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Abstract We prove that every finite idempotent semigroup (band) is finitely related,
which means that the clone of its term operations (i.e. operations induced by words)
is determined by finitely many relations. This solves an open problem posed by Mayr
(Semigroup Forum 86:613–633, 2013).
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1 Introduction

LetA = (A,F) be an algebra, whereF is a family of finitary operations on the set A.
As is well known, any term t(x1, . . . , xn) (of the same similarity type as A) induces,
by interpretation in A, an operation tA : An → A. Operations obtained in this way
are the term operations of A, and the collection of all term operations of this algebra
is denoted by Clo(A) and called the clone of A.

For an n-ary operation f on a set X ( f : Xn → X ) and a k-ary relation ρ on the
same set (ρ ⊆ Xk) we say that f preserves ρ if for any a1, . . . , ak ∈ Xn (where
ai = (ai,1, . . . , ai,n) for 1 ≤ i ≤ k) such that (a1, j , . . . , ak, j ) ∈ ρ for all 1 ≤ j ≤ n
we have ( f (a1), . . . , f (ak)) ∈ ρ; in other words, either ρ = ∅ or ρ is a subalgebra
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116 I. Dolinka

of the kth direct power of the algebra (X, f ). For a familyR of (finitary) relations on
X we denote by Pol(R) the set of all operations on X preserving all relations from
R – these are the polymorphisms of the relational structure (X,R). Conversely, if
O is a family of operations on X , the set of all relations preserved by all operations
from O is denoted by Inv(O). A foundational result in clone theory tells us that, for
finite A, Clo(A) = Pol(Inv(F)), and in this sense the clone of A is determined by the
collection of relations Inv(F): an operation on A arises from a term if and only if it
preserves all the relations that are preserved by F .

The set of relations Inv(F) is always infinite. However, it may happen that there
is in fact a finite subset R ⊆ Inv(F) such that Clo(A) = Pol(R), so that the clone
of A is determined by a finite set of relations (which then can be reduced to a single
relation). In such a case we say that the algebra A is finitely related.

Finitely related algebras recently received a lot of attention in universal algebra [8]
and its applications in computer science because of their link, exhibited e.g. by [2,5],
to other key algebraic properties pertinent to the algebraic approach in studying the
computation complexity of constraint satisfaction problems (CSP) [7]. See also [1,3,
4,16] for some recent developments and important results regarding finitely related
general algebras. For example, a major result of Aichinger et al. [2] implies that any
finite algebra having aMal’cev term operation (including all finite groups and rings) is
finitely related, a consequence of which is that there are only countably manyMal’cev
clones on any finite set.

Concerning the study of finitely related (finite) semigroups, the seminal paper is the
one of Davey et al. [9], where it was shown (among other things) that finite semigroups
that are either commutative or nilpotent enjoy the finitely related property. This paper
was followed by an extensive study of Mayr [17], who exhibited the first example of a
non-finitely related finite semigroup (not too surprisingly, this was the ‘infamous’ six-
element Brandt monoid B1

2 , which seems to behave badly with respect to almost any
conceivable equational property of semigroup varieties). Also, Mayr proved that any
finite regular band (an idempotent semigroup satisfying the identity xyxzx ≈ xyzx)
is finitely related. The question of whether all finite bands are finitely related is left as
an open problem (Problem 6.3); the same question is mentioned following Problem
7.2 in [15]. It is exactly this problem that we aim to address in the present paper;
namely, we prove the following main result.

Theorem 1.1 Let S be a finite idempotent semigroup. Then S is finitely related.

Here is the brief outline of the paper. The next, preliminary section is divided
into three parts. First, we are going to invoke few criteria (from [9,17]) for a finite
algebra to be finitely related. Along the way, we are going to introduce a handy
concept of an n-scheme of terms, and specialise all these concepts to semigroups and
words, respectively. Then we are going to review the lattice of all varieties of bands
(idempotent semigroups) and proceed to a full effective description of their equational
theories. Finally, we complete the second section by some auxiliary results that will
be used in the proof of the previous theorem, presented in the third section. This
proof uses induction on the ‘height’ of the variety that S generates in the lattice of
all band varieties, depicted in Fig. 1, taking the mentioned result on regular bands as
the induction basis. We first resolve the case when S generates one of the irreducible
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Finite bands are finitely related 117

Fig. 1 The lattice of all
varieties of bands
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varieties in that lattice (Theorem 3.1) and then demonstrate how to derive Theorem 1.1
in its full generality from the irreducible case (Theorem 3.2).

2 Preliminaries

2.1 Term schemes and criteria for finitely related finite algebras

Let f : An → A be an n-ary operation on the set A. For i, j ∈ n = {1, . . . , n}, i < j ,
we define an operation fi j : An → A (sometimes called an identification minor of f )
by

fi j (x1, . . . , xn) = f (x1, . . . , xi−1, x j , xi+1, . . . , x j , . . . , xn);

in other words, fi j is obtained from f by identifying the variable xi with x j . Similarly,
if t = t(x1, . . . , xn) is a term of a given similarity type, then by t(i j) we denote the
term obtained from t by replacing each occurrence of xi in it by x j ; furthermore, by
convention we define t( j i) to be t(i j).
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118 I. Dolinka

As usual, we say that an operation f : An → A depends on its i th variable xi ,
i ∈ n, if there exist a1, . . . , ai−1, ai+1, . . . , an, b, c ∈ A such that

f (a1, . . . , ai−1, b, ai+1, . . . , an) �= f (a1, . . . , ai−1, c, ai+1, . . . , an).

For example, the identification minor fi j does not depend on xi . In turn, as another
example, the i th projection operation fails to depend on any of its variables but xi .

Now let V be a variety and assume

S = {ti j : 1 ≤ i < j ≤ n}

is a family of terms over Xn = {x1, . . . , xn} of the similarity type of V satisfying the
following conditions:

(D) For each A ∈ V , the term operation tAi j (x1, . . . , xn) does not depend on the
variable xi .

(C1) For any four distinct 1 ≤ i, j, p, q ≤ m such that i < j and p < q, V satisfies
the identity

t(pq)
i j ≈ t(i j)pq .

(C2) For any three 1 ≤ i < j < k ≤ n, V satisfies the identities

t( jk)i j ≈ t(ik)jk ≈ t( jk)ik .

The condition (D) is called dependency, while (C1) and (C2) are the consistency con-
ditions; the family S is called an n-scheme of terms for V . Bearing in mind Definition
2.3 and Notation 2.7 from [9] it is an easy exercise to see that this is just equivalent to
the notion of an (n, n − 1)-scheme introduced in that paper.

Similarly, it is very easy to see that the following holds.

Lemma 2.1 Let V be an arbitrary variety and t(x1, . . . , xn) a term of the same simi-
larity type as V . The family of all identification minors of t,

{
t(i j) : 1 ≤ i < j ≤ n

}
,

is an n-scheme of terms for V .
Again following [9], we say that an n-scheme S = {ti j : 1 ≤ i < j ≤ m} for V

comes from the term t if S is V-equivalent to the family of all identification minors of
t in the sense that V satisfies the identities

ti j ≈ t(i j)

for all 1 ≤ i < j ≤ n.
The following characterisation is part of Theorem 2.9 from [9], see also [14,17–19].
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Finite bands are finitely related 119

Theorem 2.2 Let A be a finite algebra, and let V be the variety generated by A. The
following are equivalent:

(1) A is finitely related.
(2) There exists n0 ≥ |A| such that for all n > n0, every n-scheme of terms for V

comes from a term.
(3) There exists n0 ≥ |A| such that for all n > n0, an operation f : An → A is a

term operation ofAwhenever all minors fi j (i, j ∈ n, i < j ) are term operations
of A.

Here we immediately invoke Remark 2.12 from [9] which provides an argument
that in checking if a finite algebra A satisfies condition (3) above, it can be assumed
that the operation f : An → A is essential, i.e. that it depends on all of its variables.
Therefore, wewill effectively use the previous theorem in the formwhere the condition
(3) is replaced by

(3’) There exists n0 ≥ |A| such that for all n > n0, an operation f : An → A
depending on all of its variables is a term operation ofAwhenever all minors fi j
(i, j ∈ n, i < j) are term operations of A.

Notice that for semigroups and semigroup varieties all definitions and results men-
tioned above remain valid when we replace terms by words (i.e. elements of the free
semigroup X+

n ), term operations by operations induced by words, etc., even though,
strictly speaking, words are not terms. However, it is true that every term operation
on a semigroup is induced by a word and vice versa. Therefore, it is meaningful to
define the notion of an n-scheme of words for a semigroup variety, and the ‘semigroup
version’ of Theorem 2.2 holds as well: a finite semigroup S is finitely related if and
only if every n-scheme of words for the variety generated by S comes from a single
word (provided n is large enough) if and only if the condition (3’) holds with respect
to operations induced by words. It was proved in [17] that this is the case when S is
a regular band, that is, a finite idempotent semigroup satisfying xyxzx ≈ xyzx . The
aim of this paper is to extend this to all finite bands in an inductive manner, taking
the result of [17] as a basis of the induction. Hence, in the next subsection we need
to gather some basic information about varieties of bands and few auxiliary results
describing their equational theories.

2.2 Varieties of bands and their equational theories

The variety of all bands will be denoted by B. It is known that any semigroup variety
containing B (including B itself) is not generated by a finite semigroup [20], while
every proper subvariety of B is finitely generated (see [6,10,11]).

In what follows, we adopt the notation of [13] for certain operators acting on
words; we briefly recall it for completeness. For a word w over a (finite) alphabet X ,
let c(w) denote the content of w, the set of all letters occurring in w. Further, let s(w)

denote the longest prefix of w containing all but one of the letters from c(w) (so that
|c(s(w))| = |c(w)| − 1 and s(w) is maximal with this property), while σ(w) is the
last letter to occur in w from the left (implying that s(w)σ (w) is the shortest prefix of
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120 I. Dolinka

w with the same content as w). Dually, let e(w) be the longest suffix of w containing
all but one of the letters from c(w), and let ε(w) be the last letter in w to occur from
the right.

Define an operator b on words by induction on the size of their content such that
b(∅) = ∅ (here ∅ stands for the empty word) and

b(w) = bs(w)σ (w)ε(w)be(w)

(note the concatenation of word operators, where bs(w) means b(s(w)), etc.).

Theorem 2.3 (cf. Lemma 2.7 and Theorem 2.9 of [12]) Let X be an alphabet and
u, v ∈ X+. Then u ≈ v holds in B if and only if b(u) = b(v). In particular, for any
word w we have that the identity

w ≈ s(w)σ (w)ε(w)e(w)

holds in any band.

This immediately implies the following well-known fact (recorded, e.g., as Corol-
lary 2.3 in [13]).

Corollary 2.4 Let u, v,w be words such that c(v) ⊆ c(u) = c(w). Then the identity
uvw ≈ uw holds in B.
Proof Under the given conditions, s(uvw) = s(u) = s(uw) and σ(uvw) = σ(u) =
σ(uw), and, dually, e(uvw) = e(w) = e(uw) and ε(uvw) = ε(w) = ε(uw), so the
result follows by Theorem 2.3. 	


The description of the latticeL (B) of all subvarieties of B is today still considered
as one of the most glaring success stories of the theory of semigroup varieties; it was
achieved independently by Biryukov [6], Fennemore [10], and Gerhard [11], whereas
a more ‘economical’ and coherent treatment of the subject was given later in [13].
Figure 1 provides a diagram of this lattice: here SL, LZ andRZ are respectively the
varieties of semilattices, left zero and right zero bands.

Of particular importance are the two sequences of join- and meet-irreducible vari-
eties Am and Bm , m ≥ 2, as well as their duals Am and Bm – any proper (i.e. finitely
generated) band variety not contained in SL∨LZ ∨RZ (the ‘bottom cube’) is a join
of a pair of these. In fact, we shall first prove that any finite band generating one of
the varieties Am , Bm is finitely related; by left-right duality, this will extend to Am

and Bm , and then we shall show how to use this fact to prove finite relatedness for any
finite band generating a proper subvariety of B. The varieties LRB andRRB are the
varieties of left regular and right regular bands defined by identities xyx ≈ xy and
xyx ≈ yx , respectively. Their join is the variety of regular bands that is the subject
of Theorem 6.2 of [17]. As we remarked earlier, our approach will be inductive with
respect to the chains formed by varietiesAm , Bm and their duals, with the latter result
from [17] serving as a basis of that induction.

For technical convenience in our main argument it will be useful to select and fix
finite bands Am, Bm , m ≥ 2 (as well as their dual semigroups Am and Bm), such that
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Finite bands are finitely related 121

Am generates the varietyAm and Bm generates Bm . (For example, one can choose A2
to be the two-element left zero band, B2 to be A2 with an identity element adjoined,
etc. Note that we can choose these bands so that |A2| < |B2| < |A3| < |B3| < . . .

holds.)
Ourmain task at thismoment is to describe the equational theories of the considered

band varieties, following the approach laid out in [13]. To this end, we introduce word
functions hm and im for m ≥ 2 and their duals, hm, im , in the sense that if w denotes
the reverse of the word w we have tm(w) = tm(w) for t ∈ {h, i}:
• tm(∅) = ∅ for all m ≥ 2 and t ∈ {h, i};
• h2(w) is the first letter of w from the left (the head of w);
• i2(w) is the word obtained from w by retaining only the first occurrence from
the left of each letter (the initial part of w, also defined recursively by i2(w) =
i2s(w)σ (w));

• for m ≥ 3 and t ∈ {h, i} we set

tm(w) = tms(w)σ (w)tm−1(w).

The key feature of these functions is expressed in the following statement.

Theorem 2.5 ([13]) Let m ≥ 2 and let u, v be two words.

• Am satisfies u ≈ v if and only if hm(u) = hm(v).
• Bm satisfies u ≈ v if and only if im(u) = im(v).

Analogous equivalences hold for the dual varietiesAm and Bm and functions hm and
im, respectively.

The next few properties will be used in our proofs.

Lemma 2.6 (1) Let t ∈ {h, i}. If m ≥ 3 or tm = i2 then stm(w) = tms(w) and
etm(w) = tme(w) for any word w.

(2) Let t ∈ {h, i}. If m ≥ 4 or tm = i3 then

btm(w) = b(tms(w)σ (w)ε(w)tm−1e(w))

and

btm(w) = b(tm−1s(w)σ (w)ε(w)tme(w))

for any word w.
(3) Let t ∈ {h, i, h, i} and let u, v be any words. If m ≥ 2 then btm(u) = btm(v)

implies tm(u) = tm(v).
(4) Let t ∈ {h, i}. If m ≥ 3 then

tm(w) = tm−1(w)ε(w)tme(w)

for any word w.
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122 I. Dolinka

Proof The first part of (1) is just [13, Lemma 3.2(ii)], while the second part is dual
to the first one and follows from it, as etm(w) = etm(w) = stm(w) = tms(w) =
tm(e(w)) = tme(w). (2)–(4) are Lemma 3.3(iii), (v), Lemma 4.1 and Lemma 3.3(ii)
of [13], respectively, where (2) and (3) are reformulated in terms of the operator b,
bearing in mind Theorem 2.3. 	

Lemma 2.7 Let X ∈ {A,B}. Assume that the variety Xm satisfies the identity u ≈ v,
where |c(u)|, |c(v)| ≥ 2. Then it also satisfies s(u) ≈ s(v).

Proof Consider first the case when Xm = A2. Since both u and v contain at least
two letters, we have h2s(u) = h2(u) = h2(v) = h2s(v), and the lemma follows.
Otherwise, if either Xm = B2 or m ≥ 3, let tm be the corresponding word function
in the sense of Theorem 2.5. By the given conditions we have tm(u) = tm(v), which
in turn implies stm(u) = stm(v). Then Lemma 2.6(1) tells us that tms(u) = tms(v)
(since we assumed that tm �= h2). Another application of Theorem 2.5 yields that Xm

satisfies s(u) ≈ s(v). 	


2.3 Some auxiliary results

As Theorem 2.2 suggests, we will be concerned with essential operations f : Sn → S
on a finite (idempotent) semigroup S such that all of its minors fi j are induced by
words. In the next lemma we are looking at some consequences of such a setting.

Lemma 2.8 Let S be a finite semigroup, and let f : Sn → S be an operation depend-
ing on all of its variables such that for any i, j ∈ n, i < j , there is a word wi j

satisfying fi j = wS
i j .

(1) {wi j : 1 ≤ i < j ≤ n} is an n-scheme of words for the semigroup variety
generated by S.

(2) If the variety generated by S containsSL andn ≥ |S|+ 4 then c(wi j ) = Xn\{xi }.
Proof (1) Easy, and largely analogous to Lemma 2.1, dealing with minors of opera-

tions instead of terms.
(2) Since f depends on all of its variables (and thus in particular on xk , k �= i), there

exist a1, . . . , ak−1, ak+1, . . . , an, b, c ∈ S such that

f (a1, . . . , ak−1, b, ak+1, . . . , an) �= f (a1, . . . , ak−1, c, ak+1, . . . , an).

The pigeonhole principle ensures that there exist p, q ∈ n\{i, j, k}, p < q, such
that ap = aq . Hence, just as in [17, Lemma 2.6], f pq = wS

pq depends on xk .

However, by (1), S satisfies the identity w(i j)
pq ≈ w(pq)

i j and so xk ∈ c(w(i j)
pq ) =

c(w(pq)
i j ), ensuring that wi j must contain xk , since k �= i . 	


In the following, n-schemes of words {wi j : 1 ≤ i < j ≤ n} over Xn such that
c(wi j ) = Xn \ {xi } will be called essential; so, the above result states that essential
operations on finite semigroups whose varieties contain nontrivial semilattices with all
minors induced by words give rise to essential n-schemes, provided n is large enough.
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Finite bands are finitely related 123

Lemma 2.9 Let {wi j : 1 ≤ i < j ≤ n} be an essential n-scheme of words for a
semigroup variety V containing B2 (the variety of left regular bands), where n ≥ 5.
Then there exists a unique permutation π of n such that for any i < j ,

i2(wi j ) = xα1 · · · xαn−1 ,

where the sequence π(i j) = (α1, . . . , αn−1) is obtained from (1π, . . . , nπ) by replac-
ing i by j and then deleting the right one of the twooccurrences of j . Furthermore, if the
given essential scheme comes from a word w then we must have i2(w) = x1π · · · xnπ .

Proof By the very definition of an (essential) n-scheme of words for a variety, any
scheme for a variety V is also a scheme for any of its subvarieties, and so is the
case for the given scheme with respect to B2. As already discussed, B2 is gener-
ated by the 3-element band B2 (obtained by adjoining an identity element to the
2-element left zero band), and by Lemma 6.1 of [17], B2 is finitely related with
degree at most 4. By [9, Lemma 2.6], there exists a unique operation f : Bn

2 → B2

such that fi j = wB2
i j for all 1 ≤ i < j ≤ n. To see that f depends on all

of its variables, fix k ∈ n and p, q ∈ n \ {k}, p < q. As f pq = wB2
pq and

xk ∈ c(wpq), f pq depends on xk , so there exist a1, . . . , ak−1, ak+1, . . . , an, b, c ∈ B2
such that f pq(a1, . . . , ak−1, b, ak+1, . . . , an) �= f pq(a1, . . . , ak−1, c, ak+1, . . . , an).
This immediately implies that f depends on xk .

Hence, by [17, Lemma 6.1], f is induced by a word w such that c(w) = Xn . Now
it is routine to see that the permutation π ∈ Sn satisfying

i2(w) = x1π · · · xnπ

meets all the requirements of the lemma. It is uniquebecause ifπ ′ wouldbe another per-
mutation with the required properties, then it would follow that the given scheme (with
respect to B2) also comes from the wordw′ = x1π ′ · · · xnπ ′ , whence the uniqueness of
f implies that (w′)B2 = f . Therefore, B2 satisfies w′ ≈ w, implying i2(w′) = i2(w)

and so π ′ = π . 	

For an essential scheme of words satisfying the assumptions of the above lemma,

we will call π the associated permutation of the scheme.
We proceed with a technical lemma before we learn another important property of

essential n-schemes of words over irreducible band varieties.

Lemma 2.10 Let k ∈ n, and letw ∈ X+
n be such that c(w) = Xn\{xk}andσ(w) = xl .

Furthermore, let p, q ∈ n \ {l} such that p < q. Then s(w)(pq) = s(w(pq)).

Proof We start by writing w in the form

w = s(w)xlu

for some word u, implying w(pq) = s(w)(pq)xlu(pq). If q �= k then c(w(pq)) =
Xn\{xk, xp} and c(s(w)(pq)) = Xn\{xl , xk, xp}, which immediately gives s(w(pq)) =
s(w)(pq). The same conclusion follows if q = k upon noticing that in such a case we
have c(w(pq)) = Xn \ {xp} and c(s(w)(pq)) = Xn \ {xl , xp}. 	
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124 I. Dolinka

Lemma 2.11 Let n ≥ 5, let S = {wi j : 1 ≤ i < j ≤ n} be an essential n-scheme
of words for Xm, where X ∈ {A,B} and either m ≥ 3 or Xm = B2. Let π be the
associated permutation of S (which exists by Lemma 2.9) and let l = nπ . Then

S ′ = {
s(wi j ) : 1 ≤ i < j ≤ n, l /∈ {i, j}}

is an (n − 1)-scheme for Xm over variables Xn \ {xl}.
Proof Note that if l /∈ {i, j} then σ(wi j ) = xl and so c(s(wi j )) = Xn \ {xi , xl}. Thus
(D) holds.

Furthermore, if p < q are such that {p, q} ∩ {i, j, l} = ∅ then by Lemma 2.10 we
have s(wi j )

(pq) = s(w(pq)
i j ) and s(wpq)

(i j) = s(w(i j)
pq ). Further the assumption that

Xm satisfies w(pq)
i j ≈ w(i j)

pq implies, by Lemma 2.7, the identity s(w(pq)
i j ) ≈ s(w(i j)

pq ).

Hence, Xm satisfies s(wi j )
(pq) ≈ s(wpq)

(i j), and so S ′ satisfies (C1).
Now let i < j < p be such that l /∈ {i, j, p}. Again, Lemma 2.10 implies that

s(wi j )
( j p) = s(w( j p)

i j ), s(w j p)
(i p) = s(w(i p)

j p ) and s(wi p)
( j p) = s(w( j p)

i p ) (the lemma
was applied over the alphabet Xn\{xi } in thefirst and the third case,while itwas applied
over Xn \ {x j } in the second case). Since, by assumption, Xm satisfies the identities

w( j p)
i j ≈ w(i p)

j p ≈ w( j p)
i p , it also satisfies the identities s(w( j p)

i j ) ≈ s(w(i p)
j p ) ≈ s(w( j p)

i p )

by Lemma 2.7. We conclude that Xm satisfies s(wi j )
( j p) ≈ s(w j p)

(i p) ≈ s(wi p)
( j p),

hence (C2) holds for S ′ as well. 	

We are now ready and equipped to present our main arguments.

3 The main proofs

Theorem 3.1 For any m ≥ 2 and T ∈ {A, B}, the bands Tm and Tm are finitely
related.

Proof We use induction onm. Ifm = 2, the result already follows from [17, Theorem
6.2]. Hence fix m ≥ 3 and assume that the statement is true for values of indices up
to m − 1.

We are going to show that Tm is finitely related by verifying condition (3’) in
Theorem 2.2 with n ≥ n0 = max(|Tm | + 4,m + 3). So, under these assumptions,
let f : T n

m → Tm be an operation that depends on all of its variables such that for
all i, j ∈ n, i < j , we have that the operation fi j is induced by a word. Let us

select words wi j ∈ X+
n , 1 ≤ i < j ≤ n, such that fi j = wTm

i j . Since the variety Xm

generated by Tm contains SL, Lemma 2.8 tells us that c(wi j ) = Xn \ {xi }, so that
S = {wi j : 1 ≤ i < j ≤ n} is an essential n-scheme of words for Xm .

Since B2 is contained in Xm and n ≥ m + 3 > 5, Lemma 2.9 ensures the existence
(and uniqueness) of the associated permutation π of the scheme S. Let us denote
k = (n − 1)π and l = nπ .

Now, sinceS is an n-scheme ofwords forXm , it is also an n-scheme ofwords for any
of its subvarieties, and thus in particular forXm−1. This variety is generated by the band
Tm−1 which is finitely related by the inductive assumption.Hence,Theorem2.2 implies
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Finite bands are finitely related 125

that S, considered as a scheme for Xm−1, comes from a word, say û. Equivalently,

there is a word operation g : Tm−1
n → Tm−1 such that gi j = wTm−1

i j holds for all
1 ≤ i < j ≤ n.

Similarly, by Lemma 2.11, the family of words S ′ = {s(wi j ) : 1 ≤ i < j ≤
n, l /∈ {i, j}} is an (n − 1)-scheme of words for Xm (and thus for Xm−1) over the
set of variables Xn \ {xl}. Again, by employing the inductive hypothesis (and bearing
in mind that n − 1 ≥ (m − 1) + 3 and n − 1 ≥ (|Tm | − 1) + 4 ≥ |Tm−1| + 4), we
find a word ũ such that S ′ comes from ũ; in other words, there is a word operation

h : Tm−1
n−1 → Tm−1 with hi j = s(wi j )

Tm−1 for all i < j such that l /∈ {i, j}.
Now define

w = s(wk′l ′)xk ũxl û,

where k′ = min(k, l) and l ′ = max(k, l). We are going to argue that f = wTm whence
Theorem 2.2 yields that Tm is finitely related. 	

Claim If p, q ∈ n, p < q, are such that {p, q} ∩ {k, l} = ∅ then the identity

w(pq) ≈ wpq

holds in Xm (and so in Tm).

Proof of Claim. We have

w(pq) = (s (wk′l ′))
(pq) xk ũ(pq)xl û(pq) = s

(
w(pq)

k′l ′
)
xk ũ(pq)xl û(pq), (3.1)

where the second equality follows by Lemma 2.10 using c(wk′l ′) = Xn \ {xk′ }. Fur-
thermore, by (C1), Xm satisfies w(pq)

k′l ′ ≈ w(k′l ′)
pq , so by Lemma 2.7 it also satisfies

s(w(pq)

k′l ′ ) ≈ s(w(k′l ′)
pq ). Since {p, q} ∩ {k, l} = ∅, the sequence π(pq) must have the

form (α1, . . . , αn−3, k, l) (where the subsequence (α1, . . . , αn−3) is a certain permu-
tation of n \ {k, l, p}). Therefore, we may highlight the first occurrence from the left
of each letter from c(wpq) in wpq by writing

wpq = xα1u1xα2 · · · xαn−3un−3xkun−2xlv

for some (possibly empty) words u1, . . . ,un−2, v. This yields

w(k′l ′)
pq = xα1u1xα2 · · · xαn−3un−3xl ′u

(k′l ′)
n−2 xl ′v

(k′l ′),

implying

s(w(k′l ′)
pq ) = xα1u1xα2 · · · xαn−3un−3 = s2(wpq).

Bearing in mind (3.1), we deduce that

w(pq) ≈ s(w(k′l ′)
pq )xk ũ(pq)xl û(pq) = s2(wpq)xk ũ(pq)xl û(pq)
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holds in Xm . By applying Theorem 2.5 and the recursion for tm twice, we get

tm(w(pq)) = tm
(
s2(wpq)xk ũ(pq)xl û(pq)

)

= tm
(
s2(wpq)xk ũ(pq)

)
xl tm−1

(
s2(wpq)xk ũ(pq)xl û(pq)

)

= tms
2(wpq)xktm−1

(
s2(wpq)xk ũ(pq)

)
xl tm−1

(
s2(wpq)xk ũ(pq)xl û(pq)

)
.

However, by induction assumption onS ′ forXm−1 we have thatXm−1 satisfies ũ(pq) ≈
s(wpq), and by induction assumption on S for Xm−1 we have that Xm−1 satisfies
û(pq) ≈ wpq . We know that σ(wpq) = xl , s(wpq) = xα1 · · · xαn−3un−3xkun−2,
σ s(wpq) = xk , and s2(wpq) = xα1 · · · xαn−3un−3. Thus

s2(wpq)xk ũ(pq) ≈ s2(wpq)σ s(wpq)s(wpq) ≈ s(wpq)

and consequently

s2(wpq)xk ũ(pq)xl û(pq) ≈ s(wpq)σ (wpq)wpq ≈ wpq

holds inXm−1 (here we used the idempotent law, upon noticing that s2(wpq)σ s(wpq)

is a prefix of s(wpq), while s(wpq)σ (wpq) is a prefix of wpq ). Hence,

tm(w(pq)) = tms
2(wpq)xktm−1s(wpq)xl tm−1(wpq)

= tms(wpq)xl tm−1(wpq) = tm(wpq).

Another application of Theorem2.5 concludes the proof of the claim thatw(pq) ≈ wpq

holds in Xm .
Let now a = (a1, . . . , an) ∈ T n

m be arbitrary. As n ≥ |Tm | + 4 > |Tm | + 3, by the
pigeohole principle there are p, q ∈ n, p < q, such that ap = aq and {p, q}∩{k, l} =
∅. Thus

f (a) = f pq(a) = wTm
pq (a) = (w(pq))Tm (a) = (wTm )pq(a) = wTm (a),

where the previous claim was used in the third equality above. Therefore, f = wTm ,
showing that Tm is finitely related.

The result for Tm follows by left-right duality or simply by the observation that if
a finite semigroup S is finitely related, so is its dual semigroup S. (Indeed, if {ui j :
1 ≤ i < j ≤ n} is an n-scheme of words for the variety V generated by S then it is a
routine to show that {ui j : 1 ≤ i < j ≤ n} is an n-scheme of words for the variety V
generated by S; so, if the latter scheme comes from a word u it follows immediately
that the former one comes from u. Now an appeal to Theorem 2.2 gives the required
result.) 	

Theorem 3.2 For anym ≥ 3, the bands Am×Am, Am×Bm−1, Bm−1×Am, Bm×Bm,
Bm × Am and Am × Bm are finitely related.
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Remark 3.3 Note that this theorem does not follow automatically from the previous
one, as it was shown in [9, Example 6.3] that the finitely related property is in general
not preserved by direct products.

Proof Generally, we are going to argue that a finite band of the form Tm × Ur is
finitely related, where T,U ∈ {A, B} and r ∈ {m − 1,m}, with combinations as in
the formulation; since the third case is dual to the second and sixth case to the fifth,
these two may be safely omitted by our previous left-right duality remarks. Note that
with these restrictions if Tm generates Xm and Ur generates Yr (X ,Y ∈ {A,B}) then
Yr is always a subvariety of Xm containing Xm−1. Equivalently, Xm is a subvariety of
Yr+1 containing Yr . Also, B2 can be assumed to be a subvariety of both Xm and Yr .

So, let n0 = max(|Tm ||Ur | + 4,m + 3) and assume that for some n ≥ n0, f is an
n-ary term operation of Tm × Ur depending on all of its variables, with the property
that for all 1 ≤ i < j ≤ n, fi j is induced by a word wi j ∈ X+

n . 	


Claim There exist operations g : T n
m → Tm and h : Ur

n → Ur such that

f ((a1, b1), . . . , (an, bn)) = (g(a1, . . . , an), h(b1, . . . , bn))

for all a1, . . . , an ∈ Tm and b1, . . . , bn ∈ Ur , and, furthermore, for all 1 ≤ i < j ≤ n,
the operations gi j and hi j are induced by wi j on Tm and Ur , respectively.

Proof of Claim. By Lemma 2.8(1), S = {wi j : 1 ≤ i < j ≤ n} is an n-scheme
of words for the variety generated by Tm × Ur , and thus for each of the varieties
generated individually by Tm andUr . Now by [9, Lemma 2.6] there are (unique) n-ary

operations g and h on Tm and Ur , respectively, such that gi j = wTm
i j and hi j = wUr

i j
for all 1 ≤ i < j ≤ n.

As n > |Tm ||Ur |, for arbitrary (a1, b1), . . . , (an, bn) ∈ Tm ×Ur there are p, q ∈ n,
p < q, such that (ap, bp) = (aq , bq). Hence,

f ((a1, b1), . . . , (an, bn)) = f pq((a1, b1), . . . , (an, bn))

= wTm×Ur
pq ((a1, b1), . . . , (an, bn))

=
(
wTm

pq (a1, . . . , an),w
Ur
pq(b1, . . . , bn)

)

= (gpq(a1, . . . , an), h pq(b1, . . . , bn))

= (g(a1, . . . , an), h(b1, . . . , bn)).

By the very construction of g and h, the claim follows.
By the choice of n0 and Theorem 3.1 (in fact, by n satisfying the assumptions in its

proof), both g and h are induced by words, say u and v. We claim that f is induced
on Tm × Ur by the word w = uv. We are going to prove that for all 1 ≤ i < j ≤ n,
both Tm and Ur satisfy w(i j) ≈ wi j . Similarly as in the final part of the proof of the
previous theorem, this will suffice to establish the theorem, because then for arbitrary
(a1, b1), . . . , (an, bn) ∈ Tm × Ur the pigeonhole principle provides p < q with
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(ap, bp) = (aq , bq), so that for c = ((a1, b1), . . . , (an, bn)), a = (a1, . . . , an) and
b = (b1, . . . , bn) we have

f (c) = f pq(c) = (gpq(a), h pq(b)) = (wTm
pq (a),wUr

pq(b))

= ((w(pq))Tm (a), (w(pq))Ur (b))

= (w(pq))Tm×Ur (c) = (wTm×Ur )pq(c) = wTm×Ur (c),

showing that f = wTm×Ur .
Let us start by noting that the scheme S is essential (by Lemma 2.8(2)), which

immediately implies c(u) = c(v) = Xn , so s(w) = s(u), σ(w) = σ(u), ε(w) = ε(v)
and e(w) = e(v). This yields s(w(i j)) = s(u(i j)) and e(w(i j)) = e(v(i j)). Furthermore,
i2(w) = i2(u), implying i2(w(i j)) = i2(u(i j)) = i2(wi j ) by Lemma 2.9 because Xm

contains B2. Thus σ(w(i j)) = σ(u(i j)) = σ(wi j ) and, dually, ε(w(i j)) = ε(v(i j)) =
ε(wi j ). Also, if tm is the word function corresponding to the variety Xm (in the sense
of Theorem 2.5), then we know, by construction of words u and v, that Xm satisfies
u(i j) ≈ wi j — so that tm(u(i j)) = tm(wi j ) — while Yr satisfies v(i j) ≈ wi j . By
assumptions made earlier in this proof, the latter identity holds in Xm−1, implying
tm−1(v(i j)) = tm−1(wi j ).

Note that we have h2(w(i j)) = h2(v(i j)) since e(w) = e(v). So, if Xm = A3 we
deduce, by Lemma 2.6(1),

h3(w(i j)) = h3s(u(i j))σ (u(i j))h2(w(i j))

= sh3(u(i j))σ (u(i j))h2(v(i j))

= sh3(wi j )σ (wi j )h2(wi j )

= h3s(wi j )σ (wi j )h2(wi j ) = h3(wi j ).

On the other hand, if Xm ∈ {Ak : k ≥ 4} ∪ {Bk : k ≥ 3} then by items (1) and (2) of
Lemma 2.6 we obtain

btm(w(i j)) = b
[
tms(u(i j))σ (u(i j))ε(v(i j))tm−1e(v(i j))

]

= b
[
stm(u(i j))σ (u(i j))ε(v(i j))etm−1(v(i j))

]

= b
[
stm(wi j )σ (wi j )ε(wi j )etm−1(wi j )

]

= b
[
tms(wi j )σ (wi j )ε(wi j )tm−1e(wi j )

] = btm(wi j ).

But then Lemma 2.6(3) implies that tm(w(i j)) = tm(wi j ), i.e. that Xm (and thus Tm)
satisfies w(i j) ≈ wi j .

The proof that Yr satisfies w(i j) ≈ wi j is similar, albeit with slight differences. Let
now tr be the word function corresponding to Yr in the sense of Theorem 2.5. The
fact thatXm (and soYr ) satisfies u(i j) ≈ wi j implies tr (u(i j)) = tr (wi j ). Furthermore,
[13, Lemma 3.5] tells us that tr−1(u(i j)) = tr−1(wi j ) holds as well, provided r ≥ 3.
In turn, Yr satisfies v(i j) ≈ wi j , thus tr (v(i j)) = tr (wi j ).
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Now we have three subcases to consider. First, let Yr = B2 (which can happen,
just as the next subcase, only if Xm = A3). Since c(u) = c(v) = Xn , we have
i2(w(i j)) = i2(u(i j)v(i j)) = i2(v(i j)). On the other hand, we have already concluded
that Yr satisfies v(i j) ≈ wi j , so i2(v(i j)) = i2(wi j ) yielding i2(w(i j)) = i2(wi j ), as
required. Our second subcase is Yr = A3, when h2(w(i j)) = h2(u(i j)) because of
s(w) = s(u). By items (1) and (4) of Lemma 2.6 we have:

h3(w(i j)) = h2(w(i j))ε(v(i j))h3e(v(i j))

= h2(u(i j))ε(v(i j))eh3(v(i j))

= h2(wi j )ε(wi j )eh3(wi j )

= h2(wi j )ε(wi j )h3e(wi j ) = h3(wi j ).

Finally, let Yr ∈ {Ak : k ≥ 4} ∪ {Bk : k ≥ 3}. Then, by invoking parts (1) and (2) of
Lemma 2.6 once again, we deduce

btr (w(i j)) = b
[
tr−1s(u(i j))σ (u(i j))ε(v(i j))tr e(v(i j))

]

= b
[
str−1(u(i j))σ (u(i j))ε(v(i j))etr (v(i j))

]

= b
[
str−1(wi j )σ (wi j )ε(wi j )etr (wi j )

]

= b
[
tr−1s(wi j )σ (wi j )ε(wi j )tr e(wi j )

] = btr (wi j ),

whence Lemma 2.6(3) implies that tr (w(i j)) = tr (wi j ).
Hence, both Xm and Yr (with restrictions on m, r as described at the beginning of

the proof) satisfy the identity w(i j) ≈ wi j . As remarked earlier, this completes the
proof that f is induced by w and confirms the theorem. 	


The proof of Theorem 1.1 is now immediate: if S is a finite band then it generates
the same variety as one of the bands covered by [17, Theorem 6.2], Theorem 3.1 and
Theorem 3.2. By [9, Theorem 2.11], S is finitely related.
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