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Abstract We characterize the monoids of endomorphisms of the semigroup of all
order-preserving partial transformations and of the semigroup of all order-preserving
partial permutations of a finite chain.
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1 Introduction

Let n be a natural number. Let �n be a finite set with n elements, say �n =
{1, 2, . . . , n}. We denote by PTn the monoid (under composition) of all partial trans-
formations of�n . The submonoids of PTn of all full transformations and of all partial
permutations are denoted by Tn and In , respectively. Also, denote by Sn the symmetric
group on �n , i.e., the subgroup of PTn of all permutations of �n . For s ∈ PTn , we
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denote the domain of s by Dom(s), the image of s by Im(s), the kernel of s by ker(s),
and the set of fix points of s by Fix(s), i.e., Fix(s) = {x ∈ Dom(s) | xs = x}.

Let us consider �n endowed with the usual (linear) order. An element s ∈ PTn is
said to be order-preserving if x ≤ y implies xs ≤ ys, for all x, y ∈ Dom(s). Denote
by POn the submonoid of PTn of all order-preserving partial transformations. As
usual, we denote by On the monoid POn ∩Tn of all full transformations that preserve
the order and by POIn its injective counterpart, i.e., the inverse monoid POn ∩ In of
all order-preserving partial permutations of �n .

Semigroups of order-preserving transformations have been considered in the liter-
ature for over than fifty years. Starting in 1962, Aı̌zenštat [1,2] gave a presentation
for On , from which it can be deduced that, for n > 1, On only has one non-trivial
automorphism, and characterized the congruences of On . Also in 1962, Popova [26]
exhibited a presentation for POn . In 1971, Howie [20] calculated the cardinal and the
number of idempotents of On and later (1992), jointly with Gomes [18], determined
the ranks and the idempotent ranks of On and POn . More recently, Laradji and Umar
[22,23] presentedmore combinatorial properties of these twomonoids. Certain classes
of divisors of the monoid On were determined by Higgins [19] and by Vernitskii and
Volkov [30] in 1995, by Fernandes [8] in 1997 and by Fernandes and Volkov [15] in
2010. On the other hand, the monoid POIn has been object of study by the first author
in several papers [8–12], by Derech [6], by Garba [17], by Cowan and Reilly [4], by
Delgado and Fernandes [5], by Ganyushkin and Mazorchuk [16], by Dimitrova and
Koppitz [7], among other authors and papers.

For general background on semigroups, we refer the reader to Howie’s book [21].
Let n ≥ 2.
Let S ∈ {On,POIn,POn}. We have the following descriptions of the Green rela-

tions in the semigroups S:

sLt if and only if Im(s) = Im(t),
sRt if and only if ker(s) = ker(t),
sJ t if and only if | Im(s)| = | Im(t)|, and
sHt if and only if s = t ,

for all s, t ∈ S. If S = POIn , for the Green relation R, we have, even more simply,

sRt if and only if Dom(s) = Dom(t),

for all s, t ∈ S. Let

Jk = J S
k = {s ∈ S | | Im(s)| = k} and Ik = I Sk = {s ∈ S | | Im(s)| ≤ k},

for 0 ≤ k ≤ n. If S ∈ {POIn,POn} then

S/J = {J0 <J J1 <J · · · <J Jn}

and {∅} = I0 ⊂ I2 ⊂ · · · ⊂ In = S are all the ideals of S. On the other hand, if
S = On then

S/J = {J1 <J J2 <J · · · <J Jn}
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and I1 ⊂ I2 ⊂ · · · ⊂ In = S are all the ideals of S. See [10,18].
Recall that a Rees congruence ρ of a semigroup S is a congruence associated to an

ideal I of S: sρt if and only if s = t or s, t ∈ I , for all s, t ∈ S.
Observe that Aı̌zenštat [2] proved the congruences of On are exactly the identity

and its n Rees congruences. See [24] for another proof. Analogously, the congruences
of POIn and POn are exactly their n + 1 Rees congruences. This has been shown,
for POIn , by Derech [6] and, independently, by Fernandes [10] and, for POn , by
Fernandes et al. [13].

Let S be a monoid such that S\{1} is an ideal of S. Let e and f be two idempotents
of S such that e f = f e = f . Then, clearly, the mapping φ : S −→ S defined by
1φ = e and sφ = f , for all s ∈ S\{1}, is an endomorphism (of semigroups) of S.
This applies to any S ∈ {On,POIn,POn}.

Let M be a monoid, let S be a subsemigroup of M and let g be a unit of M such
that g−1Sg = S. Then, it is easy to check that the mapping φg : S −→ S defined by
sφg = g−1sg, for all s ∈ S, is an automorphism of S.

Consider the following permutation of �n :

σ =
(
1 2 · · · n − 1 n
n n − 1 · · · 2 1

)
.

Let S ∈ {On,POIn,POn}. It is easy to verify that σ−1Sσ = S. Therefore, the per-
mutation σ induces a non-trivial automorphism φσ of S. In fact, this is the unique
non-trivial automorphism of S. See [3, Corollary 5.2].

Finding the automorphisms and endomorphisms of transformation semigroups is a
classical problem. They have been determined for several transformation semigroups,
for instance, Tn [28], In [27], and the Brauer-type semigroups [25]. Furthermore,
regarding semigroups of order-preserving transformations, Fernandes et al. [14]
proved the following description of the endomorphisms of On :

Theorem 1.1 [14, Theorem 1.1] Let φ : On → On be any mapping. Then φ is an
endomorphism of the semigroup On if and only if one of the following holds:

(a) φ is an automorphism and so φ is the identity or φ = φσ ;
(b) there exist idempotents e, f ∈ On with e 	= f and e f = f e = f such that

1φ = e and (On\{1})φ = { f };
(c) φ is a constant mapping with idempotent value.

And, as a corollary:

Theorem 1.2 [14, Theorem 1.2] The semigroup On has 2+∑n−1
i=0

( n+i
2i+1

)
F2i+2 endo-

morphisms, where F2i+2 denotes the (2i + 2)th Fibonacci number.

In this paper we describe the monoids of the endomorphisms of the semigroups
POIn and POn . As an application of these descriptions, we compute the number of
such endomorphisms. This paper is organized as follows. After the current section,
we give a miscellaneous of auxiliary results in Sect. 2. Finally, in Sect. 3 we present
and prove our main results.
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2 Preliminary results

In this section we present a series of auxiliary results. We also construct a certain type
of endomorphisms of POIn and POn .

Our first two lemmas have some general nature.

Lemma 2.1 Let S be a regular semigroup. Let I be an ideal of S and φ be an endo-
morphism of S such that the kernel of φ is the Rees congruence associated to I . Let
s, t ∈ S\I . Then:
1. sLt if and only if sφLtφ;
2. sRt if and only if sφRtφ.

Proof We prove the lemma for the Green relation L. The proof forR is similar.
First, notice that Iφφ−1 = I and the restriction of φ to S\I is injective.
Let s, t ∈ S\I . If sLt , then sφLtφ, since any homomorphism of semigroups

preserve Green relations (i.e., images of related elements are related). Conversely,
suppose that sφLtφ. As S is regular, then Sφ is also regular, whence sφ and tφ
are also L-related in Sφ and so, for some u, v ∈ S, we have sφ = (uφ)(tφ) and
tφ = (vφ)(sφ). Thus, sφ = (ut)φ and so ut ∈ S\I , since s ∈ S\I and Iφφ−1 = I .
Moreover, as φ is injective in S\I , it follows that s = ut . Analogously, t = vs and so
sLt , as required. 
�

Lemma 2.2 Let S be any subsemigroup of PTn which contains transformations with
arbitrary images of size less than n. Let s ∈ S and k ∈ N be such that 1 ≤ rank(s) ≤
k ≤ n − 2. Then, there exists t ∈ S such that rank(t) = k + 1 and st 	= s.

Proof Let A be any subset of �n such that Im(s) ⊂ A and |A| = k + 2. Let t
be any element of S such that Im(t) = A\{min(Im(s))} (notice that Im(s) 	= ∅).
Then, rank(t) = k + 1 and Im(st) ⊆ Im(t). Since min(Im(s)) /∈ Im(t), then also
min(Im(s)) /∈ Im(st), whence Im(s) 	= Im(st), and so s 	= st , as required. 
�

Observe that the previous lemma applies to any S ∈ {On,POIn,POn}.
Next, we give two particular properties of our semigroups.

Lemma 2.3 Let k ∈ {0, 1, . . . , n − 2}. Then, there exist idempotents h1, . . . , hn ∈
JPOIn
k+1 such that hi h j ∈ IPOIn

k , for all 1 ≤ i < j ≤ n.

Proof We have
( n
k+1

)
distinct subsets of �n with k + 1 elements. As 0 ≤ k ≤ n − 2,

then 1 ≤ k + 1 ≤ n − 1, and so
( n
k+1

) ≥ n. Therefore, we may take (at least) n
distinct subsets Y1, . . . ,Yn of �n with k + 1 elements. Let hi be the partial identity
on Yi , for 1 ≤ i ≤ n. Then, for 1 ≤ i < j ≤ n, the transformation hi h j is the partial
identity on Yi ∩ Y j and, since Yi 	= Y j , we obtain |Yi ∩ Y j | < |Y j | = k + 1, whence

hi h j ∈ IPOIn
k , as required. 
�

123



Endomorphisms of semigroups of order-preserving partial… 337

For k ∈ {2, 3, . . . , n}, consider the following two transformations of On with rank
n − 1:

fk =
(
1 · · · k − 1 k k + 1 · · · n
1 · · · k − 1 k − 1 k + 1 · · · n

)
and

gk =
(
1 · · · k − 2 k − 1 k · · · n
1 · · · k − 2 k k · · · n

)
.

We have:

Lemma 2.4 Each of the n − 1R-classes of transformations of rank n − 1 of On has
exactly two idempotents, namely fk and gk, for some k ∈ {2, 3, . . . , n}.
Proof Let R be an R-class of On contained in JOn

n−1. Then all elements of R have
the same kernel, which is associated to a partition of �n of the form {{i} | i ∈
{1, 2, . . . , k − 2, k + 1, . . . , n}} ∪ {{k − 1, k}}, for some k ∈ {2, 3, . . . , n}. Clearly, fk
and gk are two distinct idempotents of R. Moreover, let

e =
(
1 · · · k − 1 k k + 1 · · · n
i1 · · · ik−1 ik−1 ik · · · in−1

)
,

with 1 ≤ i1 < · · · < in−1 ≤ n, be an (arbitrary) idempotent of R. Then Fix(e) =
Im(e) and so |Fix(e)| = n−1, whence there exists a unique i ∈ �n such that (i)e 	= i .
Since ((i)e)e = (i)e, we have ((i)e, i) ∈ ker(e), and so {(i)e, i} = {k−1, k}. If i = k
then, clearly, e = fk . Otherwise, i = k − 1 and then, clearly, e = gk . This proves the
lemma. 
�

For i ∈ {1, 2, . . . , n}, let

ei =
(
1 · · · i − 1 i + 1 · · · n
1 · · · i − 1 i + 1 · · · n

)
.

It is clear that each of the n R-classes of transformations of rank n − 1 of POIn has
exactly one idempotent (notice that POIn is an inverse semigroup), namely ei , for
some i ∈ {1, 2, . . . , n}.

Notice that JPOn
n−1 = JOn

n−1 ∪ JPOIn
n−1 (a disjoint union). Hence, by the above

observations, JPOn
n−1 contains n R-classes exactly with one idempotent and n − 1

R-classes exactly with two idempotents. Moreover, each R-class contained in JPOn
n−1

has precisely n transformations (one for each possible image with n − 1 elements).
Additionally, it is clear that each R-class contained in JPOn

1 is determined by the
domain of the transformations (as it happens in general in POIn), and so we have
2n − 1 R-classes of transformations of rank 1 of POn , each with exactly as many
idempotents as elements in the corresponding domain. Such as for JPOn

n−1 , each R-

class contained in JPOn
1 has precisely n transformations (one for each possible image

with 1 element).
Next, we aim to construct an endomorphism of POn .
Let us define a mapping φ1 : POn −→ POn by:
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1. 1φ1 = 1;
2. For s ∈ JPOIn

n−1 , let sφ1 = (i
j

)
, where i, j ∈ {1, 2, . . . , n} are the unique indices

such that eiRsLe j ;
3. For s ∈ JOn

n−1, let sφ1 =
(
k − 1 k
ks ks

)
, where {ks} = �n\ Im(s) and k ∈

{2, 3, . . . , n} is the unique index such that sR fk (and sRgk);
4. IPOn

n−2 φ1 = {∅}.
Clearly, φ1 is well defined mapping. Moreover, since POn (such as POIn) is an

H-trivial semigroup (and so each element of POn is perfectly defined by its L-class
andR-class, i.e., its image and kernel), the restriction of φ1 to POn\IPOn

n−2 is injective.
Furthermore, it is a routine matter to prove the following lemma.

Lemma 2.5 The mapping φ1 is an endomorphism ofPOn such thatPOInφ1 ⊆ POIn.
Consequently, the restriction of φ1 to POIn may also be seen as an endomorphism of
POIn.

All endomorphisms similar to φ1 have the following property.

Lemma 2.6 Let S ∈ {POIn,POn}. Let φ be an endomorphism of S such that 1φ =
1, Jn−1φ ⊆ J1 and In−2φ = {∅}. Then φ is perfectly defined by the images of
the idempotents e1, . . . , en. Moreover, |Dom(sφ)| = 1, for all s ∈ JPOIn

n−1 , and

|Dom(sφ)| = 2, for all s ∈ JOn
n−1.

Proof We begin by observing that the kernel of φ must be the Rees congruence
associated to In−2 and so φ is injective in S\In−2. Next, as φ appliesR-related trans-
formations of Jn−1 in R-related transformations of J1, φ injective in Jn−1 and the
R-classes contained in Jn−1 and in J1 have the same number of elements, namely n,
the endomorphism φ applies each R-class of Jn−1 bijectively in a R-class of J1. It
follows that, for each R-class R of Jn−1, the number of idempotents of R and of the
R-class Rφ of J1 must be the same. Thus, in particular, JPOIn

n−1 φ = JPOIn
1 .

For each i ∈ {1, 2, . . . , n}, let ki ∈ �n be such that eiφ = (ki
ki

)
. Notice that(

1 2 · · · n
k1 k2 · · · kn

)
is a permutation of �n .

Let s ∈ JPOIn
n−1 . Then, there exists a uniquepair (i, j) ∈ {1, 2, . . . , n}×{1, 2, . . . , n}

such that sRei and sLe j . Then, sφReiφ and sφLe jφ, and so sφ = (ki
k j

)
.

If S = POIn then the proof is completed. Thus, from now on, we suppose that
S = POn .

Let i ∈ {2, 3, . . . , n}. Then fiLei and giLei−1, whence fiφLeiφ and giφLei−1φ,
and so Im( fiφ) = {ki } and Im(giφ) = {ki−1}. Hence, ki ∈ Im( fiφ) = Fix( fiφ) ⊆
Dom( fiφ) and ki−1 ∈ Im(giφ) = Fix(giφ) ⊆ Dom(giφ). Besides, as fiRgi , we have
fiφRgiφ and so Dom( fiφ) = Dom(giφ). Since |Dom( fiφ)| = 2 and ki−1 	= ki , it
follows that Dom( fiφ) = {ki−1, ki }.

Now, let s ∈ JOn
n−1. Then, there exists a unique pair (i, j) ∈ {2, 3, . . . , n} ×

{1, 2, . . . , n} such that sR fi and sLe j . Thus, sφR fiφ and sφLe jφ, and so sφ =(
ki−1 ki
k j k j

)
, which finishes the proof of this lemma. 
�
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Observe that we may also conclude that, within the conditions of the previous
lemma, we have at most n! endomorphisms.

Now,we recall that a subsemigroup T ofPTn is said to beSn-normal if g−1Tg ⊆ T ,
for all g ∈ Sn . In 1975, Sullivan [29, Theorem 2] proved that Aut(T ) � Sn , for any
Sn-normal subsemigroup T of PTn containing a constant mapping. Moreover, we
obtain an isomorphism � : Sn −→ Aut(T ) by defining g� = θg , where θg denotes
the inner automorphism of T associated to g (i.e., tθg = g−1tg, for all t ∈ T ), for all
g ∈ Sn .

Let S ∈ {POIn,POn}. Let I 11 = I1 ∪ {1}. It is clear that I 11 is an Sn-normal sub-
semigroup of PTn containing a constant mapping. Therefore, by Sullivan’s Theorem,
we have

Aut(I 11 ) = {θg | g ∈ Sn} � Sn,

where θg denotes the inner automorphism of I 11 associated to g, for all g ∈ Sn .
Let φg = φ1|S θg (where φ1|S denotes the restriction of φ1 to S), considered as a

mapping from S to S, for all g ∈ Sn . Clearly, {φg | g ∈ Sn} is a set of n! distinct
endomorphisms of S. Moreover, it is easy to conclude the following result, with which
we finish this section.

Lemma 2.7 Let S ∈ {POIn,POn}. Let φ be an endomorphism of S such that 1φ = 1,
Jn−1φ ⊆ J1 and In−2φ = {∅}. Then, φ = φg, for some g ∈ Sn.

3 Main results

Let S ∈ {POIn,POn}. Let φ be an endomorphism of the semigroup S. Then, ker(φ)

is the Rees congruence of S associated to Ik , for some k ∈ {0, 1, . . . , n}. Observe that
the restriction of φ to S\Ik is an injective mapping and |Ikφ| = 1. Let f ∈ S be such
that Ikφ = { f }. Clearly, f is an idempotent of S. Notice also that { f }φ−1 = Ik .

Suppose that φ is neither a constant mapping nor an automorphism. Then, since
ker(φ) is not trivial and not universal, we have 1 ≤ k ≤ n − 1.

Let us admit that k = n − 1 and take e = 1φ. Then e is also an idempotent, e 	= f
and, for s ∈ In−1, we have e f = (1φ)(sφ) = (1 · s)φ = sφ = f = sφ = (s · 1)φ =
(sφ)(1φ) = f e.

Fromnowon, suppose that 1 ≤ k ≤ n−2. Since any homomorphism of semigroups
preserve Green relations, there exists � ∈ {0, 1, . . . , n} such that Jk+1φ ⊆ J�. Under
these conditions, we prove two lemmas.

Lemma 3.1 Under the above conditions, one has rank( f ) < �.

Proof First, notice that (∪n
i=k+1 Ji )φ ⊆ ∪n

i=� Ji , since Jk+1φ ⊆ J� and any homomor-
phism preserves the quasi-order ≤J .

Next, we show that rank( f ) ≤ �. Take s ∈ Jk and t ∈ Jk+1. Then, s <J t , and so
sφ ≤J tφ. Since Jkφ = { f } and Jk+1φ ⊆ J�, we have sφ = f and tφ ∈ J�, whence
rank( f ) ≤ �.
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Now, we prove that rank( f ) ≤ k. By contradiction, suppose that rank( f ) ≥ k + 1.
Then, Ik ⊆ Irank( f )−1, and so

(S\Ik)φ = (∪n
i=k+1 Ji )φ ⊆ ∪n

i=� Ji ⊆ ∪n
i=rank( f ) Ji = S\Irank( f )−1 ⊆ S\Ik .

It follows that (S\Ik)φ = S\Ik , since the restriction of φ to S\Ik is injective. As
rank( f ) ≥ k + 1 also implies that f ∈ S\Ik , we deduce that Ik ∩ S\Ik = { f }φ−1 ∩
S\Ik 	= ∅, which is a contradiction. Thus, we must have rank( f ) ≤ k.

Finally, we prove that rank( f ) < �. Suppose, by contradiction, that rank( f ) = �.
Take s ∈ Jk+1. Since Jk+1φ ⊆ J�, we have sφJ f . Moreover, as f ∈ Ik , we also
have s f, f s ∈ Ik , whence (s f )φ = ( f s)φ = f φ = f . From f = ( f s)φ =
f φsφ = f (sφ), it follows that Im( f ) = Im( f (sφ)) ⊆ Im(sφ). From f = (s f )φ =
sφ f φ = (sφ) f , it follows that ker( f ) = ker((sφ) f ) ⊇ ker(sφ). Since sφJ f , we
have | ker( f )| = | Im( f )| = | Im(sφ)| = | ker(sφ)|, and so Im( f ) = Im(sφ) and
ker( f ) = ker(sφ), whence f Lsφ and fRsφ, i.e., fHsφ. Thus, f = sφ, which is a
contradiction (being the case that s ∈ Jk+1 and { f }φ−1 = Ik). Therefore, rank( f ) <

�, as required. 
�

Lemma 3.2 Under the above conditions, 1φ = 1, Jn−1φ ⊆ J1, and In−2φ = {∅}.

Proof Since k ∈ {1, 2, . . . , n − 2}, by Lemma 2.3, we may take idempotents
h1, . . . , hn ∈ JPOIn

k+1 such that hi h j ∈ IPOIn
k , for all 1 ≤ i < j ≤ n.

Recall that f ∈ Ik , and so f φ = f . Let i ∈ {1, 2, . . . , n}. Then, f (hiφ) =
f φhiφ = ( f hi )φ = f , since f hi ∈ Ik . Hence, Im( f ) ⊆ Im(hiφ).
Next, let 1 ≤ i < j ≤ n. By the previous paragraph, we have Im( f ) ⊆ Im(hiφ) ∩

Im(h jφ). Conversely, let a ∈ Im(hiφ)∩Im(h jφ). Since hiφ and h jφ are idempotents
andhi h j ∈ Ik ,wehave Im(hiφ) = Fix(hiφ), Im(h jφ) = Fix(h jφ) and (hi h j )φ = f ,
whence a f = a(hi h j )φ = (a(hiφ))(h jφ) = a(h jφ) = a, and so a ∈ Im( f ). Then,
Im(hiφ) ∩ Im(h jφ) ⊆ Im( f ), and thus Im(hiφ) ∩ Im(h jφ) = Im( f ).

Let Ei = Im(hiφ)\ Im( f ), for 1 ≤ i ≤ n. Clearly, Im( f )∩ (∪n
i=1Ei ) = ∅ and, for

1 ≤ i < j ≤ n, the equality Im(hiφ) ∩ Im(h jφ) = Im( f ) implies that Ei ∩ E j = ∅.
Moreover, since hi ∈ Jk+1, then rank(hiφ) = � > rank( f ), by Lemma 3.1, and so
|Ei | ≥ 1, for 1 ≤ i ≤ n. Thus |E1| = |E2| = · · · = |En| = 1 and ∪n

i=1Ei = �n ,
from which follows that Im( f ) = ∅.

Now, observe that � = rank(h1φ) = | Im(h1φ)| = |E1 ∪ Im( f )| = |E1| = 1.
Then, Jk+1φ ⊆ J1, and so we cannot have more than n elements of Jk+1φ in distinct
L-classes. Thus, by Lemma 2.1, we cannot have more than n elements of Jk+1 in
distinctL-classes, i.e. ( n

k+1

) ≤ n, and so k+1 ∈ {0, 1, n−1, n}. Since 1 ≤ k ≤ n−2,
it follows that k = n − 2.

It remains to show that e = 1. Since Jn−1φ ⊆ J1 and In−2φ = {∅}, the reasoning
of the first paragraph of the proof of Lemma 2.6 applies here and we can conclude
that JPOIn

n−1 φ = JPOIn
1 .

Suppose, by contradiction, that e 	= 1. Then, | Im(e)| < n and so we may take
i ∈ �n\ Im(e). Let h ∈ JPOIn

n−1 be such that hφ = (i
i

)
. Hence, ∅ = e

(i
i

) = (1φ)(hφ) =
(1 · h)φ = hφ = (i

i

)
, a contradiction. Thus, 1φ = 1, as required. 
�
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Endomorphisms of semigroups of order-preserving partial… 341

Now, by Lemmas 3.2 and 2.7, we can deduce that, if 1 ≤ k ≤ n−2, then (k = n−2
and) φ = φg , for some g ∈ Sn . This concludes the proof of the following description
of the monoid of endomorphisms of S.

Theorem 3.3 Let S ∈ {POIn,POn}. Let φ : S −→ S be any mapping. Then, φ is an
endomorphism of the semigroup S if and only if one of the following holds:

(a) φ is an automorphism and so φ is the identity or φ = φσ ;
(b) there exist idempotents e, f ∈ S with e 	= f and e f = f e = f such that 1φ = e

and (S\{1})φ = { f };
(c) φ = φg, for some g ∈ Sn;
(d) φ is a constant mapping with idempotent value.

As a corollary of the this theorem, we finish this paper by counting the number of
endomorphisms of POIn and of POn .

For S ∈ {POIn,POn} and for each idempotent e ∈ S, let

ES(e) = { f ∈ S | f 2 = f and f e = e f = f }.

Then, according to Theorem 3.3, we have
∑

e2=e∈S |ES(e)| endomorphisms of S of
type (b) and (d).

We start by considering POIn .

Theorem 3.4 The semigroup POIn has 2 + n! + 3n endomorphisms.

Proof First, recall that the idempotents of POIn are all the partial identities of �n ,
and so we precisely have

(n
k

)
idempotents of POIn with rank k, for all 0 ≤ k ≤ n.

Let e be an idempotent of POIn . Then, it is easy to show that f ∈ EPOIn (e) if and
only if Im( f ) ⊆ Im(e), for any idempotent f ofPOIn . Hence, |EPOIn (e)| = 2| Im(e)|.

It follows that the number of endomorphisms of POIn of type (b) and (d) is equal
to

∑
e2=e∈POIn

|EPOIn (e)| =
∑

e2=e∈POIn

2| Im(e)| =
n∑

k=0

(
n

k

)
2k = 3n,

and so, since we have n! endomorphisms of type (c), as observed at the end of Sect. 2,
and two automorphisms, we obtain a total of 2+ n! + 3n endomorphisms of POIn , as
required. 
�

Counting the number of endomorphisms of POn is more elaborated than for POIn .
First, we prove two lemmas.

Lemma 3.5 Let 1 ≤ k ≤ n and let e be an idempotent of POn with rank k. Then,
the set EPOn (e) has as many elements as the number of idempotents of POk , i.e.,

EPOn (e) has 1 + (
√
5)k−1((

√
5+1
2 )k − (

√
5−1
2 )k) elements.
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Proof Let X be any finite chain and denote by PO(X) the monoid of all order-
preserving partial transformations on X . Observe that PO(X) and PO|X | are
isomorphic monoids.

Let 1 ≤ k ≤ n and let e be an idempotent of POn with rank k. Given an idempotent
g ∈ PO(Im(e)), it is a routine matter to check that eg ∈ EPOn (e) and, moreover,
that the map { f ∈ PO(Im(e)) | f 2 = f } −→ EPOn (e), g �−→ eg, is a bijection.
Therefore, |EPOn (e)| = |{ f ∈ POk | f 2 = f }|.

Now, it remains to recall that Laradji and Umar proved that the number of idempo-

tents of POk is equal to 1 + (
√
5)k−1((

√
5+1
2 )k − (

√
5−1
2 )k) (see [22, Theorem 3.8]).


�
Lemma 3.6 The number of idempotents of POn with rank k is

∑n
i=k

(n
i

)(i+k−1
2k−1

)
, for

1 ≤ k ≤ n.

Proof Let X be any finite chain and denote byO(X) themonoid of all order-preserving
full transformations on X . As for order-preserving partial transformations, we have
that O(X) and O|X | are isomorphic monoids.

Let 1 ≤ k ≤ n. Since an idempotent fixes its image, given an idempotent e of POn ,
it is clear that Im(e) ⊆ Dom(e), and so e ∈ O(Dom(e)). Hence, an element e of POn

is an idempotent with rank k if and only if e is an idempotent of O(X) with rank k,
for some subset X of �n such that |X | ≥ k. Therefore, the number of idempotents of
POn with rank k is

n∑
i=k

(
n

i

)
|{e ∈ JOi

k | e2 = e}|,

and so, since |{e ∈ JOi
k | e2 = e}| = (i+k−1

2k−1

)
, by [23, Corollary 4.4], for i ≥ k, the

lemma is proved. 
�
Observe that, by the previous lemma and [22, Theorem3.8], we obtain the following

equality:

n∑
k=1

n∑
i=k

(
n

i

)(
i + k − 1

2k − 1

)
= (

√
5)n−1

((√
5 + 1

2

)n

−
(√

5 − 1

2

)n)
. (1)

Now, we can calculate the number of endomorphisms of POn .

Theorem 3.7 The semigroup POn has

3 + n! + (
√
5)n−1

((√
5 + 1

2

)n

−
(√

5 − 1

2

)n)

+
n∑

k=1

(
√
5)k−1

⎛
⎝

(√
5 + 1

2

)k

−
(√

5 − 1

2

)k
⎞
⎠ n∑

i=k

(
n

i

)(
i + k − 1

2k − 1

)

endomorphisms.
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Proof The number of endomorphisms of POn of type (b) and (d) is equal to

∑
e2=e∈POn

|EPOn (e)| = 1 +
∑

e2=e∈POn\{∅}
|{ f ∈ PO| Im(e)| | f 2 = f }|

= 1 +
n∑

k=1

|{ f ∈ POk | f 2 = f }||{e ∈ JPOn
k | e2 = e}|

= 1 +
n∑

k=1

⎛
⎝1 + (

√
5)k−1

⎛
⎝

(√
5 + 1

2

)k

−
(√

5 − 1

2

)k
⎞
⎠

⎞
⎠ n∑

i=k

(
n

i

)(
i + k − 1

2k − 1

)

= 1 +
n∑

k=1

n∑
i=k

(
n

i

)(
i + k − 1

2k − 1

)
+

n∑
k=1

(
√
5)k−1

⎛
⎝

(√
5 + 1

2

)k

−
(√

5 − 1

2

)k
⎞
⎠ n∑

i=k

(
n

i

)(
i + k − 1

2k − 1

)
,

by Lemmas 3.5 and 3.6, i.e. equal to

1 + (
√
5)n−1

((√
5 + 1

2

)n

−
(√

5 − 1

2

)n)

+
n∑

k=1

(
√
5)k−1

⎛
⎝

(√
5 + 1

2

)k

−
(√

5 − 1

2

)k
⎞
⎠ n∑

i=k

(
n

i

)(
i + k − 1

2k − 1

)
,

by the equality (1). Once again we have n! endomorphisms of type (c) and two auto-
morphisms, so the result follows. 
�
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