semigroup (and so each element of PO, is perfectly defined by its L-class
and R-class, i.e., its image and kernel), the restriction of ¢ to PO, \I,?B” is injective.
Furthermore, it is a routine matter to prove the following lemma.

Lemma 2.5 The mapping ¢1 is an endomorphism of PO,, such that POJ,¢; < POI,.

Consequently, the restriction of ¢1 to POJ, may also be seen as an endomorphism of
POT,.

All endomorphisms similar to ¢ have the following property.

Lemma 2.6 Let S € {PO7,, PO, }. Let ¢ be an endomorphism of S such that 1¢p =
1, Ju—1¢ € Jy and I,_>¢p = {@B}). Then ¢ is perfectly defined by the images of
the idempotents ey, ..., e,. Moreover, |Dom(s¢p)| = 1, for all s € Jn?_?fj", and
| Dom(s¢)| = 2, forall s € Jnojl.

Proof We begin by observing that the kernel of ¢ must be the Rees congruence
associated to I,,—» and so ¢ is injective in S\ I,—. Next, as ¢ applies R-related trans-
formations of J,_; in R-related transformations of Ji, ¢ injective in J,_; and the
R-classes contained in J,_; and in J; have the same number of elements, namely 7,
the endomorphism ¢ applies each R-class of J,_; bijectively in a R-class of Jj. It
follows that, for each R-class R of J,_1, the number of idempotents of R and of the

R-class R¢ of J; must be the same. Thus, in particular, Jnji(?J% = JI?OJ”.

For each i € {1,2,...,n}, let k; € Q, be such that ¢;¢p = (1,2) Notice that

<1 2 e ) is a permutation of €2,,.

ki ky -+ ky
Lets € Jngj_?j”.Then, there exists aunique pair (i, j) € {1,2,...,n}x{1,2,...,n}

such that sRe; and sLe;. Then, s¢p'Re;¢ and s¢ Le ¢, and so s¢p = (]k‘;)

If S = P0OJ, then the proof is completed. Thus, from now on, we suppose that
S = P0,.

Leti € {2,3,...,n}. Then f;Le; and g;Le;_1, whence fipLe;p and gipLei_1¢,
and so Im(fi¢) = {k;} and Im(g;¢) = {ki—1}. Hence, k; € Im(f;¢p) = Fix(fi¢) C
Dom( fi¢)andk;_; € Im(g;¢) = Fix(gi¢) € Dom(g;¢). Besides, as f; Rg;, wehave
fi¢Rgi¢ and so Dom( f;¢p) = Dom(g;¢). Since | Dom( fi¢p)| = 2 and k;—1 # ki, it
follows that Dom( f;¢) = {ki—1, k;}.

Now, let s € Jno_"l. Then, there exists a unique pair (i, j) € {2,3,...,n} x
{1,2,...,n} such that sR f; and sLe;. Thus, s¢ R fi¢ and s¢Le;¢, and so s¢p =

(i’:_l Zi_ ), which finishes the proof of this lemma.
i ki

O
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Observe that we may also conclude that, within the conditions of the previous
lemma, we have at most n! endomorphisms.

Now, we recall that a subsemigroup T of PT,, is said to be S,,-normal if g_l TgCT,
for all g € §,. In 1975, Sullivan [29, Theorem 2] proved that Aut(7) =~ §,,, for any
Sp-normal subsemigroup 7 of PT, containing a constant mapping. Moreover, we
obtain an isomorphism © : 8§, — Aut(T') by defining g® = 6, where 6, denotes
the inner automorphism of 7" associated to g (i.e., 10, = g‘ltg, forallt € T), for all
g € 8,.

Let S € {POT,, PO,}. Let 111 = I} U {1}. It is clear that 111 is an §,,-normal sub-
semigroup of PT,, containing a constant mapping. Therefore, by Sullivan’s Theorem,
we have

Aut(1}) = {6, | g € 8,} = 8,

where 0, denotes the inner automorphism of / 11 associated to g, forall g € §,,.

Let ¢, = ¢ | SGg (where ¢ s denotes the restriction of ¢ to S), considered as a
mapping from S to S, for all g € §,. Clearly, {¢, | g € 8} is a set of n! distinct
endomorphisms of S. Moreover, it is easy to conclude the following result, with which
we finish this section.

Lemma 2.7 Let S € {P0OJ,, PO, }. Let ¢ be an endomorphism of S such that 1¢ = 1,
Joo1¢ € Jyand I,_2¢ = {#}. Then, ¢ = ¢g, for some g € 8.

3 Main results

Let S € {P0OJ,, PO,}. Let ¢ be an endomorphism of the semigroup S. Then, ker(¢)
is the Rees congruence of S associated to I, for some k € {0, 1, ..., n}. Observe that
the restriction of ¢ to S\ I is an injective mapping and |Ix¢| = 1. Let f € S be such
that Iy¢ = { f}. Clearly, f is an idempotent of S. Notice also that { f}p~' = I.

Suppose that ¢ is neither a constant mapping nor an automorphism. Then, since
ker(¢) is not trivial and not universal, we have 1 <k <n — 1.

Let us admit that k = n — 1 and take e = 1¢. Then e is also an idempotent, e # f
and, fors € I,_1, wehave ef = (1¢)(s¢p) = (1 -s)p=s¢p=f =s¢p=(s-1)p =
(s¢)(1¢) = fe.

From now on, suppose that 1 < k < n—2. Since any homomorphism of semigroups
preserve Green relations, there exists £ € {0, 1, ..., n} such that Jy11¢ < J;. Under
these conditions, we prove two lemmas.

Lemma 3.1 Under the above conditions, one has rank(f) < £.

Proof First, notice that (U?_, 179 < U!_,Ji,since Jy41¢ C Jy and any homomor-
phism preserves the quasi-order < 7.

Next, we show that rank(f) < £. Take s € Jy and ¢ € Ji41. Then, s <7 ¢, and so
s¢ <7 t¢.Since Jy¢p = {f} and Jr11¢ C Jy, we have s¢ = f and t¢ € Jy, whence

rank(f) < £.
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Now, we prove that rank ( ) < k. By contradiction, suppose that rank( f) > k + 1.
Then, Iy € ILank(f)—1, and so

(S\Ik)¢ = (U?=k+1-]i)¢ - U?Z@Ji - U?:rank(f)‘]i = S\Irank(f)—l - S\[k~

It follows that (S\Ix)¢ = S\I, since the restriction of ¢ to S\ is injective. As
rank(f) > k + 1 also implies that f € S\ I, we deduce that Iy N S\I; = {f}¢~' N
S\Ix # ¥, which is a contradiction. Thus, we must have rank(f) < k.

Finally, we prove that rank () < £. Suppose, by contradiction, that rank( f) = ¢.
Take s € Jx+1. Since Jry1¢ < J¢, we have s¢pJ f. Moreover, as f € I, we also
have sf, fs € Iy, whence (sf)¢ = (fs)¢p = f¢ = f.From f = (fs)p =
fosp = f(s¢), it follows that Im(f) = Im(f (s¢)) C Im(s¢). From f = (sf)¢p =
sofo = (s@) f, it follows that ker(f) = ker((s¢) f) D ker(s¢). Since s¢J f, we
have | ker(f)| = |Im(f)| = |Im(s¢)| = |ker(s¢)|, and so Im(f) = Im(s¢) and
ker(f) = ker(s¢), whence fLs¢p and fRs¢,ie., fHs¢. Thus, f = s¢, which is a
contradiction (being the case that s € Jiy1 and { f}¢~! = It). Therefore, rank(f) <
£, as required. O

Lemma 3.2 Under the above conditions, 1¢ = 1, J,_1¢ C Jy, and I,_>¢ = {¥}.

Proof Since k € {1,2,...,n — 2}, by Lemma 2.3, we may take idempotents
Riy..ohy € J0S7" such that hihj € 177" forall 1 <i < j <n.

Recall that f € Iy, and so f¢ = f.Leti € {l1,2,...,n}. Then, f(h;¢) =
fohio = (fhi)p = f,since fh; € Iy. Hence, Im(f) C Im(h;¢).

Next, let 1 <i < j < n. By the previous paragraph, we have Im(f) € Im(h;¢) N
Im(h j¢). Conversely, leta € Im(h;¢) NIm(h ;¢). Since h;¢ and h ;¢ are idempotents
andh;h; € Iy, wehavelm(h;¢) = Fix(h;¢),Im(h;¢) = Fix(h;j¢) and (h;h )¢ = f,
whence af = a(hihj)¢ = (a(hi$))(h;j¢) = a(hj¢) = a, and so a € Im(f). Then,
Im(h;¢p) NIm(h;¢) € Im(f), and thus Im(h;¢) N Im(h;j¢) = Im(f).

Let E; = Im(h;$)\ Im(f), for 1 <i < n.Clearly, Im(f)N(U?_, E;) = @ and, for
1 <i < j < n,the equality Im(h;¢) NIm(s;¢) = Im(f) implies that £; N E; = §J.
Moreover, since h; € Ji41, then rank(h;¢p) = £ > rank(f), by Lemma 3.1, and so
|Ei| > 1,for 1 <i <n.Thus |E|| = |Ez| =--- = |E,| = 1l and U/_| E; = Q,,
from which follows that Im(f) = .

Now, observe that £ = rank(h1¢) = |Im(h1¢)| = |E1 U Im(f)| = |Eq1| = 1.
Then, Jr+1¢ € Ji, and so we cannot have more than n elements of Ji1¢ in distinct
L-classes. Thus, by Lemma 2.1, we cannot have more than n elements of Ji in
distinct £-classes, i.e. (k-nH) <n,andsok+1¢€{0,1,n—1,n}.Sincel <k <n-—2,
it follows that k = n — 2.

It remains to show that e = 1. Since J,_1¢ C J; and [,,_2¢ = {{J}, the reasoning

of the first paragraph of the proof of Lemma 2.6 applies here and we can conclude
that 7797 = g 7O,

Suppose, by contradiction, that e # 1. Then, |Im(e)| < n and so we may take
i € Q,\Im(e). Leth € J )" be such that hep = (%). Hence, ¥ = () = (1) (h¢) =

(1-h)p=h¢ = (j) a contradiction. Thus, 1¢ = 1, as required. O
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Endomorphisms of semigroups of order-preserving partial... 341

Now, by Lemmas 3.2 and 2.7, we can deduce that,if | <k <n—2,then(k =n—2
and) ¢ = ¢y, for some g € §,,. This concludes the proof of the following description
of the monoid of endomorphisms of S.

Theorem 3.3 Let S € {POT,, PO,}. Let ¢ : S —> S be any mapping. Then, ¢ is an
endomorphism of the semigroup S if and only if one of the following holds:

(a) @ is an automorphism and so ¢ is the identity or ¢ = ¢°;

(b) there exist idempotents e, f € Swithe # f andef = fe = f suchthat 1¢ = e
and (S\{1)¢ = {f};

(c) ¢ = ¢g, for some g € 8,;

(d) ¢ is a constant mapping with idempotent value.

As a corollary of the this theorem, we finish this paper by counting the number of
endomorphisms of POJ,, and of PO,,.
For S € {P0OJ,, PO,} and for each idempotent e € S, let

Es(e)={f eS| f*= fand fe=ef = f}.

Then, according to Theorem 3.3, we have ) ,2_, ¢ |Es(e)| endomorphisms of S of
type (b) and (d).
We start by considering PO7J,,.

Theorem 3.4 The semigroup POT,, has 2 + n! + 3" endomorphisms.

Proof First, recall that the idempotents of POJ, are all the partial identities of €2,
and so we precisely have (Z) idempotents of POJ, with rank &, forall 0 < k < n.
Let e be an idempotent of POJ,. Then, it is easy to show that f € Epg, (e) if and
only if Im(f) € Im(e), for any idempotent f of POJ,. Hence, | Epo3, ()| = 2l m(e)]
It follows that the number of endomorphisms of POJ,, of type (b) and (d) is equal
to

n

Z |Epog, ()] = Z 2/m@l - g (Z)Zk =3,

e2=ecPOI, e2=ecPOI,

and so, since we have n! endomorphisms of type (c), as observed at the end of Sect. 2,
and two automorphisms, we obtain a total of 2 + n! 4+ 3" endomorphisms of P07, as
required. =

Counting the number of endomorphisms of PO, is more elaborated than for POJ,,.
First, we prove two lemmas.

Lemma 3.5 Let 1 < k < n and let e be an idempotent of PO,, with rank k. Then,
the set Epo, (e) has as many elements as the number of idempotents of POy, i.e.,

Epp,(e) has 1 + (\/g)k_l((@)k — (@)k) elements.
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342 V. H. Fernandes, P. G. Santos

Proof Let X be any finite chain and denote by PO(X) the monoid of all order-
preserving partial transformations on X. Observe that PO(X) and POx| are
isomorphic monoids.
Let 1 < k < n and let e be an idempotent of PO,, with rank k. Given an idempotent
g € PO(Im(e)), it is a routine matter to check that eg € Ep(, (e) and, moreover,
that the map {f € PO(Im(e)) | f> = f} — Epo,(e), g —> eg, is a bijection.
Therefore, | Epo, (e)| = [{f € POk | f> = f}I.
Now, it remains to recall that Laradji and Umar proved that the number of idempo-
tents of POy is equal to 1 + (ﬁ)kil((@)k - (@)k) (see [22, Theorem 3.8]).
O

Lemma 3.6 The number of idempotents of PO, with rank k is Y 7, ('11) (’;rkk:ll) for
1 <k<n.

Proof Let X be any finite chain and denote by O (X)) the monoid of all order-preserving
full transformations on X. As for order-preserving partial transformations, we have
that O(X) and O,x) are isomorphic monoids.

Let 1 < k < n. Since an idempotent fixes its image, given an idempotent e of PO,,,
it is clear that Im(e) € Dom(e), and so e € O(Dom(e)). Hence, an element e of PO,
is an idempotent with rank & if and only if e is an idempotent of O(X) with rank k,
for some subset X of €2, such that | X| > k. Therefore, the number of idempotents of
PO, with rank k is

1

n
(’?) fee P =¢)l,
l
=k

and so, since |{e € Jko" | 2 =e¢}| = (i;rlck:ll), by [23, Corollary 4.4], for i > k, the

lemma is proved. O

Observe that, by the previous lemma and [22, Theorem 3.8], we obtain the following
equality:

g;g (?) (i ;;k__ll) = W5)"! ((ﬁ; 1)” ~ (ﬁz— 1)") W

Now, we can calculate the number of endomorphisms of PO,,.

Theorem 3.7 The semigroup PO, has

o ((559)-(57))

+§(\f5)k1 (ﬁ;l)k_ (ﬁz—l)k l" <i:)<i;;(k_—ll>

i—k

endomorphisms.
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Proof The number of endomorphisms of PO,, of type (b) and (d) is equal to

> IEpo,@l=1+ Y |{f€POimey | £7=f

e2=ecPO, e2=ecPO,\ (%}

=1+ [{f€PO| 2= fllec J]O" | =e}|

k=1
- [ (V5+1
_ k—1
=1+) [1+(5) 5
k=1
V5-1 g o\ (i +k—1
S\ 2 l;(i)(zk—l)
-2 ()50 ) e (5
k:li:kl - k=1
1\ N\ & ) (i k-1
2 ;(:’)(%-1)’

by Lemmas 3.5 and 3.6, i.e. equal to

(V51 (S5-1)
n—1 Ny T N A
1+ (V5) 5 5

£ 3 W @ . @ k i(n><i;k__ll>,

i
k=1 i=k

by the equality (1). Once again we have n! endomorphisms of type (c) and two auto-

morphisms, so the result follows. O
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