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Abstract Given any directed graph E one can construct a graph inverse semigroup
G(E), where, roughly speaking, elements correspond to paths in the graph. In this
paper we study the semigroup-theoretic structure of G(E). Specifically, we describe
the non-Rees congruences on G(E), show that the quotient of G(E) by any Rees con-
gruence is another graph inverse semigroup, and classify the G(E) that have only Rees
congruences. We also find the minimum possible degree of a faithful representation
by partial transformations of any countable G(E), and we show that a homomorphism
of directed graphs can be extended to a homomorphism (that preserves zero) of the
corresponding graph inverse semigroups if and only if it is injective.
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1 Introduction

A graph inverse semigroup G(E) is a semigroup constructed from a directed graph
E (to be defined precisely below), where, roughly speaking, elements correspond to
paths in the graph. These semigroups were introduced byAsh/Hall [3] in order to show

Communicated by Benjamin Steinberg.

B Zachary Mesyan
zmesyan@uccs.edu

J. D. Mitchell
jdm3@st-and.ac.uk

1 Department of Mathematics, University of Colorado, Colorado Springs, CO 80918, USA

2 Mathematical Institute, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS,
Scotland, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00233-016-9793-x&domain=pdf


112 Z. Mesyan, J. D. Mitchell

that every partial order can be realized as that of the nonzeroJ -classes of an inverse
semigroup. Graph inverse semigroups also generalize polycyclic monoids, first defined
byNivat/Perrot [16], and arise in the study of rings andC∗-algebras.More specifically,
for any field K and any directed graph E , the (contracted) semigroup ring K G(E)

is called the Cohn path K -algebra of E , and the quotient of a Cohn path algebra
by a certain ideal is known as the Leavitt path K -algebra of E . These rings were
introduced independently by Abrams/Aranda Pino [1] and Ara/Moreno/Pardo [2].
Cohn path algebras and Leavitt path algebras are algebraic analogues of Toeplitz C∗-
algebras and graph C∗-algebras (see [11,12]), respectively. The connection of graph
inverse semigroups to rings is discussed in more detail in [14], while their connection
to C∗-algebras is covered in [17]. There is extensive literature devoted to all of the
algebras mentioned above. Graph inverse semigroups also have been studied in their
own right in recent years [4,8–10,14].

The goal of the present paper is to describe the semigroup-theoretic structure of
an arbitrary graph inverse semigroup G(E), with particular emphasis on the relation-
ship between properties of semigroups and properties of graphs. After recalling some
known facts about the ideals of G(E) and describing the partially ordered set of its
J -classes (Proposition 3), we study in detail the congruences on graph inverse semi-
groups and their corresponding quotients. Specifically,we show that the quotient of any
G(E) by a Rees congruence is always isomorphic to another graph inverse semigroup
(Theorem 7), describe the non-Rees congruences on these semigroups (Proposition 8),
and completely classify thoseG(E) that have onlyRees congruences, in terms of prop-
erties of E (Theorem 10). Then we find the minimum possible degree of a faithful
representation by partial transformations of an arbitrary countable graph inverse semi-
group (Proposition 19). In particular, for finite G(E) this degree is the number of paths
in E ending in vertices with out-degree at most 1. We also show that a homomorphism
of directed graphs can be extended to a homomorphism of the corresponding graph
inverse semigroups (that preserves zero) if and only if it is injective (Theorem 20).
From this we conclude that the automorphism group of any graph E is isomorphic
to the automorphism group of the corresponding semigroup G(E) (Corollary 26) and
that every group can be realized as the automorphism group of some graph inverse
semigroup (Corollary 27). The relevant concepts from semigroup theory and graph
theory are reviewed in the next section.

Some of the results in this paper were suggested by computations obtained using
the Semigroups GAP package [15].

2 Definitions

2.1 Semigroups

We begin by recalling some standard notions from semigroup theory. The readers
familiar with the field may wish to skip this subsection, and refer to it as necessary.

Let S be a semigroup. Then S is an inverse semigroup if for each x ∈ S there is
a unique element x−1 ∈ S satisfying x = xx−1x and x−1 = x−1xx−1. By S1 we
shall mean the monoid obtained from S by adjoining an identity element (if S does
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The structure of a graph inverse semigroup 113

not already have such an element). The following relations on elements x, y ∈ S are
known as Green’s relations:

(1) x L y if and only if S1x = S1y,
(2) x R y if and only if x S1 = yS1,
(3) x J y if and only if S1x S1 = S1yS1,
(4) x H y if and only if x L y and x R y,
(5) x D y if and only if x L z and z R y for some z ∈ S.

Each of these is an equivalence relation, and we denote by Lx , Rx , and Jx theL -class,
R-class, andJ -class of x , respectively. The following define partial orders on these
classes:

(1) Lx ≤L L y if and only if S1x ⊆ S1y,
(2) Rx ≤R Ry if and only if x S1 ⊆ yS1,
(3) Jx ≤J Jy if and only if S1x S1 ⊆ S1yS1.

We denote by N and Z the semigroups of the natural numbers and the integers,
respectively, under addition.

2.2 Graphs

A directed graph E = (E0, E1, r, s) consists of two sets E0, E1 (containing vertices
and edges, respectively), together with functions s, r : E1 → E0, called source and
range, respectively. A path x in E is a finite sequence of (not necessarily distinct)
edges x = e1 . . . en such that r(ei ) = s(ei+1) for i = 1, . . . , n − 1. In this case,
s(x) := s(e1) is the source of x , r(x) := r(en) is the range of x , and |x | := n is the
length of x . If x = e1 . . . en is a path in E such that s(x) = r(x) and s(ei ) �= s(e j ) for
every i �= j , then x is called a cycle. A cycle consisting of one edge is called a loop.
The graph E is acyclic if it has no cycles. We view the elements of E0 as paths of
length 0 (extending s and r to E0 via s(v) = v and r(v) = v for all v ∈ E0), and denote
by Path(E) the set of all paths in E . Given a vertex v ∈ E0,

∣
∣{e ∈ E1 | s(e) = v}∣∣

is called the out-degree of v, while
∣
∣{e ∈ E1 | r(e) = v}∣∣ is the in-degree of v. (If X

is any set, then |X | denotes the cardinality of X .) A vertex v ∈ E0 is a sink if it has
out-degree 0. A strongly connected component of E is a directed subgraph F maximal
with respect to the property that for all v,w ∈ F0 there is some p ∈ Path(F) such
that s(p) = v and r(p) = w.

We say that a directed graph E is simple if it has no loops, and for all distinct
v,w ∈ E0 there is at most one e ∈ E1 such that s(e) = v and r(e) = w. A directed
graph E is finite if E0 and E1 are both finite. From now on we shall refer to directed
graphs as simply “graphs”.

Let Ea = (E0
a , E1

a , ra, sa) and Eb = (E0
b , E1

b , rb, sb) be two graphs, and let
φ0 : E0

a → E0
b and φ1 : E1

a → E1
b be functions. Then the pair φ = (φ0, φ1) is a graph

homomorphism from Ea to Eb if φ0(sa(e)) = sb(φ1(e)) and φ0(ra(e)) = rb(φ1(e))
for every e ∈ E1

a . If φ0 and φ1 are in addition bijective, then φ is a graph isomorphism
from Ea to Eb. In this case we say that Ea and Eb are isomorphic and write Ea ∼= Eb.
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114 Z. Mesyan, J. D. Mitchell

2.3 Graph inverse semigroups

Given a graph E = (E0, E1, r, s), the graph inverse semigroup G(E) of E is the
semigroup with zero generated by the sets E0 and E1, together with a set of variables
{e−1 | e ∈ E1}, satisfying the following relations for all v,w ∈ E0 and e, f ∈ E1:

(V) vw = δv,wv,
(E1) s(e)e = er(e) = e,
(E2) r(e)e−1 = e−1s(e) = e−1,
(CK1) e−1 f = δe, f r(e).

(Here δ is the Kronecker delta.) We define v−1 = v for each v ∈ E0, and for any path
y = e1 . . . en (e1, . . . , en ∈ E1) we let y−1 = e−1

n . . . e−1
1 . With this notation, every

nonzero element of G(E) can be written uniquely as xy−1 for some x, y ∈ Path(E),
by the CK1 relation. It is also easy to verify that G(E) is indeed an inverse semigroup,
with (xy−1)−1 = yx−1 for all x, y ∈ Path(E).

If E is a graph having only one vertex v and n edges (necessarily loops), for some
integer n ≥ 1, then G(E) is known as a polycyclic monoid, and is denoted by Pn .
We note that P1, also called the bicyclic monoid, is typically defined in the literature
without a zero element.

3 Ideals

The following characterizations of Green’s relations and their associated equivalence
classes on graph inverse semigroups will be useful throughout the paper. These char-
acterizations are also given by Jones in [8], but we include the short proofs for
completeness.

Lemma 1 Let E be any graph, and let u, v, x, y ∈ Path(E) be such that r(u) = r(v)

and r(x) = r(y). Then the following hold.

(1) Luv−1 ≤L Lxy−1 if and only if v = yt for some t ∈ Path(E).
(2) Ruv−1 ≤R Rxy−1 if and only if u = xt for some t ∈ Path(E).
(3) Juv−1 ≤J Jxy−1 if and only if s(t) = r(x) and r(t) = r(u) for some t ∈ Path(E).

Proof (1) Luv−1 ≤L Lxy−1 if and only if G(E)1uv−1 ⊆ G(E)1xy−1 if and only if
G(E)v−1 ⊆ G(E)y−1, since u−1, x−1, r(v), r(y) ∈ G(E). The latter is equivalent to
v−1 ∈ G(E)y−1, which is in turn equivalent to v−1 = t−1y−1 for some t ∈ Path(E),
that is v = yt .

(2) Analogously to the proof of (1), Ruv−1 ≤R Rxy−1 if and only if uv−1G(E)1 ⊆
xy−1G(E)1 if and only if u ∈ xG(E) if and only if u = xt for some t ∈ Path(E).

(3) Since xy−1 = xr(x)y−1 and r(x) = r(x)r(y) = x−1(xy−1)y, we have
G(E)xy−1G(E) = G(E)r(x)G(E).

Now suppose that there is t ∈ Path(E) such that s(t) = r(x) and r(t) = r(u).
Then

r(u) = r(t) = t−1t = t−1s(t)t ∈ G(E)r(x)G(E).

123



The structure of a graph inverse semigroup 115

Hence uv−1 = ur(u)v−1 ∈ G(E)r(x)G(E), and since G(E)r(x)G(E) =
G(E)xy−1G(E), we have uv−1 ∈ G(E)xy−1G(E). It follows that Juv−1 ≤J Jxy−1 .

Conversely, if Juv−1 ≤J Jxy−1 , then uv−1 ∈ G(E)xy−1G(E), and therefore

r(u) = u−1uv−1v ∈ G(E)xy−1G(E) = G(E)r(x)G(E).

Hence r(u) = st−1r p−1 for some r, p, s, t ∈ Path(E) with s(t) = r(x) = s(r),
r(t) = r(s), and r(r) = r(p). By the uniqueness of the representations of elements
of G(E) discussed in Sect. 2.3, for st−1r p−1 to be a vertex we must have s, p ∈ E0.
Hence s = r(u) = p, and therefore r(u) = t−1r . It follows that r = t , and in
particular, s(t) = r(x) and r(t) = r(s) = r(u), as required. 
�
Corollary 2 Let E be any graph, and let u, v, x, y ∈ Path(E) be such that r(u) =
r(v) and r(x) = r(y). Then the following hold.

(1) uv−1L xy−1 if and only if v = y.
(2) uv−1R xy−1 if and only if u = x.
(3) uv−1J xy−1 if and only if r(u) and r(x) are in the same strongly connected

component of E.
(4) uv−1H xy−1 if and only if uv−1 = xy−1.
(5) uv−1D xy−1 if and only if r(u) = r(x).

Proof To prove (1) we note that uv−1L xy−1 if and only if Luv−1 = Lxy−1 , which is
equivalent to v = y, by Lemma 1(1). The proofs of (2) and (3) are analogous, while (4)
follows from (1) and (2). For (5), we have uv−1D xy−1 if and only if uv−1L r p−1

and r p−1R xy−1 for some r, p ∈ Path(E) such that r(r) = r(p). By (1) and (2), this
is equivalent to v = p and r = x for some r, p ∈ Path(E) such that r(r) = r(p),
which is equivalent to r(x) = r(v) = r(u). 
�

It follows from Corollary 2(3) that there is a one-to-one correspondence between
the strongly connected components of the graph E and the nonzero J -classes of
G(E). In particular, if E acyclic, then the nonzero J -classes are in correspondence
with the vertices of E .

In the next proposition we describe the structure of the partial order of nonzero
J -classes of a graph inverse semigroup. First, we note that if E is a simple graph,
then every edge is uniquely determined by its source and range vertices, and hence
E1 can be identified with the subset

{

(s(e), r(e)) | e ∈ E1
}

of E0 × E0.

Proposition 3 Let E be a graph, and let C(E) be the set of strongly connected com-
ponents of E. Also let

B(E)={

(U, V ) | U �=V and s(e)∈V 0, r(e)∈U 0 for some e∈ E1}⊆C(E)×C(E),

and let ES be the simple graph defined by E0
S = C(E) and E1

S = B(E).
Then the following partially ordered sets are order-isomorphic:

(a) the set of nonzero J -classes of G(E) with the partial order ≤J ,
(b) the set of nonzero J -classes of G(ES) with the partial order ≤J ,
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116 Z. Mesyan, J. D. Mitchell

(c) C(E) with the least transitive reflexive binary relation containing B(E).

Proof First, note that (U, V ) ∈ C(E) × C(E) belongs to the relation given in (c)
if and only if there is a path p ∈ Path(E) with s(p) ∈ V 0 and r(p) ∈ U 0 (which
includes the case whereU = V ). It follows from this that if (U, V ) and (V, U ) belong
to this relation, then U = V , and hence that the relation is necessarily antisymmetric,
making it a partial order.

By Corollary 2(3), every nonzero J -class of G(E) contains a vertex, and two
vertices in E0 belong to the sameJ -class if and only if they are in the same strongly
connected component of E . Thus, the map ϕ1 from the set defined in (a) to the set
defined in (c), that takes eachJ -class to the strongly connected component containing
the vertices in that J -class, is well-defined and bijective. Analogously, the map ϕ2
from the set defined in (b) to the set defined in (c), that takes each J -class to the
strongly connected component containing the unique vertex in thatJ -class, is well-
defined and bijective.

Now, by Lemma 1(3), Ju ≤J Jv if and only if there is a path in E from v to u, for
all u, v ∈ E0, and similarly for ES . Hence, it follows from the definition of B(E) that
ϕ1 and ϕ2 respect the partial orders on their domains and codomains, and are therefore
order-isomorphisms. 
�

As a consequence of Proposition 3 we obtain the following result of Ash and Hall.

Corollary 4 (Theorem 4(i) in [3]) Every partially ordered set is order-isomorphic to
the set of nonzero J -classes of G(E) with the partial order ≤J , for some graph E.

Proof This follows from Proposition 3, since any partially ordered set can be obtained
by taking the transitive reflexive closure of a binary relation of the form B(E) in the
proposition. 
�

In contrast to Corollary 4, the possible partial order structures on the sets of L -
classes andR-classes of G(E) (with the partial orders ≤L and ≤R , respectively) are
rather limited, as the next lemma (which follows immediately from Lemma 1(1,2))
shows.

Lemma 5 Let E be a graph and v ∈ E0. Then Lv is a maximal element with respect
to ≤L , and Rv is a maximal element with respect to ≤R .

For example, it follows from the above lemma that up to order-isomorphism the
only totally ordered set with more than one element that can be realized as the nonzero
R-classes of G(E) with the partial order ≤R is the set of the negative integers (with
the usual ordering). For, by Lemma 5, the nonzero R-classes of G(E) are totally
ordered only if |E0| = 1. Moreover, there can be at most one edge in E1 (if e, f ∈ E1

were distinct, then Re and R f would be incomparable, by Lemma 1(2)). Thus, either
E1 is empty, in which case G(E) has exactly one nonzero R-class, or E1 = {e}, in
which case the nonzero R-classes are related as follows:

· · · ≤R Re3 ≤R Re2 ≤R Re ≤R Rv.

By a similar argument, the same holds for the L -classes of G(E).
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The structure of a graph inverse semigroup 117

4 Congruences

Recall that given a semigroup S, an equivalence relation R ⊆ S × S is a congruence
if (x, y) ∈ R implies that (xz, yz), (zx, zy) ∈ R for all x, y, z ∈ S. The diagonal
congruence on S is the relation � = {(x, x) | x ∈ S}. A congruence R ⊆ S × S is
a Rees congruence if R = (I × I ) ∪ � for some ideal I of S. Note that if S has a
zero element, then � is the Rees congruence corresponding to the zero ideal. Also, S
is congruence-free if its only congruences are S × S and �.

We begin our investigation of the congruences on graph inverse semigroups by
describing the quotients of these semigroups by Rees congruences.

Definition 6 Let E be a graph and S ⊆ E0. By E \ S we shall denote the graph F =
(F0, F1, rF , sF ), where F0 = E0 \ S, F1 = E1 \ {

e ∈ E1 | s(e) ∈ S or r(e) ∈ S
}

,
and rF , sF are the restrictions of r, s, respectively, to F1.

Theorem 7 Let E be a graph, and let R ⊆ G(E) × G(E) be a Rees congruence.
Then G(E)/R ∼= G(E \ (I ∩ E0)), where I is the ideal of G(E) corresponding to R.

Proof Write R = (I × I ) ∪ {(μ,μ) | μ ∈ G(E)} where I is an ideal of G(E), and
let F = E \ (I ∩ E0). Define ϕ : G(E) → G(F) by

ϕ(xy−1) =
{

xy−1 if x, y ∈ Path(F)

0 otherwise

for all x, y ∈ Path(E), and ϕ(0) = 0. We note that if uv−1 ∈ I for some u, v ∈
Path(E)with r(u) = r(v), then r(u) ∈ I , byCorollary 2(3), andhenceu, v /∈ Path(F).
It follows that ϕ(μ) = 0 if and only if μ ∈ I , for all μ ∈ G(E).

To show that ϕ is a homomorphism, let μ, ν ∈ G(E). If either μ ∈ I or ν ∈ I ,
then μν ∈ I , and therefore ϕ(μ)ϕ(ν) = 0 = ϕ(μν). Let us therefore suppose that
μ, ν /∈ I . Then ϕ(μ) = μ and ϕ(ν) = ν, by the definition of ϕ and the previous
paragraph. Thus, if μν = 0, then

ϕ(μ)ϕ(ν) = μν = 0 = ϕ(μν).

Let us therefore further assume that μν �= 0, and write μ = uv−1, ν = xy−1

(u, v, x, y ∈ Path(E)). Then there is some t ∈ Path(E) such that either v = xt or
x = vt . In the first case uv−1xy−1 = ut−1y−1. Since uv−1 /∈ I and uv−1J ut−1y−1,
by Corollary 2(3), it follows that ut−1y−1 /∈ I . Thus

ϕ(μ)ϕ(ν) = ϕ(uv−1)ϕ(xy−1) = uv−1xy−1 = ut−1y−1 = ϕ(ut−1y−1) = ϕ(μν).

If, on the other hand, x = vt , then uv−1xy−1 = uty−1. Again, since xy−1 /∈ I and
xy−1J uty−1, by Corollary 2(3), it follows that uty−1 /∈ I . Thus

ϕ(μ)ϕ(ν) = ϕ(uv−1)ϕ(xy−1) = uv−1xy−1 = uty−1 = ϕ(uty−1) = ϕ(μν).

Since in every case ϕ(μ)ϕ(ν) = ϕ(μν), we conclude that ϕ is a homomorphism.
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Since ϕ(μ) = 0 if and only if μ ∈ I , for all μ ∈ G(E), it follows that R =
{(μ, ν) ∈ G(E) | ϕ(μ) = ϕ(ν)}, which, by definition, is the kernel of ϕ. Since ϕ is
clearly surjective, by the first isomorphism theorem for semigroups [7, Theorem1.5.2],
G(E)/R ∼= G(F). 
�

Turning to non-Rees congruences, the next proposition shows how they arise.

Proposition 8 Let E be a graph and R ⊆ G(E) × G(E) a congruence. Then R is a
non-Rees congruence if and only if there exists v ∈ E0 such that (v, μ) ∈ R for some
μ ∈ G(E) \ {v}, but (v, 0) /∈ R.

Moreover, if v ∈ E0 is such that (v, μ) ∈ R for some μ ∈ G(E) \ {v}, but
(v, 0) /∈ R, then v must satisfy the following conditions.

(1) Let S = {μ ∈ G(E) | (v, μ) ∈ R}. Then S is an inverse semigroup, and every
element of S is of the form xpx−1 or xp−1x−1 for some x, p ∈ Path(E) satisfying
s(x) = v and r(x) = s(p) = r(p).

(2) There exists e ∈ E1 with s(e) = v, such that every p ∈ Path(E) \ E0 with
s(p) = v and r(p) = r(e) is of the form p = et for some t ∈ Path(E).

Proof Suppose that for all v ∈ E0 such that (v, μ) ∈ R for some μ ∈ G(E) \ {v},
we have (v, 0) ∈ R. Let ν ∈ G(E) \ {0} be any element such that (ν, μ) ∈ R for
some μ ∈ G(E) \ {ν}, and write ν = xy−1 (x, y ∈ Path(E)). We shall first show that
(ν, 0) ∈ R.

We may assume that μ �= 0, and write μ = st−1 (s, t ∈ Path(E)). Since ν �= μ,
either x �= s or y �= t . Let us assume that x �= s, since the other case can be
treated similarly. Also, since R is an equivalence relation, (ν, 0) ∈ R if and only if
(μ, 0) ∈ R. Thus, interchanging the roles of μ and ν if necessary, we may assume
that |x | ≤ |s|. Now, (r(x), x−1st−1y) = (x−1νy, x−1μy) ∈ R. Since |x | ≤ |s| and
x �= s, either x−1s = 0 or x−1s ∈ Path(E) \ E0. In either case x−1st−1y �= r(x),
fromwhich it follows that (r(x), 0) ∈ R, by assumption. Since R is a congruence, and
ν = xr(x)y−1, this implies that (ν, 0) ∈ R. It follows that G(E)1νG(E)1 ×{0} ⊆ R,
and hence G(E)1νG(E)1 × G(E)1νG(E)1 ⊆ R, as R is an equivalence relation.
Letting I ⊆ G(E) be the ideal generated by all ν ∈ G(E) \ {0} such that (ν, μ) ∈ R
for some μ ∈ G(E) \ {ν}, we conclude that I × I ⊆ R. It follows that R is the Rees
congruence corresponding to I .

Conversely, suppose that R is a Rees congruence, and write

R = (I × I ) ∪ {

(μ,μ) | μ ∈ G(E)
}

,

where I is an ideal ofG(E). If v ∈ E0 is such that (v, μ) ∈ R for someμ ∈ G(E)\{v},
then v ∈ I . Hence (v, 0) ∈ I × I ⊆ R, concluding the proof of the first claim.

For the remainder of the proof, let v ∈ E0 be such that (v, μ) ∈ R for some
μ ∈ G(E) \ {v}, but (v, 0) /∈ R. To prove (1), let μ ∈ S, and write μ = xy−1

(x, y ∈ Path(E)). Then (v, vxy−1v) ∈ R, and since vxy−1v �= 0, this implies that
v = s(x) = s(y). Thus, for all μ, ν ∈ S we have (ν, μν) = (vν, μν) ∈ R. Since
(v, ν) ∈ R, it follows that (v, μν) ∈ R, and hence μν ∈ S, showing that S is a
semigroup. Furthermore, for all μ = xy−1 ∈ S we have μμ = xy−1xy−1 ∈ S, which
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The structure of a graph inverse semigroup 119

implies that y−1x �= 0, and therefore either y = xt or x = yt for some t ∈ Path(E).
In the first case, μ = xt−1x−1, while in the second case, μ = yty−1, from which the
description of the elements of S in (1) follows.

To show that S is an inverse semigroup, let μ ∈ S. Then, by the above,
either μ = xt−1x−1 or μ = xtx−1 for some x, t ∈ Path(E) with s(x) = v.
Let us assume that μ = xt−1x−1, since the other case can be treated similarly.
Then (xx−1, μ) = (vxx−1, μxx−1) ∈ R, and therefore xx−1 ∈ S. Noting that
(xtx−1, xx−1) = (vxtx−1, μxtx−1) ∈ R, we conclude that μ−1 = xtx−1 ∈ S, and
hence S is an inverse semigroup.

To prove (2), first note that by (1) and the assumption that (v, μ) ∈ R for some
μ ∈ G(E) \ {v}, the vertex v cannot be a sink. Now suppose that for all e ∈ E1 with
s(e) = v, there exist f ∈ E1 \ {e} and t ∈ Path(E) satisfying s( f ) = v, r( f ) = s(t),
and r(t) = r(e). We shall show that in this case (v, 0) ∈ R, contradicting our choice
of v.

Let μ ∈ G(E) \ {v} be such that (v, μ) ∈ R. By (1), either μ = xpx−1 or
μ = xp−1x−1 for some x, p ∈ Path(E) with s(x) = v and r(x) = s(p) = r(p).
Let us suppose that μ = xpx−1, since the other case can be treated analogously.
Then xp �= v, since μ �= v. Write xp = eq for some e ∈ E1 and q ∈ Path(E).
Then, by assumption there is some f ∈ E1 \ {e} and t ∈ Path(E) satisfying s( f ) = v,
r( f ) = s(t), and r(t) = r(e). Letting s = f tq, we have s−1xp = q−1t−1 f −1eq = 0,
and therefore

(μ, 0) = (xpx−1, 0) = (xps−1vsx−1, xps−1(xpx−1)sx−1)

= (xps−1vsx−1, xps−1μsx−1) ∈ R.

Since (v, μ) ∈ R and R is an equivalence relation, this implies that (v, 0) ∈ R, as
desired. 
�

Theorem13 in [14], alongwith the subsequent comment, says that if S is any inverse
subsemigroup of G(E) such that μν �= 0 for all μ, ν ∈ S, then S is generated as a
semigroup by an element of the form xpx−1 (x, p ∈ Path(E)) and the idempotents in
S. In particular, this applies to the inverse semigroup S in Proposition 8(1).

The next lemma shows that any vertex satisfying condition (2) in Proposition 8
produces a non-Rees congruence.

Lemma 9 Let E be a graph, e ∈ E1, and v = s(e). Suppose that every p ∈ Path(E)\
E0 with s(p) = v and r(p) = r(e) is of the form p = et for some t ∈ Path(E).
Then the least congruence R ⊆ G(E) × G(E) containing (v, ee−1) is not a Rees
congruence.

Proof We begin by describing the elements of P = {(μvν, μee−1ν) | μ, ν ∈ G(E)},
since R is the least equivalence relation containing P .

For any x, y ∈ Path(E) with r(x) = r(y), we have
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(xy−1v, xy−1ee−1)

=

⎧

⎪⎪⎨

⎪⎪⎩

(x, xee−1) if y = v

(xy−1, xy−1) if y = et for some t ∈ Path(E)

(xy−1, 0) if s(y) = v, y �= v, and y �= et for all t ∈ Path(E)

(0, 0) otherwise.

Next, let us describe products of the form (xν, xee−1ν) belonging to P; i.e., ones
arising from multiplying elements of the first type above on the right by ν ∈ G(E).
For any p, r ∈ Path(E) with r(p) = r(r), we have

(xpr−1, xee−1 pr−1)

=

⎧

⎪⎪⎨

⎪⎪⎩

(xr−1, xee−1r−1) if p = v

(xpr−1, xpr−1) if p = et for some t ∈ Path(E)

(xpr−1, 0) if s(p) = v, p �= v, and p �= et for all t ∈ Path(E)

(0, 0) otherwise.

We note that the elements xr−1 and xee−1r−1, as on the first line of the previous
display, are never zero, since v = r(x) = r(r) = s(e). From the computations above
we see that

P ⊆
{(

xr−1, xee−1r−1)
∣
∣x, r ∈ Path(E), r(x) = v = r(r)

}

∪ (G(E) × {0}) ∪ �,

where � = {(μ,μ) | μ ∈ G(E)}. To better describe P , we next turn to products of
the form (xy−1ν, 0) belonging to P; i.e., ones arising from multiplying elements of
the third type in the first display above on the right by ν ∈ G(E).

Let I be the set of all elements of G(E) that occur as the first coordinates of such
tuples, that is

I =
{

xy−1 pr−1
∣
∣p, r, x, y ∈ Path(E), s(y) = v, y �= v,

and y �= et for all t ∈ Path(E)
}

,

and note that for any y ∈ Path(E) satisfying the conditions in the definition of I we
have r(y) = y−1y ∈ I . We shall show that I contains the ideal generated by r(y)

(provided I �= ∅). Any nonzero element of this ideal can be expressed in the form
st−1r(y)wz−1, for some s, t, w, z ∈ Path(E) satisfying s(t) = r(y) = s(w). But,

st−1r(y)wz−1 = st−1y−1ywz−1 = s(yt)−1(yw)z−1,

and the latter is an element of I , by our choice of y. Hence I contains the ideal
generated by r(y). Since every xy−1 pr−1 ∈ I can be expressed as xr(y)y−1 pr−1, it
further follows that I is the ideal generated by all vertices r(y), where y ∈ Path(E)

satisfies the conditions in the definition of I (if such paths exist).
Moreover, for all y ∈ Path(E) of this form and all p ∈ Path(E) such that s(p) =

r(y), it cannot be the case that r(p) = v, since then s = ype would satisfy s(s) = v

123



The structure of a graph inverse semigroup 121

and r(s) = r(e), but would not be of the form et for all t ∈ Path(E), contrary to
hypothesis. It follows that Jv �J Jr(y), by Lemma 1(3), which implies that v /∈ I .
Similarly, for all y as above and p ∈ Path(E) such that s(p) = r(y), it cannot be the
case that r(p) = r(e), since then s = yp would satisfy s(s) = v and r(s) = r(e),
but not be of the form et for all t ∈ Path(E), contrary to hypothesis. It follows that
Jr(e) �J Jr(y), and therefore r(e) /∈ I .

We also observe that for any (xpr−1, 0) ∈ P of the form given in the third line of
the description of (xpr−1, xee−1 pr−1) above, xpr−1 ∈ I , since setting y = p, we
have xpr−1 = xpy−1yr−1, and y = p satisfies the conditions in the definition of I .
It follows that if (μ, 0) ∈ P for some μ ∈ G(E) \ {0}, then μ ∈ I , and hence

P \ � =
{(

xr−1, xee−1r−1)
∣
∣x, r ∈ Path(E), r(x) = v = r(r)

}

∪ ((I \ {0}) × {0}).

Now, let

S =
{(

xr−1, xee−1r−1),
(

xee−1r−1, xr−1)
∣
∣x, r ∈ Path(E), r(x) = v = r(r)

}

∪ �,

and let S be the transitive closure of S. Then it is easy to see that S is an equivalence
relation. We claim that R = S ∪ (I × I ), from which it follows that if (μ, 0) ∈ R for
some μ ∈ G(E) \ {0}, then μ ∈ I . Since, as shown above, v /∈ I , this implies that
(v, 0) /∈ R, and hence R is not a Rees congruence, by Proposition 8.

Since P ⊆ S ∪ (I × I ) ⊆ R, to prove that R = S ∪ (I × I ), it is enough
to show that S ∪ (I × I ) is an equivalence relation. Since S and I × I are both
equivalence relations, it suffices to show that if (μ, ν) ∈ S \ �, then μ /∈ I . Now, if
(μ, ν) ∈ S \�, then eitherμ = xr−1 orμ = xee−1r−1 for some x, r ∈ Path(E)with
r(x) = v = r(r). In the first case, if μ = xr−1 ∈ I , then v = x−1(xr−1)r = x−1μr
would imply that v ∈ I , contradicting the description of I above. In the second
case, r(e) = e−1x−1(xee−1r−1)re = e−1x−1μre would imply that r(e) ∈ I , again
producing a contradiction. Thus if (μ, ν) ∈ S \ �, then μ /∈ I , as desired. 
�

Combining the previous proposition and lemma we obtain the following general-
ization of a result [8, Theorem 3.2.15] of Jones, which deals only with graphs where
every vertex is the source of some cycle and has out-degree at least 2.

Theorem 10 The following are equivalent for any graph E.

(1) The only congruences on G(E) are Rees congruences.
(2) For every e ∈ E1 there exists p ∈ Path(E) \ E0 with s(p) = s(e) and r(p) =

r(e), such that p �= et for all t ∈ Path(E).

Proof If (2) holds, then G(E) cannot have any non-Rees congruences, by Propo-
sition 8. Conversely, if (2) does not hold, then G(E) has at least one non-Rees
congruence, by Lemma 9. 
�

The following easy consequence of this theorem generalizes a result [3, Theorem 3]
of Ash and Hall, which pertains only to simple graphs.
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Corollary 11 Let E be a graph such that |G(E)| > 2. Then G(E) is congruence-free
if and only if E has only one strongly connected component, and each vertex in E has
out-degree at least 2.

Proof Suppose that G(E) is congruence-free. Then the only congruences on G(E)

are Rees congruences. Thus G(E) satisfies condition (1) of Theorem 10, and hence
also condition (2). In particular, each vertex in E is either a sink or has out-degree at
least 2. Also, since every strongly connected component of E corresponds to an ideal
of G(E), by Corollary 2(3), and hence produces a congruence, there must be only one
strongly connected component in E . This implies that either E has no sinks (in which
case every vertex has out-degree at least 2), or E consists of just one vertex and no
edges. The latter situation is ruled out by our assumption that |G(E)| > 2.

Conversely, if E has only one strongly connected component, then it has only one
nonzero ideal, by Corollary 2(3), and therefore only the Rees congruences G(E) ×
G(E) and {(μ,μ) | μ ∈ G(E)}. If, in addition, each vertex in E has out-degree at least
2, then E satisfies condition (2) of Theorem 10, and hence no additional congruences
on G(E) are possible. 
�

Specializing further, we have an alternative proof of the following classical result
about polycyclic monoids. (See, e.g., Sect. 3.4, Theorem 5 and Sect. 9.3, Theorem 5
in [13].)

Corollary 12 The polycyclic monoid Pn is congruence-free if and only if n > 1.

Proof As mentioned in Sect. 2.3, Pn can be viewed as the graph inverse semigroup
G(E), where E consists of one vertex and n loops. Since this graph has only one
strongly connected component, the statement follows immediately from Corollary 11.


�
By Theorem 7, the quotient of a graph inverse semigroup by a Rees congruence

always gives a graph inverse semigroup. However, this is not true of quotients by
non-Rees congruences in general, as the next example demonstrates.

Example 13 Let E be the following graph.

•v e �� •w

Also, let

R =
{(

v, ee−1),
(

ee−1, v
)} ∪

{

(μ,μ)
∣
∣μ ∈ G(E)

}

⊆ G(E) × G(E).

Then it is easy to see that R is a congruence on G(E), and that G(E)/R has exactly
5 elements, three of which are idempotents (namely, 0 and the images of w and v).
However, the only graph inverse semigroup with exactly two nonzero idempotents
is the one corresponding to the graph with two vertices and no edges. Since this
semigroup has three elements, it cannot be isomorphic to G(E)/R.
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In contrast to the previous example, it is possible to obtain a graph inverse semigroup
as the quotient of another such semigroup by a non-Rees congruence, as the next
example shows.

Example 14 Let E be the following graph.

•v e��

Also, let R ⊆ G(E) × G(E) be the least congruence containing (v, e). Since G(E) \
{0} is a semigroup (the bicyclic semigroup, as usually defined), (0, μ) ∈ R only if
μ = 0. Therefore, R is not a Rees congruence, by Proposition 8. Now, (e−1, v) =
(e−1v, e−1e) ∈ R, fromwhich it is easy to see that (μ, ν) ∈ R for allμ, ν ∈ G(E)\{0}.
It follows that G(E)/R ∼= G(F), where F is a graph having only one vertex and no
edges.

5 Idempotents

Anelementμof a semigroup is an idempotent ifμμ = μ. In this sectionwe recall some
basic facts about idempotents in inverse semigroups and record some observations
about the idempotents of G(E) that will be useful throughout the rest of the paper. All
of the results about G(E) are easy, and most have been previously observed elsewhere
(e.g., [8,9]), but we give the proofs here for completeness.

Given an inverse semigroup S, the natural partial order ≤ on S is defined byμ ≤ ν

(μ, ν ∈ S) if μ = εν for some idempotent ε ∈ S. (See [7, Sect. 5.2] for details.)
Furthermore restricting ≤ to the subset I of S consisting of all the idempotents makes
(I,≤) a lower semilattice [7, Proposition 1.3.2], that is, a partially ordered set where
every pair of elements has a greatest lower bound.

Lemma 15 Let E be a graph, let ≤ be the natural partial order on G(E), and let I
be the subset of idempotents of G(E). Then the following hold.

(1) An element μ ∈ G(E)\ {0} is in I if and only if μ = xx−1 for some x ∈ Path(E).
(2) Let u, v, x, y ∈ Path(E) be such that r(u) = r(v) and r(x) = r(y). Then

uv−1 ≤ xy−1 if and only if u = xt and v = yt for some t ∈ Path(E).
(3) An idempotent μ ∈ G(E) is maximal in I with respect to ≤ if and only if μ ∈ E0.
(4) An idempotent μ ∈ G(E) is maximal in I \ E0 with respect to ≤ if and only if

μ = ee−1 for some e ∈ E1.

Proof (1) If S is any inverse semigroup and μ ∈ S is an idempotent, then μμμ = μ,
and hence μ = μ−1. Applying this to G(E), suppose that xy−1 ∈ G(E) is an
idempotent (x, y ∈ Path(E)). Then xy−1 = (xy−1)−1 = yx−1, from which the
desired statement follows.

(2) Suppose that u = xt and v = yt for some t ∈ Path(E). Then

uv−1 = xtt−1y−1 = (xtt−1x−1)xy−1,

which implies that uv−1 ≤ xy−1, since xtt−1x−1 is an idempotent.
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For the converse, suppose that uv−1 ≤ xy−1. Then uv−1 = (pp−1)xy−1 for some
p ∈ Path(E), by (1). Since pp−1xy−1 �= 0, there is some t ∈ Path(E) such that either
x = pt or p = xt . In the first case, uv−1 = pp−1xy−1 = xy−1, and hence u = xt and
v = yt , where t = r(x) = r(y). In the second case, uv−1 = pp−1xy−1 = xtt−1y−1,
and hence u = xt and v = yt , as desired.

(3) Suppose that μ ∈ E0 and μ ≤ ν for some ν ∈ I . Then ν �= 0, and hence, by (1)
and (2), ν = xx−1 and μ = xtt−1x−1 for some x, t ∈ Path(E). Since μ is a vertex,
this can happen only if ν = x = t = μ, and hence μ is maximal.

Conversely, suppose that μ ∈ G(E) is an idempotent maximal in I . Then μ �= 0,
and hence μ = xx−1 for some x ∈ Path(E), by (1). Thus μ = xx−1 ≤ s(x), by (2).
Since μ is maximal, this implies that μ = x = s(x), and hence μ ∈ E0.

(4) Let e ∈ E1, and suppose that ee−1 ≤ ν for some ν ∈ I \ E0. Then ν �= 0,
and hence, by (1) and (2), ν = xx−1 and ee−1 = xtt−1x−1 for some x, t ∈ Path(E).
Since e ∈ E1, this implies that either e = x and t = r(e), or e = t and x = s(e). In the
second case, ν ∈ E0, contrary to assumption. Thus e = x , and therefore ν = ee−1.
Hence ee−1 is maximal in I \ E0.

Conversely, suppose that μ ∈ G(E) is an idempotent maximal in I \ E0. Then
μ �= 0, and hence μ = xx−1 for some x ∈ Path(E), by (1). Since xx−1 /∈ E0, we can
write x = et for some e ∈ E1 and t ∈ Path(E), and hence μ = ett−1e−1 ≤ ee−1,
by (2). Since μ is maximal in I \ E0, and ee−1 ∈ I \ E0, this implies that μ = ee−1

(i.e., t ∈ E0). 
�
Given an inverse semigroup S, the following relation is called the maximum

idempotent-separating congruence on S:

{

(μ, ν)
∣
∣μ, ν ∈ S and μ−1εμ = ν−1εν for all idempotents ε ∈ S

}

.

The semigroup S is fundamental if this relation is equal to the diagonal congruence.

Lemma 16 The inverse semigroup G(E) is fundamental for any graph E.

Proof It is a standard fact [7, Proposition 5.3.7] that in an inverse semigroup the
maximum idempotent-separating congruence is the largest congruence contained in
H . Now, by Corollary 2(4),μH ν if and only ifμ = ν, for allμ, ν ∈ G(E). Thus in
a graph inverse semigroupH is precisely the diagonal congruence, and therefore so is
the maximum idempotent-separating congruence, showing that G(E) is fundamental.


�

6 Representations

Recall that given a nonempty set X , a binary relation R ⊆ X × X is a partial function
if (x, y), (x, z) ∈ R implies that y = z for all x, y, z ∈ X . It is a standard fact that the
set PX of all partial functions on X is a semigroup, under composition of relations
[7, Proposition 1.4.2], called the partial transformation semigroup on X . Given a
semigroup S, a semigroup homomorphism φ : S → PX is a called a representation
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of S by partial transformations. If φ is injective, then it is a faithful representation.
The cardinality of X is called the degree of φ.

Our next goal is to find the minimum possible degree of a faithful representation
of G(E) by partial transformations, when G(E) is countable. If G(E) is countably
infinite, then it does not have a faithful representation by partial transformations on any
finite set (since there are only finitelymany such partial transformations).Hence, in this
case, the minimum possible degree of a faithful partial transformation representation
of G(E) is |G(E)| = ℵ0. The usual Vagner-Preston representation of G(E) (see [7,
Theorem 5.1.7]) is an example of such a representation with minimum degree.

Turning to finite graph inverse semigroups, we note that G(E) is finite precisely
when E is finite and acyclic. To determine the minimum possible degree of a faithful
representation of G(E) by partial transformations we shall need the following theorem
of Easdown. Before stating the result, we recall that an element x of a partially ordered
set X is called join-irreducible if it is not zero (i.e., the least element of X , when it
exists), and x = y ∨ z implies that x = y or x = z, for all y, z ∈ X (where y ∨ z
denotes the least upper bound of y and z, if it exists).

Theorem 17 (Theorem 7 in [5]) Let S be a finite fundamental inverse semigroup.
Then the minimum possible degree of a faithful representation of S by partial trans-
formations equals the number of join-irreducible idempotents in S.

We note that Easdown’s proof of this theorem gives an explicit construction of a
faithful representation having the minimum possible degree.

Next, let us describe the join-irreducible idempotents of G(E).

Lemma 18 Let E be a graph, let ≤ be the natural partial order on G(E), and let
x ∈ Path(E). Then the idempotent xx−1 is join-irreducible in the lower semilattice of
idempotents of G(E) if and only if the out-degree of r(x) is at most 1.

Proof Suppose that the out-degree of r(x) is at least 2. Then there are e, f ∈ E1 such
that e �= f and s(e) = s( f ) = r(x). Hence xx−1 = xee−1x−1 ∨ x f f −1x−1, by
Lemma 15(2), and so xx−1 is not join-irreducible.

For the converse, suppose that the out-degree of r(x) is at most 1. If the out-degree
of r(x) is 0, then, by Lemma 15(2), the only idempotent τ such that τ < xx−1 is τ = 0.
Therefore xx−1 is clearly join-irreducible in this case. Let us therefore assume that
out-degree of r(x) is 1, and that xx−1 = μ∨ ν for some idempotents μ, ν ∈ G(E). If
μ = 0 or ν = 0, then xx−1 = ν or xx−1 = μ, respectively. Hencewemay also assume
that μ = yy−1 and ν = zz−1 for some distinct y, z ∈ Path(E), where, without loss of
generality,μ �= xx−1. Then, by Lemma 15(2), y = xeu for some u ∈ Path(E), where
e ∈ E1 is the unique edge satisfying s(e) = r(x). If z �= x , then, similarly, z = xev
for some v ∈ Path(E). But then yy−1 ∨ zz−1 = xee−1x−1 �= xx−1, contradicting
xx−1 = μ ∨ ν. Thus z = x , and so xx−1 is join-irreducible. 
�
Proposition 19 Let G(E) be a finite graph inverse semigroup. Then the minimum
possible degree of a faithful representation of G(E) by partial transformations is the
number of paths x ∈ Path(E) such that the out-degree of r(x) is at most 1.
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Proof Since, by Lemma 16, G(E) is fundamental, we can apply Theorem 17 to it.
The proposition now follows from Lemma 18, since, by Lemma 15(1), all nonzero
idempotents of G(E) are of the form xx−1, for some x ∈ Path(E). 
�

7 Homomorphisms

Next, we describe when a homomorphism of graphs can be extended to a homomor-
phism of the corresponding graph inverse semigroups.

Theorem 20 Let Ea and Eb be two graphs, and suppose that φ0 : E0
a → E0

b and
φ1 : E1

a → E1
b are functions such that φ = (φ0, φ1) is a graph homomorphism from

Ea to Eb. Then the following are equivalent:

(1) φ can be extended to a semigroup homomorphism ϕ : G(Ea) → G(Eb) that
takes zero to zero,

(2) φ0 and φ1 are injective.

If these conditions hold, then ϕ is uniquely determined and injective. Moreover, ϕ is
surjective if and only if φ0 and φ1 are surjective.

Proof Suppose that (1) holds. If φ0 is not injective, then there exist distinct v,w ∈ E0
a

such that φ0(v) = φ0(w). Hence

0 = ϕ(0) = ϕ(vw) = ϕ(v)ϕ(w) = φ0(v)φ0(w) = φ0(v)φ0(v),

which is impossible, since φ0(v) ∈ E0
b . Thus φ0 must be injective.

If φ1 is not injective, then there exist distinct e, f ∈ E1
a such that φ1(e) = φ1( f ).

Since ϕ is a homomorphism of inverse semigroups, ϕ(μ−1) = ϕ(μ)−1 for all μ ∈
G(Ea), and hence

0 = ϕ(0) = ϕ( f −1e) = ϕ( f )−1ϕ(e) = φ1( f )−1φ1(e) = φ1(e)
−1φ1(e).

This is impossible, since φ1(e) ∈ E1
b . Thus φ1 must be injective, showing that (2)

holds.
Conversely, suppose that (2) holds. As noted in Sect. 2.2, any nonzero element

μ ∈ G(Ea) can be written uniquely in the form μ = ve1 . . . en f −1
m . . . f −1

1 w for
some v,w ∈ E0

a , e1, . . . , en, f1, . . . , fm ∈ E1
a , and m, n ∈ N (with n = 0 signifying

that the “path” part of μ is just the vertex v, and analogously for m). Thus we can
define ϕ : G(Ea) → G(Eb) by

ϕ(ve1 . . . en f −1
m . . . f −1

1 w) = φ0(v)φ1(e1) . . . φ1(en)φ1( fm)−1 . . . φ1( f1)
−1φ0(w),

and ϕ(0) = 0.
To show that ϕ is a semigroup homomorphism, let μ, ν ∈ G(Ea). If either μ = 0

or ν = 0, then clearly ϕ(μ)ϕ(ν) = 0 = ϕ(μν). Let us therefore assume that μ �= 0
and ν �= 0.
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Suppose that μν = 0, and write μ = s f −1
m . . . f −1

1 v, ν = we1 . . . en y−1 (s, y ∈
Path(Ea), v,w ∈ E0

a , e1, . . . , en, f1, . . . , fm ∈ E1
a , and m, n ∈ N). Then either

v �= w, or v = w, e1 = f1, . . . , el−1 = fl−1, but el �= fl for some l ≥ 1. In the first
case, φ0(v)φ0(w) = 0, by the injectivity of φ0, and hence ϕ(μν) = 0 = ϕ(μ)ϕ(ν).
In the second case

ϕ(μ)ϕ(ν) = φ0(s(s)) . . . φ1( fm)−1 . . . φ1( fl)
−1φ1(el) . . . φ1(en) . . . φ0(s(y)) = 0,

since φ1( fl) �= φ1(el), by the injectivity of φ1. Thus ϕ(μ)ϕ(ν) = 0 = ϕ(μν).
Let us therefore assume thatμν �= 0, andwriteμ = st−1 and ν = xy−1 (s, t, x, y ∈

Path(Ea)). Then there is some p ∈ Path(Ea) such that either t = xp or x = tp. Let
us assume that t = xp, since the other case is similar. Then, using the definition of ϕ

and the fact that φ is a graph homomorphism, we see that

ϕ(st−1) = ϕ(s)ϕ(xp)−1 = ϕ(s)(ϕ(x)ϕ(p))−1 = ϕ(s)ϕ(p)−1ϕ(x)−1.

Hence

ϕ(μ)ϕ(ν) = ϕ(s)ϕ(p)−1ϕ(x)−1ϕ(x)ϕ(y)−1 = ϕ(s)ϕ(p)−1ϕ(y)−1

= ϕ(sp−1y−1) = ϕ(μν),

showing that ϕ is a homomorphism, whose restrictions to E0
a and E1

a are φ0 and φ1,
respectively. That is, (1) holds.

Next, we note that ϕ is uniquely determined, since E0
a ∪ E1

a ∪ {0} is a generating
set for G(Ea) as an inverse semigroup, and hence the value of any homomorphism
to another inverse semigroup is determined by its values on this set. Also, it follows
immediately from the definition of ϕ and the injectivity of φ0 and φ1 that ϕ is injective.
The final claim follows from the fact that the inverse subsemigroup ofG(Eb) generated
by φ0(E0

a) ∪ φ1(E1
a) ∪ {0} is ϕ(G(Ea)). 
�

The next example shows that in the previous theorem it is necessary to assume that
ϕ preserves zero for (1) to be equivalent to (2).

Example 21 Consider the following two graphs.

Ea = •v1 •v2 Eb = •w

Define φ0 : E0
a → E0

b by φ0(v1) = w = φ0(v2), and let φ1 : E1
a → E1

b be the empty
function. Then φ = (φ0, φ1) defines a graph homomorphism from Ea to Eb, where φ0
is clearly not injective. However, φ can be extended to the semigroup homomorphism
ϕ : G(Ea) → G(Eb) that takes all elements of G(Ea) (including 0) to w.

To complement Theorem 20, next we show that an isomorphism of graph inverse
semigroups always restricts to an isomorphism of the underlying graphs. In the case
where the graphs are finite, this follows from a result [10, Corollary 3.2] of Krieger.
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Proposition 22 Let Ea and Eb be two graphs, and let ϕ : G(Ea) → G(Eb) be a
semigroup isomorphism. Then letting φ0 and φ1 be the restrictions of ϕ to E0

a and E1
a ,

respectively, gives a graph isomorphism φ = (φ0, φ1) from Ea to Eb.

Proof Let Ia ⊆ G(Ea) and Ib ⊆ G(Eb) denote the respective subsets of idempotents.
Also let ≤I

a and ≤I
b denote the restrictions to Ia and Ib, respectively, of the natural

partial orders on G(Ea) and G(Eb), respectively. (As mentioned in Sect. 5, (Ia,≤I
a)

and (Ib,≤I
b) are lower semilattices.) By Lemma 15(3), every vertex in E0

a , but no
other element of G(Ea), is maximal in Ia with respect to ≤I

a , and analogously for
G(Eb). Since any isomorphism of semigroups induces an order-isomorphism of the
corresponding idempotent semilattices, ϕ must take E0

a bijectively to E0
b .

Next, by Lemma 15(4), every element of the form ee−1 (e ∈ E1
a ), but no other

element of G(Ea), is maximal in Ia \ E0
a with respect to ≤I

a , and analogously for
G(Eb). Hence ϕ must take {ee−1 | e ∈ E1

a} bijectively to { f f −1 | f ∈ E1
b}. Now, let

e ∈ E1
a be any edge, write ϕ(ee−1) = f f −1 for some f ∈ E1

b , and write ϕ(e) = xy−1

for some x, y ∈ Path(Eb). Then

f f −1 = ϕ(ee−1) = ϕ(e)ϕ(e)−1 = xy−1yx−1 = xx−1,

since ϕ is an isomorphism of inverse semigroups. It follows that x = f . Furthermore,

ϕ(ra(e)) = ϕ(e−1e) = y f −1 f y−1 = yy−1,

which implies that y ∈ E0
b , since ϕ(E0

a) = E0
b . Therefore ϕ(e) = f , and hence

ϕ(E1
a) ⊆ E1

b . Since ϕ takes
{

ee−1
∣
∣e ∈ E1

a

}

bijectively to
{

f f −1
∣
∣ f ∈ E1

b

}

, it follows

that ϕ takes E1
a bijectively to E1

b . Moreover, since

0 �= ϕ(e) = ϕ(sa(e)era(e)) = ϕ(sa(e))ϕ(e)ϕ(ra(e))

for any e ∈ E1
a , we conclude that ϕ(sa(e)) = sb(ϕ(e)) and ϕ(ra(e)) = rb(ϕ(e)).

Therefore, letting φ0 and φ1 be the restrictions of ϕ to E0
a and E1

a , respectively, gives
a graph isomorphism φ = (φ0, φ1) from Ea to Eb. 
�

While, by the above result, any isomorphism of graph inverse semigroups induces
an isomorphism of the corresponding graphs, it is not the case in general that a homo-
morphism of graph inverse semigroups induces a homomorphism of the corresponding
graphs, even when the homomorphism is injective or surjective, as the next two exam-
ples show.

Example 23 Consider the following two graphs.

Ea = •w Eb = •v1
e �� •v2

ThenG(Ea) = {0, w}, and thus it is easy to see thatϕ(0) = 0,ϕ(w) = ee−1 defines an
injective semigroup homomorphism ϕ : G(Ea) → G(Eb). However, the restriction
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of ϕ to E0
a = {w} is not a function E0

a → E0
b , and in particular, ϕ does not induce a

graph homomorphism from Ea to Eb.

Example 24 Consider the following two graphs.

Ea = •v e�� Eb = •w

Then it is easy to see that

ϕ(μ) =
{

w if μ �= 0
0 if μ = 0

defines a surjective semigrouphomomorphismϕ : G(Ea) → G(Eb) (cf. Example 14).
However, the restriction of ϕ to E1

a = {e} is not a function E0
a → E0

b = ∅, and in
particular, ϕ does not induce a graph homomorphism from Ea to Eb.

From Theorem 20 and Proposition 22 we immediately obtain the following well-
known result. (In the case of simple graphs it is noted by Ash and Hall in [3] after
Theorem1, and in the case of finite graphs it is proved byKrieger in [10, Corollary 3.2].
It also follows from the result [4, Corollary 8.5] of Costa and Steinberg that two graph
inverse semigroups are Morita equivalent if and only if the underlying graphs are
isomorphic.)

Corollary 25 Let Ea and Eb be two graphs. Then Ea ∼= Eb if and only if G(Ea) ∼=
G(Eb).

We conclude with several other consequences of Theorem 20 and Proposition 22.

Corollary 26 Let E be a graph. Denote by Aut(E) and Aut(G(E)) the groups
of automorphisms of E as a graph and G(E) as a semigroup, respectively. Then
Aut(G(E)) ∼= Aut(E) as groups.

Proof Let ϕ ∈ Aut(G(E)) be any automorphism. Then, by Proposition 22, letting ϕ0
and ϕ1 be the restrictions of ϕ to E0 and E1, respectively, gives a graph automorphism
(ϕ0, ϕ1) of E . Hence we can define a function ψ : Aut(G(E)) → Aut(E) by ψ(ϕ) =
(ϕ0, ϕ1). Moreover, by Theorem 20, ψ is a bijection.

Now, if ϕ, ϕ′ ∈ Aut(G(E)) are two automorphisms, then, again by Proposition 22,
the restrictions of ϕ ◦ ϕ′ to E0 and E1 are precisely ϕ0 ◦ ϕ′

0 and ϕ1 ◦ ϕ′
1, respectively.

It follows that ψ : Aut(G(E)) → Aut(E) is a group isomorphism. 
�
Corollary 27 For every group H there is some graph E such that H ∼= Aut(G(E)).

Proof By Frucht’s theorem [6], every group is isomorphic to the automorphism group
of some graph. The claim now follows by combining this fact with Corollary 26. 
�
Corollary 28 Let E be a simple acyclic graph, let JG(E) be the set of nonzero J -
classes of G(E), and let Aut(JG(E),≤J ) denote the group of order-automorphisms
of (JG(E),≤J ). Then Aut(JG(E),≤J ) ∼= Aut(G(E)).
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130 Z. Mesyan, J. D. Mitchell

Proof Since E is acyclic, as noted immediately afterCorollary 2, the elements of JG(E)

are in one-to-one correspondence with the vertices of E . Moreover, for all u, v ∈ E0,
by Lemma 1(3), Ju ≤J Jv if and only if s(t) = v and r(t) = u for some t ∈ Path(E).
It is now easy to see that every automorphism of E induces an order-automorphism
of JG(E), and vice versa. It follows that Aut(E) ∼= Aut(JG(E),≤J ), from which we
obtain the result, by Corollary 26. 
�
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