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Abstract We give an abstract characterization of algebras of some partial functions
from An to A endowed with the operations of Menger superposition and set-theoretic
difference of functions as subsets of An+1 and prove that these classes constitute
varieties.
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1. Let A be a nonempty set. Any partial mapping from An into A is called a partial n-
place function defined on A. The set of all such functions is denoted byF(An, A). On
F(An, A) we define the operation of Menger superposition (composition) of n-place
functions O : ( f, g1, . . . , gn) �→ f [g1 . . . gn] by putting

(ā, c) ∈ f [g1 . . . gn] ←→ (∃b̄)
(
(ā, b1) ∈ g1 ∧ · · · ∧ (ā, bn) ∈ gn ∧ (b̄, c) ∈ f

)

for all ā ∈ An, b̄ = (b1, . . . , bn) ∈ An and c ∈ A. If a set � ⊆ F(An, A) is
closed under this operation, the algebra (�,O) is called aMenger algebra of n-place
functions. For n = 1 it is just an arbitrary semigroup of functions.
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If the set � is also closed under the set-theoretic difference \ of functions (as
subsets of An+1), the algebra (�,O, \) is called a difference Menger algebra of n-
place functions, cf. [2]. For n = 1 it is a difference semigroup of functions in the sense
of Schein [4].

The set of all reversive n-place functions, i.e., the set of all f ∈ F(An, A) such
that

f (a1, . . . , ai−1, b, ai+1, . . . , an) = f (a1, . . . , ai−1, c, ai+1, . . . , an) −→ b = c

for all a1, . . . , an, b, c ∈ A, i = 1, . . . , n, is denoted by R(An, A).
2. A nonempty set G with one (n + 1)-ary operation o : ( f, g1, . . . , gn) �→
f [g1 . . . gn] satisfying the so-called superassociative law:

x[y1 . . . yn][z1 . . . zn] = x[y1[z1 . . . zn] . . . yn[z1 . . . zn]],

is called a Menger algebra of rank n and is denoted by (G, o). A Menger algebra of
rank 1 is just a semigroup.

A Menger algebra (G, o) of rank n is called unitary if there exist elements
e1, . . . , en ∈ G, called selectors, such that x[e1 . . . en] = x and ei [x1 . . . xn] = xi
for all x, x1, . . . , xn ∈ G and i = 1, . . . , n. It is known (cf. [3, Thm. 2.1.12]) that
each Menger algebra (G, o) of rank n can be isomorphically embedded into a unitary
Menger algebra (G∗, o∗) of the same rank with the selectors e1, . . . , en , which do not
belong to G, such that G ∪ {e1, . . . , en} is a generating set for (G∗, o∗).

Let (G, o) be aMenger algebra of rank n. Consider the set Tn(G) of all expressions,
called polynomials, in the alphabet G ∪ {[ ], x}, where the square brackets and x do
not belong to G, defined inductively as follows:

(a) x ∈ Tn(G);
(b) if i ∈ {1, . . . , n}, a, b1, . . . , bi−1, bi+1, . . . , bn ∈ G, t ∈ Tn(G), then

a[b1 . . . bi−1t bi+1 . . . bn] ∈ Tn(G).

Further, for simplicity, instead of a[b1 . . . bi−1t bi+1 . . . bn] we write a[b̄ |i t].
A binary relation ρ ⊂ G×G, where (G, o) is a Menger algebra of rank n, is called

• stable if for all x, y, xi , yi ∈ G, i = 1, . . . , n,

(x, y), (x1, y1), . . . , (xn, yn) ∈ ρ −→ (x[x1 . . . xn], y[y1 . . . yn]) ∈ ρ;

• v-regular if for all xi , yi , z ∈ G, i = 1, . . . , n,

(x1, y1), . . . , (xn, yn) ∈ ρ −→ (z[x1 . . . xn], z[y1 . . . yn]) ∈ ρ;

• weakly steady if for all x, y, z ∈ G, t1, t2 ∈ Tn(G),

(x, y), (z, t1(x)), (z, t2(y)) ∈ ρ −→ (z, t2(x)) ∈ ρ;
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On some subtraction Menger algebras of multiplace functions 377

• steady if for all x, y, z ∈ G, t1, t2 ∈ Tn(G),

(z, t1(x)), (z, t1(y)), (z, t2(y)) ∈ ρ −→ (z, t2(x)) ∈ ρ.

A subset H of aMenger algebra (G, o) is called an l-ideal if for all x, h1, . . . , hn ∈
G,

(h1, . . . , hn) ∈ Gn \ (G \ H)n −→ x[h1 . . . hn] ∈ H.

3. Any homomorphism P of aMenger algebra (G, o) of rank n onto aMenger algebra
(�,O), where � ⊂ F(An, A) (respectively, � ⊂ R(An, A)) and A is an arbitrary
set, is called a representation of (G, o) by n-place functions (respectively, by reversive
n-place functions). Thus, P is a representation if

P(x[y1 . . . yn]) = P(x)[P(y1) . . . P(yn)]

for all x, y1, . . . , yn ∈ G. In the case when P is an isomorphism we say that this
representation is faithful, cf. [3, Sect. 2.7].

Let (Pi )i∈I be a family of representations of a Menger algebra (G, o) of rank n
by n-place (reversive) functions defined on pairwise disjoint sets (Ai )i∈I . The sum of
the family (Pi )i∈I is the map P : g �→ P(g), denoted by

∑
i∈I Pi , from (G, o) into

F(An, A) (respectively, intoR(An, A)),where A = ⋃
i∈I Ai and P(g) = ⋃

i∈I Pi (g)
for every g ∈ G. It is not difficult to see that P is a representation of (G, o).

A determining pair of aMenger algebra (G, o) of rank n is any pair (ε∗,W ), where
ε is a v-regular equivalence on the algebra (G, o), W is an l-ideal of (G, o), which
is an ε-class if W �= ∅, and ε∗ = ε ∪ {(e1, e1), . . . , (en, en)}, where e1, . . . , en are
selectors of (G∗, o∗). With each determining pair (ε∗,W ) we associate a so-called
simplest representation P(ε∗,W ) of (G, o) defined in the following way. LetH0 be the
collection of all ε-classes of G distinct from W andH = H0 ∪ {{e1}, . . . , {en}}. Each
element g ∈ G is associated with an n-place function P(ε∗,W )(g) onH defined by:

(H1, . . . , Hn, H) ∈ P(ε,W )(g) ←→ g[H1 . . . Hn] ⊂ H,

where (H1, . . . , Hn) ∈ Hn
0 ∪ {({e1}, . . . , {en})} and H ∈ H. One can prove (cf. [3,

Sect. 2.7]) that P(ε∗,W ) is a representation of (G, o) by n-place functions. Moreover,
if the determining pair (ε∗,W ) satisfies the condition

(u[w̄ |i x], u[w̄ |i y]) ∈ ε ∧ u[w̄ |i x] /∈ W −→ (x, y) ∈ ε, (1)

then P(ε∗,W ) is a representation by reversive n-place functions.
4. Now we recall some basic facts on so-called subtraction algebras studied in [1,4].
A nonempty set G with one binary operation “−” is called a subtraction algebra if it
satisfies the following three axioms:

x − (y − x) = x, (2)

x − (x − y) = y − (y − x), (3)
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(x − y) − z = (x − z) − y. (4)

Notice that any subtraction algebra (G,−) satisfies

x − x = y − y. (5)

Indeed, according to (2) and (4), we have

(x − x) − ((x − x) − (y − y)) = (x − x) − ((x − (y − y)) − x)

= (x − ((x − (y − y)) − x)) − x = x − x .

Swapping x and y, we obtain (y− y)− ((y− y)− (x − x)) = y− y. From the above,
applying (3), we get

(x − x) − ((x − x) − (y − y)) = (y − y) − ((y − y) − (x − x)),

which implies (5).
This means that the value of x − x is independent of x . Hence it can be denoted by

0. So, in any subtraction algebra we have

x − x = 0 (6)

for all x ∈ G.
From (6), applying (2), we deduce the following two identities:

x − 0 = x, 0 − x = 0. (7)

Notice that the identities (6) and (7) were proved in [2], but the proof in [2] was
based on the axiom 0 − 0 = 0 which is omitted in our present definition.

On a subtraction algebra (G,−) we define a relation � by putting:

x � y ←→ x − y = 0. (8)

This relation is reflexive, transitive and antisymmetric. Hence this relation is an order
and for all x, y, z, v ∈ G satisfies the following conditions (cf. [1–3]):

0 � x, (9)

x − y � x, (10)

x � y ←→ x − (x − y) = x, (11)

x � y −→ x − z � y − z, (12)

x � y −→ z − y � z − x, (13)

x � y ∧ z � v −→ x − v � y − z, (14)

(x − y) − y = x − y, (15)

(x − y) − z = (x − z) − (y − z). (16)
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On some subtraction Menger algebras of multiplace functions 379

On (G,−) we also define an additional binary operation � as follows:

x � y = x − (x − y). (17)

This operation is idempotent, commutative and associative, cf. [1]. Hence (G,�) is a
semilattice. From (11) it follows that x � y ←→ x � y = x .

The following conditions are satisfied in (G,−):

x � y ∧ x � z −→ x � y � z, (18)

x � y −→ x � z � y � z, (19)

x � y = 0 −→ x − y = x, (20)

(x − y) � y = 0, (21)

x � (y − z) = (x � y) − (x � z), (22)

x − y = x − (x � y), (23)

(x � y) − (y − z) = x � y � z, (24)

(x � y) − z = (x − z) � (y − z), (25)

(x � y) − z = (x − z) � y. (26)

For details see [1].
5. Now we consider algebras with two operations: one (n + 1)-ary and one binary.
An algebra (G, o,−) of type (n + 1, 2), where (G, o) is a Menger algebra of rank n
and (G,−) is a subtraction algebra is called

• a weak subtraction Menger algebra of rank n if the equalities

(x − y)[z1 . . . zn] = x[z1 . . . zn] − y[z1 . . . zn], (27)

u[w̄|i (x − (x − y))] = u[w̄|i x] − u[w̄|i (x − y)] (28)

hold for all x, y, u, z1, . . . , zn ∈ G, w̄ ∈ Gn and i = 1, . . . , n;
• a subtraction Menger algebra of rank n if it satisfies (27) and (28) for all

x, y, u, z1, . . . , zn ∈ G, w̄ ∈ Gn and i = 1, . . . , n, and the implication

x − y = 0 ∧ z − t1(x) = 0 ∧ z − t2(y) = 0 −→ z − t2(x) = 0 (29)

holds for all x, y, z ∈ G and t1, t2 ∈ T n(G);
• a strong subtraction Menger algebra of rank n if it satisfies (27) for all

x, y, z1, . . . , zn ∈ G, and the equality

u[w̄|i (x − y)] = u[w̄|i x] − u[w̄|i y] (30)

holds for all x, y, u ∈ G, w̄ ∈ Gn and i = 1, . . . , n.
Notice that in the case n = 1 the implication (29) can be deduced from (2), (3), (4),

(27), and (28). Thus, for semigroups, the concept of a weak subtraction semigroup
coincides with the concept of a subtraction semigroup.
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In our previous paper [2] a subtraction Menger algebra was defined as a weak
subtraction Menger algebra (in the above sense) satisfying the conditions (29) and
0 − 0 = 0. Now this last condition is omitted because, as mentioned earlier, it is a
consequence of (2), (3), and (4). Notice, by the way, that in the proofs of some results
in [2] the conditions (29) and 0 − 0 = 0 were not used. So, these results are valid for
our weak subtraction Menger algebras, too.

Since (28) follows from (30), any strong subtraction Menger algebra is a weak
subtractionMenger algebra of the same rank. Obviously a subtractionMenger algebra
is a weak subtraction Menger algebra. So, the class of subtraction Menger algebras is
contained in the variety of weak subtraction Menger algebras. Below we prove that
the class of subtraction Menger algebras is a variety containing as a subvariety the
class of strong Menger algebras in which the relation � defined by (8) is steady.

Notice that in a weak subtraction algebra (G, o,−) the relation � is stable with
respect to the operation o. It also satisfies (12), (13), and (14), cf. [2].

Proposition 1 (cf. [2, Prop. 4]) In the definition of a weak subtractionMenger algebra
of rankn the axiom (28) canbe replacedby eachof the following equivalent conditions:

x � y −→ u[w̄|i (y − x)] = u[w̄|i y] − u[w̄|i x], (31)

x � y −→ t (y − x) = t (y) − t (x), (32)

t (x − (x − y)) = t (x) − t (x − y) (33)

for all x, y, u ∈ G, w̄ ∈ Gn, i = 1, . . . , n, t ∈ Tn(G).

In [2] this result was proved for subtraction Menger algebras, but the implication
(29) was not used in the proof.

Proposition 2 In a weak subtractionMenger algebra (G, o,−) of rank n the formula

t (x − y) = t (x) − t (x � y) (34)

is valid for each polynomial t ∈ Tn(G) and all x, y ∈ G.

Proof According to (23), for each t ∈ Tn(G) we have t (x − y) = t (x − (x � y)). So,
x � y � x , by (32), implies t (x − (x � y)) = t (x) − t (x � y). Hence, t (x − y) =
t (x) − t (x � y) for all x, y ∈ G. �
Theorem 1 A weak subtraction Menger algebra (G, o,−) of rank n is a subtraction
Menger algebra if and only if one of the following equivalent conditions is satisfied.

(i) The relation � defined by (8) is weakly steady, i.e.,

x � y ∧ z � t1(x) ∧ z � t2(y) −→ z � t2(x) (35)

for all x, y, z ∈ G and t1, t1 ∈ Tn(G).
(ii) For all x, y ∈ G and t1, t2 ∈ Tn(G),

t1(x � y) � t2(x − y) = 0. (36)
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On some subtraction Menger algebras of multiplace functions 381

(iii) For all x, y ∈ G and t1, t2 ∈ Tn(G),

t1(x � y) � t2(y) = t1(x � y) � t2(x � y). (37)

Proof In view of (8), conditions (35) and (29) are equivalent. So, a weak subtraction
Menger algebra is subtraction Menger algebra if and only if it satisfies (35).

We now show that (i), (ii), and (iii) are equivalent.
(i) −→ (i i) Let h denote the element t1(x � y)� t2(x − y). Clearly, h � t1(x � y)

and h � t2(x − y). Since t2(x − y) � t2(x), we have h � t2(x). So, x � y � x ,
h � t1(x� y) and h � t2(x), which, by (35), implies h � t2(x� y). But h � t2(x− y),
whence

h � t2(x − y) � t2(x � y). (38)

Therefore:

t2(x − y) − t2(x � y)
(34)= (t2(x) − t2(x � y)) − t2(x � y)

(15)= t2(x) − t2(x � y)
(34)= t2(x − y),

and consequently,

t2(x − y) � t2(x � y)
(17)= t2(x − y) − (t2(x − y) − t2(x � y))

= t2(x − y) − t2(x − y) = 0.

Thus, t2(x − y) � t2(x � y) = 0. So, from (38) we obtain h � 0. However, 0 � h,
hence h = 0. This proves (36). So, (i) implies (ii).

(i i) −→ (i i i) Since x � y = y � x , it follows from (36) that

t1(x � y) � t2(y − x) = 0,

and thus, t1(x � y) � (t2(y) − t2(x � y)) = 0, by (34). From this, applying (22), we
obtain t1(x � y) � t2(y) − t1(x � y) � t2(x � y) = 0, which, according to (8), can
be written in the form:

t1(x � y) � t2(y) � t1(x � y) � t2(x � y). (39)

Since the relation � is stable and x � y � y, we have t1(x � y) � t2(x � y) �
t2(x � y) � t2(y). Thus, t1(x � y) � t2(x � y) � t1(x � y) � t2(y), which together
with (39) proves (37). So, (ii) implies (iii).

(i i i) −→ (i) To prove (35) suppose that x � y, z � t1(x), and z � t2(y) for some
x, y, z ∈ G, t1, t2 ∈ Tn(G). From x � yweobtain x�y = x . Therefore, z � t1(x�y).
From this, in view of (18) and z � t2(y), we get z � t1(x � y) � t2(y), which, by
(37), implies z � t1(x � y)� t2(x � y). Consequently, z � t1(x � y)� t2(x) � t2(x).
This proves (35). Thus, (iii) implies (i). �
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In terms of weak subtraction Menger algebras the conditions (36) and (37) can be
rewritten in the form:

t1(x − (x − y)) −
(
t1(x − (x − y)) − t2(x − y)

)
= z − z,

t1(x − (x − y)) −
(
t1(x − (x − y)) − t2(y)

)

= t1(x − (x − y)) −
(
t1(x − (x − y)) − t2(x − (x − y))

)
.

Since t1, t2 are arbitrary polynomials, each of the above identities defines an infinite
set of axioms determining together with (27) and (28) the class of subtraction Menger
algebras.

Corollary 1 The class of subtraction Menger algebras of fixed rank is a variety.

Proposition 3 In a strong subtraction Menger algebra (G, o,−) of rank n for each
polynomial t ∈ Tn(G) we have

t (x � y) = t (x) � t (y). (40)

Proof Indeed, each strong subtraction Menger algebra of rank n is a weak subtraction
Menger algebra of the same rank, so it satisfies (28), which, by (17), can be rewritten
as u[w̄|i (x � y)] = u[w̄|i x] − u[w̄|i (x − y)]. From this, applying (30), we obtain
u[w̄|i (x � y)] = u[w̄|i x] − (u[w̄|i x] − u[w̄|i y]) = u[w̄|i x] � u[w̄|i y]. Thus,

u[w̄|i (x � y)] = u[w̄|i x] � u[w̄|i y]

for all x, y, u ∈ G, w̄ ∈ Gn , i = 1, . . . , n. This means that (40) is true for all
polynomials of the form t (x) = u[w̄|i x].

Suppose now that (40) holds for some t ′ ∈ Tn(G), i.e., t ′(x � y) = t ′(x) � t ′(y)
for all x, y ∈ G. Then for any t (x) = u[w̄|i t ′(x)], where w̄ ∈ Gn, i ∈ 1, . . . , n, we
have

t (x � y) = u[w̄|i t ′(x � y)] = u[w̄|i (t ′(x) � t ′(y))]
= u[w̄|i t ′(x)] � u[w̄|i t ′(y)] = t (x) � t (y).

Thus, (40) is true for all polynomials t ∈ Tn(G). �
Theorem 2 In a strong subtraction Menger algebra (G, o,−) of rank n the following
conditions are equivalent.

(a) The relation � defined by (8) is steady on (G, o,−), i.e.,

z � t1(x) ∧ z � t1(y) ∧ z � t2(y) −→ z � t2(x) (41)

for all x, y, z ∈ G and t1, t1 ∈ Tn(G).
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(b) For all x, y ∈ G and t1, t2 ∈ Tn(G) holds:

t1(x � y) � t2(y) = t1(x � y) � t2(x). (42)

Proof (a) −→ (b) First we show that the relation � defined by (8) is weakly steady.
For this let x � y, z � t1(x), and z � t2(y). As x � y = x , then z � t1(x � y),
consequently, by (40), z � t1(x)� t1(y). This implies z � t1(x) and z � t1(y). Taking
into account that z � t2(y) and applying (41), we get z � t2(x). This means that the
relation � is weakly steady and, by Theorem 1, it satisfies (37) for all x, y ∈ G and
t1, t2 ∈ Tn(G). Thus, we have t1(x � y)� t2(y) = t1(x � y)� t2(x � y) � t1(x � y)�
t2(x). On the other hand, we similarly obtain t1(x � y) � t2(x) � t1(x � y) � t2(y).
Therefore, t1(x � y) � t2(y) = t1(x � y) � t2(x). This means that (a) implies (b).

(b) −→ (a) Suppose that the premise of the implication (41) is satisfied. Then from
z � t1(x) and z � t1(y), according to (18) and (40), we obtain z � t1(x) � t1(y) =
t1(x � y). Since z � t2(y), the above implies

z � t1(x � y) � t2(y)
(42)= t1(x � y) � t2(x) � t2(x),

which proves (41). Thus, (b) implies (a). �
Since in terms of the algebra (G, o,−) the condition (42) has the form:

t1(x − (x − y)) − (t1(x − (x − y)) − t2(y))

= t1(x − (x − y)) − (t1(x − (x − y)) − t2(x)),

it may be replaced by an infinite sets of identities. So, the class of strong subtraction
Menger algebras of rank n in which the relation � is steady is a variety contained in
the variety of subtraction Menger algebras, and consequently, in the variety of weak
Menger algebras of the same rank.
6. In our previous paper [2] we proved that each difference Menger algebra of n-
place functions is a weak subtraction Menger algebra of rank n. Comparing this result
with [2, Thm. 2], we conclude that a weak subtraction Menger algebra of rank n is
isomorphic to a differenceMenger algebra of n-place functions if and only if it satisfies
the condition (29), i.e., if and only if it is a subtraction Menger algebra. Thus, a weak
subtraction Menger algebra of rank n is isomorphic to a difference Menger algebra of
n-place functions if and only if it satisfies one of the conditions of Theorem 1 of the
present paper.

Proposition 4 In each differenceMenger algebra (�,O, \) of reversive n-place func-
tions we have:

u[w̄ |i ( f \ g)] = u[w̄|i f ]\ u[w̄|i g] (43)

for all f, g ∈ �, w̄ ∈ �n, i = 1, . . . , n.

Proof Let (ā, c) ∈ u[w̄|i ( f \ g)] for some ā ∈ An , c ∈ A. This means that there is
b̄ = (b1, . . . , bn) ∈ An such that (ā, bi ) ∈ f \ g, (ā, b j ) ∈ w j for j ∈ {1, . . . , n}\ {i}
and (b̄, c) ∈ u. Hence, we have (ā, bi ) ∈ f , (ā, bi ) /∈ g and (ā, c) ∈ u[w̄|i f ].
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Assume that (ā, c) ∈ u[w̄|i g]. Then there is d̄ = (d1, . . . , dn) ∈ An such that
(ā, di ) ∈ g, (ā, d j ) ∈ w j with j ∈ {1, . . . , n}\ {i}, and (d̄, c) ∈ u. Since all w j

are functions, from (ā, b j ) ∈ w j , (ā, d j ) ∈ w j , j ∈ {1, . . . , n} \ {i}, it follows
b j = d j , where j ∈ {1, . . . , n}\{i}. Thus, (b̄, c) ∈ u and (b̄|i di , c) ∈ u. Consequently,
u(b̄) = c = u(b̄|i di ). Since u is a reversive function, the last implies bi = di . So,
(ā, bi ) ∈ g, which contradicts the fact that (ā, bi ) /∈ g. Therefore, (ā, c) /∈ u[w̄|i g].
Thereby (ā, c) ∈ u[w̄|i f ]\ u[w̄|i g]. Thus,

u[w̄|i ( f \ g)] ⊂ u[w̄|i f ]\ u[w̄|i g].

Conversely, let (ā, c) ∈ u[ω̄|i f ]\ u[ω̄|i g]. Then (ā, c) ∈ u[ω̄|i f ] and (ā, c) /∈
u[ω̄|i g]. The first of these two conditions means that there is a vector b̄ =
(b1, . . . , bn) ∈ An such that (b̄, c) ∈ u, (ā, bi ) ∈ f and (ā, b j ) ∈ ω j for each
j ∈ {1, . . . , n} \ {i}. The second condition (ā, c) /∈ u[ω̄|i g] means that for every
d̄ = (d1, . . . , dn) ∈ An the following implication

n∧
j=1, j �=i

(ā, d j ) ∈ ω j ∧ (d̄, c) ∈ u −→ (ā, di ) /∈ g

is valid. From this implication for d̄ = b̄ we obtain (ā, bi ) /∈ g. So (ā, bi ) ∈ f \ g.
Thus, (ā, c) ∈ u[ω̄|i ( f \ g)]. Consequently,

u[w̄ |i f ]\ u[w̄ |i g] ⊂ u[w̄ |i ( f \ g)],

which together with the previous inclusion proves (43). �
As a consequence of the above proposition and [2, Thm. 1] we obtain

Corollary 2 A difference Menger algebra (�,O, \) of reversive n-place functions is
a strong subtraction Menger algebra of rank n.

7. Let (G, o,−)be aweak (strong) subtractionMenger algebra of rankn.Anonempty
subset F ⊂ G is called a filter of (G, o,−) if:

(1) 0 /∈ F ;
(2) x ∈ F ∧ x � y −→ y ∈ F ;
(3) x ∈ F ∧ y ∈ F −→ x � y ∈ F

for all x, y ∈ G.
If a, b ∈ G and a � b, then [ a) = {x ∈ G | a � x} is a filter such that a ∈ [ a)

and b /∈ a. By Zorn’s Lemma, the family of all filters that contain a but not b has a
maximal element, which we denote by Fa,b. Using this maximal element we define:

Wa,b = {x ∈ G | (∀t ∈ Tn(G)) t (x) /∈ Fa,b},
εa,b = {(x, y) ∈ G × G | x � y /∈ Wa,b ∨ x, y ∈ Wa,b},
ε∗
a,b = εa,b ∪ {(e1, e1), . . . , (en, en)}.
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The pair (ε∗
a,b,Wa,b) is a determining pair for the Menger algebra (G, o) provided

that the relation � defined by (8) is weakly steady [2, Prop. 10]. In the proof of
Theorem 2we have shown that steadiness of the relation� implies its weak steadiness.
Therefore all properties of the determining pair (ε∗

a,b,Wa,b) connected with steadiness
of � remain true. The sum

P =
∑

a,b∈G,a�b

P(ε∗
a,b,Wa,b) (44)

of the simplest representations
(
P(ε∗

a,b,Wa,b)

)
a,b∈G,a�b

of the algebra (G, o) is a rep-

resentation of (G, o) by n-place functions (cf. [3, Sect. 2.7]). So, P is a faithful
representation of the weak subtraction Menger algebra (G, o,−) by n-place functions
(cf. [2, Thm. 2]).

Proposition 5 If in a strong subtraction Menger algebra (G, o,−) of rank n the
relation � defined by (8) is steady, then

(u[w̄|i x], u[w̄|i y]) ∈ εa,b ∧ u[w̄|i x] /∈ Wa,b −→ (x, y) ∈ εa,b (45)

for all a, b ∈ G, i.e., the determining pair (ε∗
a,b,Wa,b) satisfies (1).

Proof Let the premise of (45) be satisfied. Then, u[w̄|i x] � u[w̄|i y] /∈ Wa,b. Thus,
t (u[w̄|i x] � u[w̄|i y]) ∈ Fa,b for some polynomial t ∈ Tn(G). But

t (u[w̄|i x] � u[w̄|i y]) = t (u[w̄|i x]) � t (u[w̄|i y]) = t (u[w̄|i (x � y)],

by Proposition 3. Hence, t (u[w̄|i (x � y)] ∈ Fa,b, which means that x � y /∈ Wa,b.
So, (x, y) ∈ εa,b. �

From Proposition 5 it follows that the simplest representation P(ε∗
a,b,Wa,b) of a strong

subtraction Menger algebra of rank n in which the relation � is steady is in fact a
representation by reversive n-place functions. So, the representation P given by (44)
is an isomorphism between the strong subtraction Menger algebra (G, o,−) of rank
n and a difference Menger algebra (�,O, \) of reversive n-place functions, where
� = {P(g) | g ∈ G}. Thus, according to Theorem 2, we have proved the following
theorem:

Theorem 3 A strong subtraction Menger algebra of rank n is isomorphic to a differ-
ence Menger algebra of reversive n-place functions if and only if it satisfies one of the
conditions of Theorem 2.

Corollary 3 The class of strong subtraction Menger algebras (G, o,−) of rank n
isomorphic to differenceMenger algebras of reversive n-place functions is a subvariety
of the variety of subtraction Menger algebras.
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The variety ofweak subtractionMenger algebras of rank n is defined by the superas-
sociativity and the identities (2), (3), (4), (27) and (28). Thevariety of strong subtraction
Menger algebras of rank n is defined by the superassociativity and the identities (2),
(3), (4), (27) and (30).

Problem 1 Is the variety of subtraction Menger algebras of rank n finitely based?

References

1. Abbott, J.C.: Sets, Lattices and Boolean Algebras. Allyn and Bacon, Boston (1969)
2. Dudek, W.A., Trokhimenko, V.S.: Subtraction Menger algebras. Semigroup Forum 85, 111–128 (2012)
3. Dudek, W.A., Trokhimenko, V.S.: Algebras of Multiplace Functions. Walter de Gruyter, Berlin (2012)
4. Schein, B.M.: Difference semigroups. Commun. Algebra 20, 2153–2169 (1992)

123


	On some subtraction Menger algebras of multiplace functions
	Abstract
	References




