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Abstract Amappingα : S → S is called aCayley function if there exist an associative
operation μ : S × S → S and an element a ∈ S such that α(x) = μ(a, x) for every
x ∈ S. The aim of the paper is to give a characterization of Cayley functions in terms
of their directed graphs. This characterization is used to determine which elements of
the centralizer of a permutation on a finite set are Cayley functions. The paper ends
with a number of problems.
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1 Introduction

Let S be a set equipped with a binary operation, say:
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· 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 0
3 0 3 0 3

Both the rows and columns of this table can be viewed as full transformations on S.
For example, the row of 1 induces the map λ2 and the column of 2 induces the map
ρ1 as follows:

ρ1 =
(
0 1 2 3
0 1 0 1

)
, λ2 =

(
0 1 2 3
0 0 2 0

)
.

Observe that λ1ρ2 = ρ2λ1. In fact, one may check that in the Cayley table above,
every row commutes with every column. Saying that the rows of (S, ·) commute with
its columns is just another way of saying that (S, ·) is a semigroup (see [5]). This
simple observation prompts an approach to a study of semigroups. However, before
outlining the approach, we introduce some terminology and notation, and recall some
facts.

Let S be a semigroup. For a fixed a ∈ S, the mapping λa : S → S[ρa : S → S]
defined by λa(x) = ax[ρa(x) = xa] is called a left [right] inner translation of S. If
S is a finite group, then λa is a regular permutation on S, that is, λa is a product of
disjoint cycles of the same length. If S is an infinite group, then λa is a formal product
of disjoint cycles of the same (possibly infinite) length (see [21, Definition 3.2] and
[24, Definition 1.1]). The converse is also true, that is, if α is a regular permutation on
a set S, then there is a group with universe S such that α is a left inner translation of
the group S [28]. The same facts are true for right inner translations.

Let α be a transformation on a set S. Following [30], we say that α is a Cayley
function on S if there is a semigroupwith universe S such thatα is an inner translation of
the semigroup S. Note thatα is a left inner translation of a semigroup (S, ·) if and only if
α is a right inner translation of the semigroup (S, ∗), where for all a, b ∈ S, a∗b = b·a.

We now describe an approach to a study of semigroups prompted by the observation
that in any semigroup, the mappings induced by the rows of the Cayley table (left
inner translations) commute with the mappings induced by the columns (right inner
translations). Let S be any set.

1. Find the Cayley functions on S.
2. Given a Cayley function α on S, find all transformations on S that commute with

α, that is, describe the centralizer of α in the full transformation monoid T (S)

on S.
3. Given a Cayley function α on S, find all Cayley functions on S that commute

with α.
4. Find pairs {α, β} of Cayley functions on S such that α and β occur as left inner

translations of the same semigroup (S, ·).
5. Let GS be the simple graph whose vertices are the Cayley functions on S and the

edges are pairs {α, β} such that α and β occur as left inner translations of the same
semigroup (S, ·). We will call the graph GS the common semigroup graph of S.
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Identify the maximal cliques of the common semigroup graph GS .
6. Let HS be the simple graph whose vertices are the Cayley functions on S and the

edges are pairs {α, β} such that:
• {α, β} is an edge in the common semigroup graph GS , and
• there exists a clique C of size |S| in GS such that α and β commute with every
element of C .

Identify the maximal cliques of the graph HS .

The solution of problem 1 tells us which mappings can appear as rows or columns
in the Cayley table of a semigroup. The solution of problem 2 gives us the candidates
for the rows of the Cayley table of a semigroup provided a given mapping appears as
a column. Problems 3 and 4 are steps toward solving problems 5 and 6.

Regarding problem 5, suppose that (S, ·) is a semigroup. The left inner translations
λa of S, where a ∈ S, form a clique in the common semigroup graph GS . Hence, the
solution of problem 5 would give us the candidates (the vertices of a maximal clique
of GS) from which the rows of the Cayley table of a semigroup can be selected. The
same analysis applies to columns.

Regarding problem 6, suppose that we have the Cayley table of a semigroup (S, ·).
Then the rows of the table form a clique, say C1, in the common semigroup graph GS ,
and the columns also form a clique, say C2, in GS . Moreover, |C1| = |C2| = |S| and
each Cayley function in C1 commutes with each Cayley function in C2. Therefore,
the rows [columns] of the Cayley table of (S, ·) are contained in a maximal clique
of the graph HS . Therefore, the solution of problem 6 would give us the candidates
(the vertices of a pair of maximal cliques in HS) from which the Cayley table of a
semigroup can be constructed. In other words, it would provide us with a tool to devise
a method for building the Cayley tables of semigroups. In the process we might gain
a deeper understanding of transformations and the Cayley tables of semigroups.

The current status of the solutions of these problems is as follows.Algebraic descrip-
tions of transformations α that are Cayley functions (in terms of properties of powers
of α) have been provided in [8,9,11,30]. The problem of describing the centralizer of
a given transformation took longer, but it has been fully solved; the final stage was
[6], but this is just the last step in a long process [1–4,14–23,25–27] (not claiming
exhaustiveness). Given that problems 1 and 2 have been solved, one might think that
problem 3 follows straightforwardly. This is not the case, though. One of the reasons
is that while the description of the centralizers is geometric in nature, the available
descriptions of the Cayley functions are not, thus making it difficult to combine the
two results.

Hence, this paper has two goals. The first is to provide a geometric characterization
of the Cayley functions, which can be connected to the existing geometric descriptions
of centralizers. The second is to describe the Cayley functions that commute with a
finite permutation. That is, we solve problem 3 in a special case. In other words, we
describe the candidates for the rows of the Cayley table of a finite semigroup when
one of its columns is a permutation. This is the part of the paper containing the most
delicate considerations.

Any α : S → S can be represented by a directed graph Dα with S as the set of
vertices such that x → y is an arc in Dα if and only if α(x) = y. A directed graph
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representing some transformation on its set of vertices is called a functional digraph.
We will characterize the functional digraphs that represent Cayley functions. As a
result, we will obtain a visual criterion for a transformation α on a set S to be a Cayley
function: look at the digraph of α and see if it has desired properties.

To obtain a complete characterization of digraphs that represent Cayley functions,
we first need to describe functional digraphs. We provide such a description in Sect. 2
(Propositions 2.5 and 2.6). Transformations on a set S can be divided into two types:
those that have the so called stabilizer and those that do not. In Sect. 3, we characterize
the functional digraphs that represent transformations with stabilizers (Theorem 3.10).
In Sect. 4, we characterize the digraphs that represent Cayley functions (Theorems 4.6
and 4.10). Finally, in Sect. 5, we apply our characterization to centralizers of finite
permutations (Theorem 5.6). We illustrate our results with examples and figures. We
conclude the paper with a list of open problems (Sect. 6).

For the remainder of the paper, we fix a non-empty set S and denote by T (S) the
set of all transformations on S (mappings α : S → S).

2 Functional digraphs

A directed graph (or a digraph) is a pair D = (S, ρ) where S is a non-empty set of
vertices (not necessarily finite), which we denote by V (D), and ρ is a binary relation
on S. Any pair (x, y) ∈ ρ is called an arc of D, which we will write as x → y. A
vertex x is called an initial vertex in D if there is no y ∈ S such that y → x ; it is
called a terminal vertex in D if there is no y ∈ S such that x → y.

A digraph D is called a functional digraph if there is α ∈ T (S) such that for all
x, y ∈ S, x → y is an arc in D if and only if α(x) = y. If such an α exists, then it is
unique, and we will write D = Dα and refer to D as the digraph that represents α. In
this section, we describe functional digraphs.

Let D be a digraph and let . . . , x−1, x0, x1, . . . be pairwise distinct vertices of D.
Consider the following sub-digraphs of D:

x0 → x1 → · · · → xk−1 → x0 (2.1)

x0 → x1 → · · · → xm (2.2)

x0 → x1 → x2 → · · · (2.3)

· · · → x2 → x1 → x0 (2.4)

· · · → x−1 → x0 → x1 → · · · (2.5)

We call (2.1)–(2.5), respectively: a cycle of length k(k ≥ 1), written (x0 x1 . . . xk−1);
a chain of length m, written [x0 x1 . . . xm](m ≥ 0); a right ray, written [x0 x1 x2 . . .〉;
a left ray, written 〈. . . x2 x1 x0]; and a double ray, written 〈. . . x−1 x0 x1 . . .〉.

Definition 2.1 Let Dα be a functional digraph, where α ∈ T (S). A right ray
[x0 x1 x2 . . .〉 in Dα is called a maximal right ray if x0 is an initial vertex of Dα .

Definition 2.2 Let Dα be a functional digraph, where α ∈ T (S).
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• A left ray L = 〈. . . x2 x1 x0] in Dα is called an infinite branch of a cycleC [double
ray W ] in Dα if x0 lies on C[W ] and x1 does not lie on C[W ]. We will refer to
any such L as an infinite branch in Dα .

• A chain P = [x0 x1 . . . xm] of length m ≥ 1 in Dα is called a finite branch of a
cycle C [double ray W , maximal right ray R, infinite branch L] in Dα if x0 is an
initial vertex of Dα, xm lies on C[W, R, L] and xm−1 does not lie on C[W, R, L].
If xm lies on an infinite branch L = 〈. . . y2 y1 y0], we also require that xm �= y0.
We will refer to any such P as a finite branch in Dα .

By a branch in Dα wewill mean a finite or infinite branch in Dα . Note that all branches
of a maximal right ray R or an infinite branch L are finite. In other words, we only
consider infinite branches of cycles and double rays.

Definition 2.3 Let α ∈ T (S), x ∈ S. The subgraph of Dα induced by the set

{y ∈ S : αk(y) = αm(x) for some integers k,m ≥ 0}

is called the component of Dα containing x . The components of Dα correspond to the
connected components of the underlying undirected graph of Dα .

Definition 2.4 Let {Di }i∈I be a collection of digraphs Di = (Si , ρi ). By the join
of the digraphs Di , denoted

⊔
i∈I Di , we mean the digraph D = (S, ρ) such that

S = ⋃
i∈I Si and ρ = ⋃

i∈I ρi . (That is, x → y is an arc in the join D if and only if
x → y is an arc in some Di .) If the index set I is finite, say I = {1, 2, . . . ,m}, we
will write D1 	 D2 	 · · · 	 Dm for

⊔
i∈I Di .

The following two propositions, proved in [6, Propositions 2.10 and 2.13], describe
the functional digraphs. (The first characterization of functional digraphs is due to F.
Harary [10, Theorem 2].)

Proposition 2.5 Let Dα be a functional digraph. Then for every component A of Dα ,
exactly one of the following three conditions holds:

(a) A has a unique cycle but not a double ray or right ray;
(b) A has a double ray but not a cycle; or
(c) A has a maximal right ray but not a cycle or double ray.

Proposition 2.6 Let Dα be a functional digraph. Then for every component A of Dα:

(1) if A has a (unique) cycle C, then A is the join of C and its branches;
(2) if A has a double ray W, then A is the join of W and its branches;
(3) if A has a maximal right ray R but not a double ray, then A is the join of R and

its (finite) branches.

Suppose that a component A of Dα has a right ray R but not a double ray. It is then
clear by Proposition 2.6 that A is the join of its maximal right rays. We will say that
such a component A is of type rro (“right rays only”).

Figure 1 presents a component of a digraph that contains a cycle (necessarily
unique). The cycle has two infinite and three finite branches. The infinite branch
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Fig. 1 A functional digraph component with a cycle
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Fig. 2 A functional digraph component with a double ray

on the right has one finite branch. Figure 2 presents a component of a digraph that
contains a double ray. The double ray in the middle has one infinite and three finite
branches. The infinite branch has one finite branch and extends to the second double
ray of the component. Figure 3 presents a component of a digraph that contains a
maximal right ray but not a double ray (type rro). The maximal right ray in the middle
has five (necessarily) finite branches.

3 Transformations with stabilizers

In this section, we describe the functional digraphs representing transformations that
have the so called stabilizer.

Let α ∈ T (S). We denote by im(α) the image of α. For an integer n > 0, we denote
by αn the nth power of α, that is, the composition of α with itself n times. As usual,
α0 denotes the identity transformation idS on S.
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Fig. 3 A functional digraph component of type rro

Definition 3.1 Let α ∈ T (S). The stable image of α, denote sim(α), is a subset of S
defined by

sim(α) = {x ∈ S : x ∈ im(αn) for every n ≥ 0.}.

(See [12, p. 42], where sim(α) is called the stable range of α.)

Remark 3.2 If α ∈ T (S), then:

• sim(α) consists of the vertices of Dα that lie on cycles, double rays, or infinite
branches;

• sim(α) = ∅ if and only if each component of Dα is of type rro.

Definition 3.3 Following [30], we define the stabilizer of α ∈ T (S) as the smallest
integer s ≥ 0 such that im(αs) = im(αs+1). If such an s does not exist, we say that α
has no stabilizer.

Remark 3.4 If α ∈ T (S), then:

• the stabilizer of α is the smallest integer s ≥ 0 such that αs(x) ∈ sim(α) for every
x ∈ S;

• α has the stabilizer s = 0 if and only if im(α) = sim(α) = S, which happens if
and only if each component A of Dα is either the join of a cycle C and the infinite
branches of C or the join of a double ray W and the infinite branches of W ;

• if α has the stabilizer s, then sim(α) = im(αs).

The transformations represented by the digraphs in Figs. 1 and 2 have stabilizers
2 and 4, respectively. If α is the transformation represented by the digraph in Fig. 3,
then sim(α) = ∅ and the stabilizer of α does not exist.
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Fig. 4 The digraph of α from Example 3.5

Example 3.5 A transformation may have a non-empty stable image and no stabilizer.
Let S = {. . . , x−1, x0, x1, . . .} ∪ {y1, y2, . . .} ∪ {z1, z2, . . .}. Consider α ∈ T (S) rep-
resented by the digraph in Fig. 4. Then sim(α) = {. . . , x−1, x0, x1, . . .}∪{y1, y2, . . .}
but α has no stabilizer because of the increasing lengths of the finite branches of the
double ray 〈. . . x−1 x0 x1 . . .〉.

For the rest of this section, our goal is to characterize the digraphs of transformations
with stabilizers.

Lemma 3.6 Let α ∈ T (S) such that α has the stabilizer s. Suppose [x0 x1 . . . xs] is a
chain in Dα such that xs does not lie on a cycle. Then α has a left ray 〈. . . y2 y1 xs].
Proof We will construct a sequence y0, y1, y2, . . . of elements of S such that y0 = xs
and for every n ≥ 0,

(a) [yn . . . y0] is a chain in Dα , and
(b) yn ∈ sim(α).

Let y0 = xs . Then [y0] is a chain in Dα and y0 = xs = αs(x0) ∈ sim(α) (see
Remark 3.4). Let n ≥ 0 and suppose we have constructed vertices y0 = xs, y1, . . . , yn
that satisfy (a) and (b). Since sim(α) = im(αs) = im(αs+1), we have yn ∈ im(αs+1).
Thus, there are z0, . . . , zs, zs+1 in S such that

z0 → · · · → zs → zs+1 = yn .

Let yn+1 = zs . Then

yn+1 = zs → zs+1 = yn → yn−1 → · · · → y0.

Note that yn+1 /∈ {yn, . . . , y0} since otherwise xs = y0 would lie on a cycle. Thus
[yn+1 yn . . . y0] is a chain in Dα and yn+1 = zs = αs(z0) ∈ sim(α).

The sequence y0 = xs, y1, y2, . . . that satisfies (a) and (b) for every n ≥ 0 has been
constructed. But then 〈. . . y2 y1 xs] is a left ray in Dα . �	

123



658 J. Araújo et al.

...•

•

•

•

•

x3

x2

x1

x0

x−1
...

•
•

•

z5
z4

z3
••
y1y2

· · ·

•

•

z2

z1

Fig. 5 The digraph of α from Example 3.9

The following lemma states that the digraph of a transformations with stabilizer
cannot have a component of type rro (see the paragraph after Proposition 2.6 and
Figure 3).

Lemma 3.7 Let α ∈ T (S) with stabilizer s. Then for every component A of Dα, A
has a (unique) cycle or a double ray.

Proof Suppose that a component A of Dα does not have a cycle. Select any
x0 ∈ A. Since A has no cycle, [x0 x1 x2 . . .〉, where x1 = α(x0), x2 = α(x1), . . .,
is a right ray in A. By Lemma 3.6, A has a left ray 〈. . . y2 y1 xs]. For every
n ≥ 0, yn /∈ {xs+1, xs+2, . . .} since otherwise A would have a cycle. Hence
〈. . . y2 y1 xs xs+1 xs+2 . . .〉 is a double ray in A. �	

The converse of Lemma 3.7 is not true, that is, not every α ∈ T (S) such that every
component of Dα has a cycle or a double ray has the stabilizer (see Example 3.5).

Definition 3.8 Let α ∈ T (S). A finite branch [x0 x1 . . . xm] in Dα is called a twig
in Dα if xm ∈ sim(α) (that is, xm lies on a cycle, double ray, or infinite branch) and
xp /∈ sim(α) for every p ∈ {0, . . . ,m − 1}.
Example 3.9 Not every finite branch is a twig. Let S = {. . . , x−1, x0, x1, . . .} ∪
{y1, y2, . . .} ∪ {z1, . . . , z5}, and consider α ∈ T (S) with the digraph in Figure 5.
Then [z1 z2 y1 x0] is a branch in Dα but not a twig, while [z1 z2 y1] and [z3 z4 z5 x2]
are twigs.

Theorem 3.10 Let α ∈ T (S). Then α has the stabilizer if and only if:

(1) every component of Dα has a unique cycle or a double ray, and
(2) there is an integer M ≥ 0 such that every twig in Dα has length ≤ M.

Proof Suppose α has the stabilizer, say s. Then (1) holds by Lemma 3.7. To prove
(2), suppose to the contrary that such an integer M does not exist. Then there is a
twig in Dα of length greater than s, say [x0 . . . xs . . . xm] with m > s. Since s is the
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stabilizer of α, we have xs = αs(x0) ∈ sim(α) (see Remark 3.4), which contradicts
the definition of a twig. We have proved (2).

Conversely, suppose that α satisfies (1) and (2). Let s be the smallest value of M
from (2). We claim that im(αs) = im(αs+1). Let z ∈ im(αs). Suppose to the contrary
that z /∈ sim(αs+1). Then, by (1), Proposition 2.6, and the fact that z ∈ im(αs), Dα has
a finite branch [x0 . . . xk . . . xk+s = z . . . xt ], where k ≥ 0, t ≥ k + s, and xt lies on
a cycle or double ray. Consider the smallest p ∈ {0, . . . , t} such that xp ∈ sim(α) and
note that p ≤ k + s. (Indeed, if p > k + s, then [x0 . . . xk+s . . . xp] would be a twig
of length p > s, which is impossible.) But then z = xk+s = αk+s−p(xp) ∈ sim(α),
which is a contradiction. Thus z ∈ sim(α), and so z ∈ im(αs+1) by the definition of
sim(α). We proved that im(αs) ⊆ im(αs+1). Since the reverse inclusion is obvious,
it follows that im(αs) = im(αs+1).

We claim that s is the stabilizer of α. The claim is clearly true if s = 0. Suppose
s > 0. Then Dα has a twig [x0 . . . xs]. Suppose to the contrary that there exists
p, 0 ≤ p < s such that im(α p) = im(α p+1). Then xp = α p(x0) ∈ im(α p). But
im(α p) = im(α p+1) = im(α p+2) = · · · , which implies that xp ∈ im(αn) for every
n ≥ 0. Thus xp ∈ sim(α), which is a contradiction since p < s and [x0 . . . xs] is a
twig. The claim has been proved, which concludes the proof of the theorem. �	

It follows from Theorem 3.10 and its proof that if α ∈ T (S) has the stabilizer s,
then

s = the smallest M ≥ 0 such that every twig in Dα has length ≤ M. (3.1)

4 Cayley functions

Let S be a set. Recall that a transformation α ∈ T (S) is called aCayley function if there
is a binary operation ∗ on S such that (S, ∗) is a semigroup and α is an inner translation
of the semigroup S; that is, there exists a ∈ S such that for every x ∈ S, α(x) = a ∗ x .

The purpose of this section is to characterize the digraphs of the Cayley functions.
To do this, we will use the algebraic description of the Cayley functions given in [30].

Definition 4.1 Suppose α ∈ T (S) has the stabilizer s. If s > 0, we define the subset
�α of S by:

�α = {a ∈ S : αs(a) ∈ sim(α) but αs−1(a) /∈ sim(α)}.

If s = 0, we define �α to be S.

Remark 4.2 If α ∈ T (S) has the stabilizer s > 0, then �α consists of the initial
vertices of the twigs of length s in Dα .

For example, for α defined in Example 3.9, �α = {z3}. The following result is due
to Zupnik [30, Theorems 1–3].

Theorem 4.3 Let α ∈ T (S). Then α is a Cayley function if and only if exactly one of
the following conditions holds:
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(a) α has no stabilizer and there exists a ∈ S such that αn(a) /∈ im(αn+1) for every
n ≥ 0;

(b) α has the stabilizer s such that α|im(αs ) is one-to-one and there exists a ∈ �α

such that αm(a) = αn(a) implies αm = αn for all m, n ≥ 0; or
(c) α has the stabilizer s such that α|im(αs ) is not one-to-one and there exists a ∈ �α

such that:
(i) αm(a) = αn(a) implies m = n for all m, n ≥ 0; and
(ii) For every n ≥ s, there are pairwise distinct elements y1, y2, . . . of S such

that α(y1) = αn(a), α(yk) = yk−1 for every k ≥ 2, and if n > 0 then
y1 �= αn−1(a).

Conditions (a)–(c) of Theorem 4.3 correspond to Theorems 1–3 of [30], respec-
tively. The slight difference in phrasing is due to the fact that for transformations α

with stabilizer s, Zupnik uses the set

Bα = {b ∈ S : αn(b) ∈ im(αs) if and only if n ≥ s − 1}

(although he does not specify exactly what that means when s = 0), while we use
the set �α from Definition 4.1. The set �α is more natural for our purposes than Bα

since if s > 0, then �α consists of the initial vertices of the twigs in Dα of length s,
whereas Bα = {α(a) : a ∈ �α}; that is, Bα consists of the vertices that come after the
initial vertices of such twigs.

Lemma 4.4 Let α ∈ T (S). Then α|sim(α) is one-to-one if and only if Dα does not
have an infinite branch.

Proof (⇒) We will prove the contrapositive. Suppose Dα has an infinite branch L .
Then L is an infinite branch of a cycle or double ray. Suppose L = 〈. . . y2 y1 xi ] is an
infinite branch of a cycle C = (x0 . . . xk−1). Then y1, xi−1 ∈ sim(α) with y1 �= xi−1
(since y1 does not lie on C) and α(y1) = α(xi−1) = xi , which implies that α|sim(α) is
not one-to-one. An argument in the case when L is an infinite branch of a double ray
is similar.

(⇐) Suppose Dα does not have an infinite branch. Let x, y ∈ sim(α) be such that
α(x) = α(y). Then x and y are vertices of the same component of Dα , say A. By
Proposition 2.5, A has a unique cycle or a double ray (since a component of type
rro has no vertices that belong to sim(α)). Suppose A has a cycle C . Then, since
x, y ∈ sim(α) and Dα does not have an infinite branch, x and y must lie on C . Thus
α(x) = α(y) since, clearly, α restricted to the vertices of C is one-to-one. If A has a
double ray, we prove that α(x) = α(y) in a similar way. Hence α|sim(α) is one-to-one.

�	
Lemma 4.5 Let α ∈ T (S) be a Cayley function. Then every component of Dα has a
unique cycle or a double ray if and only if α has the stabilizer.

Proof Suppose every component of Dα has a unique cycle or a double ray. Suppose
to the contrary that α has no stabilizer. Then, by Theorem 4.3, there is a ∈ S such
that αn(a) /∈ im(αn+1) for every n ≥ 0. Let A be the component of Dα containing a.
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Suppose A has a unique cycle, say C . Then, by Proposition 2.6, A is the join of C and
its branches. It follows that there is an integer k ≥ 0 such that αk(a) lies on C . But
then αk(a) ∈ im(αk+1), which is a contradiction. If A has a double ray, we obtain a
contradiction by a similar argument. Hence α has the stabilizer.

The converse follows from Theorem 3.10. �	
If α ∈ T (S), then the digraph Dα has exactly one of the following features:

• Dα has a component of type rro;
• every component of Dα has a unique cycle or a double ray, and Dα does not have
an infinite branch; or

• every component of Dα has a unique cycle or a double ray, and Dα has an infinite
branch.

Wewill characterize the digraphs of Cayley functions considering each of the above
three cases.

Theorem 4.6 Let α ∈ T (S) be such that Dα has a component of type rro. Then α is
a Cayley function if and only if Dα has a component A of type rro such that:

(1) A is the join of a maximal right ray R = [x0 x1 x2 . . .〉 and its branches;
(2) for every i ≥ 1, if [y0 y1 . . . ym = xi ] is a branch of R, then m ≤ i .

Proof Suppose α is a Cayley function. Then α has no stabilizer by Lemma 4.5. Hence,
by Theorem 4.3, there is a ∈ S such that such that αn(a) /∈ im(αn+1) for every n ≥ 0.
Let A be the component of Dα containing a, and note that A is of type rro (see the proof
of Lemma 4.5). Let x0 = a and xi = α(xi−1) for every i ≥ 1. Then x0 is an initial
vertex of Dα (since x0 = a /∈ im(α)) and x0, x1, x2, . . . are pairwise distinct (since A
has no cycle). Thus R = [x0 x1 x2 . . .〉 is a maximal right ray in A. By Proposition 2.6,
A is the join of R and its branches, that is, (1) is satisfied. To prove (2), suppose to the
contrary that for some i ≥ 1, there is a branch [y0 y1 . . . ym = xi ] of R with m > i .
Then

αi (a) = αi (x0) = xi = ym = αm(y0) ∈ im(αm) ⊆ im(αi+1),

which is a contradiction. Hence (2) is satisfied.
Conversely, suppose that Dα has a component A of type rro such that (1) and (2)

are satisfied. Then α has no stabilizer by Theorem 3.10. Let a = x0. Suppose to
the contrary that there is n ≥ 0 such that αn(a) ∈ im(αn+1). Then xn = αn(x0) =
αn(a) = αn+1(y) for some y ∈ S. Clearly y does not lie on R. Thus, byProposition2.6,
there is a finite branch [y0 . . . yk = y . . . ym = xi ] of R with 0 ≤ k < m. By (2), we
have m ≤ i . Since αn+1(y) = xn , we must have n ≥ i . Thus

αn−i (xi ) = xn = αn+1(y) = αn+1(yk) = αn−m+k+1(αm−k(yk)) = αn−m+k+1(xi ),

which implies n − i = n −m + k + 1. Thus k + 1 = m − i ≤ 0 (since m ≤ i), which
is a contradiction. We have proved that αn(a) /∈ im(αn+1) for every n ≥ 0. Hence α

is a Cayley function by Theorem 4.3. �	
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Fig. 6 A Cayley function (left) and not a Cayley function (right) (see Theorem 4.6)

Example 4.7 Consider components A1 and A2 in Fig. 6. By Theorem 4.6, any trans-
formation α1 whose digraph has component A1 is a Cayley function, whereas any
transformation α2 whose only component of type rro is A2 is not a Cayley function.
Also, any α that has the component presented in Fig. 3 is a Cayley function.

Definition 4.8 Let α ∈ T (S) and letN = {0, 1, 2, . . .}. We define supb(α), supt (α) ∈
N ∪ {∞} by

supb(α) = sup{m : m = 0 or m is the length of a finite branch in Dα},
supt (α) = sup{m : m = 0 or m is the length of a twig in Dα}. (4.1)

Lemma 4.9 Let α ∈ T (S) be such that every component of Dα has a unique cycle or
a double ray, and Dα does not have an infinite branch. Then supb(α) = supt (α).

Proof Since every twig is a finite branch (see Definition 3.8), supt (α) ≤ supb(α) in
any Dα . To prove supb(α) ≤ supt (α), it suffices to show that if Dα has a finite branch
of length m, then Dα has a twig of length k ≥ m. Let P = [y0 . . . ym] be a finite
branch of lengthm, and let A be the component of Dα containing P . If A has a unique
cycle, then every finite branch in A is a twig (since Dα has no infinite branches and a
component with a cycle does not have a double or right ray), so a desired twig of length
at least m is P itself. Suppose A has a double ray, say W . Then sim(α) ∩ A = V (W )

since Dα has no infinite branches. Thus, if ym lies onW , then again P itself is a desired
twig. Suppose ym does not lie onW (which is possible since ym may lie on a maximal
right ray). Then, by Proposition 2.6, there is a finite branch P1 = [y0 . . . ym . . . yk]
such that k > m and yk lies on W . Thus P1 is a twig of length bigger than m. Hence
supb(α) ≤ supt (α). �	

Lemma 4.9 is not true if Dα has an infinite branch. Let

S = {. . . x−1 x0, x1, . . .} ∪ {y1, y2, . . .} ∪ {z1, z2, . . .},

and considerα ∈ T (S)with digraph in Figure 7. Note that sim(α) = {. . . , x−1, x0, x1,
. . .} ∪ {y1, y2, . . .}. We have supb(α) = ∞ since for every n ≥ 1, [zn yn . . . y1 x0] is
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Fig. 7 A transformation α with supt (α) < supb(α)

a finite branch (of the double ray 〈. . . x−1 x0 x1 . . .〉), but supt (α) = 1 since the only
twigs in Dα are [z1 y1], [z2 y2], [z3 y3], . . . .
Theorem 4.10 Let α ∈ T (S) be such that every component of Dα has a unique cycle
or a double ray, and Dα does not have an infinite branch. Then α is a Cayley function
if and only if the following conditions are satisfied:

(1) s = supb(α) is finite;
(2) if s > 0 and Dα has a double ray, then some double ray in Dα has a branch of

length s;
(3) if Dα does not have a double ray, then there are integers 1 ≤ k1 < k2 < . . . <

kp, p ≥ 1, such that:
(a) {k1, . . . , kp} is the set of the lengths of the cycles in Dα;
(b) ki divides kp for every i ∈ {1, . . . , p}; and
(c) if s > 0, then some cycle of Dα of length kp has a branch of length s.

Proof Suppose α is a Cayley function. By Lemma 4.5, α has the stabilizer, say s1. By
(3.1), s1 = supt (α), and so s1 = supb(α) = s by Lemma 4.9. Thus (1) holds since
the stabilizer of any transformation is finite by definition. By Lemma 4.4, α|sim(α) is
one-to-one, and so α|im(αs ) is one-to-one since sim(α) = im(αs) (see Remark 3.4).

Suppose that s > 0 and that Dα has a double ray, say W = 〈. . . x−1 x0 x1 . . .〉.
By Theorem 4.3, there is a ∈ �α such that for all m, n ≥ 0, if αm(a) = αn(a) then
αm = αn . Then a is the initial point of some twig P in Dα of length s (see Remark 4.2).
Suppose to the contrary that no double ray in Dα has a branch of length s. Then P
must be a branch of some cycle (y0 . . . yk−1), k ≥ 1. Thus αs(a) = αs+k(a), and so
αs = αs+k . But then xs = αs(x0) = αs+k(x0) = xs+k , which is a contradiction, asW
is a double ray. Hence some double ray of Dα must have a branch of length s, which
proves (2).

Suppose Dα does not have a double ray. Then each component of Dα has a unique
cycle. Let a ∈ �α be as in the proof of (2) (but here we do not assume that s > 0). Then
there is a cycleC = (y0 . . . yk−1) in Dα such that, for some j , either a = y j (if s = 0)
or C has a branch [a . . . y j ] of length s (if s > 0). In either case, αs(a) = αs+k(a),
and so αs = αs+k . Let (x0 . . . xt−1) be any cycle in Dα , and let i ∈ {0, . . . , t − 1} be
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such that αs(xi ) = x0. Then

xk = αk(x0) = αk(αs(xi )) = αs+k(xi ) = αs(xi ) = x0.

It follows that k ≡ 0 (mod t), that is, t divides k. We have proved that the set of the
lengths of the cycles in Dα is bounded above by k, and so it is finite, say {k1, k2, . . . , kp}
with 1 ≤ k1 < k2 < . . . < kp = k. We have also proved that each t = ki divides
k = kp and that C has a branch of length s (if s > 0). Thus (3) holds.

Conversely, suppose that (1)–(3) are satisfied. Then, by (1), (3.1), and Lemma 4.9,
s = supb(α) is the stabilizer ofα. As in the proof of the first part,α|im(αs ) is one-to-one.

Suppose Dα has a double ray. Then, by (2), there is a ∈ �α such that αs(a) lies
on some double ray. Then, for all m, n ≥ 0, if αm(a) = αn(a) then m = n, and so
αn = αm .

Suppose Dα does not have a double ray. Then, by (3), there is a ∈ �α such that
αs(a) lies on a cycle C of length kp. Suppose αm(a) = αn(a), where m, n ≥ 0. We
may assume thatm ≥ n. Thenm ≡ n (mod kp), that is,m = n+qkp for some q ≥ 0.
If n < s (which is possible only if s > 0), then αm(a) = αn(a) implies m = n, so
αm = αm . Suppose n ≥ s, and let x ∈ S. Since s is the stabilizer of α and n ≥ s, αn(x)
lies on some cycle of Dα . Let C1 = (x0 . . . xki ) be the cycle such that α

n(x) = x j for
some j . By (3), kp = rki for some r ≥ 1. Thus

αm(x) = αn+qkp (x) = αn+qrki (x) = αqrki (αn(x)) = αqrki (x j ) = x j = αn(x),

which implies αm = αn since x was an arbitrary element of S. Hence α is a Cayley
function by Theorem 4.3. �	
Example 4.11 Consider transformations α and β whose digraphs are presented in
Figs. 8 and 9, respectively. Then α is a Cayley function, while β is not a Cayley
function (since s = 3 and (2) of Theorem 4.10 is not satisfied). If we remove the
component with the double ray from Fig. 8, the resulting transformation will not be
a Cayley function since (3) of Theorem 4.10 will not be satisfied. If we remove the
component with the double ray from Fig. 9, the resulting transformation will be a
Cayley function.

Fig. 8 A Cayley function described by Theorem 4.10
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Fig. 9 Not a Cayley function (see Theorem 4.10)

It is of interest to apply Theorem 4.10 to permutations. Let Sym(S) be the set of
permutations on S, that is, bijections from S to S. Let α ∈ Sym(S). Then α is an inner
translation of a group with universe S if and only if Dα is either a join of disjoint
double rays or a join of cycles of the same length [28, Theorem 2]. The following is
an immediate corollary of Theorem 4.10.

Corollary 4.12 Let α ∈ Sym(S). Then α is a Cayley function if and only if exactly
one of the following conditions holds:

(a) Dα has a double ray; or
(b) Dα is a join of cycles, and there are integers 1 ≤ k1 < k2 < . . . < kp, p ≥ 1,

such that
(i) {k1, . . . , kp} is the set of the lengths of the cycles in Dα;
(ii) ki divides kp for every i ∈ {1, . . . , p}.

Example 4.13 Let S = {1, 2, . . . , 11}. Consider

α = (1 2 3 4 5 6)(7 8 9)(10 11) and β = (1 2 3 4)(5 6 7 8)(9 10 11)

in T (S). Then α is a Cayley function, while β is not a Cayley function.

The last case to consider is when Dα has no component of type rro but it does have
an infinite branch.

Theorem 4.14 Let α ∈ T (S) be such that every component of Dα has a unique cycle
or a double ray, and Dα has an infinite branch. Then α is a Cayley function if and
only if the following conditions are satisfied:

(1) s = supt (α) is finite;
(2) Dα has a double ray W = 〈. . . x−1 x0 x1 . . .〉 such that for some xi :

(a) if s > 0 then W has a finite branch at xi of length s; and
(b) W has an infinite branch at each x j with j > i .

Proof Suppose α is a Cayley function. By Lemma 4.5, α has the stabilizer, say s1. By
(3.1), s1 = supt (α) = s, and so (1) holds since the stabilizer of any transformation is
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finite by definition.ByLemma4.4,α|sim(α) is not one-to-one, and soα|im(αs ) is not one-
to-one since since sim(α) = im(αs). Thus, there exists a ∈ �α such that (i) and (ii) of
Theorem4.3 hold. Let A be the component of Dα containing a. Suppose to the contrary
that A has a cycle, say C = (x0 . . . xk−1). Then, by Proposition 2.6, α p(a) = x j for
some j and p ≥ 0, and so αk+p(a) = αk(α p(a)) = αk(x j ) = x j = α p(a). Thus
k + p = p by (i) of Theorem 4.3, which is a contradiction.

Hence A has a double ray, and so sim(α)∩V (A) consists of the vertices x of A such
that x lies on some double ray in A. Thus, since αs(a) ∈ sim(α), there is a double
ray W = 〈. . . x−1 x0 x1 . . .〉 in A such that αs(a) = xi for some i . If s > 0, then
[a α(a) α2(a) . . . αs(a) = xi ] is a finite branch of W of length s (by the definition of
�α). Let j > i and note that x j = αn(a) for n = s + j − i . By (ii) of Theorem 4.3,
there is a left ray L = 〈. . . y2 y1 αn(a) = x j ] in A such that y1 �= αn−1(a) = x j−1.
Hence y1 does not lie on W , and so L is an infinite branch of W at x j . We have
proved (2).

Conversely, suppose (1) and (2) are satisfied. Then, by (1) and (3.1), s =
supt (α) is the stabilizer of α. By Lemma 4.4, α|im(αs ) is not one-to-one. Let W =
〈. . . x−1 x0 x1 . . .〉 be a double ray from (2). If s > 0, then W has a finite branch
[y0 . . . ys = xi ]. Set a = y0 if s > 0, and a = xi if s = 0. In either case, a ∈ �α . For
all m, n ≥ 0, if αm(a) = αn(a) then m = n since a is in a component of Dα that does
not have a cycle. Let n ≥ s. We want to prove that there are pairwise distinct elements
y1, y2, . . . of S such that α(y1) = αn(a), α(yk) = yk−1 for every k ≥ 2, and if n > 0
then y1 �= αn−1(a). If n = s, then we can take y1 = xi−1, y2 = xi−2, . . . . Suppose
n > s. Then αn(a) = x j for j = i + n − s > i . By (2b), W has an infinite branch
〈. . . z2 z1 x j ], and we can take y1 = z1, y2 = z2, . . . . Hence α is a Cayley function
by Theorem 4.3. �	

For example, the transformation with digraph in Fig. 10 is a Cayley function (with
s = 4).

Let α ∈ T (S) be such that every component of Dα has a unique cycle or a double
ray. By Theorems 4.10 and 4.14, if α is a Cayley function, then either every component
of Dα has at most one double ray or some component of Dα has infinitelymany double
rays. So, transformations with digraphs in Figs. 2, 4, 5, and 7 are not Cayley functions.
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•

•
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• . . .•
• . . .
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Fig. 10 A Cayley function described by Theorem 4.14
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5 The solution of problem 3 for finite permutations

Let S be a non-empty set. For a transformation α ∈ T (S), the centralizer C(α) of
α in T (S) is defined by C(α) = {β ∈ T (S) : αβ = βα}. Elements of C(α), for an
arbitrary α ∈ T (S), were characterized in [6]. In this section, we initiate the study of
the following problem: given α ∈ T (S), which transformations β ∈ C(α) are Cayley
functions? We show how our description of Cayley functions can be used to solve this
problem in the special case when S is finite and α is a permutation. As will be clear
by the end of this section, problem 3 is very difficult, even with graph descriptions of
the centralizers and Cayley functions.

For the remainder of this section, Swill denote a finite non-empty set. The following
theorem is [6,Corollary 6.4].We agree that if (y0 . . . ym−1) is a cycle and i is an integer,
then yi means yr where r ≡ i (mod m) and 0 ≤ r < m.

Theorem 5.1 Let α ∈ Sym(S) and β ∈ T (S). Then β ∈ C(α) if and only if for
every cycle σ = (x0 . . . xk−1) in α, there exists a cycle θ = (y0 . . . ym−1) in α such
that m divides k and β wraps σ around θ at some yt , that is, β(xi ) = yt+i for every
i ∈ {0, 1, . . . , k − 1}.

Let α ∈ Sym(S) and let Cα be the set of cycles in α (including the 1-cycles). For
β ∈ C(α), we define a transformation ψβ on Cα by

ψβ(σ) = the unique θ ∈ Cα such that β wraps σ around θ.

Note thatψβ is well defined by Theorem 5.1, that is,ψβ ∈ T (Cα), and that the vertices
of the digraph Dψβ are the cycles in α.

The following lemma, which we will use implicitly in the subsequent arguments,
follows immediately from the definition of ψβ and Theorem 5.1.

Lemma 5.2 Let α ∈ Sym(S) and β ∈ C(α). Suppose that A is a component of Dψβ

with cycle (σ0 σ1 . . . σk−1), and that Z is the set of all elements x ∈ S such that x is
in some σ ∈ A. Then:

(1) the cycles σ0, σ1, . . . , σk−1 have the same length;
(2) for every x ∈ Z , β(x) ∈ Z, that is, β|Z ∈ T (Z);
(3) if σ, θ ∈ A with ψβ(σ) = θ , then for every x in σ, β(x) is in θ ;
(4) if x ∈ Z is not in any σi , then x does not lie on any cycle of Dβ|Z .

Lemma 5.3 Let α ∈ Sym(S) and β ∈ C(α). Suppose that A is a component of Dψβ

with cycle (σ0 σ1 . . . σk−1), each σi having length p. Let Z be as in Lemma 5.2 and
let σ0 = (x0 x1 . . . xp−1). Then:

(1) βk(x0) = xl for some l ∈ {0, 1, . . . , p − 1};
(2) every cycle in Dβ|Z has length kp

gcd(p,l) .

Proof Since (σ0 σ1 . . . σk−1) is a cycle in Dψβ , ψk
β(σ0) = σ0. Hence βk(x0) is in σ0,

and so βk(x0) = xl for some l. This proves (1).
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To prove (2), recall that β|Z ∈ T (Z) by Lemma 5.2. Let t be the smallest positive
integer such that β t (x0) = x0. Then ψ t

β(σ0) = σ0, and hence t = ku for some integer
u. As α and β commute, we have

x0 = β t (x0) = βku(x0) = βk(u−1)(xl) = βk(u−1)(αl(x0))

= αlβk(u−1)(x0) = · · · = αlu(x0).

The smallest positive integer u forwhichαlu(x0) = x0 is
p

gcd(p,l) . Hence Dβ|Z contains
a cycle of length t = ku = kp

gcd(p,l) .

We will show that every cycle in Dβ|Z has length kp
gcd(p,l) . Let x ∈ Z . If x is not a

vertex of any σi , then x is not a vertex of any cycle of Dβ|Z by Lemma 5.2.
Suppose that x is a vertex of σ0, say x = xi . Since βk ∈ C(α) and βk(x0) = xl ,

we have βk(xi ) = xi+l by Theorem 5.1. We can renumber the vertices of σ0 in such
a way that xi becomes x0. Then, by the foregoing argument, we obtain a cycle (x . . .)

in Dβ|Z of length kp
gcd(p,l) .

Suppose that x is a vertex of σm with m �= 0. Renumber the vertices of
σ0, σ1, . . . , σk−1 in such away that for each i, σi = (xi0 . . .), x = xm0 , andβ i (x00 ) = xi0.
We have already shown that βk(x00 ) = x0l . Thus, since βm ∈ C(α),

βk(xm0 ) = βk(βm(x00 )) = βm(βk(x00 )) = βm(x0l ) = xml .

Hence, by the foregoing argument, we obtain a cycle (x . . .) in Dβ|Z of length
kp

gcd(p,l) .
Since we have considered all possible cycles in Dβ|Z , (2) follows.

Remark 5.4 Let Z and σ0, σ1, . . . , σk−1 be as in Lemma 5.3, and let x ∈ Z . By the
proof of Lemma 5.3, we have:

(1) if x is not in any σi , then x does not lie on any cycle of Dβ|Z ;
(2) if x is in some σi , then Dβ|Z has a cycle (x . . .) of length kp

gcd(p,l) , where l ∈
{0, 1, . . . , p − 1} is such that βk(x) = αl(x).

Lemma 5.5 Let α ∈ Sym(S) and β ∈ C(α). Suppose that A is a component of Dψβ

with cycle (σ0 σ1 . . . σk−1). Let Z be as in Lemma 5.2. Assume that the maximum
length of a branch in A is s (with s = 0 if A has no branches). Then:

(1) if s = 0, then Dβ|Z has no branches;
(2) if s > 0, then every branch in Dβ|Z has length at most s, and there exists a branch

in Dβ|Z of length s.

Proof If A has no branches, then every element of Z lies on some cycle in Dβ|Z by
Remark 5.4. This shows the first assertion.

To prove (2), suppose that s > 0 and let [θ0 θ1 . . . θm = σi ] be a branch in A,
so m ≤ s. Let x be in θ j , where j ∈ {0, 1 . . . ,m − 1}. Since m ≤ s, we have
ψ s

β(θ j ) = σi+s−m+ j , and so βs(x) is in σi+s−m+ j . Thus, by Remark 5.4, βs(x) lies
on a cycle in Dβ|Z . Hence every branch in Dβ|Z has length at most s.

Now let [θ0 θ1 . . . θs = σi ] be a branch of A whose length realizes the maximum
value s. Let x be in θ0. Then βs(x) is in σi (since ψβ(θ0) = σi ) and for every
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u ∈ {0, 1, . . . , s−1}, βu(x) is in θu (sinceψβ(θ0) = θu), and so βu(x) does not lie on
any cycle of Dβ|Z by Remark 5.4. Thus [x β(x) β2(x) . . . βs(x)] is a branch in Dβ|Z
of length s. �	

With Theorem 4.10 and the lemmas of this section, we obtain the following char-
acterization.

Theorem 5.6 Let α, β ∈ T (S), where S is finite, α is a permutation, and β ∈ C(α).
Suppose that {A1, A2, . . . , At } is the set of components of Dψβ and s = supb(ψβ).

Let M be the set of numbers of the form ki pi
gcd(pi ,li )

, 1 ≤ i ≤ t , where ki is the length
of the cycle Ci in Ai , pi is the length of each cycle of α that occurs in Ci , and li is
the unique number in {0, 1, . . . , pi − 1} such that βki (x) = αli (x), where x is any
element of any cycle of α that occurs in Ci . Then β is a Cayley function if and only if
the following conditions are satisfied:

(1) the largest element m of M is a multiple of every element of M;
(2) if s > 0, then some component Ar of Dψβ such that kr pr

gcd(pr ,lr )
= m has a branch

of length s.

Proof Suppose thatβ is aCayley function. ByLemma5.3,M is the set of the lengths of
cycles in Dβ . Thus (1) follows fromTheorem4.10. Suppose that s > 0.ByLemma5.5,
s = supb(β), and so, by Theorem 4.10 and the foregoing observation about M , some
cycle C of Dβ of length m has a branch of length s. By Lemma 5.3 and its proof,
there exists a component Ar of Dψβ such that m = kr pr

gcd(pr ,lr )
and all vertices of C are

contained in Z , where Z is as in Lemma 5.2 (with A = Ar ). Finally, by Lemma 5.5,
Ar has a branch of length s.

Conversely, suppose that conditions (1) and (2) are satisfied. We have already
observed that s = supb(β) and that M is the set of the lengths of cycles in Dβ .
Thus, 3(a) and 3(b) of Theorem 4.10 hold by (1). By Lemmas 5.3 and 5.5, Dβ has a
cycle of length m with a branch of length s. Hence 3(c) of Theorem 4.10 holds, and
so β is a Cayley function. �	

Theorem 5.6 enables us to decide if a given β ∈ C(α) is a Cayley function by
analyzing the components of the digraph of ψβ and the corresponding numbers from
the set M .

Example 5.7 Let S = {x0, x1, x2, x3, y0, y1, z0, z1, w0, w1}. Consider

α = (x0 x1 x2 x3)(y0 y1)(z0 z1)(w0 w1) ∈ Sym(S).

Let θ = (x0 x1 x2 x3), σ1 = (y0 y1), σ2 = (z0 z1), and σ3 = (w0 w1).
Let β ∈ C(α) such that Dψβ is given in Figure 11, β(x0) = y0, β(y0) =

y0, β(z0) = w1, and β(w0) = z0. (Note that the remaining values of β are deter-
mined uniquely by Theorem 5.1.) The components of Dψβ and the corresponding
numbers from M are:

• A1 = {θ, σ1} with k1 p1
gcd(p1,l1)

= 1·2
gcd(2,0) = 1,

• A2 = {σ2, σ3} with k2 p2
gcd(p2,l2)

= 2·2
gcd(2,1) = 4.
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•σ1

•θ

∧ •σ3

∧∨

•
σ2

Fig. 11 Digraph Dψβ
from Example 5.7

•σ3

•σ2

∧

∧

∨

•
σ1

•
∧

θ

Fig. 12 Digraph Dψγ from Example 5.7

Thus M = {1, 4} with m = 4, and so (1) of Theorem 5.6 holds. However, we have
s = 1 and A2, which is the only component with the corresponding number equal to
m = 4, does not have a branch of length s. Hence (2) of Theorem 5.6 does not hold,
and so β is not a Cayley function.

Now consider γ ∈ C(α) such that Dψγ is given in Fig. 12, γ (x0) = x2, γ (y0) =
z0, γ (z0) = w1, and γ (w0) = z0. The components of Dψγ and the corresponding
numbers from M are:

• A1 = {θ} with k1 p1
gcd(p1,l1)

= 1·4
gcd(4,2) = 2,

• A2 = {σ1, σ2, σ3} with k2 p2
gcd(p2,l2)

= 2·2
gcd(2,1) = 4.

Thus M = {2, 4} with m = 4, and so (1) of Theorem 5.6 holds. Further, we have
s = 1 and A2, whose corresponding number ism = 4, has a branch of length s. Hence
(2) of Theorem 5.6 also holds, and so γ is a Cayley function.

6 Problems

In this paper, we have solved a special case of problem 3 of the approach outlined on
page 2. The solution for the case of finite permutations opens some natural questions.

Problem 6.1 Letσ be a permutation on a finite set S. Describe theCayley idempotents
that commute with σ . Describe the Cayley permutations δ of S such that σδ and δσ

are Cayley permutations.

Moving from permutations to idempotents, the following problem is also natural.

Problem 6.2 Find the Cayley functions on a finite set that commute with a given
Cayley idempotent.
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The main open question regarding the content of this paper is problem 3 in its full
generality.

Problem 6.3 Describe the Cayley functions on a set S that commute with a given
Cayley function on S.

Problem 4 of the approach does not need the solution of problem 3, and hence can
be immediately attempted. Recall that the size of the image of a transformation on S
is called its rank.

Problem 6.4 Characterize the pairs {α, β} of Cayley functions on S such that α and β

occur as left inner translations of the same semigroup (possibly with some constrains
added, such as pairs of permutations, idempotents, or maps of a given rank).

The ultimate goal is to carry out all steps of the approach outlined on page 2.

Problem 6.5 Carry out the steps 3–6 of the approach on page 2 for some special types
of maps (permutations, idempotents, maps of a fixed maximum rank) on a finite set.

Problem 6.6 Carry out the steps 3–6 of the approach for all Cayley functions on an
arbitrary set.

Other problems about Cayley functions present themselves.

Problem 6.7 Characterize the ordered pairs (α, β) of Cayley functions on S such that
in the same semigroup (S, ·), α = λa and β = ρa for some a ∈ S.

Problem 6.8 Given a Cayley function α on S, find all Cayley functions β on S such
that αβ and βα are Cayley functions.

Ifα and β occur as left inner translations of the same semigroup, then the semigroup
generated by α and β consists of Cayley functions. The converse is not necessarily
true.

Problem 6.9 Find the pairs ofCayley functions [permutations, idempotents, functions
of a given rank] that generate a semigroup of Cayley functions.

Let S be a semigroup. A left translation of S is a transformation λ on S such that
λ(xy) = (λ(x))y for all x, y ∈ S; similarly, a right translation of S is a transformation
ρ on S such that ρ(xy) = x(ρ(y)) for all x, y ∈ S. A left translation λ and a right
translation ρ of S form a linked pair (λ, ρ) if x(λ(y)) = (ρ(x))y for all x, y ∈ S. For
every a ∈ S, the pair of inner translations (λa, ρa) is a linked pair. (See [7, page 10].)
The following problem is a generalization of Problem 6.7.

Problem 6.10 Characterize the pairs (α, β) of transformations on a set S such (α, β)

is a linked pair for some semigroup with universe S.

We can also replace inner translations of a semigroup with endomorphisms of a
semigroup or some other algebraic structure.
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Problem 6.11 Describe the transformations α on a set S such that α is an endomor-
phism of some semigroup [group, inverse semigroup, completely regular semigroup,
band, partially ordered set, etc.] with universe S.

Some research along these lines has already been done [29].
In this paper, we deal with full transformations on a set S, but analogous problems

can also be considered for partial injective transformations on S. A partial injective
transformation α on a set S is said to be a Vagner-Preston function if there exists an
inverse semigroup with universe S such that α appears in the Vagner-Preston repre-
sentation of S (see [13, Theorem 5.1.7]).

Problem 6.12 Describe Vagner-Preston functions and their digraphs. For Vagner-
Preston functions, solve problems analogous to those problems posed above for which
an analogous version makes sense and is not trivial.
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Mat. Časopis Sloven. Akad. Vied 18, 161–176 (1968). (Russian)
12. Higgins, P.M.: Digraphs and the semigroup of all functions on a finite set. GlasgowMath. J. 30, 41–57

(1988)
13. Howie, J.M.: Fundamentals of semigroup theory. Oxford Science Publications, Oxford (1995)
14. Jakubíková, D.: Systems of unary algebras with common endomorphisms. I, II, Czechoslovak Math.

J. 29(104):406–420, 421–429 (1979)

123



Directed graphs of inner translations of semigroups 673

15. Kolmykov, V.A.: On the commutativity relation in a symmetric semigroup. Sib. Math. J. 45, 931–934
(2004)

16. Kolmykov, V.A.: Endomorphisms of functional graphs. Discrete Math. Appl. 16, 423–427 (2006)
17. Kolmykov, V.A.: On commuting mappings. Math. Notes 86, 357–360 (2009)
18. Konieczny, J.: Green’s relations and regularity in centralizers of permutations. Glasgow Math. J. 41,

45–57 (1999)
19. Konieczny, J.: Semigroups of transformations commuting with idempotents. Algebra Colloq. 9, 121–

134 (2002)
20. Konieczny, J.: Semigroups of transformations commuting with injective nilpotents. Comm. Algebra

32, 1951–1969 (2004)
21. Konieczny, J.: Centralizers in the semigroup of injective transformations on an infinite set. Bull. Aust.

Math. Soc. 82, 305–321 (2010)
22. Konieczny, J.: Infinite injective transformations whose centralizers have simple structure. Cent. Eur.

J. Math. 9, 23–35 (2011)
23. Konieczny, J., Lipscomb, S.: Centralizers in the semigroup of partial transformations. Math. Japon.

48, 367–376 (1998)
24. Levi, I.: Normal semigroups of one-to-one transformations. Proc. Edinburgh Math. Soc. 34, 65–76

(1991)
25. Lipscomb, S.L.: The structure of the centralizer of a permutation. Semigroup Forum 37, 301–312

(1988)
26. Lipscomb, S., Konieczny, J.: Centralizers of permutations in the partial transformation semigroup.

Pure Math. Appl. 6, 349–354 (1995)
27. Liskovec, V.A., Feı̆nberg, V.Z.: On the permutability ofmappings. Dokl. Akad. NaukBSSR 7, 366–369

(1963). (Russian)
28. Šaı̆n, B.M.: On translations in semi-groups and groups. Volž. Mat. Sb. Vyp. 2, 163–169 (1964).

(Russian)
29. Szigeti, J.: Which self-maps appear as lattice endomorphisms? Discrete Math. 321, 53–56 (2014)
30. Zupnik, D.: Cayley functions. Semigroup Forum 3, 349–358 (1972)

123


	Directed graphs of inner translations of semigroups
	Abstract
	1 Introduction
	2 Functional digraphs
	3 Transformations with stabilizers
	4 Cayley functions
	5 The solution of problem 3 for finite permutations
	6 Problems
	Acknowledgements
	References




