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Abstract We give new sufficient and practical conditions in terms of the generators
ensuring the stability of the critical or the essential type of a perturbed C0-semigroup
in general Banach spaces. We apply our theoretical results in order to investigate the
control and in particular the time asymptotic behavior of solutions to a broad class of
transport equations in L1-spaces and higher dimension. Our results improve, complete
and enrich several earlier works.

Keywords Perturbations · Spectral analysis · Critical type stability · Essential type
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1 Introduction and main results

Let X be a complex Banach space and let T : D(T ) ⊆ X → X be the infinitesimal
generator of a C0-semigroup (U(t))t≥0 acting on X . We denote by L(X ) the algebra
of all bounded linear operators acting on X . Let us consider the Cauchy problem
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⎧
⎪⎨

⎪⎩

dψ

dt
= T ψ + Bψ

ψ(0)= ψ0

(1.1)

where B ∈ L(X ) and ψ0 ∈ X . By the classical perturbation theory [7], the perturbed
operatorA := T +B generates also a strongly continuous semigroup (V(t))t≥0 given
for every t ≥ 0 by the Dyson–Phillips expansion

V(t) =
m−1∑

j=0

U j (t) + Rm(t), (1.2)

where

U0(t) = U(t), U j (t) =
∫ t

0
U(t − s)BU j−1(s) ds, ( j ≥ 1)

and

Rm(t) =
+∞∑

j=m

U j (t), (m ≥ 1).

Consequently, for every ψ0 ∈ D(A), the Cauchy problem (1.1) admits the unique
solution ψ(t) = V(t)ψ0, t ≥ 0.

In order to investigate the asymptotic behavior of ψ(t) (for large time), two fun-
damental approaches are at our disposal. The first approach, called the resolvent
approach, is based on the asymptotic spectrum of the generator A:

σass(A) := {λ ∈ C : Reλ > ω(U)},

where ω(U) stands for the type of (U(t))t≥0.

This approach was initiated by Vidav [23] in a particular case and developed after-
words byMokhtar-Kharroubi [16]. It is essentially based on the following hypothesis:

(H(T ,B))

⎧
⎪⎪⎨

⎪⎪⎩

There exists an integer j and ω > ω(U) such that
(i) [B(λ − T )−1] j is compact for every λ ∈ Rω;
(ii) lim

|Im λ|→+∞

∥
∥
∥[B(λ − T )−1] j

∥
∥
∥ = 0 uniformly on Rω,

where (· − T )−1 denotes the resolvent operator of T and Rω = {λ ∈ C : Reλ ≥
ω}. It has been shown in Ref. [16] that under the hypothesis (H(T ,B)) the part of
the spectrum of the perturbed generator A = T + B lying in the half-plane Rω

consists of at most of a finite number of isolated eigenvalues with finite algebraic
multiplicity {λ1, . . . λn} . Let β1 = sup{Reλ : λ ∈ σ(T + K) and Reλ < ω} and
β2 = min{Reλ j , 1 ≤ j ≤ n}. Let Pj and D j denote the spectral projection and the
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nilpotent operator associated with λ j , 1 ≤ j ≤ n, respectively. The solution of the
Cauchy problem (1.1) fulfils

∥
∥ψ(t) −

n∑

j=1

eλ j t eD j t Pjψ0
∥
∥ = o(eβ∗t ) for every ψ0 ∈ D(A2),

where β1 < β∗ < β2. The main disadvantage of this approach lies in the fact that
the quantity ψ(t) − ∑n

j=1 eλ j t eD j t Pjψ0 can be evaluated only for initial data ψ0 in

D(A2). This condition was weakened to ψ0 ∈ D(A) by D. Song [21] for special
Banach spaces and by Song and Greenberg [22] in some special cases. Recently,
Latrach and the first author [9] weakened the condition ψ0 ∈ D(A2) to ψ0 ∈ D(A)

by considering instead of condition (H(T ,B)), the condition

(H̃(T ,B))

⎧
⎨

⎩

There exist an integer j and two reals ω > ω(U) and C > 0 such that
(i) [B(λ − T )−1] j is compact for every λ ∈ Rω;
(ii) |Im λ| ∥

∥[B(λ − T )−1] j
∥
∥ ≤ C uniformly on Rω.

Following [25], the essential spectrum of O ∈ L(X ) is defined by:

σess(O) := {λ ∈ σ(O) but λ is not an eigenvalue of finite algebraic multiplicity},

and the essential spectral radius of O is

ress(O) := sup{|λ| : λ ∈ σess(O)}.

Let (W(t))t≥0 be C0-semigroup. According to [25, Lemma 2.1], there exists a real
number ωess(W) ∈ [−∞, ω(W)], called the essential type of (W(t))t≥0, such that

ress(W(t)) = eωess (W) t for every t ≥ 0.

The second approach, called the semigroup approach, is based on the asymptotic
spectrum of V(t):

σass(V(t)) := σ(V(t)) ∩ {λ ∈ C : |λ| > eω(U)t }.

This approach makes use of the fact that if some remainder of the Dyson–Phillips
expansion Rm(t) is compact (or strictly singular) for t ≥ 0, then [16,26] (U(t))t≥0
and (V(t))t≥0 have the same essential type. Therefore, the part of the spectrum of
the perturbed semigroup V(t) outside the circle |μ| = etω(U) consists only of at most
isolated eigenvalues with finite algebraic multiplicities. If these eigenvalues exist, the
semigroup (V(t))t≥0 may be decomposed in two parts: the first containing the time
development of finitely many eigenmodes, the second being of faster decay. Applying
now the spectral mapping theorem for the point spectrum [6, 3.7 Spectral Mapping
Theorem for Point and Residual Spectrum], we deduce that for any fixed ω > ω(U),

123



356 H. Megdiche, M. A. Taoudi

the set σ(T + B) ∩ {λ ∈ C : Reλ ≥ ω} consists of finitely many eigenvalues
{λ1, . . . λn}. The solution of the Cauchy problem (1.1) satisfies

∥
∥ψ(t) −

n∑

j=1

eλ j t eD j t Pjψ0
∥
∥ = o(eβ∗t ) for every ψ0 ∈ D(A),

where Pj , D j and β∗ have the same meaning as above. For sake of completeness, we
note that a similar result concerning the semigroup approach was given in [19] (see
also [2, Chapter 19]).

The major drawback of this approach is that it is not applicable unless the unper-
turbed semigroup is explicit.

Even though these two approaches have a significant merit in their own right, it is
of interest to find a balance between them to avoid the aforementioned drawbacks. On
that account, the two approaches were linked firstly in the Hilbert spaces setting by
Sbihi and subsequently in Banach spaces by Latrach and the authors. Specifically, if
X is a Hilbert space, T is dissipative and there exists α > ω(U) such that

(α + iβ − T )−1B(α + iβ − T )−1 is compact for all β ∈ R,

and

lim
β→∞ ‖B∗(α + iβ − T )−1B‖ + ‖B(α + iβ − T )−1B∗‖ = 0, (1.3)

whereB∗ denotes the dual operator ofB, then [20, Theorem 2.3 and Lemma 2.8]R1(t)
is compact on X for all t ≥ 0. This implies that, for each t ≥ 0, U(t) and V(t) have
the same essential spectrum. Further for a general Banach space X , if the condition
(H̃(T ,B)) holds, then [8, Theorem 1.1] the remainder term R2 j+3 is compact for
each t ≥ 0, and consequently, (V(t))t≥0 and (U(t))t≥0 have the same essential type.

In many applications, includingmulti-dimensional transport equations, the item (ii)
in (H̃(T ,B)), seems to be not always verified because 0 gives a singularity point in
an integral representation of K R(λ, T )K , where T and K denotes respectively the
streaming operator and the collision operator (see, Proposition 4.2 below and its proof).
In this work, we present and describe an efficient method to avoid singularities. The
idea of the method is to construct a sequence of operators (ϑε

0 (T ,B)(λ))ε>0 which
converges in L(X ) to (λ− T )−1 as ε goes to zero, uniformly onRω (see, Lemma 3.4
below), and satisfies (see, Proposition 4.2 below): for every ε > 0, there exists Cε > 0
such that

|Im λ| ∥
∥Bϑε

0 (T ,B)(λ)B
∥
∥ ≤ Cε uniformly on Rω,

or more generally, we construct a sequence of operators (ϑε
j (T ,B)(λ))ε>0 which

converges in L(X ) to ϑ j (T ,B)(λ) := (λ − T )−1[B(λ − T )−1] j as ε goes to zero,
uniformly on Rω, and satisfies the hypothesis
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(A1( j))

⎧
⎨

⎩

For every fixed ε > 0, there exists ν ≥ max(ω(U), 0) satisfying

sup
ξ>ν

∫ +∞

−∞
‖ϑε

j (T ,B)(ξ + iτ)‖ dτ < ∞.

For further purposes, we recall the following:

Theorem 1.1 (i) [4] Let j ≥ 1, then, U j (t) is compact for all t ≥ 0 if and only if,
the map t �→ U j (t) is norm continuous for t ≥ 0, and (λ − T )−1[B(λ − T )−1] j

is compact for all s ∈ R.
(ii) [5] If the mapping t �→ R j (t) is norm right continuous for every t > 0 and some

j ∈ N, then one has ωcri t (V) = ωcri t (U).

(for the definition of the critical type ωcri t (W) of a given C0-semigroup (W(t))t≥0,
see Sect. 2). A natural relevant problem occurs here; namely, for B ∈ L(X ) and
j ∈ N with j ≥ 1, does exist necessary and sufficient conditions involving T and B
to get norm continuity of the j th order term U j (t) for t > 0, of the Dyson–Phillips
expansion defining theC0-semigroup (V(t))t≥0 generated by T +B.This problem has
been addressed by several investigators in the Hilbert spaces setting (cf. [3,11,18,20]
and [1]).

In [20], Sbihi gave a practical sufficient condition to get norm continuity of R1(t)
for t ≥ 0, in the case where X is a Hilbert space. His result states as follows:

Lemma 1.1 [20, Corollary 2.9] Assume that X is a Hilbert space, T is dissipative
and for some α > 0, the condition (1.3) holds true, then the map t �→ U1(t) is norm
continuous for t ≥ 0.

More recently, in [1], we showed the following:

Theorem 1.2 If X is a Hilbert space then V(t) − U(t) is norm continuous for t ≥ 0
if and only if,

sup
x∈H,‖x‖=1

∫

|s|≥a
‖R(α + is, A)K R(α + is, A)x‖2ds → 0 as a → +∞

and

sup
x∈H,‖x‖=1

∫

|s|≥a
‖R(α + is, A∗)K ∗ R(α + is, A∗)x‖2ds → 0 as a → +∞.

This problembecomes distinctlymore complicatedwhen going fromHilbert spaces
to Banach spaces. Notice that according to Theorem 1.1, the norm continuity of one
of the terms (U j (t))t≥0, j ≥ 1, implies that the critical type ωcri t (V) of the perturbed
semigroup (U(t))t≥0 equals to the critical type ωcri t (U) of the unperturbed semigroup
(V(t))t≥0. This enables us to study the control for t ≥ 0 or in particular the time
asymptotic behavior of solutions to several evolution equations. Indeed, according to
the partial spectral mapping theorem (see, Theorem 2.1 below), for β > ω(U), if
σ(T +B)∩{λ ∈ C : Reλ = β} = ∅ and P is the spectral projection associated to the
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closed part of the spectrum σ(T +B) ∩ {λ ∈ C : Reλ > β}, then there exists M > 0
satisfying

‖V(t)(I − P)‖ ≤ Meβt for all t ≥ 0.

In this paper we provide sufficient conditions in terms of the resolvent operator
(·−T )−1 of the generator T of the semigroup (U(t))t≥0 and the perturbation operator
B, ensuring the norm continuity of the mapping t �→ R j (t) for t > 0 (see Theo-
rem 3.1 and Corollary 3.4 below). Furthermore, we show that, if condition (A1( j))
and assertion (i) of hypothesis (H(T ,B)) hold true simultaneously, then the j th-order
term R j (t) of the Dyson–Phillips expansion (4.4) is compact on X for every t ≥ 0
(see Theorem 3.2 and Corollary 3.6 below). These theoretical results apply directly
to discuss the control for every t ≥ 0 and consequently the time asymptotic behavior
(for large times) of solutions to a broad class of multi-dimensional neutron transport
equations on L1-spaces.

2 Critical spectrum

Let us recall the concept of critical spectrum introduced by R. Nagel and J. Poland
[17]. Let (W(t))t≥0 be a C0-semigroup on a given Banach space Y . We consider the
Banach space Ỹ := 
∞(Y) of all bounded sequences in Y endowed with the norm

‖ỹ‖ := sup
n∈N

‖yn‖ for ỹ = (yn)n∈N ∈ Ỹ .

We extend the semigroup (W(t))t≥0 to Ỹ and obtain a new semigroup (W̃(t))t≥0
defined by

W̃(t)ỹ := (W(t)yn)n∈N for ỹ = (yn)n∈N ∈ Ỹ .

Let ỸW be the subspace of strong continuity of (W̃(t))t≥0

ỸW :=
{

ỹ ∈ Ỹ : lim
t↓0

∥
∥
∥W̃(t)ỹ − ỹ

∥
∥
∥ = 0

}

.

This subspace is closed and (W̃(t))t≥0-invariant. On the quotient space Ŷ := Ỹ/ỸW ,
the semigroup (W̃(t))t≥0 induces the quotient semigroup (Ŵ(t))t≥0 given by

Ŵ(t)ŷ := W̃(t)ỹ + ỸW for ŷ = ỹ + ỸW and t ≥ 0.

The critical spectrum of W(t) is then defined as

σcri t (W(t)) := σ(Ŵ(t))
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and the critical spectral radius is defined as

rcri t (W(t)) := r(Ŵ(t))

while the critical type or the critical growth bound of (W(t))t≥0 is defined as

ωcri t (W) := ω(Ŵ).

The critical spectrum enjoys nice properties (see, [5,17] for general theory); in partic-
ular, we have

Theorem 2.1 [17, Proposition 4.3] Let (W(t))t≥0 be a C0-semigroup on a Banach
space Y with infinitesimal generator �. Then

ω(W) = max{s(�), ωcri t (W)}.

Moreover, the following partial spectral mapping theorem holds

σ(W(t)) ∩ Qcri t (W(t)) = etσ(�) ∩ Qcri t (W(t)) for each t ≥ 0,

where Qcri t (W(t)) := {λ ∈ C : |λ| > rcri t (W(t))}.

3 Resolvent approach for perturbed semigroups

3.1 Norm continuity of U j (·)

For every ε > 0 small enough, set

Uε
0 (t) := U(t) χ(ε,+∞)(t), t ≥ 0. (3.1)

Remark 3.1 (1) For every ε > 0 and x ∈ X ,Uε
0 (·)x = 0 on (0, ε) and since (U(t))t≥0

is a strongly continuous semigrouponX , themapUε
0 (·)x is continuouson (ε,+∞)

(and therefore, the map Uε
0 (·)x is measurable on (0,+∞)) and for every ω >

ω(U), there exists M ≥ 1 satisfying

‖U(t)‖ ≤ Meωt for every t > 0,

and therefore,

‖Uε
0 (t)‖ ≤ Meωt for every t > 0. (3.2)

(2) It is well known that (see, [7] for example) for every ω > ω(U), there exists
M ≥ 1 satisfying

‖U j (t)‖ ≤ M j t j eωt for every t > 0 and j ≥ 0 (3.3)

where M j := (M j+1 ‖B‖ j )/ j !, j ≥ 0.
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Let ε > 0. Formally, we set

Uε
j (t)x =

∫ t

0
Uε

j−1(t − s)B Uε
0 (s)x ds, t ≥ 0, x ∈ X and j ≥ 1.

In the following lemma, we prove that the operators Uε
j (t) are well defined for almost

all t ≥ 0 and all j ∈ N.

Lemma 3.1 For every j ≥ 0, ε > 0 and x ∈ X ,Uε
j (·)x = 0 on (0, ε), the mapUε

j (·)x
is continuous on (ε,+∞), and therefore, it is measurable on (0,+∞). Furthermore,
for every ω > ω(U), there exists M ≥ 1 satisfying

‖Uε
j (t)‖ ≤ M j t j eωt for every t > 0, ε > 0 and j ≥ 0 (3.4)

where M j := (M j+1 ‖B‖ j )/ j !, j ≥ 0.

Proof We proceed by mathematical induction on j ∈ N. For j = 0, the result follows
from the first item of Remark 3.1. Let j ≥ 0 and assume that the result holds for j .
Then, for ε > 0 and x ∈ X , we have

Uε
j+1(t)x =

∫ t

0
Uε

j (t − s)B Uε
0 (s)x ds, t ≥ 0. (3.5)

Since Uε
0 (·)x = 0 on (0, ε), then, Uε

j+1(·)x = 0 on (0, ε). Linking (3.2), (3.4) and
(3.5), we get

‖Uε
j+1(t)‖ ≤ M j+1 t j+1 eωt , t > 0.

To achieve the proof, it remains to show that the map Uε
j+1(·)x is continuous on

(ε,+∞). For ε < t0 < t , we have

Uε
j+1(t)x − Uε

j+1(t0)x

=
∫ t

0
Uε

j (t − s)B Uε
0 (s)x ds −

∫ t0

0
Uε

j (t0 − s)B Uε
0 (s)x ds

=
∫ t0

0
[Uε

j (t − s) − Uε
j (t0 − s)]B Uε

0 (s)x ds +
∫ t

t0
Uε

j (t − s)B Uε
0 (s)x ds

and hence,

‖Uε
j+1(t)x − Uε

j+1(t0)x‖

≤
∥
∥
∥
∥

∫ t0

0
[Uε

j (t − s) − Uε
j (t0 − s)]B Uε

0 (s)x ds

∥
∥
∥
∥ +

∫ t

t0
‖Uε

j (t − s)B Uε
0 (s)x‖ ds
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and similarly for ε < t < t0, we have

‖Uε
j+1(t0)x − Uε

j+1(t)x‖

≤
∥
∥
∥
∥

∫ t

0
[Uε

j (t0 − s) − Uε
j (t − s)]B Uε

0 (s)x ds

∥
∥
∥
∥ +

∫ t0

t
‖Uε

j (t0 − s)B Uε
0 (s)x‖ ds.

Now the continuity of Uε
j+1(·)x at t0 ∈ (ε,+∞) follows from the fact that

‖Uε
j (t

′)B Uε
0 (s)x‖ is uniformly bounded for t ′ and s belonging to bounded subsets of

(0,+∞) [see (3.4)] together with the boundedness of B and the Lebesgue dominated
convergence theorem. This ends the proof. ��

Lemma 3.2 For every j ∈ N, the sequence (Uε
j (t))ε>0 converges in L(X ) to U j (t)

as ε goes to 0, uniformly on bounded and closed intervals of (0,+∞).

Proof We proceed by induction on j ∈ N. For [a, b] ⊂ (0,+∞), we have

‖Uε
0 (t) − U0(t)‖ = ‖U(t)χ(0,ε)(t)‖ = 0 for every t ∈ [a, b] and 0 < ε < a.

This gives the result for j = 0. Let j ∈ N and assume that the sequence (Uε
j (t))ε>0

converges inL(X) toU j (t) as ε goes to 0, uniformly on bounded and closed intervals of
(0,+∞). We will show the result for j +1. Notice, for every ε > 0 and t ∈ (0,+∞),
we have

‖Uε
j+1(t) − U j+1(t)‖≤ sup

x ∈ X
‖x‖ = 1

∥
∥
∥

∫ t

0
Uε

j (t − s)BUε
0 (s)x ds,

−
∫ t

0
U j (t − s)BU0(s)x ds

∥
∥
∥

≤ sup
x ∈ X

‖x‖ = 1

∥
∥
∥

∫ t

0
[Uε

j (t − s) − U j (t − s)]BUε
0 (s)x ds

∥
∥
∥

+ sup
x ∈ X

‖x‖ = 1

∥
∥
∥

∫ t

0
U j (t − s)B[Uε

0 (s) − U0(s)]x ds
∥
∥
∥

≤
∫ t

0
‖Uε

j (t − s) − U j (t − s)‖ ‖B‖ ‖Uε
0 (s)‖ ds

+
∫ t

0
‖U j (t − s)‖ ‖B‖ ‖Uε

0 (s) − U0(s)‖ ds.

Now, taking into account (3.3), (3.4) and the boundedness of B, the result follows
from the Lebesgue dominated convergence theorem. ��

Set

ϑ j (T ,B)(λ) = (λ − T )−1[B(λ − T )−1] j for Reλ > ω(U) and j ≥ 1.
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For ε > 0, set by induction,

L(X ) � ϑε
0 (T ,B)(λ) :=

∫ +∞

0
e−λtUε

0 (t) dt for Reλ > ω(U) (3.6)

in the strong sense, and

L(X ) � ϑε
j (T ,B)(λ) := ϑε

j−1(T ,B)(λ)B ϑε
0 (T ,B)(λ), for Reλ > ω(U) and j ≥ 1.

For ω > ω(U), set

Rω := {λ ∈ C : Reλ ≥ ω}.

Remark 3.2 In the strong sense, we have [7]

ϑ j (T ,B)(λ) =
∫ +∞

0
e−λt U j (t) dt for Reλ > ω(U) and j ≥ 0. (3.7)

Lemma 3.3 For every j ≥ 0 and ε > 0, we have, in the strong sense,

∫ +∞

0
e−λt Uε

j (t) dt = ϑε
j (T ,B)(λ) for Reλ > ω(U) (3.8)

and consequently for ω > ω(U), there exists M j ≥ 1 satisfying

‖ϑε
j (T ,B)(λ)‖ ≤ M j

( ∫ +∞

0
t j e(ω−ω′) t dt

)
for Reλ > ω′ > ω. (3.9)

Accordingly, by applying the Lebesgue dominated convergence theorem, we obtain

Corollary 3.1 For every j ≥ 1, ε > 0, ω > ω(U) and x ∈ X, the function

Rω � λ �−→ ϑε
j (T ,B)(·)x ∈ X

is holomorphic on the interior of Rω.

Proof of Lemma 3.3 We proceed by induction. For j = 0, the result follows from
(3.6). Let j ≥ 0 and assume that (3.8) holds for j . For Reλ > ω(U) and x ∈ X , we
have by Fubini’s theorem

∫ +∞

0
e−λt Uε

j+1(t)x dt =
∫ +∞

0
dt e−λt

∫ +∞

0
ds Uε

j (t − s)B Uε
0 (s)x

=
∫ +∞

0
ds

∫ +∞

0
dt e−λt Uε

j (t − s)B Uε
0 (s)x
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where Uε
j (.) is identified to its natural extension (Uε

j (u) = 0 for u < 0) on R. Now
using the change of unknowns t �→ u := t − s, we get

∫ +∞

0
e−λt Uε

j+1(t)x dt =
∫ +∞

0
ds e−λs

∫ +∞

0
du e−λu Uε

j (u)B Uε
0 (s)x

=
∫ +∞

0
ds e−λs ϑε

j (T ,B)(λ)B Uε
0 (s)x .

And, by linearity and continuity,

∫ +∞

0
e−λt Uε

j+1(t)x dt = ϑε
j (T ,B)(λ)B ϑε

0 (T ,B)(λ)x

= ϑε
j+1(T ,B)(λ)x .

To achieve the proof, we use formula (3.4). ��
Lemma 3.4 Let j ∈ N and ω > ω(U), then uniformly on Rω, the sequence
(ϑε

j (T ,B)(λ))ε>0 converges in L(X ) to ϑ j (T ,B)(λ) as ε goes to zero.

Proof For every λ ∈ Rω, from (3.8) and (3.7), we have

‖ϑε
j (T ,B)(λ) − ϑ j (T ,B)(λ)‖ = sup

x∈X ‖ x‖=1

∥
∥
∥
∥

∫ +∞

0
e−λt [Uε

j (t)x − U j (t)x] dt

∥
∥
∥
∥

≤
∫ +∞

0
e−ωt ‖Uε

j (t) − U j (t)‖ dt.

Let ω′ ∈ (ω(U), ω). From (3.3) and (3.4), there exists M ′ ≥ 0 satisfying

max(‖Uε
j (t)‖, ‖U j (t)‖) ≤ M ′

j t j eω′t for every t ≥ 0

where M ′
j := ((M ′) j+1 ‖B‖ j )/j !. We have

0 ≤ e−ωt ‖Uε
j (t) − U j (t)‖ ≤ 2M ′

j t j e(ω′−ω)t for every t ≥ 0

and the map: (0,+∞) � t �−→ 2M ′
j t j e(ω′−ω)t ∈ R+, belongs to L1(0,+∞). Now

we achieve the proof by using Lemma 3.2 and applying the Lebesgue dominated
convergence theorem. ��

The following lemma will be crucial in the proof of the two results below.

Lemma 3.5 For every j ≥ 1, ε > 0 and ω > ω(U), the function

Rω � λ �−→ ϑε
j (T ,B)(λ) ∈ L(X )
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is holomorphic on the interior of Rω, and,

dϑε
j (T ,B)

dλ
(λ)x = ϒ(λ)x := −

∫ +∞

0
te−λt Uε

j (t)x dt for every λ ∈ int(Rω) and x ∈ X ,

where int(Rω) denotes the interior of Rω.

Proof For each t > 0 and z ∈ Rω, we put φt (z) := e−zt . Let λ ∈ int(Rω′) where
ω′ > ω. Note that φ′

t (λ) = −te−λt . For each x ∈ X and h ∈ C such that

λ + h ∈ int(Rω′) and |h−1(φt (h) − 1) + t | < 1, (3.10)

we have according to Lemma 3.3,

∥
∥
∥
∥h−1[ϑε

j (T ,B)(λ + h)x − ϑε
j (T ,B)(λ)x] +

∫ +∞

0
te−λtUε

j (t)x dt

∥
∥
∥
∥

=
∥
∥
∥
∥

∫ +∞

0
[h−1(φt (λ + h) − φt (λ)) + te−λt ]Uε

j (t)x dt

∥
∥
∥
∥

≤
∫ +∞

0
|h−1(φt (h) − 1) + t | e−Reλ t ‖Uε

j (t)x‖ dt.

Hence,

‖h−1[ϑε
j (T ,B)(λ + h) − ϑε

j (T ,B)(λ)] − ϒ(λ)‖
= sup

x∈X , ‖x‖≤1

∥
∥
∥h−1[ϑε

j (T ,B)(λ + h)x − ϑε
j (T ,B)(λ)x] +

∫ +∞

0
te−λtUε

j (t)x dt
∥
∥
∥

≤
∫ +∞

0
|h−1(φt (h) − 1) + t | e−Reλ t ‖Uε

j (t)‖ dt.

Note that, by using (3.4), one has

0 ≤ |h−1(φt (h) − 1) + t | e−Reλ t ‖Uε
j (t)‖ ≤ M j t j e(ω−Reλ) t ≤ M j t j e(ω−ω′) t

for each h satisfying (3.10) and

∫ +∞

0
M j t j e(ω−ω′) t dt < ∞.
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Therefore, by applying the Lebesgue dominated convergence theorem, we get

lim
h→0

‖h−1[ϑε
j (T ,B)(λ + h) − ϑε

j (T ,B)(λ)] − ϒ(λ)‖

= lim
h→0

∥
∥
∥h−1[ϑε

j (T ,B)(λ + h) − ϑε
j (T ,B)(λ)] +

∫ +∞

0
te−λtUε

j (t) dt
∥
∥
∥

≤ lim
h→0

∫ +∞

0
|h−1(φt (h) − 1) + t | e−Reλ t ‖Uε

j (t)‖ dt

=
∫ +∞

0
lim
h→0

|h−1(φt (h) − 1) + t | e−Reλ t ‖Uε
j (t)‖ dt = 0.

This ends the proof. ��
For each fixed j ≥ 0 and ε > 0, let us consider the following hypotheses

(A1( j, ε))

⎧
⎨

⎩

There exists ν ≥ max(ω(U), 0) satisfying

sup
ξ>ν

∫ +∞

−∞
‖ϑε

j (T ,B)(ξ + iτ)‖ dτ < ∞

and

(A1( j)) The hypothesis (A1( j, ε)) hols for every (small) ε > 0.

Now, we are in a position to state the following

Theorem 3.1 Let j ≥ 0 and assume that (A1( j)) holds true. Then, U j (·) is norm
continuous on (0,+∞).

Proposition 3.1 Let j ≥ 0 and ε > 0. If the hypothesis (A1( j, ε)) holds then, Uε
j (·)

is norm continuous on (ε,+∞). Furthermore, in the strong sense and in L(X ), we
have for ξ > ν,

Uε
j (t) = 1

2π i

∫ ξ+i∞

ξ−i∞
eλt ϑε

j (T ,B)(λ) dλ, t > ε. (3.11)

To prove this result, we need to recall some relevant definitions and auxiliary results.

Definition 3.1 (See [7, Definition 6.4.1].) LetY be a Banach space and let ϑ(·) denote
an Y-valued function defined on the half-plane {λ ∈ C : Reλ > α} where α ∈ R. We
say that ϑ(·) belongs to the class Hp(α,Y) if the following conditions are satisfied:

(a) ϑ(·) is a function on complex numbers to Y , which is holomorphic for Reλ > α;

(b) supγ>α{∫ +∞
−∞ ‖ϑ(γ + iτ)‖p dτ } 1

p < +∞;
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(c) limγ→α ϑ(γ + i
) = ϑ(α + i
) exists for almost all values of 
 and

∫ +∞

−∞
‖ϑ(α + iτ)‖p dτ < +∞.

The following result shows that every function in Hp(α,Y) may be represented by
a generalized Laplace integral.

Proposition 3.2 (See [7, p. 230].) Let ϑ(·) ∈ Hp(α,Y) where α ≥ 0. Let γ > α and
βq > 1 where 1

p + 1
q = 1. Then

θβ(t) = 1

2π i

∫ γ+i∞

γ−i∞
eλtλ−βϑ(λ) dλ

defines a continuous function on (0,+∞) to Y and

ϑ(λ) = λβ

∫ +∞

0
e−λtθβ(t) dt

the integral being absolutely convergent for Reλ > α.
For p = 1 (see [7, p. 230]), we may take β = 0, obtaining

ϑ(λ) =
∫ +∞

0
e−λtθ0(t) dt.

Let ϑ(·) be an Y-valued function defined on a half-plane Pα := {λ ∈ C: Reλ > α}
whereY is a complex Banach space and α ∈ R. Assume that the function ϑ(·) satisfies
Conditions (a) and (b) (except may be Condition (c)) of Definition 3.1, say

ϑ(·) ∈ �p(α,Y). (3.12)

Then, naturally, for each α′ > α, this function satisfies

(a′) ϑ(·) is a function on complex numbers toY , which is holomorphic for Reλ > α′;
(b′) supγ>α′ {∫ +∞

−∞ ‖ϑ(γ +iτ)‖p dτ } 1
p < supγ>α{∫ +∞

−∞ ‖ϑ(γ +iτ)‖p dτ } 1
p < +∞;

(c′) The holomorphy of ϑ(·) on Pα implies its continuity on Pα; thus,

lim
γ→α′ ϑ(γ + i
) = ϑ(α′ + i
) exists for all values of 
 ∈ R.

Furthermore,

∫ +∞

−∞
‖ϑ(α′ + iτ)‖p dτ ≤ sup

γ>α

{∫ +∞

−∞
‖ϑ(γ + iτ)‖p dτ

=
(

sup
γ>α

{∫ +∞

−∞
‖ϑ(γ + iτ)‖p dτ

}1/p
)p

< +∞ .
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This means that ϑ(·) belongs to Hp(α
′,Y) for every α′ > α, and consequently, we

deduce the following

Corollary 3.2 Let ϑ(·) ∈ �p(α,Y) where α ≥ 0. Let γ > α and βq > 1 where
1
p + 1

q = 1. Then, the conclusion of Proposition 3.2 holds true.

Proof of Proposition 3.1 By using the hypothesis (A1( j, ε)) and Corollary 3.1 (resp.
Lemma 3.5), we infer from (3.12) that ϑε

j (T ,B)(·)x (resp ϑε
j (T ,B)(·)) belongs to

�1(ν,X ) for each x ∈ H (resp. �1(ν,L(X ))). This implies, according to Corollary
3.2, that the continuous function

θε
j (t) := 1

2π i

∫ γ+i∞

γ−i∞
eλt ϑε

j (T ,B)(λ) dλ, γ > ν, t > 0,

satisfies,

∫ +∞

0
e−λtθε

j (t) dt = ϑε
j (T ,B)(λ),

where the integrals are considered in the strong sense (resp. L(X )). Keeping in mind
that (Lemma 3.3) in the strong sense,

∫ +∞

0
e−λt Uε

j (t) dt = ϑε
j (T ,B)(λ) for Reλ > ω(U),

the uniqueness of the Laplace transform yields by continuity in the strong sense (see
Lemma 3.1),

Uε
j (t) = θε

j (t) for every t > ε.

Therefore, (3.11) follows in the strong sense and in L(X ); moreover, Uε
j (·) is norm

continuous on (ε,+∞). This ends the proof. ��
Proof of Theorem 3.1 The result follows from Proposition 3.1 on the basis of Lemma
3.2. ��

As a consequence of Theorem 3.1 we obtain the following

Corollary 3.3 Assume that there exists j ≥ 0 such that the hypothesis (A1( j)) holds.
Then, the semigroups (U(t))t≥0 and (V(t))t≥0 have the same critical type ωcri t .

Remark 3.3 For each j ≥ 0 and ε > 0, let consider the following conditions

(A1′( j, ε))

⎧
⎨

⎩

There exists ν ≥ max(ω(U), 0) satisfying

lim
a→+∞ sup

ξ>ν

∫

|τ |>a
‖ϑε

j (T ,B)(ξ + iτ)‖ dτ = 0
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and

(A1′( j)) The hypothesis (A1′( j, ε)) hols for every (small) ε > 0.

Note that for every j ≥ 0 and ε > 0, Condition (A1′( j, ε)) implies Condition
(A1( j, ε)). Therefore, for every j ≥ 0,Condition (A1′( j)) implies condition (A1( j)).

Let us consider the following hypothesis.

(A2)

⎧
⎨

⎩

For every ε > 0, there exist ν > max(ω(U), 0) and Cε > 0 satisfying

|I mλ| ‖Bϑε
0 (T ,B)(λ)B‖ ≤ Cε for every λ ∈ Rν .

Now we state another consequence of Theorem 3.1. This result is very useful in
applications.

Corollary 3.4 Assume that (A2) holds true. Then for each j ≥ 4, the operator U j (t)
is norm continuous for each t > 0 and therefore, the semigroups (U(t))t≥0 and
(V(t))t≥0 have the same critical type ωcri t . Furthermore (3.11) holds in the strong
sense and in L(X ), for each ε > 0, ξ > ν and j ≥ 4.

Proof From (A2), we have for ε > 0, j ≥ 4, Reλ ≥ ν and Imλ �= 0,

‖ϑε
j (T ,B)(λ)‖ ≤ ‖ϑε

0 (T ,B)(λ)[Bϑε
0 (T ,B)(λ)]4‖ ‖[Bϑε

0 (T ,B)(λ)] j−4‖
≤ ‖Bϑε

0 (T ,B)(λ)B‖2 ‖ϑε
0 (T ,B)(λ)‖3 ‖[Bϑε

0 (T ,B)(λ)] j−4‖
≤ C2

ε

I m2λ
‖B‖ j−4 ‖ϑε

0 (T ,B)(λ)‖ j−1.

Since the operator B is assumed to be bounded, then by the fact that ‖ϑε
0 (T ,B)(λ)‖

is uniformly bounded on Rν (apply (3.9) with ω′ = ν and ω = ω(U)+ν
2 ), there exists

C̃ε > 0 verifying

lim
a→+∞ sup

ξ>ν

∫

|τ |>a
‖ϑε

j (T ,B)(ξ + iτ)‖ dτ ≤ C̃ε lim
a→+∞

∫

|τ |>a

dτ

τ 2
= 0.

Now, the result follows from the remark above and Theorem 3.1. ��

3.2 Compactness of U j (·)

For j ≥ 0, let us consider the following hypothesis

(A3( j))

{
There exists ν > max(ω(U), 0) such that
for every (small) ε > 0, ϑε

j (T ,B)(λ) is compact for all λ ∈ Rν .

The second main result of this section is the following
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Theorem 3.2 Let j ≥ 0 and assume that (A1( j)) and (A3( j)) hold true. Then, U j (t)
is compact for every t > 0.

Proof From the hypothesis (A1( j)) and according to Proposition 3.1 we get, in the
strong sense and in L(X ), for each ε > 0 and ξ > ν,

Uε
j (t) = 1

2π i

∫ ξ+i∞

ξ−i∞
exp(λt) ϑε

j (T ,B)(λ) dλ, t > 0.

Now the use of the convex compactness property [24] gives that Uε
j (t) is compact for

every t > 0 and ε > 0. Now, the result follows from Lemma 3.2. ��
Consequently, we get

Corollary 3.5 Assume that there exists j ≥ 0 such that the hypotheses (A1( j)) and
(A3( j)) hold. Then, the semigroups (U(t))t≥0 and (V(t))t≥0 have the same essential
type ωess .

Now we state another consequence of Theorem 3.2. This result is very useful in
applications.

Corollary 3.6 Assume that the hypothesis (A2) holds and there exists j ≥ 4 such
that the hypothesis (A3( j)) holds. Then the operator U j (t) is compact for each t > 0
and therefore, the semigroups (U(t))t≥0 and (V(t))t≥0 have the same essential type
ωess .

4 Application to L1-neutron transport theory

In this section, we consider the following concrete initial value problem governing the
time evolution of the distribution of neutrons in nuclear reactor, namely the neutron
transport equation (see [13,14] and the references therein)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ψ

∂t
(x, v, t) = −v

∂ψ

∂x
(x, v, t) − σ(v)ψ(x, v, t) +

∫

V
κ(x, v, v′) ψ(x, v′, t) dμ(v′)

:= T ψ(x, v, t) + Kψ(x, v, t) := Aψ(x, v, t)

ψ|�− = 0 and ψ(x, v, 0) = ψ0(x, v)

(4.1)

where (x, v) ∈ � × V with � and V are smooth open subsets of RN (N ≥ 1), �

and V denote respectively the space of positions and the space of velocities, dx and
dμ denote respectively the Lebesgue measure on R

N and a positive Radon measure
on R

N with support V . The function ψ(x, v) represents the number (or probability)
density of particles having the position x and the velocity v. The functions σ(·) and
κ(·, ·, ·) are called, respectively, the collision frequency and the scattering kernel, and,

�− = {(x, v) ∈ ∂� × V : v is incomming at x ∈ ∂�}.

The operators A, T and K the integral part of A, are called respectively the transport
operator, the streaming operator and the collision operator.
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Let us consider the Banach space

X = L1(� × V, dx ⊗ dμ(v)).

We assume that

σ(·) ∈ L∞(V ), K ∈ L(X) and � is bounded and convex.

From [25], the unbounded operator

⎧
⎪⎨

⎪⎩

T ψ(x, v) = −v
∂ψ

∂x
(x, v) − σ(v)ψ(x, v), ψ ∈ D(T )

D(T ) = {ψ ∈ X : ∂ψ

∂x
∈ X and ψ|�− = 0}

(4.2)

generates the following explicit positive C0-semigroup

U (t)ψ(x, v) =
⎧
⎨

⎩

e−σ(v)tψ(x − vt, v) if t < τ(x, v)

0 otherwise,

where τ(x, v) = inf{t > 0 : x − tv /∈ �}. The type of (U (t))t≥0 is given [16,
Formulae (2.4), p. 10] by

ω(T ) =

⎧
⎪⎨

⎪⎩

−∞ if 0 /∈ V

−lim
V �v→0

inf σ(v) if 0 ∈ V .

Let us write the evolution problem (4.1) as an abstract Cauchy problem:

∂ϕ

∂t
= (T + K )ϕ, ϕ(0) = ϕ0 ∈ X,

where the streaming operator T is the closed unbounded operator with dense domain
defined by (4.2), and the collision operator K is the bounded integral operator having
the form

X � ψ �→ Kϕ :=
∫

V

κ(x, v, v′) ψ(x, v′) dμ(v′) ∈ X. (4.3)

Note that from the classical perturbation theory, the perturbed (transport) operator
A := T + K generates also a strongly continuous semigroup (V (t))t≥0 in X given by
the Dyson–Phillips expansion
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V (t) =
m−1∑

j=0

U j (t) + Rm(t), (4.4)

where

U0(t) = U (t), U j (t) =
∫ t

0
U (t − s)KU j−1(s) ds, ( j ≥ 1)

and

Rm(t) =
+∞∑

j=m

U j (t), (m ≥ 1).

Following [13,14], we adopt the following definition

Definition 4.1 A collision operator K ∈ L(X) is said to be regular if it belongs to the
closure in the operator norm topology of the class of collision operators with kernels
in the form

κ(x, v, v′) =
∑

i∈I

αi (x) fi (v)gi (v
′),

with αi (.) ∈ L∞(�), fi (.) ∈ L1(V, dμ), gi (.) ∈ L∞(V, dμ), i ∈ I , where I is finite.

For every (x, s) ∈ � × (0,+∞), we define the map

fx,s : V −→ �

v �−→ (x − sv) χ[0,τ (x,v)](s).

Let us assume as in [10] that the Radon measure dμ on RN satisfies the following
geometrical properties,

∫

α1≤|v|≤α2

dμ(v)

∫ α3

0
χA(tv) dt → 0 as |A| → 0 (4.5)

for every α1 < α2 < +∞ and α3 < +∞, where |A| is the Lebesgue measure of A
and χA denotes the characteristic function of A.

Let us assume that there exists a positive measure dν on RN satisfying

{
fx,s(dμ) = (1/s N ) dν for every x ∈ � and s ∈ (0,+∞), and
the canonical injection j : L1(�, dx) −→ L1(�, dν) is continuous.

(4.6)

Here, fx,s(dμ) denotes the image of the measure μ on R
N by the map fx,s .

123



372 H. Megdiche, M. A. Taoudi

Remark 4.1 The set of Radon measures μ on R
N satisfying condition (4.6) is non-

empty, in fact, it contains the usual Lebesgue measure dv on R
N .

For any Borelian subset V0 ⊂ V , we consider the following geometrical property.

Definition 4.2 Let n0 ∈ N
∗. A Borelian subset V0 of V is said to be (�−�)-finite of

order n0, if it has a finiteμ−measure and for each x ∈ (�−�) := {x − y : x, y ∈ �},
the set

�x (V0) := {t ∈ (0,+∞) such that (x/t) ∈ V0}

is a union of at most n0 intervals.

Let us assume the following geometrical assumption on the velocity space.

{
The velocity space V can be written
as a partition of (� − �)-finite subsets of order n0.

(4.7)

Remark 4.2 If dμ denotes the Lebesgue measure on R
N , then both of the subsets

B(a, r) := {v − a ∈ R
N such that ‖v‖ ≤ r}, r > 0, a ∈ R

N , and Cr1,r2 := {v ∈
R

N such that r1 ≤ ‖v‖ ≤ r2}, 0 ≤ r1 ≤ ‖v‖ ≤ r2, are (�−�)-finite subsets of order
one [and hence each of them satisfies the geometrical assumption (4.7)]. Therefore,
since∪n∈NCn,n+1 = R

N , this velocity space satisfies also the geometrical assumption
(4.7).

The following theorem is the main result of this section.

Theorem 4.1 Assume that � is bounded,0 ≤ σ(·) and the Radon measure dμ satisfies
conditions (4.5) and (4.6). If the collision operator is regular and the velocity space
satisfies the assumption (4.7), then for every m ≥ 4, the operator Um(t) is compact
for each t ≥ 0 and therefore, the semigroups (U (t))t≥0 and (V (t))t≥0 have the same
critical type ωcri t and the same essential type ωess .

Remark 4.3 The result of Theorem 4.1 completes the results of [14, Theorem 10 and
Corollary 11] and that of [12, Theorem 2.1]. Furthermore, the result of Theorem 4.1
can be generalized directly to L p-spaces, 1 ≤ p < +∞, and thus our result improves
Sbihi and Mokhtar-Kharroubi’s results.

For every ε > 0, small, we consider the operator [see (3.6)]

ϑε
0 (T, K )(λ), Reλ > ω(U ).

To prove Theorem 4.1, we need the following

Proposition 4.1 [15, Theorem 4.4] Assume that � is bounded and the collision oper-
ator K is regular. If the Radon measure dμ satisfies (4.5), then

Kϑε
0 (T, K )(λ)K is weakly compact on X.
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Remark 4.4 Let K be a collision operator given by (4.3). It can be written in the form

K = [ReK + − ReK −] + i[I mK + − I mK −],

where ReK ± and I mK ± denote, respectively, the collision operators with kernels

Re κ±(x, v, v′) = max{±Re κ(x, v, v′), 0}

and

I m κ±(x, v, v′) = max{±I m κ(x, v, v′), 0}.

Therefore, since the collision operator K is assumed to be regular and sinceV (t)−U (t)
depends linearly and continuously on K , we can assume that K is positive and regular.
Now, since the semigroup (U H (t))t≥0 is positive, similar reasoning as in [14, p. 1240]
using domination arguments, by linearity and according to Condition (4.7), we can
assume that K is a one rank collision operator with kernel in the form

κ(x, v, v′) = χV0
(v),

where V0 is a Borelian (� − �)-finite subset of V having the order n0, i.e., K = K0,
where

K0 : X p � ψ −→ Kψ(x, v) = χV0
(v)

∫

V
ψ(x, v′) dμ(v′) ∈ X p. (4.8)

For every ω > ω(U ), we consider the half-plane of C:

Rω := {λ ∈ C : Reλ ≥ ω}.

We are going to prove the following auxiliary result.

Proposition 4.2 Assume that σ(·) = σ ∈ R and let ε > 0 and V0 be a Borelian
(� − �)-finite subset of V having the order n0. If the Radon measure dμ satisfies
Condition (4.6), then for every ω > ω(U ), there exists Cε > 0 such that

|λ + σ | ‖K0ϑ
ε
0 (T, K )(λ)K0‖ ≤ Cε for every λ ∈ Rω,

and consequently,

|I m λ| ‖K0ϑ
ε
0 (T, K )(λ)K0‖ ≤ Cε for every λ ∈ Rω.

Before proving this result, we need the following

Lemma 4.1 Assume that σ(·) = σ ∈ R and let ε > 0 and V0 be a Borelian
(�−�)-finite subset of V having the order n0. Then, for every ω > ω(U ), there exists
Cε,n0,1 > 0 such that
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|λ + σ |
∣
∣
∣
∣

∫ +∞

ε

e−(λ+σ)s χV0

(
x − x ′

s

)
ds

s N

∣
∣
∣
∣ ≤ Cε,n0,1

uniformly on x, x ′ ∈ � and λ ∈ Rω.

Proof Since V0 is a Borelian (�−�)-finite subset of V having the order n0, for every
x, x ′ ∈ �, there exists m0(x − x ′) < n0 satisfying

∫ +∞

ε

e−(λ+σ)s χV0

(
x − x ′

s

)
ds

s N
=

m0(x−x ′)∑

j=1

∫ b j (x−x ′)

a j (x−x ′)
e−(λ+σ)s χV0

(
x − x ′

s

)
ds

s N
,

where the (a j , b j ) are bounded intervals included in (ε,+∞). Simple integrations by
part to the integrals

∫ b j (x−x ′)

a j (x−x ′)
e−(λ+σ)s χV0

(
x − x ′

s

)
ds

s N
, 1 ≤ j ≤ m0,

yields

∫ +∞

ε

e−(λ+σ)s χV0

(
x − x ′

s

)
ds

s N
=

m0(x−x ′)∑

j=1

[

− 1

λ + σ
e−(λ+σ)s 1

s N

]b j (x−x ′)

a j (x−x ′)

−
m0(x−x ′)∑

j=1

∫ b j (x−x ′)

a j (x−x ′)

1

λ + σ
e−(λ+σ)s Nds

s N+1 .

Consequently, by passing to the module, we get

|λ + σ |
∣
∣
∣
∣

∫ +∞

ε

e−(λ+σ)s χV0

(
x − x ′

s

)
ds

s N

∣
∣
∣
∣ ≤ 2m0(x − x ′)

ε
+

∫ +∞

ε

Nds

s N+1

≤ 2n0 + 1

εN
:= Cε,n0,1,

uniformly on x, x ′ ∈ � and λ ∈ Rω. This ends the proof. ��
Proof of Proposition 4.2 Note that according to [16, p. 12], the operator
K0ϑ

ε
0 (T, K0)(λ)K0 is an integral operator from L1(� × V, dν(x) ⊗ dμ(v)) onto

X , whose kernel is

χV0
(v) χ{

|x−x ′|≤s̃(x, x−x ′
|x−x ′ | )

}
∫ +∞

ε

e−(λ+σ)s χV0

(
x − x ′

s

)
ds

s N
,

where s̃(x, v) = inf{s > 0 : x − sv /∈ �}. Therefore, the result follows from Lemma
4.1 on the basis of Assumption (4.6). ��

Finally, we are ready to give the
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Proof of Theorem4.1 Since 0 ≤ σ(·), the semigroup (U (t))t≥0 is positive and the
collision operator K can be chosen to be the positive collision operator K0 given by
(4.8) (see, Remark 4.4). By using comparison arguments, we need only to prove the
result for σ(·) = 0. Now, the result follows from Propositions 4.1 and 4.2 by applying
Corollary 3.6 of Theorem 3.2. ��
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